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Abstract. We study the state properties of the measure branching pro-
cess over IR with mean field interaction constructed by Méléard and Roelly
(1992, 1993) and Métivier (1987). It is proved that, under natural hypothe-
ses, the process is absolutely continuous with respect to the Lebesgue mea-
sure and the density process has a continuous version which satisfies a sto-
chastic partial differential equation.
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1. Introduction

Let M(IRd) denote the totality of finite Borel measures on IRd endowed with the weak
convergence topology. Let C(IRd) be the space of all bounded continuous functions on
IRd with the supreme norm ‖ ·‖, and C0(IRd) the set of functions in C(IRd) vanishing at
infinity. For µ ∈ M(IRd) and f ∈ C(IRd) write µ(f) for

∫
fdµ. Let C([0,∞),M(IRd))

be the space of M(IRd)-valued continuous paths {wt : t ≥ 0} with the coordinate
process denoted by Xt(w) = wt. Let {Pt(µ) : µ ∈ M(IRd)} be Feller semigroups on
C(IRd) with generators {A(µ) : µ ∈ M(IRd)}. Assume that {A(µ) : µ ∈ M(IRd)} have
domains that all contain a vector space D which is dense in C0(IRd) and independent of
µ. Assume that the constant functions belong to D and A(µ)1 = 0 for each µ ∈ M(IRd).
Furthermore, we assume that, for each f ∈ D,

(A1) there is a constant K(f) > 0 such that ‖A(µ)f‖ ≤ K(f)µ(1);
(A2) µ(A(µ)f) is continuous in µ ∈ M(IRd).
We fix two bounded, continuous functions c = c(µ, x) ≥ 0 and b = b(µ, x) on the

product space M(IRd) × IRd. It follows from the construction in Méléard and Roelly
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(1992, 1993) and Métivier (1987) that for each µ ∈ M(IRd) there is a probability measure
Qµ on C([0,∞),M(IRd)) such that, for any f ∈ D,

Mt(f) := Xt(f)− µ(f)−
∫ t

0

Xs

(
A(Xs)f + b(Xs)f

)
ds, t ≥ 0, (1.1)

is a Qµ-martingale starting at zero with quadratic variation process

〈M(f)〉t =
∫ t

0

∫

IRd

c(Xs, x)f(x)2Xs(dx)ds, t ≥ 0. (1.2)

We shall call {Qµ : µ ∈ M(IRd)} a measure branching process with mean field in-
teraction, or simply an interacting (Dawson-Watanabe) superprocess in keeping with
Méléard and Roelly (1992, 1993). The term “mean field interaction” refers to the fact
that the migrating and branching of each particle is influence by the entire population;
see Dawson (1993) and Perkins (1992) for related models.

If A, b and c are all independent of µ, then {Qµ : µ ∈ M(IRd)} is uniquely determined
by (1.1) and (1.2), which is the classical non-interacting superprocess. In that case, the
Laplace functional of the process can be given as

Qµ exp {−Xt(f)} = exp {−µ(Vtf)} , f ∈ C(IRd)+, (1.3)

where Vtf is the mild solution of the evolution equation

∂

∂t
Vtf(x) = AVtf(x)− 1

2
c(x)Vtf(x)2 + b(x)Vtf(x),

V0f(x) = f(x).
(1.4)

In general, the uniqueness of solutions to the martingale problem (1.1) and (1.2) is
still unknown and the Laplace functional of {Qµ : µ ∈ M(IRd)} cannot be expressed
explicitly. One important property implied by (1.3) is the multiplicative property of
the family {Qµ : µ ∈ M(IRd)}, which has lead to many deep results concerning the
trajectory structures of the non-interacting superprocess. The loss of this property
in the general situation makes the study of the interacting superprocess much more
difficult.

The following results were proved in Méléard and Roelly (1993): If the underlying
motion is a symmetric stable process with index α (0 < α ≤ 2) independent of µ,
then for each t > 0 the Hausdorff dimension of the Borel support supp(Xt) is almost
surely not less than d ∧ α. Only under the additional condition c(µ, x) ≡ const, it was
proved that the Hausdorff dimension of supp(Xt) = d ∧ α for all t > 0 almost surely.
Therefore, compared with what we have known about the non-interacting superprocess,
the interacting one is much less understood.

It is known that when d = 1, the non-interacting superprocess is absolutely continu-
ous with respect to the Lebesgue measure on IR for a large class of admissible generators
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A; see Konno and Shiga (1988) and Reimers (1989). The same result for the interacting
superprocess was conjectured by Méléard and Roelly (1992; p256). In the special case
where A is independent of µ ∈ M(IRd), the problem has been studied in Zhao (1997),
where a measurable density {X(t, x) : t > 0, x ∈ IR} was obtained as the limit

X(t, x) = lim
r↓0

∫

IR

Xt(dz)pr(z, x) (1.5)

with pr(z, x) denoting the transition density of A.
In this paper we establish the absolute continuity of the interacting superprocess

in a typical situation where the underlying motion and the branching mechanism are
both dependent on µ ∈ M(IRd). The result is proved here using a Fubini’s theorem of
stochastic integrals with respect to a martingale measure induced by (1.1) and (1.2).
In the special case where A is independent of µ ∈ M(IRd), we show that the density
process {X(t, x) : t > 0, x ∈ IR} has a continuous version and satisfies a stochastic
partial differential equation. One essential step of the proof is some moment estimates
for the superprocess. In the non-interacting case, Konno and Shiga (1988) proved those
by using the log-Laplace equation, which is not available in our situation. We obtain
the estimates from the martingale characterization by an induction argument. This
paper is in fact an extended version of the unpublished manuscript Li (1995), where we
considered the special case A = ∆ and b = 0. A combination of the techniques of Li
(1995) and Zhao (1997) has been given by Liang (1996).

2. Absolute continuity of the superprocess

We first give a moment estimate for the interacting superprocess which will be used
in the proofs of the main results. Let B ≥ 1 be a fixed common upper bound for the
functions b(·, ·) and c(·, ·). Then we have

Proposition 2.1. There is a family of locally bounded functions Fn = Fn(t) on [0,∞)
such that

Qµ {Xt(1)n} ≤ Fn(t)
n∑

k=1

µ(1)k (2.1)

for µ ∈ M(IR) and n = 1, 2, · · · .
Proof. Since {Xt(1) : t ≥ 0} is Qµ-a.s. continuous, we may take an increasing sequence
of optional times τk → ∞ (k → ∞) such that Qµ-a.s. sup{Xt(1) : t ≤ τk} ≤ k. By
(1.1), (1.2) and Itô’s formula,

Xt∧τk
(1)n−µ(1)n − n

∫ t∧τk

0

Xs(1)n−1Xs(b(Xs))ds

−n(n− 1)
2

∫ t∧τk

0

Xs(1)n−2Xs(c(Xs))ds
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is a Qµ-martingale. Then we have

Qµ{Xt∧τk
(1)n} ≤µ(1)n + nB

∫ t

0

Qµ{Xs∧τk
(1)n}ds

+
n(n− 1)

2
B

∫ t

0

Qµ{Xs∧τk
(1)n−1}ds < ∞.

Applying Gronwall’s inequality gives

Qµ{Xt∧τk
(1)n} ≤ enBtµ(1)n +

n(n− 1)
2

BenBt

∫ t

0

Qµ{Xs∧τk
(1)n−1}ds.

Using this inductively we get

Qµ {Xt∧τk
(1)n} ≤ Fn(t)

n∑

k=0

µ(1)k,

where the Fn are locally bounded functions on [0,∞). The desired inequality follows
by Fatou’s lemma. ¤

In the sequel of the paper we shall always assume d = 1. Suppose that there is a
continuous function pt(σ; x, y) of (t, σ, x, y) ∈ (0,∞) × IR3 which is twice continuously
differentiable in σ ∈ IR such that

Pt(µ)f(x) =
∫

IR

pt(µ(g); x, y)f(y)dy, (2.2)

where g ∈ D is fixed. Set Pt(µ)f(x) = 0 for t < 0 and pt(σ;x, y) = 0 for t ≤ 0. We
introduce the notations

P ′t (µ)f(x) =
∫

IR

p′t(µ(g); x, y)f(y)dy,

P ′′t (µ)f(x) =
∫

IR

p′′t (µ(g); x, y)f(y)dy,

where p′t(σ;x, y) = (∂/∂σ)pt(σ; x, y) and p′′t (σ; x, y) = (∂2/∂σ2)pt(σ; x, y). Assume
further that, for each f ∈ D,

(A3) Pt(µ)f is strongly continuous in (t, µ) ∈ [0,∞)×M(IR);
(A4) A(µ)Pt(µ)f = Pt(µ)A(µ)f is strongly continuous in (t, µ) ∈ [0,∞)×M(IR);
(A5) P ′t (µ)f is strongly continuous in (t, µ) ∈ [0,∞)×M(IR);
(A6) P ′′t (µ)f is strongly continuous in (t, µ) ∈ [0,∞)×M(IR).
Of course, (A4) implies (A2). Since (1.1) is linear in f ∈ D, one can extend the system

{Mt(f) : f ∈ D, t ≥ 0} to a continuous orthogonal martingale measure {Mt(B) : B ∈
B(IR), t ≥ 0} with covariant measure c(Xs, x)Xs(dx)ds in the sense of Walsh (1986).
See also Méléard and Roelly (1993). Let M(ds,dx) denote the stochastic integral with
respect to this martingale measure.
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Proposition 2.2. Under the assumptions (A1) – (A6), for any t > r ≥ 0 and f ∈
C(IR), we have Qµ-a.s.,

Xt(f) =Xr(Pt−r(Xr)f) +
∫ t

r

∫

IR

Pt−s(Xs)f(x)M(ds,dx)

+
∫ t

r

Xs(b(Xs)Pt−s(Xs)f)ds +
∫ t

r

Xs(P ′t−s(Xs)f)dMs(g)

+
∫ t

r

Xs(P ′t−s(Xs)f)Xs(A(Xs)g + b(Xs)g)ds

+
1
2

∫ t

r

Xs(P ′′t−s(Xs)f)Xs(c(Xs)g2)ds.

(2.3)

Proof. We may assume f ∈ D in this proof since the extension of (2.3) to a general
f ∈ C(IR) is easy. Suppose that r = t0 < t1 < · · · < tn = t is a partition of [r, t]. We
have

Xt(f) =Xr(Pt−r(Xr)f) +
n∑

i=1

Xti(Pt−ti(Xti)f − Pt−ti−1(Xti)f)

+
n∑

i=1

[
Xti(Pt−ti−1(Xti)f)−Xti−1(Pt−ti−1(Xti−1)f)

]
.

(2.4)

Let δn = max{|ti − ti−1| : i = 1, · · · , n}. We choose the partition r = t0 < t1 < · · · <
tn = t in a way such that δn → 0 as n →∞. By (A4),

lim
n→∞

n∑

i=1

Xti(Pt−ti(Xti)f − Pt−ti−1(Xti)f)

=− lim
n→∞

n∑

i=1

∫ ti

ti−1

Xti(A(Xti)Pt−s(Xti)f)ds

=−
∫ t

r

Xs(A(Xs)Pt−s(Xs)f)ds.

(2.5)

Applying (1.1) term by term we get

n∑

i=1

[
Xti(Pt−ti−1(Xti)f)−Xti−1(Pt−ti−1(Xti)f)

]

=
n∑

i=1

∫ ti

ti−1

∫

IR

pt−ti−1(Xti)f(x)M(ds, dx) +
n∑

i=1

∫ ti

ti−1

Xs(A(Xti)Pt−ti−1(Xti)f)ds

+
n∑

i=1

∫ ti

ti−1

Xs(b(Xs)Pt−ti−1(Xti)f)ds.
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By the hypothesis (A3) and (A4), as n →∞ the above value converges to

∫ t

r

∫

IR

Pt−s(Xs)f(x)M(ds,dx) +
∫ t

r

Xs(A(Xs)Pt−s(Xs)f)ds

+
∫ t

r

Xs(b(Xs)Pt−s(Xs)f)ds.

(2.6)

Using (1.1), (1.2) and Itô’s formula we have

n∑

i=1

[
Xti−1(Pt−ti−1(Xti

)f)−Xti−1(Pt−ti−1(Xti−1)f)
]

=
n∑

i=1

∫ ti

ti−1

Xti−1(P
′
t−ti−1

(Xs)f)dMs(g)

+
n∑

i=1

∫ ti

ti−1

Xti−1(P
′
t−ti−1

(Xs)f)Xs(A(Xs)g + b(Xs)g)ds

+
1
2

n∑

i=1

∫ ti

ti−1

Xti−1(P
′′
t−ti−1

(Xs)f)Xs(c(Xs)g2)ds.

By (A5) and (A6), as n →∞ this converges to

∫ t

r

Xs(P ′t−s(Xs)f)dMs(g) +
∫ t

r

Xs(P ′t−s(Xs)f)Xs(A(Xs)g + b(Xs)g)ds

+
1
2

∫ t

r

Xs(P ′′t−s(Xs)f)Xs(c(Xs)g2)ds

(2.7)

Combining (2.4) – (2.7) in the above we get (2.3). ¤
Theorem 2.3. Suppose that (A1) – (A6) hold. If there exist 0 < δ, θ < 1 such that

sup{pt(σ;x, y) + p′t(σ;x, y)2 + p′′t (σ; x, y) : (σ, x, y) ∈ IR3} ≤ t−θ (2.8)

for all 0 < t < δ, then there exists a two-parameter process {X(t, x) : t > 0, x ∈ IR}
such that Qµ{Xt(dx) has density X(t, x) for all t > 0} = 1 for each µ ∈ M(IR).

Proof. We fix f ∈ C(IR) with compact support. Using Burkholder-Davis-Gundy’s in-
equality and condition (2.8),

∫

IR

Qµ

{ ∫ t

0

∫

IR

pt−s(Xs(g); z, x)2c(Xs)Xs(dz)
}

f(x)dx

≤const ·
∫ t

0

1
(t− s)θ

Qµ

{
Xs(Pt−s(Xs)f)

}
ds < ∞.
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By Theorem 2.6 in Walsh (1986), for every t > 0 we have, Qµ-a.s.,

∫ t

0

∫

IR

Pt−s(Xs)f(x)M(ds,dx) =
∫

IR

f(x)Z(t, x)dx, (2.9)

where

Z(t, x) =
∫ t

0

∫

IR

pt−s(Xs(g); z, x)M(ds, dz), x ∈ IR \N1(t, f),

for some Lebesgue null set N1(t, f) ⊂ IR. In the same way, since

∫

IR

Qµ

{ ∫ t

0

Xs(p′t−s(Xs(g); ·, x))2Xs(cg2)ds

}
f(x)dx

≤const ·
∫ t

0

1
(t− s)θ

Qµ

{
Xs(1)2Xs(cg2)

}
ds ·

∫

IR

f(x)dx < ∞

by (2.8) and Proposition 2.1, it follows that, Qµ-a.s.,

∫ t

0

Xs(P ′t−s(Xs)f)dMs(g) =
∫

IR

f(x)U(t, x)dx, (2.10)

where U(t, x) defined by

U(t, x) =
∫ t

0

dMs(g)
∫

IR

p′t−s(Xs(g); z, x)Xs(dz), x ∈ IR \N2(t, f),

for another Lebesgue null set N2(t, f) ⊂ IR. Under condition (2.8) the integrals

Y1(t, x) =
∫ t

0

ds

∫

IR

b(Xs, z)pt−s(Xs(g); z, x)Xs(dz),

Y2(t, x) =
∫ t

0

ds

∫

IR

p′t−s(Xs(g); z, x)Xs(A(Xs)g + b(Xs)g)Xs(dz),

Y3(t, x) =
1
2

∫ t

0

ds

∫

IR

p′′t−s(Xs(g); z, x)Xs(c(Xs)g2)Xs(dz).

are well-defined. It is not difficult to get versions of Z(t, x) and U(t, x) such that (2.9)
and (2.10) hold for all f in a countable dense subset of C(IR). Using those to define

X(t, x) =
∫

IR

pt(µ; z, x)µ(dz) + Z(t, x) + U(t, x) +
3∑

i=1

Yi(t, x).

The assertion follows from (2.9), (2.10) and Fubini’s lemma. ¤
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Example 2.4. We remark that (A1) – (A6) and (2.8) are satisfied when A(µ) =
∆/2 + µ(g)(d/dx). In this case,

pt(σ; x, y) =
1√
2πt

exp
{
− (y − x− σt)2

2t

}
.

It is easy to check that (2.8) is satisfied with δ = 1 and θ = 1/2.
A natural generalization of the situation considered above is as follows. Suppose that

g1, · · · , gk ∈ D are fixed functions and

Pt(µ)f(x) =
∫

IR

pt(µ(g1), · · · , µ(gk); x, y)f(y)dy, (2.11)

where pt(σ1, · · · , σk; x, y) is a continuous function of (t, σ1, · · · , σk; x, y) twice continu-
ously differentiable in (σ1, · · · , σk) ∈ IRk. Put

P j
t (µ)f(x) =

∫

IR

pj
t (µ(g1), · · · , µ(gk); x, y)f(y)dy,

P jl
t (µ)f(x) =

∫

IR

pjl
t (µ(g1), · · · , µ(gk); x, y)f(y)dy,

where
pj

t (σ1, · · · , σk; x, y) = (∂/∂σj)pt(σ1, · · · , σk; x, y)

and
pjl

t (σ1, · · · , σk; x, y) = (∂2/∂σj∂σl)pt(σ1, · · · , σk;x, y).

Assume that, for each f ∈ D,
(A5′) P j

t (µ)f is strongly continuous in (t, µ) ∈ [0,∞)×M(IR);
(A6′) P jl

t (µ)f is strongly continuous in (t, µ) ∈ [0,∞)×M(IR).
By a similar arguments as the above it can be proved that for any t > r ≥ 0 and

f ∈ C(IR) we have

Xt(f) =Xr(Pt−r(Xr)f) +
∫ t

r

∫

IR

Pt−s(Xs)f(x)M(ds,dx)

+
∫ t

r

Xs(b(Xs)Pt−s(Xs)f)ds +
k∑

j=1

∫ t

r

Xs(P
j
t−s(Xs)f)dMs(gj)

+
k∑

j=1

∫ t

r

Xs(P
j
t−s(Xs)f)Xs(A(Xs)gj + b(Xs)gj)ds

+
1
2

k∑

j,l=1

∫ t

r

Xs(P
jl
t−s(Xs)f)Xs(c(Xs)gjgl)ds.
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Assume further that there exist 0 < δ, θ < 1 such that

sup{pt(σ1, · · · , σk; x, y) + pi
t(σ1, · · · , σk;x, y)2 + pjl

t (σ1, · · · , σk; x, y)} ≤ t−θ

for all 0 < t < δ and i, j, l = 1, · · · , k, where the suprum is taken over (σ1, · · · , σk; x, y) ∈
IRk+2. Then there exists a two-parameter process {X(t, x) : t > 0, x ∈ IR} such that
Qµ{Xt(dx) has density X(t, x) for all t > 0} = 1 for each µ ∈ M(IR).

3. A stochastic partial differential equation

In this section, we consider the special case of the interacting superprocess where the
underlying motion is given by a Feller semigroup (Pt)t≥0 independent of µ ∈ M(IR)
and the interaction only appears in the branching coefficients b and c. In this case we
can give a sharper estimate for the moments of the superprocess. Let (Tt)≥0 be the
semigroup of operators on C(IR) defined by Ttf(x) = eBtPtf(x).

Proposition 3.1. In the situation described as above, define inductively A0(t, f) = 1
and

Ak(t, f) =
∫ t

0

‖Tt−sf‖Ak−1(s, Tt−sf)ds.

Then we have

Qµ {Xt(f)n} ≤ (n!)2

2n

n−1∑

k=0

Bk+1Ak(t, f)µ(Ttf)n−k (3.1)

for all f ∈ C(IR)+, µ ∈ M(IR) and n = 1, 2, · · · .
Proof. Using the same argument as for Proposition 2.2 one shows that

Xt(f) = µ(Ttf) +
∫ t

0

∫

IRd

Tt−sf(x)M(ds, dx) +
∫ t

0

Xs(d(Xs)Tt−sf)ds, (3.2)

where d(x, µ) = b(x, µ) − B ≤ 0. Therefore Qµ{Xt(f)} ≤ µ(Ttf). Taking a constant
u > 0 and replacing f by Tu−tf in (3.2),

Xt(Tu−tf) = µ(Tuf) +
∫ t

0

∫

IR

Tu−sf(x)M(ds, dx) +
∫ t

0

Xs(d(Xs)Tu−sf)ds.

By Itô’s formula we have

Xt(Tu−tf)n =µ(Tuf)n + martingale

+ n

∫ t

0

Xs(Tu−sf)n−1Xs(d(Xs)Tu−sf)ds

+
n(n− 1)

2

∫ t

0

Xs(Tu−sf)n−2Xs(c(Xs)[Tu−sf ]2)ds.
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Taking the expectation with t = u gives

Qµ{Xt(f)n} ≤ µ(Ttf)n +
n(n− 1)

2
B

∫ t

0

‖Tt−sf‖Qµ{Xs(Tt−sf)n−1}ds.

Now (3.1) follows by induction in n = 1, 2, · · · . ¤
Now we assume that (Pt)t≥0 has continuous density pt(x, y) and there exist 0 < δ, θ <

1 such that
sup{pt(x, y) : (x, y) ∈ IR2} ≤ t−θ (3.3)

for 0 < t < δ. By Theorem 2.3, the interacting superprocess {Xt : t > 0} is absolutely
continuous with respect to the Lebesgue measure with density {X(t, x) : t > 0}. Assume
further that there exist β, γ > 0 such that for all 0 < r < t < q and x, y ∈ IR,

∫ t

0

ds

∫

IR

[pt−s(z, x)− pr−s(z, y)]2 dz ≤ C(q) · (|t− r|β + |y − x|γ)
, (3.4)

where C(q) > 0 is a constant only depending on q > 0. Let C1(IR)+ be the set
of non-negative, continuous, integrable functions on IR. Under the above conditions,
the density process {X(t, ·) : t > 0} has a C1(IR)+-valued version which is pointwise
continuous and satisfies the expected stochastic partial differential equation. These are
summarized in the following

Theorem 3.2. Assume (3.3) and (3.4) hold. Then there exists a continuous C1(IR)+-
valued process {Xt(·) : t > 0} such that Qµ-a.s. Xt(dx) = Xt(x)dx for all t > 0
and x ∈ IR. Let λ denote the Lebesgue measure on IR, and let b(h, x) = b(λh, x)
and c(h, x) = c(λh, x) for x ∈ IR and h ∈ C1(IR)+, where λh ∈ M(IR) is defined by
λh(dx) = h(x)dx. Then the density process {Xt(x) : t > 0, x ∈ IR} solves the following
stochastic partial differential equation:

∂

∂t
Xt(x) =

√
c(Xt, x)Xt(x)Ẇt(x) + A∗Xt(x) + b(Xt, x)Xt(x), (3.5)

where A∗ is the adjoint operator of A, and Ẇt(x) is a time-space white noise defined on
an extension of the original probability space.

More precisely, the equation (3.5) should be understood in the sense of distribution,
that is, Qµ-a.s.,

∫

IR

Xt(x)f(x)dx−
∫

IR

f(x)X0(dx) =
∫ t

0

∫

IR

√
c(Xs, x)Xs(x)f(x)Ẇs(x)dxds

+
∫ t

0

∫

IR

Xs(x)
[
Af(x) + b(Xs, x)f(x)

]
dxds

for all t ≥ 0 and f ∈ C(IR).
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Proof. Step 1. Clearly, the following integral is well-defined:

Yt(x) =
∫ t

0

∫

IR

b(Xs, z)pt−s(z, x)Xs(dz)ds, t > 0, x ∈ IR. (3.6)

By Proposition 3.1, for t > 0 and x ∈ IR,

Qµ

{
Yt(x)2

} ≤Bt

∫ t

0

Qµ{Xs(pt−s(·, x))2}ds

≤Bt

∫ t

0

[
Be2Btµ(pt(·, x))2 + B2eBtµ(pt(·, x))A1(s, pt−s(·, x)

]
ds,

(3.7)

where
A1(s, pt−s(·, x)) =

∫ s

0

‖Ts−rpt−s(·, x)‖dr ≤ eBt

∫ s

0

‖pt−r(·, x)‖dr.

Step 2. As in the proof of Theorem 2.3, we may choose a version of

Z(t, x) =
∫ t

0

∫

IR

pt−s(z, x)M(ds, dz), t > 0, x ∈ IR, (3.8)

such that for every t > 0 and f ∈ C(IR), Qµ-a.s.,

∫

IR

f(x)Z(t, x)dx =
∫ t

0

∫

IR

Pt−sf(x)M(ds, dx). (3.9)

Using Proposition 3.1, for t > 0 and Leb.-a.a. x ∈ IR,

Qµ

{
Z(t, x)2

}
=Qµ

{ ∫ t

0

∫

IR

pt−s(z, x)2c(Xs, z)Xs(dz)ds

}

≤ B√
2π

eBt

∫ t

0

ds√
t− s

∫

IR

pt−s(z, x)µPs(dz)

≤
√

2tB√
π

eBt

∫

IR

pt(z, x)µ(dz).

(3.10)

Step 3. As in the proof of Theorem 2.3 we see that for every t > 0 the random
measure Xt(dx) has density

X(t, x) =
∫

IR

pt(z, x)µ(dz) + Zt(x) + Yt(x), x ∈ IR. (3.11)

Combining (3.7), (3.10), (3.11) and the Cr-inequality we have

Qµ{X(t, x)2} ≤ C2(t), t > 0, Leb.-a.a. x ∈ IR, (3.12)
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where C2 = C2(t) is a locally bounded function on (0,∞), i.e., bounded on [δ, q] for any
0 < δ < q.

Step 4. Using Theorem 2.6 of Walsh (1986) gives that for t > r ≥ 0, Qµ-a.s.

X(t, x) =
∫

IR

pt−r(z, x)Xr(dz) + Zr
t (x) + Y r

t (x), Leb.-a.a. x ∈ IR, (3.13)

where

Y r
t (x) =

∫ t

r

∫

IR

b(Xs, z)pt−s(z, x)Xs(dz)ds, (3.14)

and Zr
t (x) is defined for Leb.-a.a. x ∈ IR by

Zr
t (x) =

∫ t

r

∫

IR

pt−s(z, x)M(ds, dz). (3.15)

By Proposition 2.1, we have for n = 1, 2, · · · ,

Qµ

{[ ∫

IR

pt−r(z, x)Xr(dz)
]n}

≤ Fn(t)
[2π(t− r)]n/2

n∑

k=1

µ(1)k. (3.16)

By a similar technique as in (3.7) it follows that

Qµ {Y r
t (x)n} ≤ Dn(t)

n−1∑

k=0

Hk(t)µ(pt(·, x))n−k, (3.17)

where Dn(t) and Hk(t) are locally bounded functions on (0,∞).
Step 5. Using Burkholder-Davis-Gundy’s and Hölder’s inequalities to (3.15) we have

for t > r ≥ 0 and Leb.-a.a. x ∈ IR,

Qµ{Zr
t (x)2n}

≤CQµ

{[∫ t

r

ds

∫

IR

pt−s(z, x)2c(Xs, z)X(s, z)dz

]n}

≤CBnQµ

{ ∫ t

r

ds

∫

IR

pt−s(z, x)2X(s, z)ndz

}
·
{ ∫ t

r

ds

∫

IR

pt−s(z, x)2dz

}n−1

≤CBnt(n−1)/2

∫ t

r

ds

∫

IR

pt−s(z, x)2Qµ{X(s, z)n}dz,

(3.18)

where C is a universal constant. Combining this with the estimates in steps 3 and 4
one shows by induction that for n = 1, 2, · · ·

Qµ{X(t, x)n} ≤ Cn(t), t > 0, Leb.-a.a. x ∈ IR, (3.19)
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where the Cn(t) are locally bounded functions on (0,∞).
Step 6. By a similar technique as in (3.18), for 0 < r < t < u and Leb.-a.a. x, y ∈ IR,

Q0{|Zr
t (x)− Zr

u(y)|2n}

≤CBn

∫ u

r

ds

∫

IR

[pt−s(z, x)− pu−s(z, y)]2Qµ{X(s, z)n}dz

·
{ ∫ u

r

ds

∫

IR

[pt−s(z, x)− pu−s(z, y)]2dz

}n−1

,

(3.20)

where ps(z, y) = 0 for s ≤ 0 by convention. Taking n large enough in (3.20) we
conclude as in Konno and Shiga (1988) or Li and Shiga (1995) that {Zr

t (x) : Leb.-
a.a. x ∈ IR, t > r} satisfies Kolmogorov’s criterion, and hence it has a continuous
modification. A glance at (3.13) and (3.14) shows that {X(t, x) : x ∈ IR, t > r} also has
a continuous version, which we denote by {Xt(x) : x ∈ IR, t > r}. The equation (3.5)
then follows by a standard argument. ¤

We remark that (3.3) and (3.4) are satisfied if (Pt)t≥0 is the semigroup of a symmetric
stable process.
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