Published in: Chinese Science Bulletin (English Edition) 41 (1996), 276–280.

CONVOLUTION SEMIGROUPS ASSOCIATED WITH MEASURE - VALUED BRANCHING PROCESSES

LI Zeng-hu

(Department of Mathematics, Beijing Normal University, Beijing 100875, PRC)

Keywords: Measure-valued branching process, entrance law, convolution semigroup.

Suppose that E is a Lusin topological space. We let $\mathcal{B}(E)$ denote the σ -algebra on E generated by all open sets, which is referred to as the Borel σ -algebra on E. B(E) denotes the set of all bounded $\mathcal{B}(E)$ -measurable functions on E and $B(E)^+$ denotes the subspace of B(E) comprising of non-negative elements. Let M(E) be the totality of finite measures on $(E, \mathcal{B}(E))$. Topologize M(E) by the weak convergence topology, so it also becomes a Lusin space. Put $M(E)^\circ = M(E) \setminus \{o\}$, where o denotes the null measure on E. The unit mass concentrated at a point $x \in E$ is denoted by δ_x . For $f \in B(E)$ and $\mu \in M(E)$, write $\mu(f)$ for $\int_E f d\mu$. Suppose that $X = (W, \mathcal{G}, \mathcal{G}_t, X_t, \mathbf{Q}_\mu)$ is a Markov process in the space M(E). For $f \in B(E)^+$ set

$$V_t f(x) = -\log \mathbf{Q}_{\delta_x} \exp\{-X_t(f)\}, \quad t \ge 0, x \in E.$$
 (0.1)

The process X is called a measure-valued branching process, or simply an MB-process if for every $t \ge 0$ and $f \in B(E)^+$, the function $V_t f$ belongs to $B(E)^+$ and

$$\mathbf{Q}_{\mu} \exp\{-X_t(f)\} = \exp\{-\mu(V_t f)\}, \quad \mu \in M(E).$$
(0.2)

Here \mathbf{Q}_{μ} denotes the conditional expectation given $X_0 = \mu$.

If X is an MB-process then the family of operators $(V_t)_{t\geq 0}$ form a semigroup, which is called the *cumulant semigroup* of X. The equation (0.2) implies that $(V_t)_{t\geq 0}$ has the following canonical representation

$$V_t f(x) = \lambda_t(x, f) + \int_{M(E)^\circ} \left(1 - e^{-\nu(f)} \right) L_t(x, d\nu), \qquad f \in B(E)^+, \tag{0.3}$$

where for every $t \ge 0$ and $x \in E$, $\lambda_t(x, dy) \in M(E)$ and $1 \wedge \nu(E)L_t(x, d\nu)$ is a finite measure on $M(E)^{\circ}$.

Let $(Q_t)_{t\geq 0}$ be the transition semigroup of the MB-process X. Suppose that $(N_t)_{t\geq 0}$ is a family of probability measures on M(E). We say that $(N_t)_{t\geq 0}$ is a *(skew) convolution* semigroup associated with X or $(Q_t)_{t\geq 0}$ provided

$$N_{r+t} = (N_r Q_t) * N_t, \qquad r, t \ge 0, \tag{0.4}$$

where '*' denotes the convolution operation. Clearly, (0.4) holds if and only if

$$Q_t^N(\mu, d\nu) := Q_t(\mu, d\nu) * N_t(d\nu), \qquad t \ge 0, \tag{0.5}$$

defines a Markov transition semigroup $(Q_t^N)_{t\geq 0}$ on M(E). The formula (0.5) is similar to the construction of a Lévy transition semigroup from the usual convolution semigroup. It is well-known that a convolution semigroup on the Euclidean space \mathbb{R}^d is uniquely determined by an infinitely divisible probability measure on \mathbb{R}^d . In this note, we prove an analogous result for the convolution semigroup associated with a general MB-process, which asserts a one-to-one correspondence between the convolution semigroups and infinitely divisible probability entrance laws for the MB-process. In many cases, the entrance laws for the MB-process are known^[1,2], so our one-to-one correspondence describes completely the class of transition semigroups defined by (0.5). In view of (0.5), if $Y = \{Y_t : t \ge 0\}$ is a Markov process having transition semigroup $(Q_t^N)_{t\ge 0}$, we call it an *immigration process* associated with the MB-process X, where $(N_t)_{t\ge 0}$ describes the rate of the immigration^[3].

I. Entrance Laws and Convolution Semigroups

A family of σ -finite measures $(K_t)_{t>0}$ on M(E) is called an *entrance law* for the MB-process X or its semigroup $(Q_t)_{t\geq0}$ if $K_{r+t} = K_rQ_t$ for all r, t > 0. It is called a *probability entrance law* if each K_t is a probability measure on M(E), an *infinitely divisible probability entrance law* if, in addition, each K_t is infinitely divisible. An entrance law $(K_t)_{t>0}$ is *minimal* if every entrance law dominated by $(K_t)_{t>0}$ is proportional to it. See e.g. [4].

Theorem 1. A family of probability measures $(K_t)_{t>0}$ on M(E) is an infinitely divisible probability entrance law for $(Q_t)_{t\geq0}$ if and only if its Laplace functional has the representation

$$\int_{M(E)} e^{-\nu(f)} K_t(d\nu) = \exp\left\{-\eta_t(f) - \int_{M(E)^\circ} \left(1 - e^{-\nu(f)}\right) H_t(d\nu)\right\},$$
 (1.1)

where for each t > 0, $\eta_t \in M(E)$, and $1 \wedge \nu(E)H_t(d\nu)$ is a finite measure on $M(E)^{\circ}$ such that

$$\eta_{r+t} = \int_E \eta_r(\mathrm{d}x)\lambda_t(x,\cdot),\tag{1.2}$$

$$H_{r+t} = \int_E \eta_r(\mathrm{d}x) L_t(x,\cdot) + \int_{M(E)^\circ} H_r(\mathrm{d}\mu) Q_t(\mu,\cdot), \qquad (1.3)$$

for all r, t > 0. In particular, all minimal probability entrance laws for $(Q_t)_{t\geq 0}$ are infinitely divisible.

For the MB-process X defined by (0.1) and (0.2) we consider the following conditions:

(1A) for every $l \ge 0$ and $f \in B(E)^+$, the function $V_t f(x)$ of (t, x) restricted to $[0, l] \times E$ belongs to $B([0, l] \times E)^+$;

(1B) for every $f \equiv \text{const.} \geq 0$, it holds that $\lim_{t \downarrow 0} V_t f(x) = f$ for all $x \in E$.

Our next theorem gives the one-to-one correspondence between the convolution semigroups associated with a general MB-process and its infinitely divisible probability entrance laws.

Theorem 2. Suppose that (1A) and (1B) are satisfied. Then a family of probability measures $(N_t)_{t\geq 0}$ on M(E) is a convolution semigroup associated with $(Q_t)_{t\geq 0}$ if and only if there is an infinitely divisible probability entrance law $(K_t)_{t>0}$ for $(Q_t)_{t\geq 0}$ such that

$$\log \int_{M(E)} e^{-\nu(f)} N_t(d\nu) = \int_0^t \left[\log \int_{M(E)} e^{-\nu(f)} K_s(d\nu) \right] ds,$$
(1.4)

for all $t \ge 0$ and $f \in B(E)^+$.

Now we consider a special case. Suppose that ξ is a conservative Borel right process in E with transition semigroup $(P_t)_{t\geq 0}$, and that ϕ is given by

$$\phi(x,z) = b(x)z + c(x)z^2 + \int_0^\infty (e^{-zu} - 1 + zu)m(x, du), \qquad x \in E, z \ge 0,$$
(1.5)

where $b \in B(E)$, $c \in B(E)^+$, and $u \wedge u^2 m(x, du)$ is a bounded kernel from E to $(0, \infty)$. Then the following evolution equation defines a cumulant semigroup:

$$V_t f(x) + \int_0^t \mathrm{d}s \int_E \phi(y, V_s f(y)) P_{t-s}(x, \mathrm{d}y) = P_t f(x), \qquad t \ge 0, x \in E.$$
(1.6)

The corresponding MB-process X is called a (ξ, ϕ) -superprocess. Let E_D be the entrance space of ξ and let $(\bar{P}_t)_{t\geq 0}$ be the Ray extension of $(P_t)_{t\geq 0}$ to E_D ; see e.g. [4]. For $f \in B(E)^+$ set

$$\bar{V}_t f(x) = \bar{P}_t f(x) - \int_0^t \mathrm{d}s \int_{E_D} \phi(y, V_s f(y)) \bar{P}_{t-s}(x, \mathrm{d}y), \qquad t > 0, x \in E_D.$$
(1.7)

Using Theorems 1 and 2 above and Theorem 3.7 of [2] one can show that $(N_t)_{t\geq 0}$ is a convolution semigroup associated with the (ξ, ϕ) -superprocess if and only if its Laplace functional has the representation

$$\int_{M(E)} e^{-\nu(f)} N_t(d\nu)$$

= exp $\left\{ -\int_0^t \left[\gamma(\bar{V}_s f) + \int_{M(E_D)} \left(1 - \exp\left\{ -\nu(\bar{V}_s f) \right\} \right) G(d\nu) \right] ds \right\}$

where $\gamma \in M(E_D)$, and $1 \wedge \nu(E)G(d\nu)$ is a finite measure on $M(E_D)^{\circ}$. Although $(Q_t)_{t\geq 0}$ is a Borel right semigroup^[2], the transition semigroup $(Q_t^N)_{t\geq 0}$ defined by (0.5) is not a Borel right semigroup on M(E) in general, but it can be extended to a Borel right semigroup on M(E).

II. Proofs of the Theorems

Proof of Theorem 1. The formula (1.1) gives the canonical representation for the Laplace functionals of the infinitely divisible probability measures $(K_t)_{t>0}$ on M(E), while (1.2) and (1.3) give an alternative expression for the relation $K_{r+t} = K_r Q_t$. Therefore the former part of the theorem follows.

Now we suppose that $(K_t)_{t>0}$ is a minimal probability entrance law for X. By a well-known result on entrance laws, there is a probability measure \mathbf{Q}_K on the space $M(E)^{(0,\infty)}$ under which the coordinate process $\{w_t : t > 0\}$ is a Markov process having transition semigroup $(Q_t)_{t\geq 0}$ and one-dimensional distributions $(K_t)_{t>0}$. Since $(K_t)_{t>0}$ is minimal, for each $f \in B(E)^+$ we have, \mathbf{Q}_K -almost surely,

$$\int_{M(E)} e^{-\nu(f)} K_t(d\nu) = \lim_{\text{rat.} r \downarrow 0} \exp\left\{-w_r(V_{t-r}f)\right\},$$
(2.1)

where "rat. $r \downarrow 0$ " means "r > 0 tends to 0 decreasingly along rational". See e.g. [4]. It is known that a metric r can be introduced into E so that (E, r) become a compact metric space, while the Borel σ -algebra induced by r coincides with $\mathcal{B}(E)$. Let $D(E)^+$ be a countable dense subset of the space of strictly positive continuous functions on (E, r). Choosing any path $\{w_t : t > 0\}$ in $M(E)^{(0,\infty)}$ along which (2.1) holds for all $f \in D(E)^+$ one sees the infinite divisibility of $(K_t)_{t>0}$. \Box

Proof of Theorem 2. If $(N_t)_{t\geq 0}$ is given by (1.4), then (0.4) clearly holds. We shall prove the converse. Suppose $(N_t)_{t\geq 0}$ is a convolution semigroup associated with $(Q_t)_{t\geq 0}$. Define

$$J_t(f) = -\log \int_{M(E)} e^{-\nu(f)} N_t(d\nu), \qquad t \ge 0, f \in B(E)^+.$$
(2.2)

Then the relation (0.4) is equivalent to

$$J_{r+t}(f) = J_t(f) + J_r(V_t f), \qquad r, t \ge 0, f \in B(E)^+.$$
(2.3)

Consequently for $f \in B(E)^+$, $J_t(f)$ is a non-decreasing function of $t \ge 0$. By (2.2) and (2.3) together with the assumptions (1A) and (1B) one can show that $J_t(f) \to 0$ as $t \to 0$. Let q = q(l, f) > 0 be such that $V_t f(x) \le q$ for all $0 \le t \le l$ and $x \in E$. For $0 \le c_1 < d_1 < \cdots < c_n < d_n \le l$, set $\sigma_n = \sum_{i=1}^n (d_i - c_i)$. By induction in $n = 1, 2, \cdots$, one finds easily

$$\sum_{i=1}^{n} \left[J_{d_i}(f) - J_{c_i}(f) \right] \le J_{\sigma_n}(q).$$
(2.4)

Therefore $J_t(f)$ is absolutely continuous in $t \ge 0$, say, $J_t(f) = \int_0^t I_s(f) ds$. Let $D(E)^+$ be as defined in the proof of Theorem 1. Then there is a Lebesgue null subset N of $[0, \infty)$ such that

$$I_s(f) = \lim_{r \downarrow 0} r^{-1} \left[J_{s+r}(f) - J_s(f) \right], \qquad 0 \le s \notin N, f \in D(E)^+.$$
(2.5)

Using (2.2) - (2.5) we get

$$I_{s}(f) = \lim_{r \downarrow 0} \int_{M(E)^{\circ}} \left(1 - e^{-\nu(f)} \right) H_{s}^{(r)}(\mathrm{d}\nu), \qquad 0 \le s \notin N, f \in D(E)^{+}, \tag{2.6}$$

where

$$H_s^{(r)}(\mathrm{d}\nu) = r^{-1} \int_{M(E)} N_r(\mathrm{d}\mu) Q_s(\mu, \mathrm{d}\nu).$$

Then, by enlarging the Lebesgue null set N, we can assume $I_s(f)$ has the following representation:

$$I_{s}(f) = \eta_{s}(f) + \int_{M(E)^{\circ}} \left(1 - e^{-\nu(f)}\right) H_{s}(\mathrm{d}\nu), \qquad 0 \le s \notin N, f \in D(E)^{+},$$

where $\eta_s \in M(E)$ and $1 \wedge \nu(E)H_s(d\nu)$ is a finite measure on $M(E)^{\circ}$. Consequently,

$$J_t(f) = \int_0^t \left[\eta_s(f) + \int_{M(E)^\circ} \left(1 - e^{-\nu(f)} \right) H_s(\mathrm{d}\nu) \right] \mathrm{d}s, \quad t \ge 0, f \in B(E)^+.$$
(2.7)

Now the equation (2.3) yields

$$\int_0^r \eta_{t+s}(f) \mathrm{d}s = \int_0^r \mathrm{d}s \int_E \eta_s(\mathrm{d}x) \lambda_t(x, f), \qquad r, t \ge 0, f \in B(E)^+$$

By Fubini's theorem, there are Lebesgue null subsets N' and N'_s of $[0,\infty)$ such that

$$\eta_{t+s} = \int_E \eta_s(\mathrm{d}x)\lambda_t(x,\cdot), \qquad 0 \le s \notin N', 0 \le t \notin N'_s.$$

Choose a sequence $0 < s_n \notin N'$ with $s_n \downarrow 0$, and define

$$\eta_t = \int_E \eta_{s_n}(\mathrm{d}x)\lambda_{t-s_n}(x,\cdot), \qquad t \ge s_n.$$

Under this modification, $(\eta_t)_{t>0}$ clearly satisfy (1.2), and for each $t \ge 0$ and $f \in B(E)^+$ the value $\int_0^t \eta_s(f) ds$ remains unchanged. By a similar procedure, one can modify the definition of $(H_t)_{t>0}$ to make it satisfy (1.3) while (2.7) remains valid. Then the desired result follows by Theorem 1. \Box

References

- Dynkin, E.B., Three classes of infinite dimensional diffusion processes, J. Funct. Anal., 86 (1989), 75-110.
- Fitzsimmons, P.J., Construction and regularity of measure-valued Markov branching processes, Israel J. Math., 64 (1988), 337-361.
- Li, Z.H., Measure-valued branching processes with immigration, Stoch. Proc. Appl., 43 (1992), 249-264.
- 4. Sharpe, M.J., *General Theory of Markov Processes*, Academic Press, New York, 1988.
- Watanabe, S., A limit theorem of branching processes and continuous state branching processes, J. Math. Kyoto Univ., 8 (1968), 141-167.