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Abstract

The immigration structure associated with a measure-valued branching process may
be described by a skew convolution semigroup. For a special type of measure-valued
branching process, the Dawson-Watanabe superprocess, we show that a skew convolu-
tion semigroup corresponds uniquely to an infinitely divisible probability measure on the
space of entrance laws for the underlying process. An immigration process associated
with a Borel right superprocess does not always have a right continuous realization, but
it can always be obtained by transformation from a Borel right one in an enlarged state
space.
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1. Introduction

Let E be a Lusin topological space, i.e., a homeomorphism of a Borel subset of a
compact metric space, with the Borel σ-algebra B(E). Let B(E) denote the set of all
bounded B(E)-measurable functions on E and B(E)+ the subspace of B(E) comprising
of non-negative elements. Denote by M(E) the space of finite measures on (E,B(E))
equipped with the topology of weak convergence. For f ∈ B(E) and µ ∈ M(E), write
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µ(f) for
∫

E
fdµ. Suppose that ξ = (Ω,F ,Ft, ξt,Px) is a Borel right process in E with

semigroup (Pt)t≥0 and φ is a branching mechanism given by

φ(x, z) = b(x)z + c(x)z2 +
∫ ∞

0

(e−zu − 1 + zu)m(x, du), x ∈ E, z ≥ 0, (1.1)

where b ∈ B(E), c ∈ B(E)+ and [u ∧ u2]m(x, du) is a bounded kernel from E to
(0,∞). From a general construction in Fitzsimmons (1988, 1992) we have that for each
f ∈ B(E)+ the evolution equation

Vtf(x) +
∫ t

0

ds

∫

E

φ(y, Vsf(y))Pt−s(x, dy) = Ptf(x), t ≥ 0, x ∈ E, (1.2)

has a unique solution Vtf ∈ B(E)+, and there is a Markov semigroup (Qt)t≥0 on M(E)
such that

∫

M(E)

e−ν(f)Qt(µ,dν) = exp {−µ(Vtf)} , t ≥ 0, µ ∈ M(E). (1.3)

Furthermore, (Qt)t≥0 is the transition semigroup of a Borel right process X = (W,G,Gt,
Xt,Qµ). The process X is called a Dawson-Watanabe superprocess with parameters
(ξ, φ), or simply a (ξ, φ)-superprocess.

The (ξ, φ)-superprocess is a special form of the measure-valued branching process
(MB-process), which is a kind of measure-valued Markov process with transition semi-
group satisfying the branching property (1.3) with Vtf defined by

Vtf(x) = − log
∫

M(E)

e−ν(f)Qt(δx, dν), t ≥ 0, x ∈ E, (1.4)

where δx denotes the unit mass at x ∈ E. See e.g. Dawson (1993) and Watanabe
(1968). An MB-process X is the mathematical model for the evolution of a population
in some region whose growth and decay is subject to the law of chance. If we consider a
situation where there are some additional sources of population from which immigration
into the region occurs during the evolution, we need to introduce a measure-valued
immigration process. Several authors have constructed measure-valued immigration
processes under different hypotheses; see e.g. Dynkin (1991), Gorostiza-Lopez-Mimbela
(1990), Li (1992) and Shiga (1990).

As observed in Li (1995), a special type of immigration associated with the MB-
process may be described by a flow of probability measures that solves an equation
with a kind of skew product: Let (Nt)t≥0 be probability measures on M(E). We call
(Nt)t≥0 a skew convolution semigroup associated with X or (Qt)t≥0 if

Nr+t = (NrQt) ∗Nt, r, t ≥ 0, (1.5)
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where “∗” denotes the convolution operation. The relation (1.5) holds if and only if

QN
t (µ, ·) := Qt(µ, ·) ∗Nt, t ≥ 0, µ ∈ M(E), (1.6)

defines a Markov semigroup (QN
t )t≥0 on M(E). In view of (1.6), if Y is a Markov

process in M(E) having transition semigroup (QN
t )t≥0, we call it an immigration process

associated with X. It was proved in Li (1995) that the family of probability measures
(Nt)t≥0 is a skew convolution semigroup associated with (Qt)t≥0 if and only if there is
an infinitely divisible probability entrance law (Kt)t>0 for (Qt)t≥0 such that

log
∫

M(E)

e−ν(f)Nt(dν) =
∫ t

0

[
log

∫

M(E)

e−ν(f)Ks(dν)
]
ds (1.7)

for all t ≥ 0 and f ∈ B(E)+. Therefore the immigration structures associated with an
MB-process may be characterized by its infinitely divisible probability entrance laws.

The purpose this paper is to describe the set of infinitely divisible probability entrance
laws for the (ξ, φ)-superprocess and to discuss the regularities of the corresponding im-
migration processes. By characterizing all those entrance laws we find some immigration
processes which have not been studied in the literature. An example given at the end
of the paper shows that an immigration process associated with the Borel right (ξ, φ)-
superprocess may have no right continuous realization. The general theory of Markov
processes developed in Sharpe (1988) provides important tools for the study.

In section 2 we prove a 1-1 correspondence between minimal probability entrance
laws for the (ξ, φ)-superprocess and entrance laws for the underlying process ξ, using
an argument of lifting and projecting adapted from Dynkin (1989).

In section 3 we show that each infinitely divisible probability entrance law for the
superprocess is determined uniquely by an infinitely divisible probability measure on
the space of entrance laws for the underlying process.

In section 4 we study the basic regularities of the immigration processes. If the
infinitely divisible probability entrance law for the superprocess can be closed by a
probability measure on M(E), it yields a Borel right immigration process.

In section 5 it is shown that a “good” version of the general immigration process may
be obtained by transformation from a Borel right one in an enlarged state space.

The problems considered in this paper are similar to those in Li-Li-Wang (1993)
and Li-Shiga (1995), although the basic hypotheses and formulations are different. In
Li-Li-Wang (1993) we discussed Feller processes and in Li-Shiga (1995) we were only
interested in diffusions.

2. Minimal probability entrance laws

Let us consider a change of form of the equation (1.2). Define the semigroup of
bounded kernels (P b

t )t≥0 on E by

P b
t f(x) = Pxf(ξt) exp

{
−

∫ t

0

b(ξs)ds

}
. (2.1)
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Then (1.2) is equivalent to

Vtf(x) +
∫ t

0

ds

∫

E

φ0(y, Vsf(y))P b
t−s(x, dy) = P b

t f(x), (2.2)

where
φ0(x, z) = c(x)z2 +

∫ ∞

0

(e−zu − 1 + zu)m(x, du). (2.3)

Note that the first moments of the (ξ, φ)-superprocess are given by

∫

M(E)

ν(f)Qt(µ,dν) = µ(P b
t f). (2.4)

See e.g. Fitzsimmons (1988).
Given a semigroup of bounded kernels (Tt)t≥0 on E, we denote by K(T ) the set of

entrance laws κ = (κt)t>0 for (Tt)t≥0 that satisfy

∫ t

0

κs(E)ds < ∞ for all t > 0. (2.5)

Let K1(Q) denote the set of probability entrance laws K = (Kt)t>0 for the semigroup
(Qt)t≥0 such that

∫ t

0

ds

∫

M(E)

ν(E)Ks(dν) < ∞ for all t > 0, (2.6)

and let K1
m(Q) denote the subset of K1(Q) comprising of minimal elements. See e.g.

Sharpe (1988) for the definition of an entrance law.

Theorem 2.1. There is a one-to-one correspondence between K ∈ K1
m(Q) and γ ∈

K(P b), which is given by

γt(f) =
∫

M(E)

ν(f)Kt(dν), (2.7)

and ∫

M(E)

e−ν(f)Kt(dν) = exp
{−Sb

t (γ, f)
}

, (2.8)

where

Sb
t (γ, f) = γt(f)−

∫ t

0

ds

∫

E

φ0(y, Vsf(y))γt−s(dy). (2.9)

We omit the proof of the above theorem, which follows from (1.3) and (2.4) by the
same argument as Dynkin (1989). To describe the class K1

m(Q) we need to clarify a
connection between K(P ) and K(P b).
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Lemma 2.1. There is a one-to-one correspondence between κ ∈ K(P ) and γ ∈ K(P b),
which is given by

γt = lim
r↓0

κrP
b
t−r and κt = lim

r↓0
γrPt−r. (2.10)

Moreover, if the two entrance laws κ and γ are related by (2.10), then we have

e−‖b‖tκt(f) ≤ γt(f) ≤ e‖b‖tκt(f), t > 0, f ∈ B(E)+. (2.11)

Proof. The assertions follow from the inequalities

e−‖b‖tPtf ≤ P b
t f ≤ e‖b‖tPtf, t ≥ 0, f ∈ B(E)+.

We omit the details. ¤
For κ ∈ K(P ) we note

St(κ, f) = κt(f)−
∫ t

0

ds

∫

E

φ(y, Vsf(y))κt−s(dy), t > 0, f ∈ B(E)+. (2.12)

If the entrance laws κ ∈ K(P ) and γ ∈ K(P b) are related by (2.10), then clearly
St(κ, f) = Sb

t (γ, f). Combining those with Theorem 2.1 we get the following

Theorem 2.2. There is a one-to-one correspondence between K ∈ K1
m(Q) and κ ∈

K(P ), which is given by

κt(f) = lim
r↓0

∫

M(E)

ν(Pt−rf)Kr(dν), (2.13)

and ∫

M(E)

e−ν(f)Kt(dν) = exp {−St(κ, f)} , (2.14)

where St(κ, f) is defined by (2.12). ¤
If ξ is conservative, each κ ∈ K(P ) is uniquely determined by a measure κ0 ∈ M(ED),

where ED is the entrance space of ξ; see Sharpe (1988). In that case, Theorem 2.2 follows
from a result of Fitzsimmons (1988). See also Dynkin (1989) for the analogous results
in the case where φ(x, z) ≡ c(x)z2 but ξ is allowed to be non-homogeneous and X is
allowed to take values in a space of σ-finite measures.

3. Infinitely divisible probability entrance laws

The goal of this section is to describe the class of infinitely divisible probability en-
trance laws for the (ξ, φ)-superprocess in terms of its underlying process. The following
kind of h-transform will be useful. Set

h(x) =
∫ 1

0

Ps1(x)ds, x ∈ E. (3.1)
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Since h ∈ B(E)+ is a strictly positive excessive function of (Pt)t≥0, the formula

Ttf(x) = h(x)−1

∫

E

f(y)h(y)Pt(x, dy) (3.2)

defines a Borel right semigroup (Tt)t≥0 with state space E. See e.g. Sharpe (1988).
Let (T ∂

t )t≥0 be the conservative extension of (Tt)t≥0 to E∂ := E ∪ {∂}, where ∂ is the
cemetery point. Let (T̄ ∂

t )t≥0 be a Ray extension of (T ∂
t )t≥0 to its entrance space E∂,T

D

with the Ray topology. Denote by (T̄t)t≥0 the restriction of (T̄ ∂
t )t≥0 to ET

D := E∂,T
D \

{∂}. Then (T̄ ∂
t )t≥0 and (T̄t)t≥0 are also Borel right semigroups. Define a branching

mechanism ψ̄ on ET
D by

ψ̄(x, z) = h(x)−1φ(x, h(x)z) for x ∈ E, = 0 for x ∈ ET
D \ E.

Let (Ūt)t≥0 be the cumulant semigroup on B(ET
D)+ determined by the equation

Ūtf̄(x) = T̄tf̄(x)−
∫ t

0

ds

∫

ET
D

ψ̄(y, Ūsf̄(y))T̄t−s(x, dy), t ≥ 0, x ∈ ET
D. (3.3)

Note that for t > 0 and x ∈ ET
D, the measure T̄t(x, ·) is supported by E, so T̄tf̄(x) and

Ūtf̄(x) are independent of the values of f̄ on ET
D \E. In the sequel, we may write T̄tf(x)

and Ūtf(x) instead of T̄tf̄(x) and Ūtf̄(x) respectively, where f is the restriction of f̄ to
E. Note also that the definitions of T̄tf and Ūtf can be extended to all non-negative
Borel functions f on E by increasing limit.

Lemma 3.1. For each ρ ∈ M(ET
D), the formula

κt(f) = ρ(T̄t(h−1f)), t > 0, f ∈ B(E)+, (3.4)

defines a κ ∈ K(P ). Conversely, if κ ∈ K(P ), there is a unique ρ ∈ M(ET
D) such that

κ is given by (3.4). Moreover, if κ and ρ are related by (3.4), then we have

St(κ, f) = ρ(Ūt(h−1f)), t > 0, f ∈ B(E)+, (3.5)

where St(κ, f) is defined by (2.12).

Proof. For each ρ ∈ M(ET
D), (3.4) clearly defines an entrance law κ ∈ K(P ). Conversely,

for κ ∈ K(P ) we can define an entrance law η = (ηt)t>0 for the semigroup (Tt)t≥0 by
ηt(f) = κt(hf). Since

lim
t↓0

ηt(1) = lim
t↓0

κt(h) =
∫ 1

0

κs(1)ds < ∞,

there exists a unique measure ρ ∈ M(ET
D) such that ηt = ρT̄t for all t > 0; see Sharpe

(1988). Then (3.4) follows.
If (3.4) holds, by (1.2), (2.12) and (3.3) we have

St(κ, f) = lim
r↓0

κr(Vt−rf) = lim
r↓0

ρT̄r(Ūt−r(h−1f)) = ρ(Ūt(h−1f))

for all t > 0 and f ∈ B(E)+. ¤
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Theorem 3.1. The probability entrance law K ∈ K1(Q) is infinitely divisible if and
only if its Laplace functional has the representation

∫

M(E)

e−ν(f)Kt(dν) = exp
{
− St(κ, f)−

∫

K(P )

(1− exp {−St(η, f)}) J(dη)
}

, (3.6)

where κ ∈ K(P ) and J is a σ-finite measure on K(P ) satisfying

∫ 1

0

ds

∫

K(P )

ηs(1)J(dη) < ∞. (3.7)

Proof. It is easy to see that (3.6) defines an infinitely divisible probability entrance law
K ∈ K1(Q). Conversely, suppose K ∈ K1(Q) is infinitely divisible. By Lemma 2.1,
Theorem 2.2 and a result of Dynkin (1978), K admits the following representation

∫

M(E)

e−ν(f)Kt(dν) =
∫

K(P )

exp {−St(η, f)}F (dη), (3.8)

where F is a probability measure on K(P ) satisfying

∫ 1

0

ds

∫

K(P )

ηs(1)F (dη) < ∞. (3.9)

It follows by Lemma 3.1 that there is a probability measure H on M(ET
D) such that

∫

M(E)

e−ν(f)Kt(dν) =
∫

M(ET
D)

exp
{−ρ(Ūt(h−1f))

}
H(dρ), (3.10)

with ∫

M(ET
D)

ρ(1)H(dρ) =
∫ 1

0

ds

∫

K(P )

ηs(1)F (dη). (3.11)

Since K is infinitely divisible, so is H by (3.10). Thus

∫

M(ET
D)

e−ρ(f)H(dρ) = exp
{
− γ(f)−

∫

M(ET
D)◦

(
1− e−ν(f)

)
G(dν)

}
, (3.12)

where γ ∈ M(ET
D) and ν(1)G(dν) is a finite measure on M(ET

D)◦ := M(ET
D) \ {o}.

Then the expression (3.6) follows from (3.10) and (3.12), and (3.7) holds by (3.9) and
(3.11). ¤

The next result, which is an immediate consequence of Theorem 3.1, characterizes
completely the immigration structures associated with the (ξ, φ)-superprocess.
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Theorem 3.2. Suppose that (Nt)t≥0 is a family of probability measures on M(E) sat-
isfying ∫

M(E)

ν(1)Nt(dν) < ∞ for all t ≥ 0. (3.13)

Then (Nt)t≥0 is a skew convolution semigroup associated with the (ξ, φ)-superprocess if
and only if its Laplace functional has the representation

∫

M(E)

e−ν(f)Nt(dν)

= exp
{
−

∫ t

0

[
Sr(κ, f) +

∫

K(P )

(1− exp {−Sr(η, f)})J(dη)
]
dr

}
,

(3.14)

where κ ∈ K(P ) and J is a σ-finite measure on K(P ) satisfying (3.7). ¤

4. Borel right immigration processes

Note that if κ ∈ K(P ) is given by κt = νPt for ν ∈ M(E), then St(κ, f) = ν(Vtf).
Let γ ∈ M(E) and let ν(E)G(dν) be a finite measure on M(E)◦ := M(E) \ {o}. By
Theorem 3.2,

∫

M(E)

e−ν(f)Nt(dν) = exp
{
−

∫ t

0

[
γ(Vsf) +

∫

M(E)◦

(
1− e−ν(Vsf)

)
G(dν)

]
ds

}
(4.1)

defines a skew convolution semigroup (Nt)t≥0 associated with the (ξ, φ)-superprocess
X. This (Nt)t≥0 corresponds to an infinitely divisible probability entrance law for X
which can be closed by a probability measure on M(E). We shall prove in this section
that (Nt)t≥0 yields a Borel right immigration process.

We shall need to consider two topologies on the space E: the original topology and
the Ray topology of ξ. We write Er for the set E furnished with the Ray topology
of ξ. Let C(E)+ be the set of bounded non-negative functions that are continuous
in the original topology. The notations C(Er)+ and M(Er) are self-explanatory. Let
W0(M(E)) denote the space of all paths {wt : t ≥ 0} from [0,∞) to M(E) that are
right continuous both in M(E) and in M(Er). Let (G◦,G◦t ) denote the natural σ-
algebras on W0(M(E)). By the results of Fitzsimmons (1988, 1992), for each µ ∈
M(E), there is a unique probability measure Qµ on (W0(M(E)),G◦) such that Qµ{w0 =
µ} = 1 and {wt : t ≥ 0} under Qµ is a Markov process with transition semigroup
(Qt)t≥0. Furthermore, the system (W0(M(E)),G,Gt, wt,Qµ) is a Borel right process,
where (G,Gt) is the augmentation of (G◦,G◦t+) by the system {Qµ : µ ∈ M(E)}. Define
the σ-finite measure QG on W0(M(E)) by

QG(dw) =
∫

M(E)◦
G(dµ)Qµ(dw). (4.2)
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Suppose that N(ds, dw) is a Poisson random measure on [0,∞) × W0(M(E)) with
intensity ds×QG(dw). Let

Yt =
∫

[0,t]

∫

W0(M(E))

wt−s N(ds, dw), t ≥ 0. (4.3)

Theorem 4.1. The process {Yt : t ≥ 0} defined by (4.3) is a Markov process with
semigroup (QG

t )t≥0 given by
∫

M(E)

e−ν(f)QG
t (µ, dν)

= exp
{
− µ(Vtf)−

∫ t

0

ds

∫

M(E)◦

(
1− e−ν(Vsf)

)
G(dν)

}
.

(4.4)

Furthermore, {Yt : t ≥ 0} is a.s. right continuous both in M(E) and in M(Er).

Proof. The Markov property of {Yt : t ≥ 0} follows by a standard argument. For
k = 1, 2, · · · , we let

Wk = {w ∈ W0(M(E)) : w0(1) ≥ 1/k},
and define

Y
(k)
t =

∫

[0,t]

∫

Wk

wt−s N(ds,dw), t ≥ 0. (4.5)

Then {Y (k)
t : t ≥ 0} is a Markov process in M(E) with semigroup (Q(k)

t )t≥0 given by
∫

M(E)

e−ν(f)Q
(k)
t (µ, dν) = exp

{
− µ(Vtf)−

∫ t

0

ds

∫

Mk

(
1− e−ν(Vsf)

)
G(dν)

}
, (4.6)

where Mk = {µ ∈ M(E) : µ(E) ≥ 1/k}. Observe that for each l > 0, the process
{Y (k)

t : 0 ≤ t ≤ l} is a.s. a finite sum of right continuous paths, so {Y (k)
t : t ≥ 0}

is a.s. right continuous. Since Y
(k)
t → Yt increasingly as k → ∞, it follows that

{Yt(f) : t ≥ 0} is a.s. right lower semi-continuous for each f ∈ C(E)+ ∪ C(Er)+. Let
J ◦t = σ{Y (k)

s : 0 ≤ s ≤ t, k = 1, 2, · · · } and let (Jt)t≥0 be the augmentation of (J ◦t+)t≥0.
From (2.2) we have the following inequalities:

Vtf ≤ P b
t f ≤ e‖b‖tPtf, t ≥ 0, f ∈ B(E)+. (4.7)

By (4.7), for any β > ‖b‖ and q ≥ 0,

E
{

e−β(r+t)Y
(k)
r+t(q)

∣∣Jr

}

=e−β(r+t)

[
Y (k)

r (P b
t q) +

∫ t

0

ds

∫

Mk

ν(P b
s q)G(dν)

]

≤e−βr

[
Y (k)

r (q) + β−1

∫

Mk

ν(q)G(dν)
]
− β−1e−β(r+t)

∫

Mk

ν(q)G(dν).



10

Therefore

e−βt

[
Y

(k)
t (q) + β−1

∫

Mk

ν(q)G(dν)
]
, t ≥ 0, (4.8)

is an a.s. right continuous (Jt)-supermartingale, which converges increasingly as k →∞
to the (Jt)-adapted process

e−βt

[
Yt(q) + β−1

∫

M(E)◦
ν(q)G(dν)

]
, t ≥ 0. (4.9)

Thus (4.9) is a.s. right continuous; see Dellacherie-Meyer (1982). For any f ∈ C(E)+ ∪
C(Er)+, choose a constant q such that q ≥ f(x) for all x ∈ E. By the above arguments,
both Yt(f) and Yt(q−f) = Yt(q)−Yt(f) are a.s. right lower semi-continuous, and Yt(q)
is a.s. right continuous. Those clearly yields the a.s. right continuity of Yt(f) and the
a.s. right continuity of {Yt : t ≥ 0} follows immediately. ¤
Theorem 4.2. For each µ ∈ M(E) there is a unique probability measure QN

µ on
(W0(M(E)),G◦) such that QN

µ {w0 = µ} = 1 and {wt : t ≥ 0} under QN
µ is a Markov

process having semigroup (QN
t )t≥0 defined by

∫

M(E)

e−ν(f)QN
t (µ, dν)

= exp
{
− µ(Vtf)−

∫ t

0

[
γ(Vsf) +

∫

M(E)◦

(
1− e−ν(Vsf)

)
G(dν)

]
ds

}
.

(4.10)

Proof. We first note that the formula

∫

M(E)

e−ν(f)Qγ
t (µ, dν) = exp

{
− µ(Vtf)−

∫ t

0

γ(Vsf)ds

}
(4.11)

determines a transition semigroup (Qγ
t )t≥0 on M(E) and for each µ ∈ M(E) there is

a unique probability measure Qγ
µ on (W0(M(E)),G) such that Qγ

µ{w0 = µ} = 1 and
{wt : t ≥ 0} under Qγ

µ is a Markov process having semigroup (Qγ
t )t≥0. Those facts

together with some other regularities of measure-valued processes were discussed in
Dynkin (1993). Let QG

o denote the distribution on W0(M(E)) of the process {Yt : t ≥ 0}
defined by (4.3). One may simply define QN

µ = Qγ
µ ∗QG

o . ¤



11

Theorem 4.3. Let {QN
µ : µ ∈ M(E)} be provided by Theorem 4.2, and let (H,Ht)

be the corresponding augmentation of (G◦,G◦t+). Then the system (W0(M(E)),H,Ht,
wt,QN

µ ) is a Borel right process.

Proof. Let R be a countable Ray cone for (the conservative extension of) ξ as con-
structed in Sharpe (1988). Assume that each f ∈ R is bounded away from 0. Let Ē be
the corresponding Ray-Knight compactification of E ∪ {∂} with the Ray topology. We
regard M(Er) as a topological subspace of M(Ē) in the usual way. Since Ē is a compact
metric space, M(Ē) is locally compact and separable. Let C0(M(Ē)) denote the space
of continuous functions on M(Ē) vanishing at infinity. Note that each f ∈ R admits a
unique extension f̄ to Ē by continuity; we write R̄ for the set of all those extensions.
In view of (4.10) and the totality of {ν 7→ e−ν(f̄) : f̄ ∈ R̄} in C0(M(Ē)), the assertion
follows from Theorem 7.4 of Sharpe (1988) once it is shown that s 7→ ws(Vt−sf) is
QN

µ -a.s. right continuous on [0, t] for each t ≥ 0 and f ∈ R.
Recall some notations from the proofs of Theorems 4.1 and 4.2. Let (Hγ ,Hγ

t ) be
the augmentation of (G◦,G◦t+) by {Qγ

µ : µ ∈ M(E)}. Using a similar argument as
Fitzsimmons (1988) one can show that (W0(M(E)),Hγ ,Hγ

t , wt,Qγ
µ) is a Borel right

process both in M(E) and in M(Er). It follows that s 7→ ws(Vt−sf) is Qγ
µ-a.s. right

continuous on [0, t]. On the other hand, since (W0(M(E)),G,Gt, wt,Qµ) is a Borel right
process and since for each t ≥ 0, the process {Y (k)

s : 0 ≤ s ≤ t} is a.s. a finite sum, (4.6)
reveals that

exp
{
− Y (k)

s (Vt−sf)−
∫ t−s

0

dr

∫

Mk

(
1− e−ν(Vrf)

)
G(dν)

}
, s ∈ [0, t], (4.12)

is an a.s. right continuous (Js)-martingale. As k → ∞, (4.12) converges decreasingly
to the (Js)-adapted process

exp
{
− Ys(Vt−sf)−

∫ t−s

0

dr

∫

M(E)◦

(
1− e−ν(Vrf)

)
G(dν)

}
, s ∈ [0, t], (4.13)

so (4.13), and hence Ys(Vt−sf), is a.s. right continuous. Since QN
µ = Qγ

µ ∗ QG
o , the

theorem is proved. ¤

5. General immigration processes

By Theorem 3.2, a general skew convolution semigroup (Nt)t≥0 associated with the
(ξ, φ)-superprocess is represented by (3.14). Let (Ūt)t≥0 be defined by (3.3) and let
(γ, G) be provided by the proof of Theorem 3.1. Denote by W0(M(ET

D)) the space of
all right continuous paths {w̄t : t ≥ 0} from [0,∞) to M(ET

D). Given µ ∈ M(E) we
define hµ̄ ∈ M(ET

D) by

hµ̄(ET
D \ E) = 0 and hµ̄(dx) = h(x)µ(dx), x ∈ E.
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Theorems 4.2 and 4.3 guarantee a unique probability measure Q̄N
µ on W0(M(ET

D))
under which {w̄t : t ≥ 0} is an immigration process in M(ET

D) starting at hµ̄ with the
skew convolution semigroup (N̄t)t≥0 given by

∫

M(ET
D)

e−ν(f)N̄t(dν)

= exp
{
−

∫ t

0

[
γ(Ūsf) +

∫

M(ET
D)◦

(
1− e−ν(Ūsf)

)
G(dν)

]
ds

}
.

(5.1)

Define the measure-valued process {Yt : t ≥ 0} by

Yt(dx) = h(x)−1w̄t(dx), t ≥ 0, x ∈ E. (5.2)

It is easy to check that Q̄N
µ {Y0 = µ} = 1 and {Yt : t ≥ 0} under Q̄N

µ is an immigration
process corresponding to the skew convolution semigroup given by (3.14). That is, a
general immigration process may be obtained from a Borel right one by the transfor-
mation (5.2).

The process {Yt : t ≥ 0} constructed by (5.2) is not necessarily a.s. right continuous
in the topology of M(E). The trajectory structures of the general immigration process
can be worse than those of the (ξ, φ)-superprocess. This is illustrated by the following
example which describes the immigration to some region from an absorbing boundary.

Example 5.1. We consider the case where E is the positive half line H := (0,∞).
Suppose that ξ is an absorbing barrier Brownian motion in H. The transition semigroup
(Pt)t≥0 of ξ is determined by

Ptf(x) =
∫

H

[gt(x− y)− gt(x + y)] f(y)dy, (5.3)

where
gt(x) =

1√
2πt

exp
{−x2/2t

}
, t > 0, x ∈ R. (5.4)

We call the corresponding (ξ, φ)-superprocess X a super absorbing barrier Brownian
motion following the common usage. Let W+(M(H)) denote the space of all right
continuous paths {wt : t > 0} from (0,∞) to M(H). Consider the entrance law (κt)t>0

for ξ given by

κt(f) =
2
t

∫

H

xgt(x)f(x)dx. (5.5)

By Theorem 2.2, for each q > 0,
∫

M(H)

e−ν(f)Kq
t (dν) = exp {−qSt(κ, f)} (5.6)
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determines a Kq ∈ K1
m(Q). Accordingly, there is a unique probability measure Qqκ

on W+(M(H)) under which {wt : t > 0} is a Markov process with one dimensional
distributions (Kq

t )t>0 and semigroup (Qt)t≥0. In the present case we may identify HT
D

with R+ := [0,∞). Let (Ūt)t≥0 be defined by (3.3). Then we have

h′(0+)Ūtf(0) = St(κ, hf), t > 0, f ∈ B(H)+. (5.7)

Using this one can show that Qqκ-a.s.

wt(H) →∞ and hw̄t → qh′(0+)δ0 in M(R+) as t ↓ 0, (5.8)

where hw̄t({0}) = 0 and hw̄t(dx) = h(x)wt(dx) for t > 0 and x ∈ H. Suppose
qF (dq) is a non-degenerate finite measure on (0,∞). Define the σ-finite measure QF

on W+(M(H)) by

QF (dw) =
∫ ∞

0

F (dq)Qqκ(dw).

Let NF (ds,dw) be a Poisson random measure on [0,∞) ×W+(M(H)) with intensity
ds×QF (dw), and let

Y F
t =

∫

[0,t]

∫

W+(M(H))

wt−s NF (ds, dw), t ≥ 0, (5.9)

where w0 = o by convention. As for the proof of Theorem 4.1 one may check that
{Y F

t : t ≥ 0} is an immigration process corresponding to the skew convolution semigroup
(NF

t )t≥0 given by

∫

M(H)

e−ν(f)NF
t (dν) = exp

{
−

∫ t

0

dr

∫ ∞

0

(
1− e−qSr(κ,f)

)
F (dq)

}
.

In view of (5.8), the immigration process {Y F
t : t ≥ 0} represents a population gen-

erated by cliques with infinite masses which arrive at the origin at occurring times of
NF (ds,dw). It is easy to check that

E {Y F
t (1)} ≤

∫ ∞

0

qF (dq)
∫ t

0

e‖b‖sκs(1)ds < ∞,

so Y F
t ∈ M(H) a.s. for every t ≥ 0. The process {Y F

t : t ≥ 0} is certainly not right
continuous. It even has no right continuous modification. Otherwise, let {Yt : t ≥ 0} be
such a modification. Define

hȲt({0}) = 0 and hȲt(dx) = h(x)Yt(dx), t ≥ 0, x ∈ H. (5.10)
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Then {hȲt : t ≥ 0} is an a.s. right continuous Markov process in M(R+) having
semigroup (Q̄F

t )t≥0 determined by
∫

M(R+)

e−ν(f̄)Q̄F
t (µ,dν)

= exp
{
− µ(Ūtf̄)−

∫ t

0

ds

∫ ∞

0

(
1− exp{−qh′(0+)Ūsf̄(0)})F (dq)

}
,

(5.11)

From (5.10) we have a.s.

T0(hȲ ) := inf{t > 0 : hȲt({0}) > 0} = ∞. (5.12)

On the other hand, by a special form of (4.3) one can construct an a.s. right continuous
immigration process {Z̄t : t ≥ 0} starting at o with semigroup (Q̄F

t )t≥0. Since F is
non-degenerate, it follows from the construction that a.s.

T0(Z̄) := inf{t > 0 : Z̄t({0}) > 0} < ∞. (5.13)

By Theorem 4.3, (Q̄F
t )t≥0 is a Borel right semigroup on M(R+), so (5.12) and (5.13)

are in contradiction.
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