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Abstract

The fluctuation limit of a measure-valued immigration process with small
branching rate is considered, which gives the solution to a Langevin type
equation driven by a distribution-valued process with independent incre-
ments.

1. Measure-valued immigration process. Let E be a locally compact metric space. Let
C0(E) denote the set of continuous functions on E that vanish at infinity. Suppose
that ξ = (Ω,F ,Ft, ξt,Px) is a Markov process with Feller transition semigroup (Pt)t≥0,
that is, Pt maps C0(E) to itself and is strongly continuous in t ≥ 0. Let A denote the
strong generator of (Pt)t≥0 with domain D(A) ⊂ C0(E). We choose a strictly positive
reference function ρ ∈ D(A) satisfying Aρ ∈ Cρ(E), where Cρ(E) denotes the set of
functions f ∈ C0(E) satisfying |f | ≤ const · ρ. Then there is some β ≥ 0 such that ρ
is a β-excessive function for the semigroup (Pt)t≥0. Let Dρ(A) be the set of functions
f ∈ D(A) ∩ Cρ(E) with Af ∈ Cρ(E). The subsets of non-negative elements of the
function spaces are indicated by the superscript ‘+’, e.g. Cρ(E)+. For example, if ξ is
a Brownian motion on Rd, we may set ρ(x) = e−|x| for |x| ≥ 1, where | · | denotes the
Euclidean norm.

Let Mρ(E) denote the space of σ-finite measures µ on (E,B(E)) such that µ(f) :=∫
E

fdµ < ∞ for all f ∈ Cρ(E). The topology of Mρ(E) is defined by the convention:
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µk → µ if and only if µk(f) → µ(f) for all f ∈ Cρ(E). Let φ be a continuous function
on E × [0,∞) given by

φ(x, z) = c(x)z2 +
∫ ∞

0

(e−zu − 1 + zu)m(x, du), x ∈ E, z ≥ 0, (1.1)

where c ≥ 0 is a bounded, continuous function on E and (u∧ u2)m(x, du) is a bounded
kernel from E to (0,∞). We consider a Dawson-Watanabe superprocess X with pa-
rameters (ξ, φ); see e.g. Dawson (1993). X is an Mρ(E)-valued Markov process with
transition semigroup (Qt)t≥0 determined by

∫

Mρ(E)

e−ν(f)Qt(µ, dν) = exp {−µ(Vtf)} , f ∈ Cρ(E)+, (1.2)

where Vtf denotes the unique positive solution of the evolution equation

Vtf(x) +
∫ t

0

ds

∫

E

φ(y, Vsf(y))Pt−s(x, dy) = Ptf(x), t ≥ 0, x ∈ E. (1.3)

Let Kρ(P ) be the set of entrance laws κ = (κt)t>0 for the underlying semigroup
(Pt)t≥0 that satisfy

∫ 1

0
κs(ρ)ds < ∞. For any κ ∈ Kρ(P ) we set

St(κ, f) = κt(f)−
∫ t

0

ds

∫

E

φ(y, Vsf(y))κt−s(dy), t > 0, f ∈ Cρ(E)+. (1.4)

Theorem 1.1. The formula

∫

Mρ(E)

e−ν(f)Qκ
t (µ, dν) = exp

{
− µ(Vtf)−

∫ t

0

Sr(κ, f)dr

}
, f ∈ Cρ(E)+, (1.5)

defines a transition semigroup (Qκ
t )t≥0 on Mρ(E).

Proof. Since ρ is a β-excessive function for ξ, we can define a Borel right semigroup
(Tt)t≥0 on E by Ttf(x) = e−βtρ(x)−1Pt(ρf)(x); see Sharpe (1988). Let ψ(x, z) =
ρ(x)−1φ(x, ρ(x)z) − βz and let n(x, du) be the image of m(x, du) under the mapping
u 7→ ρ(x)u. It is easy to check that (u ∧ u2)ρ(x)−1n(x,du) is a bounded kernel from E
to (0,∞) and ψ has the representation

ψ(x, z) = −βz + c(x)ρ(x)z2 +
∫ ∞

0

(e−zu − 1 + zu)ρ(x)−1n(x, du).

Let Utf be the solution to

Utf(x) +
∫ t

0

ds

∫

E

ψ(y, Usf(y))Tt−s(x, dy) = Ttf(x), t ≥ 0, x ∈ E. (1.6)
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Then (Ut)t≥0 is the cumulant semigroup of a Dawson-Watanabe superprocess with
state space M(E), the totality of finite Borel measures on E. Define the finite measures
(ηt)t>0 on E by ηt(f) = e−βtκt(ρf). It is easy to check that (ηt)t>0 is an entrance law
for (Tt)t≥0. Let

ST
t (η, f) = ηt(f)−

∫ t

0

ds

∫

E

ψ(y, Usf(y))ηt−s(dy).

By Theorem 3.2 of Li (1996), there is a Markov process with state space M(E) and
semigroup (Rη

t )t≥0 given by

∫

M(E)

e−ν(f)Rη
t (µ, dν) = exp

{
− µ(Utf)−

∫ t

0

ST
r (η, f)dr

}
.

Let (Gη
t )t≥0 be the image of (Rη

t )t≥0 under the mapping µ(dx) 7→ ρ(x)−1µ(dx) from
M(E) to Mρ(E). Then we have

∫

Mρ(E)

e−ν(f)Gη
t (µ,dν) = exp

{
− µ(ρUt(ρ−1f))−

∫ t

0

ST
r (η, ρ−1f)dr

}
. (1.7)

From (1.6) it follows that

ρ(x)Ut(ρ−1f)(x) +
∫ t

0

ds

∫

E

[φ(y, ρ(y)Us(ρ−1f)(y))

− βρ(x)Us(ρ−1f)(y)]e−β(t−s)Pt−s(x, dy) = e−βtPtf(x),

or equivalently,

ρ(x)Ut(ρ−1f)(x) +
∫ t

0

ds

∫

E

φ(y, ρ(y)Us(ρ−1f)(y))Pt−s(x, dy) = Ptf(x).

Therefore, we have ρUt(ρ−1f) = Vtf . By (1.3) and (1.6) one checks that

ST
t (η, f) = lim

r↓0
ηr(Ut−rρ

−1f) = lim
r↓0

ηr(ρ−1Vt−rf) = lim
r↓0

e−βrκr(Vt−rf) = St(κ, f).

Returning to (1.7) we have Gη
t = Qκ

t . ¤
In the sequel, a Markov process Y with semigroup (Qκ

t )t≥0 will be called a measure-
valued immigration process with parameters (A,φ, κ). We can show that the immi-
gration process has a right continuous realization if κt = νPt for some ν ∈ Mρ(E).
However, the right continuity of the process in the general case still remains open.

2. Fluctuation around the excessive measure. Let (A,φ) be given as the above. Suppose
that γ ∈ Mρ(E) is a purely excessive measure for the semigroup (Pt)t≥0. Then there
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is κ ∈ Kρ(P ) such that γ =
∫∞
0

κsds; see Dynkin (1980). Let {Yt : t ≥ 0} be an
immigration process with parameters (A,φ, κ). Let Sγ

ρ (E) denote the set of all signed-
measures µ on E such that µ+γ ∈ Mρ(E). We define the process {Zt : t ≥ 0} in Sγ

ρ (E)
by Zt = Yt − γ. Then we have a.s.

E[exp{−Zr+t(f)}|Zs : 0 ≤ s ≤ r]

= exp
{
− Zr(Vtf) + γ(f − Vtf)−

∫ t

0

Su(κ, f)du

}
,

where ∫ t

0

Su(κ, f)du =
∫ t

0

κu(f)du−
∫ t

0

du

∫ u

0

κu−s(φ(Vsf))ds

=
∫ t

0

κu(f)du−
∫ t

0

ds

∫ t−s

0

κu(φ(Vsf))du

= γ(f − Ptf)−
∫ t

0

γ(φ(Vsf)− Pt−sφ(Vsf))ds

= γ(f − Vtf)−
∫ t

0

γ(φ(Vsf))ds.

That is, {Zt : t ≥ 0} is a Markov process with transition semigroup (Tκ
t )t≥0 given by

∫

Sρ(E)

e−ν(f)Tκ
t (µ, dν) = exp

{
− µ(Vtf) +

∫ t

0

γ(φ(Vsf))ds

}
. (2.1)

3. A small branching fluctuation limit theorem. For concreteness, we assume that
E = Rd and A is a differential operator. For any θ > 0 let φθ(x, z) = φ(x, θz) and
let bθ be a continuous function on Rd which is bounded, positive and bounded away
from zero. Assume that bθ ↓ 0 boundedly as θ ↓ 0. Let (P θ

t )t≥0 denote the transition
semigroup defined by

P θ
t f(x) = Px exp

{
−

∫ t

0

bθ(ξs)ds

}
f(ξt). (3.1)

Suppose that γ ∈ Mρ(Rd) is an excessive measure for the semigroup (Pt)t≥0. Then it is
a purely excessive measure for (P θ

t )t≥0, and hence γ =
∫∞
0

κθ
sds for some κθ ∈ Kρ(P θ).

Suppose that {Y θ
t : t ≥ 0} is an immigration process with parameters (A − bθ, φθ, κ

θ)
and Y θ

0 = γ. We define the fluctuation process {Zθ
t : t ≥ 0} by

Zθ
t = θ−1

[
Y θ

t − γ
]
, t ≥ 0. (3.2)

Our aim is to obtain the limiting distribution of the process {Zθ
t : t ≥ 0} as θ → 0

and to show that the limit is a generalized Ornstein-Uhlenbeck process. Observe that
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φθ(x, z) ↓ 0 as θ ↓ 0, that is, under the rescaling (3.2) the branching rate goes to
zero. This sort of fluctuation limit was studied by Gorostiza (1996) for a special type
of (non-immigration) superprocesses.

From the discussions in the last section we know that {Zθ
t : t ≥ 0} is a Markov

process with Zθ
0 = 0 and with semigroup (Rθ

t )t≥0 determined by
∫

Sγ
ρ (Rd)

e−ν(f)Rθ
t (µ,dν) = exp

{
− µ(θV θ

t (f/θ)) +
∫ t

0

γ(φ(θV θ
s (f/θ)))ds

}
, (3.3)

where (V θ
t )t≥0 is defined by

V θ
t f(x) +

∫ t

0

ds

∫

Rd

φθ(y, V θ
s f(y))P θ

t−s(x, dy) = P θ
t f(x). (3.4)

Lemma 3.1. If fθ → f ∈ C(Rd)+ boundedly as θ ↓ 0, then θV θ
t (fθ/θ) → Ptf boundedly

as θ ↓ 0.

Proof. By (3.4) we have V θ
t f(x) ≤ Ptf(x) and hence θV θ

t (fθ/θ)(x) ≤ Ptf(x) for all
t ≥ 0 and x ∈ Rd. On the other hand, (3.4) is equivalent to

V θ
t f(x) +

∫ t

0

ds

∫

Rd

[φθ(y, V θ
s f(y))− bθ(y)V θ

s f(y)]Pt−s(x, dy) = Ptf(x).

Then we have

θV θ
t (fθ/θ)(x) +

∫ t

0

ds

∫

Rd

θ[φ(y, V θ
s (fθ/θ)(y))

− bθ(y)V θ
s (fθ/θ)(y)]Pt−s(x, dy) = Ptfθ(x).

Since the second term on the left hand side goes to zero as θ ↓ 0, we have θV θ
t (fθ/θ) →

Ptf boundedly as θ ↓ 0. ¤
Let S(Rd) be the space of infinitely differentiable, rapidly decreasing functions all

of whose derivatives are also rapidly decreasing. Let S ′(Rd) denote the dual space of
S(Rd). Then we have the following fluctuation limit theorem.

Theorem 3.2. The finite-dimensional distributions of {Zθ
t : t ≥ 0} converges as θ ↓ 0

to those of the S ′(Rd)-valued Markov process {Zt : t ≥ 0} with Z0 = 0 and with
semigroup (Rγ

t )t≥0 determined by
∫

S′(Rd)

eiν(f)Rγ
t (µ, dν) = exp

{
iµ(Ptf) +

∫ t

0

γ(φ(−iPsf))ds

}
, f ∈ S(Rd), (3.5)

where φ(−iPsf) is given by (1.1) with z replaced by −iPsf(x).

Proof. For 0 ≤ t1 < · · · < tn and f1, · · · , fn ∈ S(Rd) set

h
(θ)
j = fj + V

(θ)
tj+1−tj

(fj+1 + · · ·+ V
(θ)
tn−tn−1

fn),
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where V
(θ)
t f(x) = θV θ

t (f/θ)(x). Using (3.3) inductively we get

E exp
{
−

n∑

j=1

Zθ
tj

(fj)
}

= exp
{ n∑

j=1

∫ tj−tj−1

0

γ(φ(V (θ)
s h

(θ)
j ))ds

}
. (3.6)

By Lemma 3.1 it can be proved inductively that

h
(θ)
j → hj := fj + Ptj+1−tj

(fj+1 + · · ·+ Ptn−tn−1fn)

boundedly as θ →∞. Returning to (3.6) we get

lim
θ→∞

E exp
{
−

n∑

j=1

Zθ
tj

(fj)
}

= exp
{ n∑

j=2

∫ tj−tj−1

0

γ(φ(Pshj))ds

}
.

As in Iscoe (1986), it follows that the finite-dimensional distributions of {Zθ
t : t ≥ 0}

converge to those of the S ′(Rd)-valued Markov process {Zt : t ≥ 0} with Z0 = 0 and
with transition semigroup (Rγ

t )t≥0. ¤
For the special branching mechanism φ(x, z) ≡ c(x)z2, Li (1998a) proved that the

family {Zθ
t : t ≥ 0} is tight in the space C([0,∞),S ′(Rd)) and hence the fluctuation

limit {Zt : t ≥ 0} has a continuous realization. For the one-dimensional immigration
process with general branching mechanism, a fluctuation limit theorem was given in Li
(1998b) where the tightness follows from the convergence of the corresponding transition
semigroups. However, the tightness problem for {Zθ

t : t ≥ 0} in the general setting is
still unsolved.

By Bojdecki and Gorostiza (1991; p. 1139), if {Zt : t ≥ 0} is a cadlag Markov process
with transition semigroup given by (3.5), then it solves the Langevin type equation

dZt = A∗Ztdt + dWt,

where A∗ is the adjoint of A and {Wt : t ≥ 0} is an S ′(Rd)-valued martingale with
independent increments given by

E exp {i[Wt(f)−Wr(f)]} = exp {(t− r)γ(φ(−if))} , t ≥ r ≥ 0,

where φ(−if) is given by (1.1) with z replaced by −if(x).

4. General Ornstein-Uhlenbeck process. Now we fix A and φ as the above. Let ϕ be a
function on Rd × R with the representation

ϕ(x, z) = −c(x)z2 +
∫ ∞

−∞
(eizu − 1− izu)m(x, du), x ∈ Rd, z ∈ R,
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where c ∈ C(Rd)+ and (|u|∧|u|2)m(x,du) is a bounded kernel from Rd to (−∞,∞). It is
more natural to consider the Langevin equation driven by an S ′(Rd)-valued martingale
{Lt : t ≥ 0} which has independent increments determined by

E exp {i[Lt(f)− Lr(f)]} = exp {(t− r)γ(ϕ(f))} , t ≥ r ≥ 0. (4.1)

Let ψ1(x, z) = φ(x, z) and let

ψ2(x, z) =
∫ 0

−∞
(ezu − 1− zu)m(x, du), x ∈ Rd, z ≥ 0.

Suppose that we have two independent cadlag Markov processes {Z1
t : t ≥ 0} and

{Z2
t : t ≥ 0} whose transition semigroups are given by Theorem 3.2 with parameters

(A,ψ1, γ) and (A,ψ2, γ), respectively. Let Zt = Z1
t − Z2

t for t ≥ 0. It is easy to check
that {Zt : t ≥ 0} is a generalized Ornstein-Uhlenbeck process which by definition is the
solution to the Langevin equation

dZt = A∗Ztdt + dLt,

where {Lt : t ≥ 0} is an S ′(Rd)-valued martingale with independent increments deter-
mined by (4.1). This gives an interpretation for the generalized Langevin equation in
terms of the measure-valued immigration process.

5. Fluctuation of a stationary process. Suppose that γ ∈ Mρ(E) is a purely excessive
measure for (Pt)t≥0 represented as γ =

∫∞
0

κsds for κ ∈ Kρ(P ). One may check that
the semigroup (Qκ

t )t≥0 defined by (1.5) has a stationary distribution Qκ
∞ with Laplace

functional
∫

Mρ(E)

e−ν(f)Qκ
∞(dν) = exp

{
− γ(f) +

∫ ∞

0

γ(φ(Vsf))ds

}
, f ∈ Cρ(E)+. (5.1)

Moreover, if µ(Ptρ) → 0 as t →∞, then Qκ
t (µ, ·) → Qκ

∞ as t →∞.
Let (Rγ

t )t≥0 be given by (3.5). If µ(Ptρ) → 0 as t → ∞, then Rγ
t (µ, ·) → Rγ

∞ as
t →∞, where Rγ

∞ is a stationary distribution of (Rγ
t )t≥0 determined by

∫

S′(Rd)

eiν(f)Rγ
∞(dν) = exp

{ ∫ ∞

0

γ(φ(−iPsf))ds

}
, f ∈ S(Rd). (5.2)

If we start from a stationary immigration process with one-dimensional distribution Qκ
∞

given by (5.1) and take the fluctuation limit as in section 3, we get a stationary S ′(Rd)-
valued Markov process with semigroup (Rγ

t )t≥0 and one-dimensional distribution Rγ
∞.

That is, the small branching limit and the long time limit are interchangeable to some
extent.
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