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IMMIGRATION PROCESSES ASSOCIATED WITH

BRANCHING PARTICLE SYSTEMS

Zeng-Hu LI1 Beijing Normal University

Abstract. The immigration processes associated with a given branching particle
system are formulated by skew convolution semigroups. It is shown that every
skew convolution semigroup corresponds uniquely to a locally integrable entrance
law for the branching particle system. The immigration particle system may be
constructed using a Poisson random measure based on a Markovian measure de-
termined by the entrance law. In the special case where the underlying process is a
minimal Brownian motion in a bounded domain, a general representation is given
for locally integrable entrance laws for the branching particle system. The conver-
gence of immigration particle systems to measure-valued immigration processes is
also studied.
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1. Introduction

The Dawson-Watanabe superprocess (measure-valued branching process) and the
branching particle system are two mathematical models from biology and physics. Typ-
ical examples of the models are biological populations in isolated regions, families of
neutrons in nuclear reactions and so on. Some immigration processes associated with
the models have been introduced and studied involving different motivations; see e.g.
Bojdecki and Gorostiza (1986), Dawson and Ivanoff (1978), Gorostiza (1988), Gorostiza
and Lopez-Mimbela (1990), Ivanoff (1981), Li (1992), Li and Shiga (1995), Shiga (1990).
From the view point of applications, those immigration processes are clearly of great im-
portance. For instance, a typical unadulterated branching process started with a finite
initial state goes either extinction or explosion at large times, which is not desired for the
transformation process of particles in a nuclear reactor, but the situation can be changed

*Postal address: Department of Mathematics, Beijing Normal University, Beijing 100875, P. R.
China. e-mail: lizh@bnu.edu.cn

1Research supported by the National Natural Science Foundation of China (Grant No.19361060).

Typeset by AMS-TEX

1



2

if we consider the process with immigration. A type of Markovian immigration may be
formulated by using skew convolution semigroups. Each skew convolution semigroup
determines uniquely the transition semigroup of an immigration process. It was proved
in Li (1996a) that a skew convolution semigroup associated with the Dawson-Watanabe
superprocess corresponds uniquely to an infinitely divisible probability entrance law for
the process. The infinitely divisible probability entrance laws were characterized and
some path properties of the corresponding immigration processes were studied in Li
(1996b).

In this paper, we study immigration processes associated with branching particle
systems and their convergence to the measure-valued immigration processes. As in Li
(1996ab) we concentrate our discussion to the time homogeneous situation. We shall see
that a skew convolution semigroup associated with the branching particle system can
also be characterized in terms of an infinitely divisible probability entrance law. The
major difference between the two models is that, started with any deterministic state,
the superprocess is infinitely divisible and the branching particle system, which can only
be started with an integer-valued measure, is not. This causes some difficulties for the
study of the immigration particle system – a minimal probability entrance law for the
superprocess is always infinitely divisible, but that for the branching particle system is
usually not. Indeed, the characterization of all infinitely divisible probability entrance
laws for a general branching particle system still remains an open problem although we
shall give some partial results.

In section 2 we introduce the notion of branching particle system considered in this
paper. Their associated immigration particle systems are formulated using skew con-
volution semigroups in section 3. We show that every skew convolution semigroup
corresponds uniquely to a locally integrable entrance law for the branching particle
system. In section 4, we give a general representation for entrance laws of the branch-
ing particle system where the underlying process is a minimal Brownian motion in a
bounded domain. Some examples of immigration particle systems are discussed in sec-
tion 5. In section 6, we show that a general immigration process associated with the
Dawson-Watanabe superprocess may arise as the high density limit in finite-dimensional
distributions of a sequence of immigration particle systems. The convergence of immi-
gration particle systems in path spaces is discussed in section 7.

2. Branching particle systems

Suppose that E is a Lusin topological space, i.e., a homeomorphism of a Borel subset
of a compact metric space, with the Borel σ-algebra B(E). Denote by B(E) the set
of bounded B(E)-measurable functions on E, and C(E) the subspace of B(E) com-
prising continuous functions. The subsets of positive members of the function spaces
are denoted by the superscript “+”; e.g., B(E)+, C(E)+. Let M(E) be the totality of
finite measures on (E,B(E)), and N(E) the subspace of finite integer-valued measures.
Topologize M(E) and N(E) by the weak convergence topology, so they also become
Lusin spaces. Put M(E)◦ = M(E)\{0} and N(E)◦ = N(E)\{0}, where 0 denotes the
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null measure on E. The unit mass concentrated at a point x ∈ E is denoted by δx. For
f ∈ B(E) and µ ∈ M(E), write µ(f) for

∫
E

fdµ.
Let X = (W,G,Gt, Xt,Qσ) be a Borel right Markov process in N(E) with transition

semigroup (Qt)t≥0. We call X a branching particle system provided

Qt(σ1 + σ2, ·) = Qt(σ1, ·) ∗Qt(σ2, ·), t ≥ 0, σ1, σ2 ∈ N(E), (2.1)

where “∗” denotes the convolution operation. For f ∈ B(E)+, let

Utf(x) = − log
∫

N(E)

e−ν(f)Qt(δx,dν), t ≥ 0, x ∈ E. (2.2)

From (2.1) and (2.2) it follows that
∫

N(E)

e−ν(f)Qt(σ, dν) = exp{−σ(Utf)}, t ≥ 0, σ ∈ N(E). (2.3)

We always assume that the branching particle system satisfies

(2A) for every l ≥ 0 and f ∈ B(E)+, the function Utf(x) of (t, x) restricted to
[0, l]× E belongs to B([0, l]× E)+.

For µ ∈ M(E), let Q(µ) denote the conditional law of {Xt : t ≥ 0} given “X0 is
Poisson random measure with intensity µ”. Then

Q(µ) exp{−Xt(f)} = exp{−µ(Jtf)}, (2.4)

where
Jtf(x) = 1− exp{−Utf(x)}. (2.5)

Let us describe a special form of the branching particle system. Let ξ be a Borel
right process in E with conservative transition semigroup (Pt)t≥0. Let γ(·) ∈ B(E)+

and g(·, ·) ∈ B(E × [0, 1]). Suppose that for each fixed x ∈ E, g(x, ·) coincides on
[0, 1] with a probability generating function and that g′z(·, 1−) ∈ B(E)+. Set ρ(r, t) =
exp

{
− ∫ t

r
γ(ξs)ds

}
. A branching particle system X is called a (ξ, γ, g)-particle system

if its transition probabilities are determined by (2.3) with ut(x) = Utf(x) being the
unique positive solution to the evolution equation

e−ut(x) = Pxρ(0, t)e−f(ξt) + Px

{ ∫ t

0

ρ(0, s)g(ξs, exp{−ut−s(ξs)})γ(ξs)ds

}
. (2.6)

The heuristic meaning of the (ξ, γ, g)-particle system is clear from the equation (2.6):
The particles in E move randomly according to the laws given by the transition prob-
abilities of ξ. For a particle which is alive at time r and follows the path {ξs : s ≥ r},
the conditional probability of survival during the time interval [r, t] is ρ(r, t). When the



4

particle dies at a point x ∈ E, it gives birth to a random number of offspring according
to the generating function g(x, ·) and the offspring then move and propagate in E in
the same fashion as their parents. It is assumed that the migrations, the life times and
the branchings of the particles are independent of each other. See e.g. Dynkin (1991)
for a vigorous construction of the (ξ, γ, g)-particle system. Note that (2.6) is equivalent
to the equation

exp{−ut(x)} =Px exp{−f(ξt)} −
∫ t

0

Px [γ(ξt−s) exp{−us(ξt−s)}] ds

+
∫ t

0

Px [γ(ξt−s)g(ξt−s, exp{−us(ξt−s)})] ds.

We shall simply write the above equation as

e−ut = Pte−f −
∫ t

0

Pt−s

[
γ

(
e−us − g(e−us)

)]
ds. (2.7)

We sometimes need to consider the first moments of the (ξ, γ, g)-particle system. Let
β(x) = γ(x)[1− g′z(x, 1)] and let (P β

t )t≥0 be defined by

P β
t f(x) = Pxf(ξt) exp

{
−

∫ t

0

β(ξs)ds

}
. (2.8)

Using (2.3) and (2.7) one may check that
∫

N(E)

ν(f)Qt(σ, dν) = σ(P β
t f). (2.9)

By Jensen’s inequality we have

Jtf(x) ≤ Utf(x) ≤ P β
t f(x), x ∈ E. (2.10)

Therefore (2A) is satisfied for the (ξ, γ, g)-particle system. Note also that if we let

ϕ(x, z) = γ(x)[g(x, 1− z)− (1− z)], x ∈ E, 0 ≤ z ≤ 1, (2.11)

then by (2.7),

Jtf(x) +
∫ t

0

ds

∫

E

ϕ(y, Jsf(y))Pt−s(x, dy) = Pt

(
1− e−f

)
(x). (2.12)

The transition semigroup of the (ξ, γ, g)-particle system can also be determined by
(2.3), (2.5) and (2.12). Clearly, this characterization of the system applies even for a
non-conservative underlying semigroup (Pt)t≥0.
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The Dawson-Watanabe superprocess is a continuous state analogue of the (ξ, γ, g)-
particle system. Let ξ be as the above and let φ(x, z) be a function having the repre-
sentation

φ(x, z) = b(x)z + c(x)z2 +
∫ ∞

0

(e−zu − 1 + zu)m(x, du), x ∈ E, z ≥ 0, (2.13)

where b ∈ B(E), c ∈ B(E)+ and (u∧u2)m(x,du) is a bounded kernel from E to (0,∞).
For f ∈ B(E)+, let Vtf(x) be the unique solution in B(E)+ to the evolution equation

Vtf(x) +
∫ t

0

ds

∫

E

φ(y, Vsf(y))Pt−s(x, dy) = Ptf(x), t ≥ 0, x ∈ E. (2.14)

A Markov process X = (W,G,Gt, Xt,Qµ) in M(E) is called a Dawson-Watanabe super-
process provided

Qµ exp{−Xt(f)} = exp {−µ(Vtf)} , t ≥ 0, µ ∈ M(E), f ∈ B(E)+. (2.15)

See e.g. Dawson (1992, 1993) for systematic discussions on superprocesses and branching
particle systems.

3. Skew convolution semigroups and immigration
Suppose that X is a branching particle system with transition semigroup (Qt)t≥0.

Let (Nt)t≥0 be a family of probability measures on N(E). We call (Nt)t≥0 a skew
convolution semigroup associated with X or (Qt)t≥0 provided

Nr+t = (NrQt) ∗Nt, r, t ≥ 0. (3.1)

The relation (3.1) is necessary and sufficient to ensure that

QN
t (σ, ·) := Qt(σ, ·) ∗Nt, t ≥ 0, σ ∈ N(E), (3.2)

defines a transition semigroup (QN
t )t≥0 on N(E). (Indeed, (3.1) is equivalent to the

Chapman-Kolmogorov equation satisfied by (QN
t )t≥0.) Let Y = {Yt : t ∈ T} be a

Markov process in N(E), where T is an interval in IR. We call Y an immigration process
or immigration particle system associated with X if it has (QN

t )t≥0 as its transition
semigroup. The intuitive meaning of the immigration process is clear from (3.2), that
is, Qt(σ, ·) is the distribution of descendants of the people distributed as σ ∈ N(E)
at time zero and Nt is the distribution of descendants of the people immigrating to E
during the time interval (0, t].

It is known that a metric r can be introduced into E so that (E, r) becomes a compact
metric space while the Borel σ-algebra induced by r coincides with B(E). Let D(E)+

be a countable dense subset of the space of strictly positive, continuous functions on
(E, r) containing all rational-valued constant functions.
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Lemma 3.1. Suppose that {Hn : n = 1, 2, · · · } is a sequence of finite measures on
N(E)◦. If

lim
n→∞

∫

N(E)◦

(
1− e−ν(f)

)
Hn(dν) = R(f), f ∈ D(E)+, (3.3)

and limrat.θ↓0 R(θ) = 0, then there is a unique finite measure H on N(E)◦ such that
∫

N(E)◦

(
1− e−ν(f)

)
H(dν) = R(f), f ∈ D(E)+. (3.4)

Proof. Let N(Er)◦ denote the set N(E)◦ endowed with the topology of weak conver-
gence on (E, r). Then N(Er)◦ is a locally compact separable space. Let N(Er)◦ ∪ {∂}
be its one point compactification. Define e−∂(f) = 0 for all f ∈ D(E)+. We may regard
{Hn : n = 1, 2, · · · } as a bounded sequence of finite measures on N(Er)◦ ∪ {∂}. Let
H(dν) be any limit point of this sequence. Then we have

∫

N(Er)◦∪{∂}

(
1− e−ν(f)

)
H(dν) = R(f), f ∈ D(E)+.

Taking f = 1/n and letting n →∞ we see that H(dν) is in fact supported by N(Er)◦,
and hence the assertion follows. ¤

Let (Q◦
t )t≥0 denote the restriction of (Qt)t≥0 to the subspace N(E)◦. The follow-

ing theorem characterizes completely the immigration structures associated with the
branching particle system.

Theorem 3.1. Suppose (Nt)t≥0 is a family of probability measures on N(E). Then
(Nt)t≥0 is a skew convolution semigroup associated with (Qt)t≥0 if and only if there is
a locally integrable entrance law (Ht)t>0 for (Q◦t )t≥0 such that

∫

N(E)

e−ν(f)Nt(dν) = exp
{
−

∫ t

0

ds

∫

N(E)◦

(
1− e−ν(f)

)
Hs(dν)

}
(3.5)

for all f ∈ B(E)+.

Proof. If (Nt)t≥0 is given by (3.5), then clearly (3.1) holds. Conversely, suppose (Nt)t≥0

is a skew convolution semigroup associated with (Qt)t≥0. Define

Jt(f) = − log
∫

N(E)◦
e−ν(f)Nt(dν), t ≥ 0, f ∈ B(E)+.

Then the relation (3.1) is equivalent to

Jr+t(f) = Jt(f) + Jr(Utf), r, t ≥ 0, f ∈ B(E)+. (3.6)
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Consequently Jt(f) is a non-decreasing function of t ≥ 0. By a similar argument as in
Li (1996a) one finds that Jt(f) =

∫ t

0
Is(f)ds for Is(f) ≥ 0 given by

Is(f) = lim
r↓0

∫

N(E)◦

(
1− e−ν(f)

)
H(r)

s (dν), 0 ≤ s /∈ N, f ∈ D(E)+, (3.7)

where N is a Lebesgue null subset of [0,∞), and

H(r)
s (dν) = r−1

∫

N(E)◦
Nr(dµ)Qs(µ, dν).

Since clearly Jt(f) → 0 as f → 0, by Lemma 3.1, enlarging the Lebesgue null set N if
it is necessary, we may assume Is(f) has the representation

Is(f) =
∫

N(E)◦

(
1− e−ν(f)

)
Hs(dν), 0 ≤ s /∈ N, f ∈ D(E)+,

where Hs(dν) is a finite measure on N(E)◦. Consequently,

Jt(f) =
∫ t

0

ds

∫

N(E)◦

(
1− e−ν(f)

)
Hs(dν), t ≥ 0, f ∈ B(E)+. (3.8)

Now (3.1) and (2.3) yield that for all r, t ≥ 0, f ∈ B(E)+,
∫ r

0

ds

∫

N(E)◦

(
1− e−ν(f)

)
Ht+s(dν) =

∫ r

0

ds

∫

N(E)◦

(
1− e−ν(Utf)

)
Hs(dν).

By Fubini’s theorem, there are Lebesgue null subsets N ′ and N ′
s of [0,∞) such that

Ht+s = HsQ
◦
t , 0 ≤ s /∈ N ′, 0 ≤ t /∈ N ′

s.

Choose a sequence 0 < sn /∈ N ′ with sn ↓ 0, and define

Ht = HsnQ◦
t−sn

, t ≥ sn.

Under this modification, (Ht)t>0 becomes an entrance law for (Q◦
t )t≥0, and (3.8) remains

unchanged. ¤
An immediate consequence of Theorem 3.1 is the following construction of the immi-

gration particle system, which gives a probabilistic interpretation of the equation (3.5)
and explains the role of the entrance law (Ht)t>0 in the phenomenon. Let W0(N(E)) be
the space of all right continuous paths {w : t > 0} from (0,∞) to N(E) with the natural
σ-algebra. By the theory of Markov processes, there exists a σ-finite measure QH on
W0(N(E)) under which the coordinate process {w : t > 0} is a Markov process with
one dimensional distributions (Ht)t>0 and semigroup (Q◦

t )t≥0. Suppose NH(ds,dw) is
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a Poisson random measure on [0,∞)×W0(N(E)) with intensity ds×QH(dw). Define
the process {Y H

t : t ≥ 0} by

Y H
t =

∫

[0,t]

∫

W0(M(E))

wt−sN
H(ds,dw), t ≥ 0, (3.9)

where w0 = 0 by convention. It is easy to check that {Y H
t : t ≥ 0} is a Markov process

in N(E) with transition semigroup (QH
t )t≥0 such that

∫

N(E)

e−ν(f)QH
t (σ,dν)

= exp
{
− σ(Utf)−

∫ t

0

ds

∫

N(E)◦

(
1− e−ν(f)

)
Hs(dν)

}
.

(3.10)

That is, {Y H
t : t ≥ 0} is an immigration particle system corresponds to the skew

convolution semigroup given by (3.5). Some special cases of the immigration particle
system will be discussed latter.

A probability measure Q on N(E) is said to be infinitely divisible on N(E) if for each
integer n ≥ 1 there exists a probability measure Qn on N(E) such that Q = Qn∗· · ·∗Qn

(n − 1 times). It is well-known that Q is an infinitely divisible probability on N(E) if
and only if

∫

N(E)

e−ν(f)Q(dν) = exp
{
−

∫

N(E)◦

(
1− e−ν(f)

)
H(dν)

}
, f ∈ B(E)+, (3.11)

for a finite measure H on N(E)◦; see e.g. Kallenberg (1975; p44) for a related result.
We write Q = I(0, H) if Q and H are related by (3.11). The next theorem follows
immediately from (3.11) and the branching property (2.3).

Theorem 3.2. If (Ht)t>0 is a finite entrance law for (Q◦t )t≥0, then (Kt)t>0 := I(0,Ht)t>0

is an infinitely divisible probability entrance law for (Qt)t≥0. Conversely, if (Kt)t>0 is
an infinitely divisible probability entrance law for (Qt)t≥0, then (Kt)t>0 = I(0,Ht)t>0

for a finite entrance law (Ht)t>0 for (Q◦
t )t≥0.

We may give some particular entrance laws for the (ξ, γ, g)-particle system. Let
K1(Q) be the set of probability entrance laws (Kt)t>0 for (Qt)t≥0 that satisfy

∫ 1

0

ds

∫

N(E)◦
ν(E)Ks(dν) < ∞. (3.12)

Let K(Q◦) be the set of finite entrance laws (Kt)t>0 for (Q◦t )t≥0 that satisfy (3.12). We
use the subscript “m” to denote subsets of minimal elements, e.g., K1

m(Q), Km(Q◦), etc.
Denote by K(P ) the set of entrance laws (κt)t>0 for the underlying semigroup (Pt)t≥0

that satisfy
∫ 1

0
κs(E)ds < ∞. Then we have
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Theorem 3.3. To each (κt)t>0 ∈ K(P ) there corresponds an infinitely divisible (Kt)t>0 ∈
K1(Q) which is given by

∫

N(E)

e−ν(f)Kt(dν) = exp {−Rt(κ, f)} , t > 0, f ∈ B(E)+, (3.13)

where

Rt(κ, f) = κt

(
1− e−f

)−
∫ t

0

κt−s (ϕ(Jsf)) ds. (3.14)

Proof. By (2.4) and (3.14) we have

Q(κr) exp{−Xt−r(f)} = exp {−κr(Jt−rf)} → exp {−Rt(κ, f)} (3.15)

uniformly on f ∈ B(E)+ as r ↓ 0. It follows that (3.13) indeed defines a family of
infinitely divisible probability measures (Kt)t>0 on N(E). From (3.15) and (2.5) we
have that

Rs(κ,Utf) = lim
r↓0

κr(Js−rUtf) = lim
r↓0

κr(Js+t−rf) = Rs+t(κ, f) (3.16)

for all s, t > 0. Then we have (Kt)t>0 ∈ K(Q). ¤

4. Characterization of entrance laws
With Theorems 3.1 and 3.2 in hands, one naturally hopes to characterize all infinitely

divisible probability entrance laws for a given branching particle system. The analogous
problem for a (ξ, φ)-superprocess is more tractable and has been solved in Li (1996b);
see also Dynkin (1989) and Fitzsimmons (1988) for results of related interest. For the
branching particle system, we can only solve this problem in some special cases up to
now.

In this section, we suppose that E = D is a bounded domain in IRd with sufficiently
smooth boundary ∂D and closure D̄. Assume that both g(x, z) and g′z(x, z) can be
extended to continuous functions on D̄ × [0, 1]. Let ξ be a minimal (absorbing barrier)
Brownian motion in D with transition density pt(x, y). It is well-known that pt(x, y) =
pt(y, x) is continuously differentiable in x and y to the boundary; see e.g. Friedman
(1984: p82). We also use ∂ to denote the inward normal derivative operator at ∂D. Let
h(x) =

∫ t

0
Ps1(x)ds. Then h is a continuous, excessive function of (Pt)t≥0.

Lemma 4.1. The function h is continuously differentiable to the boundary and ∂h is
continuous, bounded and bounded away from zero on ∂D.

Proof. Denote the life time of ξ in D by τD. Because of the sample path continuity,
ξ(τD) lies on ∂D a.s. For x ∈ D we have

∂ps(x, ·)(y)dsσ(dy) = 2Px{τD ∈ ds, ξ(τD) ∈ dy},
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where σ(dy) is the volume element on ∂D; see e.g. Hsu (1986). Since D is bounded,
integrating the above gives

∫

∂D

∂h(y)σ(dy) = 2
∫

D

Px{τD ≤ 1}dx < ∞.

Therefore, if D = {x : a < |x| < b} for some 0 < a < b < ∞, the conclusion holds by
symmetry. The general result can be proved by comparison method. ¤

Let Nh(D) be the set of integer-valued measures σ on D satisfying σ(h) < ∞, and
Nh(D̄) the set of measures µ on D̄ such that µD := µ|D ∈ Nh(D) and µ∂ := µ|∂D ∈
M(∂D). Then we have

Theorem 4.1. For any µ ∈ Nh(D̄) there corresponds an entrance law (Kt)t>0 ∈ K1(Q)
given by

∫

N(D)

e−ν(f)Kt(dν) = exp {−µD(Utf)− µ∂(∂Utf)} , f ∈ C(D)+. (4.1)

If we denote this entrance law by (KµD,µ∂
t )t>0 to indicate its dependence on µD and µ∂ ,

then (K0,µ∂
t )t>0 ∈ K1(Q) is infinitely divisible, and (KµD,0

t )t>0 ∈ K1(Q) is not unless
we have µD = 0.

Proof. Since pt(x, y) is continuously differentiable in x to the boundary ∂D, so are
Utf(x) and Jtf(x) by (2.7) and (2.12). It is clear that (4.1) with µ∂ = 0 defines a
probability entrance law (KµD,0

t )t>0 for (Qt)t≥0, which is not infinitely divisible unless
µD = 0. As for (2.4) one may check that

∫

N(E)◦
ν(f)KµD,0

t (dν) = µD(P β
t f) ≤ e‖β‖tµD(Ptf).

Since µD ∈ Nh(D̄), we have (KµD,0
t )t>0 ∈ K1(Q). Next we claim that (4.1) with µD = 0

defines an infinitely divisible probability entrance law (K0,µ∂
t )t>0 for (Qt)t≥0. Clearly,

both Utf(x) and Jtf(x) go to zero as x tends to the boundary ∂D. Let nz be the inward
unit norm at z ∈ ∂D and let zk = z + k−1nz. Then zk ∈ D for large enough k and

∂Utf(z) = ∂Jtf(z) = lim
k→∞

k (1− exp {−Utf(zk)}) . (4.2)

From (2.10) it is immediate that ∂Utf(z) ≤ e‖β‖t∂Ptf(z). By the smoothness of pt(x, y)
we have

∂Ptf(z) =
∫

D

f(y)∂pt(·, y)(z)dy, z ∈ ∂D.
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Therefore, ∂Ptf is bounded on ∂D and decreases to zero as f ↓ 0. By (4.2) and Lemma
3.1, there is a family of finite measures (Hµ∂

t )t>0 on N(D)◦ such that

∫

N(D)◦

(
1− e−ν(f)

)
Hµ∂

t (dν) = µ∂(∂Utf) = µ∂(∂Jtf). (4.3)

From the semigroup property of (Ut)t≥0 it follows that ∂UrUtf = ∂Ur+tf for all r, t > 0.
Then (Hµ∂

t )t>0 form an entrance law for (Q◦
t )t≥0. By Theorem 3.2, (4.1) with µD = 0

defines an infinitely divisible probability entrance law (K0,µ∂
t )t>0 for (Qt)t≥0 as claimed.

By (4.1) and (2.10) we have

∫

N(D)◦
ν(f)K0,µ∂

t (dν) = lim
k→∞

µ∂(k∂Ut(f/k)) ≤ e‖β‖tµ∂(∂Ptf).

By Lemma 4.1, ∂h is a bounded function on ∂D, so we have (K0,µ∂
t )t>0 ∈ K1(Q).

Finally, since KµD,0
t ∗K0,µ∂

t = KµD,µ∂
t , by (2.3) one checks that (KµD,µ∂

t )t>0 ∈ K1(Q)
and the theorem is proved. ¤
Theorem 4.2. For any µ ∈ Nh(D̄), the entrance law (Kt)t>0 ∈ K1(Q) defined by (4.1)
is minimal. Conversely, if (Kt)t>0 ∈ K1

m(Q), then there exists some µ ∈ Nh(D̄) such
that we have (4.1).

Proof. Recall that for any (Kt)t>0 ∈ K1(Q) there is a probability measure QK on
W0(N(D)) under which the coordinate process {wt : t > 0} is a Markov process with
one-dimensional distributions (Kt)t>0 and semigroup (Qt)t≥0. We first show that any
(Kt)t>0 ∈ K1

m(Q) has Laplace functional given by (4.1) for some µ ∈ Nh(D̄). Since
(Kt)t>0 is minimal, for any f ∈ C(D)+ we have QK-a.s.,

∫

N(D)

e−ν(f)Kt(dν) = lim
rat.r↓0

exp {−wr(Ut−rf)} , (4.4)

where “rat. r ↓ 0” means “r decreases to zero along the rational”. For any ḡ ∈ C(D̄)+

let g denote its restriction to D and let

W̄tḡ(x) = h(x)−1Ut(hg)(x) for x ∈ D, = ∂h(x)−1∂Ut(hg)(x) for x ∈ ∂D.

Set hwt(dx) = h(x)w(dx). We regard {hwt : t > 0} as a path in W0(M(D̄)). From
(4.4) it follows that, if f/h can be extended to some f/h ∈ C(D̄)+, then QK-a.s.,

∫

N(D)

e−ν(f)Kt(dν) = lim
rat.r↓0

exp
{
−hwr(W̄t−r(f/h))

}
. (4.5)
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By Lemma 4.1, ∂h is bounded and bounded away from zero on ∂D. Then we may define
a strongly continuous Feller semigroup (T̄t)t≥0 on D̄ by

T̄tḡ(x) = h(x)−1

∫

D

h(y)ḡ(y)pt(x, y)dy for x ∈ D,

= ∂h(x)−1

∫

D

h(y)ḡ(y)∂pt(·, y)(x)dy for x ∈ ∂D.

Define the continuous function φ̄(·, ·) on {(x, z) : x ∈ D and 0 ≤ z ≤ h(x)−1, or x ∈ ∂D
and 0 ≤ z < ∞} by

φ̄(x, z) = h(x)−1ϕ(x, h(x)z) for x ∈ D, = ϕ′z(x, 0+)z for x ∈ ∂D.

For ḡ ∈ C(D̄)+ let R̄tḡ be the solution to

R̄tḡ(x) = T̄t[(1− e−hg)/h](x)−
∫ t

0

T̄t−sφ̄(R̄sḡ)(x)ds, t ≥ 0, x ∈ D̄, (4.6)

with (1− e−hg)/h = ḡ on ∂D defined by continuity. One checks easily that

R̄tḡ(x) = h(x)−1Jt(hg)(x) for x ∈ D, = ∂h(x)−1∂Ut(hg)(x) for x ∈ ∂D.

(Recall that ∂Ut(hg)(x) = ∂Jt(hg)(x) for x ∈ ∂D.) By (4.6), R̄tḡ ∈ C(D̄)+ is strongly
continuous in t ≥ 0; see e.g. Pazy (1983). From (2.5) it follows that

|Ut(hg)(x)− Ur(hg)(x)| ≤ C|Jt(hg)(x)− Jr(hg)(x)|, 0 ≤ r ≤ t ≤ q, x ∈ D.

where C = C(q, ‖hg‖) is a positive constant. By continuity we get

|W̄tḡ(x)− W̄r ḡ(x)| ≤ C|R̄tḡ(x)− R̄r ḡ(x)|, 0 ≤ r ≤ t ≤ q, x ∈ D̄.

Then W̄tḡ ∈ C(D̄)+ is also strongly continuous in t ≥ 0. Let D(D̄)+ be a countable,
dense subset of C(D̄)+ consisting strictly positive functions. Take any path {wt : t > 0}
along which (4.5) holds if f/h ∈ D(D̄)+. Since f/h ∈ D(D̄)+ is bounded away from
zero, so is W̄t(f/h) for small t > 0. Then hwr(D̄) is bounded on rat. r ∈ (0, δ] for small
enough δ > 0. Choosing a sequence rk ↓ 0 such that hwrk

→ some η ∈ M(D̄) we see
easily that

∫

N(D)

e−ν(f)Kt(dν) = exp
{
−η(W̄t(f/h))

}
, f/h ∈ D(D̄)+.

(Now it is clear that QK-a.s. hwt → η as t ↓ 0.) Therefore (4.1) follows with

µD(dx) = h(x)−1η(dx) for x ∈ D, µ∂(dx) = ∂h(x)−1η(dx) for x ∈ ∂D,

Obviously µD ∈ Nh(D) and µ∂ ∈ M(∂D). By a similar argument as in Dynkin (1989)
one can show that for any µ ∈ Nh(D̄) the entrance law defined by (4.1) is minimal.
Then the theorem is proved. ¤



13

Theorem 4.3. Let γ ∈ M(∂D) and let G be a measure on Nh(D̄) such that
∫

Nh(D̄)

[ν(h) + ν(∂h)]G(dν) < ∞. (4.7)

Then there is an infinitely divisible probability entrance law (Kt)t>0 ∈ K1(Q◦) whose
Laplace functional is given by

∫

N(D)

e−ν(f)Kt(dν) = exp
{
− γ(∂Utf)

−
∫

Nh(D̄)

(1− exp {−ν(Utf)− ν(∂Utf)}) G(dν)
}

, f ∈ C(D)+.

(4.8)

Conversely, every infinitely divisible (Kt)t>0 ∈ K1(Q◦) has Laplace functional given by
(4.8).

Proof. By Theorem 4.1, (4.8) defines an entrance law (Kt)t>0 ∈ K1(Q◦) which is infin-
itely divisible. Conversely, we assume that (Kt)t>0 ∈ K1(Q◦) is infinitely divisible. By
Theorem 4.2,

∫

N(D)

e−ν(f)Kt(dν) =
∫

Nh(D̄)

exp {−νD(Utf)− ν∂(∂Utf)}F1(dν)

for a probability measure F1 on Nh(D̄), or using the notation introduced in the proof
of Theorem 4.2,

∫

N(D)

e−ν(f)Kt(dν) =
∫

M(D̄)

exp
{
−ν(W̄t(f/h))

}
F2(dν), f/h ∈ C(D̄)+,

for a probability measure F2 on M(D̄). Clearly, both F1 and F2 are infinitely divisible,
hence

∫

N(D)

e−ν(f)Kt(dν) = exp
{
− η(W̄t(f/h))

−
∫

M(D̄)

(
1− exp

{
−ν(W̄t(f/h))

})
H(dν)

}
, f/h ∈ C(D̄)+,

(4.9)

where η ∈ M(D̄) and H is a σ-finite measure on M(D̄). Let Mh(D̄) denote the space
of σ-finite measures ν on D̄ such that ν(h) < ∞ and ν(∂D) < ∞. Then we have
immediately

∫

N(D)

e−ν(f)Kt(dν) = exp
{
− γ(Utf)− γ(∂Utf)

−
∫

Mh(D̄)

(1− exp {−ν(Utf)− ν(∂Utf)}) G(dν)
}

, f ∈ C(D)+,
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where γ ∈ Mh(D̄) and G is a σ-finite measure on Mh(D̄). Since Kt is an infinitely
divisible probability measure on N(D), γ(D) = 0 and G is supported by Nh(D̄); see
e.g. Kallenberg (1975). ¤

By Theorems 3.2 and 4.3, (Ht)t>0 ∈ K(Q◦) if and only if we have
∫

N(D)

(
1− e−ν(f)

)
Ht(dν) = γ(∂Utf)

+
∫

Nh(D̄)

(1− exp {−νD(Utf)− ν∂(∂Utf)})G(dν), f ∈ C(D)+,

(4.10)

where γ ∈ M(∂D) and G is a measure on Nh(D̄) satisfying (4.7).

Corollary 4.4. For any (Ht)t>0 ∈ Km(Q◦), either there are 0 < q < ∞ and µ ∈ Nh(D̄)
such that

∫

N(D)◦

(
1− e−ν(f)

)
Ht(dν) = q (1− exp {−µD(Utf)− µ∂(∂Utf)}) , f ∈ C(D)+,

or there are 0 < q < ∞ and z ∈ ∂D such that
∫

N(D)◦

(
1− e−ν(f)

)
Ht(dν) = q∂Utf(z), f ∈ C(D)+,

5. Examples of immigration particle systems
Let us see some examples of immigration particle system over a minimal Brownian

motion in the domain D. Let {Y H
t : t ≥ 0} be constructed by (3.9). We shall use the

notation introduced in the last section.

Example 5.1. Fix 0 < q < ∞ and σ ∈ Nh(D) \ {0}, and let (Ht)t>0 ∈ Km(Q◦) be
given by ∫

N(D)◦

(
1− e−ν(f)

)
Ht(dν) = q (1− exp{−σ(Utf)}) .

By the construction (3.9), immigration times of {Y H
t : t ≥ 0} are given by a Poisson

random measure on [0,∞) with intensity qds. It is easy to see that w0+ = σ for QH -a.a.
w ∈ W0(M(D)). Intuitively, at each immigration time a clique of immigrants land in
D according to the point measure σ. Note that σ(D) = ∞ is possible.

Example 5.2. Fix 0 < q < ∞ and µ ∈ M(∂D) \ {0}, and let (Ht)t>0 ∈ Km(Q◦) be
given by ∫

N(D)◦

(
1− e−ν(f)

)
Ht(dν) = q (1− exp{−µ(∂Utf)}) .

As in the last example, the immigration times of {Y H
t : t ≥ 0} are given by a Pois-

son random measure on [0,∞) with intensity qds. By the proof of Theorem 4.2,
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hw0+(dz) = ∂h(z)µ(dz) for QH -a.a. w ∈ W0(M(D)). Then w0+(D) = ∞ for QH -a.a.
w ∈ W0(M(D)). Therefore, at each immigration time, a clique with infinite number of
immigrants land at ∂D, some of which succeed in escaping from the absorbing bound-
ary and entering the inner space D. Then the immigrants propagate and move in D
according to the transition law of the Brownian branching particle system.

Example 5.3. Fix γ ∈ M(∂D) \ {0}, and let (Ht)t>0 ∈ K(Q◦) be given by

∫

N(D)◦

(
1− e−ν(f)

)
Ht(dν) = γ(∂Utf).

Since γ(∂Ut1) → ∞ as t ↓ 0, the Markovian measure QH is infinite, but it is σ-finite.
Therefore, the immigration of {Y H

t : t ≥ 0} occurs countably infinite times in each non-
empty open time interval. As in Li (1996b) one may show that wt(h)−1hwt → δz(w)

with z(w) ∈ ∂D for QH -a.a. w ∈ W0(M(D)). That is, the immigrants of {Y H
t : t ≥ 0}

enter D from the boundary points.

Example 5.4. Suppose that (Ht)t>0 ∈ K(Q◦) is given by (4.10). This is the general
form of the entrance law and the corresponding immigration particle system involves a
combination of the phenomena described in Examples 5.1 – 5.3.

6. Convergence in finite-dimensional distributions

The problem of characterizing of all skew convolution semigroups associated with a
general (ξ, γ, g)-particle system still remains unsolved. In this section we shall see that
a general immigration process associated the (ξ, φ)-superprocess may arise as the high
density limit in finite-dimensional distributions of the immigration particle systems given
by Theorems 3.1 and 3.3. In a certain sense, this shows the range of the immigration
phenomenon associated with the branching particle system.

Suppose we have a sequence of parameters (ξ, γk, gk), k = 1, 2, · · · . Let ut(k, x) ≡
ut(k, x, f) denote the solution to (2.7) with (γ, g) replaced by (γk, gk), and let (Qt(k))t≥0

be the transition semigroup of the corresponding (ξ, γk, gk)-particle systems. Fix (κt)t>0 ∈
K(P ). Define Rt(k, κ, f) by (3.14) with (γ, g) replaced by (γk, gk). By Theorems 3.2
and 3.3, ∫

N(E)◦

(
1− e−ν(f)

)
H

(k)
t (dν) = kRt(k, κ, f), f ∈ B(E)+, (6.1)

defines an entrance law H(k) ∈ K(Q(k)◦). The parameters (ξ, γk, gk; H(k)) determines
a sequence of immigration particle systems {Yt(k) : t ≥ 0} via Theorems 3.1. Take
η ∈ M(E) and assume Y0(k) is a Poisson random measure on E with intensity kη.
Then {Y (k)

t := k−1Yt(k) : t ≥ 0} is a Markov process in Mk(E) := {σ/k : σ ∈ N(E)}.
Let Q(k)

(η) denote the law of {Y (k)
t : t ≥ 0}, and let

φk(x, z) = kγk[gk(x, 1− z/k)− (1− z/k)], 0 ≤ z ≤ k. (6.2)
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Then we have the following

Theorem 6.1. Suppose that, for each l ≥ 0, on the set E× [0, l] of (x, z), the sequence
φk(x, z) defined by (6.2) is uniformly Lipschitz in z and φk(x, z) → φ(x, z) uniformly
as k → ∞. Then φ(x, z) has the representation (2.13), and the finite-dimensional
distributions of {Y (k)

t : t ≥ 0} under Q(k)
(η) converge to those of a Markov process {Yt :

t ≥ 0} in M(E) with initial state η and semigroup (Qκ
t )t≥0 defined by

∫

M(E)

e−ν(f)Qκ
t (µ, dν) = exp

{
− µ(Vtf)−

∫ t

0

Sr(κ, f)dr

}
, f ∈ B(E)+, (6.3)

where (Vt)t≥0 is given by (2.14) and

St(κ, f) = κt(f)−
∫ t

0

ds

∫

E

φ(y, Vsf(y))κt−s(dy). (6.4)

Now we proceed to the proof of the above theorem. Let u
(k)
t (x) be the solution to

e−u
(k)
t = Pte−f/k −

∫ t

0

Pt−s

[
γk

(
e−u(k)

s − gk(e−u(k)
s )

)]
ds, t ≥ 0, (6.5)

and let
v
(k)
t (x) = k[1− exp{−u

(k)
t (x)}]. (6.6)

Then we have

v
(k)
t +

∫ t

0

Pt−s[φk(v(k)
s )]ds = Ptk(1− e−f/k). (6.7)

Denote by (Q(k)
t )t≥0 the transition semigroup of {Y (k)

t : t ≥ 0}. One may check that

∫

Mk(E)

e−ν(f)Q
(k)
t (σ, dν) = exp

{
− σ(ku

(k)
t )−

∫ t

0

R(k)
s (κ, f)ds

}
, (6.8)

where

R
(k)
t (κ, f) = kκt(1− e−f/k)−

∫ t

0

κt−s(φk(v(k)
s ))ds. (6.9)

Note that the sequence {Y (k)
t : t ≥ 0} can be characterized by (6.6) – (6.9), which are

applicable even when (Pt)t≥0 is non-conservative. For any η ∈ M(E) we have

Q(k)
(η) exp

{− Y
(k)
t (f)

}
= exp

{
− η(v(k)

t )−
∫ t

0

R(k)
s (κ, f)ds

}
. (6.10)



17

Lemma 6.1. Assume that the conditions of Theorem 6.1 are fulfilled. Then for any
t ≥ 0 and f ∈ B(E)+, the sequence

Q(k)
(η)

{
Y

(k)
t (f)

}
, k = 1, 2, · · · ,

is bounded.

Proof. Let bk(x) = (d/dz)φk(x, 0) and define the semigroup of bounded kernels (P bk
t )t≥0

on E by (2.8) with β placed by bk. By (6.7), v
(k)
t satisfies

v
(k)
t +

∫ t

0

P bk
t−s[φ0k(v(k)

s )]ds = P bk
t k(1− e−f/k), (6.11)

where φ0k(x, z) = φk(x, z)− bk(x)z. By Lemma 2.1 in Li (1996b),

ζ
(k)
t (f) = lim

r↓0
κrP

bk
t−r(f) (6.12)

defines an entrance law (ζ(k)
t )t>0 for (P bk

t )t≥0, and

e−‖bk‖tκt(f) ≤ ζ
(k)
t (f) ≤ e‖bk‖tκt(f), t > 0. (6.13)

Using (6.9), (6.11) and (6.12) we get

R
(k)
t (κ, f) = kζ

(k)
t (1− e−f/k)−

∫ t

0

ζ
(k)
t−s(φ0k(v(k)

s ))ds. (6.14)

Replacing f with θf in (6.10), differentiating in θ and using (6.11) and (6.14) we get

Q(k)
(η)

{
Y

(k)
t (f)

}
= η(P bk

t f) +
∫ t

0

ζ(k)
s (f)ds,

which is less than

e‖bk‖tη(Ptf) +
∫ t

0

e‖bk‖sκs(f)ds.

Under the conditions of Theorem 6.1, the sequence ‖bk‖, k = 1, 2, · · · , is bounded, and
hence the lemma is proved. ¤

The following result was proved in Dynkin (1991) and Li (1991, 1992).
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Lemma 6.2. Assume that the conditions of Theorem 6.1 are fulfilled. Then φ(x, z) has
the representation (2.13) and v

(k)
t (x, f) converges as k → ∞ to Vtf(x) boundedly and

uniformly on the set [0, l]× E of (t, x) for every l > 0.

Proof of Theorem 6.1. We first note that (6.3) really defines a Markov semigroup
(Qκ

t )t≥0 on M(E); see Li (1996b). By (6.6) and Lemma 6.2, the sequence ku
(k)
t (x)

converges boundedly and uniformly on each set [0, l]× E to Vtf(x). Therefore,

R
(k)
t (κ, f) → St(κ, f) (k →∞) (6.15)

boundedly and uniformly on each set [0, l]×E of (t, x), and the convergence of the one
dimensional distributions follows. Take 0 ≤ t1 < · · · < tn and f1, · · · , fn ∈ B(E)+.
Using the Markov property of {Y (k)

t : t ≥ 0} we have

Q(k)
(η) exp

{
−

n∑

i=1

Y
(k)
ti

(fi)
}

=Q(k)
(η) exp

{
−

n−1∑

i=1

Y
(k)
ti

(fi)− Y
(k)
tn−1

(ku
(k)
δn

)
}

exp
{ ∫ δn

0

R(k)
s (κ, f)ds

}
,

(6.16)

where δn = tn − tn−1. By Lemma 6.1 we have

lim
k→∞

Q(k)
(η)

∣∣∣exp
{− Y

(k)
tn−1

(ku
(k)
δn

)
}− exp

{− Y
(k)
tn−1

(Vδnfn)
}∣∣∣

≤ lim
k→∞

Q(k)
(η)

{
Y

(k)
tn−1

(
∥∥ku

(k)
δn
− Vδnfn

∥∥)
}

= 0.
(6.17)

From (6.15), (6.16) and (6.17) it follows that

lim
k→∞

Q(k)
(η) exp

{
−

n∑

i=1

Y
(k)
ti

(fi)
}

= lim
k→∞

Q(k)
(η) exp

{
−

n−1∑

i=1

Y
(k)
ti

(fi)− Y
(k)
tn−1

(Vδnfn)
}

exp
{ ∫ δn

0

Sr(κ, f)dr

}
,

so the desired assertion holds by induction in n. ¤
One can also construct a sequence of immigration particle systems that converge in

finite dimensional distributions to a Markov process with transition semigroup (QG
t )t≥0

given by
∫

M(E)

e−ν(f)QG
t (µ, dν)

= exp
{
− µ(Vtf)−

∫ t

0

dr

∫

K(P )

(1− exp {−Sr(η, f)}) G(dη)
}

,

(6.18)
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where (Vt)t≥0 is given by (2.14) and G is a σ-finite measure on K(P ) satisfying

∫ 1

0

ds

∫

K(P )

ηs(1)G(dη) < ∞.

A combination of (6.3) and (6.18) gives the general immigration structure associated
with a (ξ, φ)-superprocess; see Li (1996b).

7. Convergence in cadlag path spaces

In this section we consider the convergence of particle systems in path spaces. We
shall operate in the simple situation where ξ be a minimal Brownian motion in a bounded
smooth domain D. For y ∈ ∂D,

κt(y, f) = ∂Ptf(y), t > 0, f ∈ C(D), (7.1)

determines an entrance law κ(y) ∈ K(P ). Clearly we have

St(κ(y), f) = ∂Vtf(y), t > 0, f ∈ C(D)+. (7.2)

By Theorem 2.2 of Li (1996b) there is a probability entrance law (Kt(y, ·))t>0 for the
Brownian motion such that

∫

M(E)

e−ν(f)Kt(y, dν) = exp {−∂Vtf(y)} , t > 0, f ∈ C(D)+. (7.3)

Let Qκ(y) denote the probability measure on W0(M(D)) under which the coordinate
process is a Markov process having the same semigroup as super Brownian motion and
1-dimensional distributions (Kt(y, ·))t>0. Fix F ∈ M(∂D) and let

QF (dw) =
∫

∂D

F (dy)Qκ(y)(dw). (7.4)

Suppose that NF (ds, dw) is a Poisson random measure on [0,∞) × W0(M(D)) with
intensity ds×QF (dw). By setting

Yt =
∫

[0,t)

∫

W0(M(D))

wt−s NF (ds,dw), t ≥ 0,

we construct a measure-valued immigration process {Yt : t ≥ 0} over D. This process
represents a population generated by cliques of immigrants with infinite mass which
arrive at points in ∂D at occurring times of NF (ds,dw), and it has no cadlag modifi-
cations; see Li (1996b).
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The transition semigroup (QF
t )t≥0 of {Yt : t ≥ 0} is determined by

∫

M(D)

e−ν(f)QF
t (µ,dν)

= exp
{
− µ(Vtf)−

∫ t

0

ds

∫

∂D

(1− exp{−∂Vsf(y)})F (dy)
}

.

(7.5)

As mentioned in the last section, the process {Yt : t ≥ 0} is the limit in finite
dimensional distributions of a sequence of renormalized particle systems {Y (k)

t : t ≥ 0}
with Y

(k)
0 = 0 and with transition semigroups given by

∫

Mk(D)

e−ν(f)Q
(k)
t (σ,dν)

= exp
{
− σ(ku

(k)
t )−

∫ t

0

ds

∫

∂D

(
1− exp{−∂v(k)

s (y)}
)

F (dy)
}

,

(7.6)

where u
(k)
t and v

(k)
t are determined by (6.6) and (6.7), respectively. The processes

{Y (k)
t : t ≥ 0} can be constructed in the same way as {Yt : t ≥ 0}, and has similar

trajectory singularities; see Example 5.2. Naturally, one wishes to show the convergence
{Y (k)

t : t ≥ 0} → {Yt : t ≥ 0} in a path space. Because of the singularities mentioned
above, it is impossible to formulate the convergence in the cadlag space D([0,∞),M(D))
with the usual topology. However, we can use a transformation and prove a limit
theorem in the space D([0,∞),M(D̄)). Define

ψ̄(x, z) = h(x)−1φ(x, h(x)z) for x ∈ D,

= 0 for x ∈ ∂D.
(7.7)

Define ψ̄k in the same manner with φ replaced by φk. Assume that ψ̄(x, z) and ψ̄k(x, z)
are continuous functions of (x, z). For f ∈ B(D̄)+ let Ūtf denote the solution to

Ūtf(x) = T̄tf(x)−
∫ t

0

ds

∫

D̄

ψ̄(y, Ūsf(y))T̄t−s(x, dy), t ≥ 0, x ∈ D̄, (7.8)

where (T̄t)t≥0 is the strongly continuous Feller semigroup defined in the proof of The-
orem 4.2. Starting from the process {Yt : t ≥ 0}, let us define the process {Z̄t : t ≥ 0}
by

Z̄t(∂D) = 0 and Z̄t(dx) = h(x)Yt(dx) for x ∈ D. (7.9)

It is easy to check that {Z̄t : t ≥ 0} is a Markov process in M(D̄) with transition
semigroup (RF

t )t≥0 determined by
∫

M(D)

e−ν(f)RF
t (µ, dν) = exp

{
− µ(Ūtf)

−
∫ t

0

ds

∫

∂D

(
1− exp{−∂h(y)Ūsf(y)})F (dy)

}
.

(7.10)



21

Let Ū
(k)
t f be the solution to

Ū
(k)
t f(x) =T̄t[(1− e−hf/k)/h](x)

−
∫ t

0

ds

∫

D

ψ̄k(y, Ū (k)
s f(y))T̄t−s(x, dy), t ≥ 0, x ∈ D̄.

(7.11)

We introduce the space

Mh
k (D̄) = {µ : µ ∈ M(D̄) and h(x)−1µ|D(dx) ∈ Mk(D)}. (7.12)

Let {Z̄(k)
t : t ≥ 0} be defined by (7.9) with {Yt : t ≥ 0} replaced by {Y (k)

t : t ≥ 0}. Let

Û
(k)
t f(x) = −kh−1 log

[
1− k−1hŪ

(k)
t f(x)

]
for x ∈ D,

= Ū
(k)
t f(x) for x ∈ ∂D.

(7.13)

Then {Z̄(k)
t : t ≥ 0} is a Markov process in Mh

k (D̄) having the transition semigroup
given by

∫

Mh
k (D)

e−ν(f)R
(k)
t (σ, dν) = exp

{
− σ(Û (k)

t f)

−
∫ t

0

ds

∫

∂D

(
1− exp{−∂h(y)Ū (k)

s f(y)}
)

F (dy)
}

.

(7.14)

Theorem 7.1. Assume that ψ̄k(x, z) and ψ̄(x, z) are uniformly Lipschitz in z on the
set D × [0, l] for each finite l > 0. Then the processes {Z̄(k)

t : t ≥ 0} and {Z̄t : t ≥ 0}
have modifications in D([0,∞),M(D̄)). If, in addition, ψ̄k(x, z) → ψ̄(x, z) uniformly
on each set D × [0, l], then

{Z̄(k)
t : t ≥ 0} → {Z̄t : t ≥ 0} weakly in D([0,∞), M(D̄)). (7.15)

Proof. Clearly (T̄t)t≥0 preserves C(D̄)++, strictly positive continuous functions, then
so do (Ūt)t≥0 and (Ū (k)

t )t≥0 by (7.8) and (7.11). On the other hand, since (T̄t)t≥0 is
strongly continuous on C(D̄)+, so are (Ūt)t≥0 and (Ū (k)

t )t≥0; see Pazy (1983) and the
proof of Theorem 4.2. By (7.13) one may check that (Û (k)

t )t≥0 preserves C(D̄)++ and is
strongly continuous on C(D̄)+. It follows that {Z̄t : t ≥ 0} and {Z̄(k)

t : t ≥ 0} both have
strongly continuous Feller transition semigroups, and hence they have modifications
in D([0,∞),M(D̄)). By Theorem 2.11 of Ethier-Kurtz (1986; p172), to get (7.15) it
suffices to show that as k →∞,

sup
σ∈Mh

k (D)

∣∣∣∣
∫

M(D)

e−ν(f)QF
t (σ,dν)−

∫

Mh
k (D)

e−ν(f)Q
(k)
t (σ,dν)

∣∣∣∣ → 0

for every f ∈ C(D̄)++, which follows by a careful application of Lemma 6.2. ¤
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Corollary 7.2. Assume the conditions in Theorem 7.1. If f/h ∈ C(D̄)+ vanishes at
∂D, then the processes {Y (k)

t (f) : t ≥ 0} and {Yt(f) : t ≥ 0} have modifications in
D([0,∞), IR) and

{Y (k)
t (f) : t ≥ 0} → {Yt(f) : t ≥ 0} weakly in D([0,∞), IR). (7.16)

Proof. Clearly, Y
(k)
t (f) = Z

(k)
t (f/h) and Yt(f) = Zt(f/h), so (7.16) follows from

(7.15). ¤
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