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Abstract. We prove a 1-1 correspondence between minimal probability
entrance laws for the superprocess and entrance laws for its underlying pro-
cess. From this we deduce that an infinitely divisible probability entrance
law for the superprocess is uniquely determined by an infinitely divisible
probability measure on the space of the underlying entrance laws. Under an
additional condition, a characterization is given for all entrance laws for the
superprocess, generalizing the results of Dynkin (1989). An application to
immigration processes is also discussed.
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1. Introduction

Let E be a Lusin topological space with the Borel σ-algebra denoted by B(E). Let
B(E) denote the set of all bounded B(E)-measurable functions on E and B(E)+ the
subspace of B(E) comprising of non-negative elements. Denote by M(E) the space
of finite Borel measures on E equipped with the topology of weak convergence. For
f ∈ B(E) and µ ∈ M(E), write µ(f) for

∫
E

fdµ. We fix the underlying process
ξ = (Ω,F ,Ft, ξt,Px), which is a Borel right process in E, with transition semigroup
(Pt)t≥0. Let φ be the local branching mechanism given by

φ(x, z) = b(x)z + c(x)z2 +
∫ ∞

0

(e−zu − 1 + zu)m(x, du), x ∈ E, z ≥ 0, (1.1)
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where b ∈ B(E), c ∈ B(E)+ and [u∧u2]m(x, du) is a bounded kernel from E to (0,∞).
Let M(E)◦ = M(E) \ {0}, where 0 denotes the null measure. The non-local branching
mechanism ϕ is given by

ϕ(x, f) = d(x, f) +
∫

M(E)◦
(1− e−ν(f))n(x, dν), x ∈ E, f ∈ B(E)+, (1.2)

where d(x, dy) is a bounded kernel from E to (0,∞) and ν(E)n(x,dν) is a bounded
kernel from E to M(E)◦. It is known that for each f ∈ B(E)+ there exists a unique
solution Vtf ∈ B(E)+ to the evolution equation

Vtf(x) = Ptf(x)−
∫ t

0

ds

∫

E

[φ(y, Vsf(y))− ϕ(y, Vsf)] Pt−s(x,dy), (1.3)

and there is a Markov semigroup (Qt)t≥0 on M(E) such that
∫

M(E)

e−ν(f)Qt(µ,dν) = exp {−µ(Vtf)} , t ≥ 0, µ ∈ M(E). (1.4)

See e.g. Dynkin (1993). A Markov process X = (W,G,Gt, Xt,Qµ) in M(E) is called a
(ξ, φ, ϕ)-superprocess (Dawson-Watanabe) if it has transition semigroup (Qt)t≥0. The
(ξ, φ, ϕ)-superprocess is the continuous state approximation for a branching particle sys-
tem where the offspring of a dying particle are displaced randomly into the entire space.
In the special case ϕ ≡ 0, the (ξ, φ, ϕ)-superprocess becomes a (ξ, φ)-superprocess; see
e.g. Fitzsimmons (1988).

In this paper, we show that minimal probability entrance laws for the (ξ, φ, ϕ)-
superprocess X are in 1-1 correspondence with entrance laws for the process ξ. From
this correspondence we deduce that an infinitely divisible probability entrance law for
X is determined uniquely by an infinitely divisible probability measure on the space of
entrance laws for ξ. Under an additional condition, a characterization is given for all
entrance laws for the superprocess, generalizing the results of Dynkin (1989). We shall
see that the description of entrance laws for the superprocess is important in the study
of measure-valued immigration process.

For simplicity we shall only work with superprocesses having state space M(E).
There is no much change when M(E) is replaced by the more general space Mρ(E) :=
{Borel measures µ on E satisfying µ(ρ) < ∞}, where ρ is some bounded, strictly
positive, continuous function on E. Indeed, most of our results can be translated into
the Mρ(E) space case using the mapping µ(dx) 7→ ρ(x)−1µ(dx).

2. Main results and proofs
Given a semigroup of bounded kernels (Tt)t≥0 on E, we denote by K(T ) the set of

entrance laws κ = (κt)t>0 for (Tt)t≥0 such that
∫ 1

0
κs(E)ds < ∞. For κ ∈ K(P ) we note

St(κ, f) = κt(f)−
∫ t

0

ds

∫

E

[φ(x, Vsf(y))− ϕ(x, Vsf)] κt−s(dx) (2.1)
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where t > 0 and f ∈ B(E)+. Let K1(Q) denote the set of probability entrance laws
K = (Kt)t>0 for (Qt)t≥0 satisfying

∫ 1

0

ds

∫

M(E)◦
ν(E)Ks(dν) < ∞, (2.2)

and let K1
m(Q) denote the subset of K1(Q) comprising of all minimal (extremal) el-

ements. See e.g. Dynkin (1978) or Sharpe (1988) for the definition of an entrance
law.

Theorem 2.1. There is a 1-1 correspondence between K ∈ K1
m(Q) and κ ∈ K(P ),

which is given by

κt(f) = lim
r↓0

∫

M(E)

ν(Pt−rf)Kr(dν), (2.3)

and ∫

M(E)

e−ν(f)Kt(dν) = exp {−St(κ, f)} . (2.4)

Dynkin (1989) proved this in the case where ϕ ≡ 0 and φ(x, z) ≡ c(x)z2 but ξ
was allowed to be non-homogeneous and X was allowed to take values in a space of
σ-finite measures. The basic idea of our proof of Theorem 2.1 is the same with that of
Dynkin (1989) and based on a lifting and projecting argument. The non-local branching
mechanism causes some difficulties, for projecting an entrance law for the (ξ, φ, ϕ)-
superprocess does not readily give an entrance law for the underlying process.

To give the proof of Theorem 2.1 we need some preparation. It is well-known that
(Vt)t≥0 has the canonical representation

Vtf(x) = λt(x, f) +
∫

M(E)◦

(
1− e−ν(f)

)
Lt(x, dν), (2.5)

where λt(x, dy) ∈ M(E) and ν(E)Lt(x, dν) is a finite measure on M(E)◦. Define the
kernels (Πt)t≥0 on E by

Πtf(x) = λt(x, f) +
∫

M(E)◦
ν(f)Lt(x, dν). (2.6)

One can check that (Πt)t≥0 form a semigroup and
∫

M(E)

ν(f)Qt(µ, dν) = µ(Πtf). (2.7)

From the equation (1.3) we get

Πtf(x) = Ptf(x)−
∫ t

0

ds

∫

E

[b(y)Πsf(y)−D(y, Πsf)] Pt−s(x, dy), (2.8)
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where D(x, ·) is the bounded kernel on E defined by

D(x, f) = d(x, f) +
∫

M(E)◦
ν(f)n(x, dν).

Let (P b
t )t≥0 be the semigroup of bounded kernels on E defined by

P b
t f(x) = Pxf(ξt) exp

{
−

∫ t

0

b(ξs)ds

}
. (2.9)

By a standard argument one sees that (2.8) is equivalent to

Πtf(x) = P b
t f(x) +

∫ t

0

ds

∫

E

D(y, Πsf)P b
t−s(x, dy). (2.10)

Set ϕ̄ = supx∈E D(x,E). Applying Gronwall’s inequality to (2.8) yields

‖Πtf‖ ≤ ‖f‖ exp{(‖b‖+ ϕ̄)t},

where ‖ · ‖ denotes the supreme norm. In particular the semigroup (Πt)t≥0 is locally
bounded.

Lemma 2.1. There is a 1-1 correspondence between κ ∈ K(P ) and η ∈ K(Π), which
is given by

ηt(f) = lim
r↓0

κr(Πt−rf) and κt(f) = lim
r↓0

ηr(Pt−rf). (2.11)

Furthermore, if the two entrance laws κ and η are related by (2.11), then

ηt(f) = κt(f)−
∫ t

0

ds

∫

E

[b(x)Πsf(x)−D(x,Πsf)] κt−s(dx). (2.12)

Proof. Suppose that κ ∈ K(P ). By the equation (2.8) it is immediate that

lim
r↓0

κr(Πt−rf) = κt(f)−
∫ t

0

ds

∫

E

[b(x)Πsf(x)−D(x,Πsf)] κt−s(dx).

Then the first equation in (2.11) defines an entrance law η ∈ K(Π) and (2.12) holds.
The second equation in (2.11) follows by (2.12).

Conversely, suppose η ∈ K(Π). By (2.10) we see that P b
t f ≤ Πtf for t ≥ 0 and

f ∈ B(E)+. Thus we can define an entrance law γ ∈ K(P b) by γt(f) = limr↓0 ηr(P b
t−rf).

It follows that κt(f) = limr↓0 γr(Pt−rf) defines some κ ∈ K(P ); see e.g. Li (1996b).
Since clearly ηr ≥ γr, for t > 0 and f ∈ B(E)+ we have,

lim
r↓0

|ηr(Pt−rf)− γr(Pt−rf)| ≤ lim
r↓0

∣∣ηr(P b
t−rf)− γr(P b

t−rf)
∣∣ e‖b‖(t−r)

≤ lim
r↓0

∣∣ηr(P b
t−rf)− γt(f)

∣∣ e‖b‖t = 0.
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Then the second relation in (2.11) holds. By (2.8), for 0 < r < t,

ηt(f) = ηr(Pt−rf)−
∫ t−r

0

ds

∫

E

ηr(dx)
∫

E

[b(x)Πsf(y)−D(y, Πsf)] Pt−r−s(x, dy).

Letting r ↓ 0 in the above equality gives (2.12). ¤
By (2.5) and (2.6), Vtf ≤ Πtf for all t ≥ 0 and f ∈ B(E)+. Consequently, if

η ∈ K(Π), ηr(Vt−rf) is an increasing function of r ∈ (0, t]. Put

S∗t (η, f) = lim
r↓0

ηr(Vt−rf), t > 0, f ∈ B(E)+. (2.13)

It is easy to check that, if the two entrance laws κ ∈ K(P ) and η ∈ K(Π) are related
by (2.11), then

St(κ, f) = S∗t (η, f), t > 0, f ∈ B(E)+. (2.14)

With these in hands, we now give the proof of Theorem 2.1.

Proof of Theorem 2.1. Step 1. For K ∈ K1(Q) it follows from (2.7) that

ηt(f) =
∫

M(E)

ν(f)Kt(dν),

defines some η ∈ K(Π). Then we can define κ ∈ K(P ) by the second equation in (2.11).
Write η = πK and κ = pK.

Step 2. Suppose κ ∈ K(P ) and η ∈ K(Π) are related by (2.11). By (2.13) and (2.14)
we have

∫

M(E)

e−ν(f)Qt−r(ηr,dν) = exp {−ηr(Vt−rf)} ↑ exp {−S∗t (η, f)} (2.15)

as r ↓ 0. It follows that (2.4) really defines a K ∈ K1(Q). Write K = lκ = λη. By (2.1)
and (2.4) on may check that

∫

M(E)

ν(f)Kt(dν) = κt(f)−
∫ t

0

ds

∫

E

[b(x)Πsf(x)−D(x,Πsf)] κt−s(dx).

Therefore πK = η and pK = κ by Lemma 2.1.
Step 3. We claim that λπK = K for all K ∈ K1

m(Q). Indeed if K ∈ K1
m(Q),

then there is a probability measure QK on M(E)(0,∞) under which the coordinate
process {wt : t > 0} is a Markov process with one-dimensional distributions (Kt)t>0

and semigroup (Qt)t≥0. Since K is minimal, QK-a.s.,
∫

M(E)

e−ν(f)Kt(dν) = lim
rat.r↓0

exp {−wr(Vt−rf)} , (2.16)
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where “rat. r ↓ 0” means “r → 0 decreasingly along the rational”. See Dynkin (1978).
Clearly QK-a.s.,

wr(Vt−rf) ≤ wr(Πt−rf) = QK {wt(f)|ws : 0 < s ≤ r} .

Then the family of random variables {wr(Vt−rf) : 0 < rat. r ≤ t} is uniformly QK-
integrable. By (2.16) we have

− log
∫

M(E)

e−ν(f)Kt(dν) = lim
rat.r↓0

QK {wr(Vt−rf)} = S∗t (πK, f),

as claimed.
Step 4. Finally we show λη ∈ K1

m(Q) for all η ∈ K(Π). Since λη ∈ K1(Q), there is a
probability measure F on K1

m(Q) such that

ληt =
∫

K1
m(Q)

Ht F (dH).

See e.g. Dynkin (1978). Let G be the image of F under mapping π : K1
m(Q) → K(Π).

By the results proved in steps 2 and 3 it follows that

exp {−S∗t (η, f)} =
∫

K(Π)

exp {−S∗t (γ, f)}G(dγ), (2.17)

and
ηt =

∫

K(Π)

γt G(dγ). (2.18)

Since e−u is a strictly convex function of u ≥ 0, (2.17) and (2.18) imply that G is the
unit mass concentrated at γ; hence F is the unit mass at λη, yielding λη ∈ K1

m(Q). ¤
Based on Theorem 2.1 we may give a description of the infinitely divisible entrance

laws in K1(Q) as follows. (See Li (1996b) for the proof of the next theorem in the special
case where ϕ ≡ 0.)

Theorem 2.2. An entrance law K ∈ K1(Q) is infinitely divisible if and only if its
Laplace functional has the representation

∫

M(E)

e−ν(f)Kt(dν)

= exp
{
− St(κ, f)−

∫

K(P )

(1− exp {−St(η, f)})F (dη)
}

,

(2.19)

where κ ∈ K(P ) and F is a σ-finite measure on K(P ) satisfying
∫ 1

0

ds

∫

K(P )

ηs(1)F (dη) < ∞. (2.20)
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Let (Q◦
t )t≥0 denote the restriction of (Qt)t≥0 to M(E)◦ and K(Q◦) the set of entrance

laws (Ht)t>0 for the semigroup (Q◦t )t≥0 satisfying (2.2). We introduce the condition

(Vt)t≥0 has the representation (2.5) with

λt(x,E) = 0 for all t > 0 and x ∈ E.
(2.21)

Note that (2.21) holds if there is some constant a > 0 such that

∫ ∞

a

[
sup
x∈E

|φ(x, z)−1|]dz < ∞; (2.22)

see Dawson (1993; pp195-196). It is easy to check that, when (2.21) holds, an entrance
law K ∈ K1(Q) is infinitely divisible if and only if

∫

M(E)

e−ν(f)Kt(dν) = exp
{
−

∫

M(E)◦

(
1− e−ν(f)

)
Ht(dν)

}
(2.23)

for some H ∈ K(Q◦). Then we have

Theorem 2.3. Assume (2.21) holds. Then H ∈ K(Q◦) if and only if

∫

M(E)◦

(
1− e−ν(f)

)
Ht(dν) = St(κ, f) +

∫

K(P )

(1− exp {−St(η, f)})F (dη) (2.24)

where κ ∈ K(P ) and F is a σ-finite measure on K(P ) satisfying (2.20).

Let Km(Q◦) denote the set of minimal elements of K(Q◦). Let Lκ denote the entrance
law for (Q◦t )t≥0 defined by

∫

M(E)◦

(
1− e−ν(f)

)
Lκt(dν) = St(κ, f). (2.25)

Since St(κ, f) is linear in κ, we conclude from Theorem 2.3 that Km(Q◦) consists of two
parts: (i) qlκ for all 0 < q < ∞ and all κ ∈ K(P ), and (ii) Lκ with κ being extremal
elements of K(P ). These generalize the results of Dynkin (1989).

3. Application to immigration processes

Let us give an application of the above results to the study of immigration structures
associated with the (ξ, φ, ϕ)-superprocess. Suppose that (Nt)t≥0 is a family of probabil-
ity measures on M(E). We call (Nt)t≥0 a skew convolution semigroup associated with
the (ξ, φ, ϕ)-superprocess X or its semigroup (Qt)t≥0 if

Nr+t = (NrQt) ∗Nt, r, t ≥ 0, (3.1)
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where “∗” denotes the convolution operation. The relation (3.1) holds if and only if

QN
t (µ, ·) := Qt(µ, ·) ∗Nt, t ≥ 0, µ ∈ M(E), (3.2)

defines a Markov semigroup (QN
t )t≥0 on M(E). If Y is a Markov process in M(E)

having transition semigroup (QN
t )t≥0, we call it an immigration process associated with

X. See Li (1996ab) for the intuitive meaning of the immigration process. By the results
of Li (1996a), (Nt)t≥0 form a skew convolution semigroup if and only if there is an
infinitely divisible probability entrance law (Kt)t>0 for (Qt)t≥0 such that

log
∫

M(E)

e−ν(f)Nt(dν) =
∫ t

0

[
log

∫

M(E)

e−ν(f)Ks(dν)
]
ds (3.3)

for all t ≥ 0 and f ∈ B(E)+.Therefore, the immigration structures associated with the
(ξ, φ, ϕ)-superprocess can be characterized by its infinitely divisible probability entrance
laws. Combining (2.23) with (3.3), we get the following

Theorem 3.1. Suppose that (2.21) holds and (Nt)t≥0 is a family of probability measures
on M(E) satisfying ∫

M(E)

ν(1)Nt(dν) < ∞ for all t ≥ 0. (3.4)

Then (Nt)t≥0 is a skew convolution semigroup associated with the (ξ, φ, ϕ)-superprocess
if and only if its Laplace functional has the representation

∫

M(E)

e−ν(f)Nt(dν) = exp
{
−

∫ t

0

Su(κ, f)du

−
∫ t

0

du

∫

K(P )

(1− exp {−Su(η, f)})F (dη)
} (3.5)

where κ ∈ K(P ) and F is a σ-finite measure on K(P ) satisfying (2.20).

An immediate consequence of this theorem is a construction of the immigration
process by a Poisson system of measure-valued paths. Let W0(M(E)) denote the space
of all right continuous paths {wt : t > 0} from (0,∞) to M(E). Let (G◦,G◦t ) denote
the natural σ-algebras on W0(M(E)). Suppose that H ∈ K(Q◦) is given by (2.24).
By the theory of Markov processes, there is a σ-finite measure QH on (W0(M(E)),G◦)
under which {wt : t > 0} is a Markov process with transition semigroup (Qt)t≥0 and
one dimensional distributions (Ht)t>0. Suppose that N(ds, dw) is a Poisson random
measure on [0,∞)×W0(M(E)) with intensity ds×QH(dw). Let

Yt =
∫

[0,t]

∫

W0(M(E))

wt−s N(ds, dw), t ≥ 0, (3.6)
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where w0 = 0 by convention. It is easy to check that {Yt : t ≥ 0} is an immigration
process corresponding to the skew convolution semigroup (Nt)t≥0 given by (3.5). The
construction (3.6) of the immigration process explains the role of the entrance law
H ∈ K(Q◦) in the phenomenon and gives a probabilistic interpretation of the equation
(3.5).
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