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Suppose that E is a Lusin topological space. We let B(E) denote the σ-algebra on
E generated by all open sets, which is referred to as the Borel σ-algebra on E. B(E)
denotes the set of all bounded B(E)-measurable functions on E and B(E)+ denotes
the subspace of B(E) comprising of non-negative elements. Let M(E) be the totality
of finite measures on (E,B(E)). Topologize M(E) by the weak convergence topology,
so it also becomes a Lusin space. Put M(E)◦ = M(E) \ {o}, where o denotes the null
measure on E. The unit mass concentrated at a point x ∈ E is denoted by δx. For
f ∈ B(E) and µ ∈ M(E), write µ(f) for

∫
E

fdµ. Suppose that X = (W,G,Gt, Xt,Qµ)
is a Markov process in the space M(E). For f ∈ B(E)+ set

Vtf(x) = − log Qδx exp {−Xt(f)} , t ≥ 0, x ∈ E. (0.1)

The process X is called a measure-valued branching process, or simply an MB-process if
for every t ≥ 0 and f ∈ B(E)+, the function Vtf belongs to B(E)+ and

Qµ exp {−Xt(f)} = exp {−µ(Vtf)} , µ ∈ M(E). (0.2)

Here Qµ denotes the conditional expectation given X0 = µ.
If X is an MB-process then the family of operators (Vt)t≥0 form a semigroup, which

is called the cumulant semigroup of X. The equation (0.2) implies that (Vt)t≥0 has the
following canonical representation

Vtf(x) = λt(x, f) +
∫

M(E)◦

(
1− e−ν(f)

)
Lt(x, dν), f ∈ B(E)+, (0.3)

where for every t ≥ 0 and x ∈ E, λt(x,dy) ∈ M(E) and 1 ∧ ν(E)Lt(x,dν) is a finite
measure on M(E)◦.
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Let (Qt)t≥0 be the transition semigroup of the MB-process X. Suppose that (Nt)t≥0

is a family of probability measures on M(E). We say that (Nt)t≥0 is a (skew) convolution
semigroup associated with X or (Qt)t≥0 provided

Nr+t = (NrQt) ∗Nt, r, t ≥ 0, (0.4)

where ‘∗’ denotes the convolution operation. Clearly, (0.4) holds if and only if

QN
t (µ,dν) := Qt(µ,dν) ∗Nt(dν), t ≥ 0, (0.5)

defines a Markov transition semigroup (QN
t )t≥0 on M(E). The formula (0.5) is similar

to the construction of a Lévy transition semigroup from the usual convolution semi-
group. It is well-known that a convolution semigroup on the Euclidean space Rd is
uniquely determined by an infinitely divisible probability measure on Rd. In this note,
we prove an analogous result for the convolution semigroup associated with a general
MB-process, which asserts a one-to-one correspondence between the convolution semi-
groups and infinitely divisible probability entrance laws for the MB-process. In many
cases, the entrance laws for the MB-process are known[1,2], so our one-to-one correspon-
dence describes completely the class of transition semigroups defined by (0.5). In view
of (0.5), if Y = {Yt : t ≥ 0} is a Markov process having transition semigroup (QN

t )t≥0,
we call it an immigration process associated with the MB-process X, where (Nt)t≥0

describes the rate of the immigration[3].

I. Entrance Laws and Convolution Semigroups

A family of σ-finite measures (Kt)t>0 on M(E) is called an entrance law for the
MB-process X or its semigroup (Qt)t≥0 if Kr+t = KrQt for all r, t > 0. It is called a
probability entrance law if each Kt is a probability measure on M(E), an infinitely divis-
ible probability entrance law if, in addition, each Kt is infinitely divisible. An entrance
law (Kt)t>0 is minimal if every entrance law dominated by (Kt)t>0 is proportional to
it. See e.g. [4].

Theorem 1. A family of probability measures (Kt)t>0 on M(E) is an infinitely di-
visible probability entrance law for (Qt)t≥0 if and only if its Laplace functional has the
representation

∫

M(E)

e−ν(f)Kt(dν) = exp
{
− ηt(f)−

∫

M(E)◦

(
1− e−ν(f)

)
Ht(dν)

}
, (1.1)

where for each t > 0, ηt ∈ M(E), and 1 ∧ ν(E)Ht(dν) is a finite measure on M(E)◦

such that

ηr+t =
∫

E

ηr(dx)λt(x, ·), (1.2)

Hr+t =
∫

E

ηr(dx)Lt(x, ·) +
∫

M(E)◦
Hr(dµ)Qt(µ, ·), (1.3)
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for all r, t > 0. In particular, all minimal probability entrance laws for (Qt)t≥0 are
infinitely divisible.

For the MB-process X defined by (0.1) and (0.2) we consider the following conditions:

(1A) for every l ≥ 0 and f ∈ B(E)+, the function Vtf(x) of (t, x) restricted to
[0, l]× E belongs to B([0, l]× E)+;

(1B) for every f ≡ const. ≥ 0, it holds that limt↓0 Vtf(x) = f for all x ∈ E.

Our next theorem gives the one-to-one correspondence between the convolution semi-
groups associated with a general MB-process and its infinitely divisible probability en-
trance laws.

Theorem 2. Suppose that (1A) and (1B) are satisfied. Then a family of probability
measures (Nt)t≥0 on M(E) is a convolution semigroup associated with (Qt)t≥0 if and
only if there is an infinitely divisible probability entrance law (Kt)t>0 for (Qt)t≥0 such
that

log
∫

M(E)

e−ν(f)Nt(dν) =
∫ t

0

[
log

∫

M(E)

e−ν(f)Ks(dν)
]
ds, (1.4)

for all t ≥ 0 and f ∈ B(E)+.

Now we consider a special case. Suppose that ξ is a conservative Borel right process
in E with transition semigroup (Pt)t≥0, and that φ is given by

φ(x, z) = b(x)z + c(x)z2 +
∫ ∞

0

(e−zu − 1 + zu)m(x, du), x ∈ E, z ≥ 0, (1.5)

where b ∈ B(E), c ∈ B(E)+, and u∧ u2m(x, du) is a bounded kernel from E to (0,∞).
Then the following evolution equation defines a cumulant semigroup:

Vtf(x) +
∫ t

0

ds

∫

E

φ(y, Vsf(y))Pt−s(x, dy) = Ptf(x), t ≥ 0, x ∈ E. (1.6)

The corresponding MB-process X is called a (ξ, φ)-superprocess. Let ED be the entrance
space of ξ and let (P̄t)t≥0 be the Ray extension of (Pt)t≥0 to ED; see e.g. [4]. For
f ∈ B(E)+ set

V̄tf(x) = P̄tf(x)−
∫ t

0

ds

∫

ED

φ(y, Vsf(y))P̄t−s(x, dy), t > 0, x ∈ ED. (1.7)

Using Theorems 1 and 2 above and Theorem 3.7 of [2] one can show that (Nt)t≥0 is a
convolution semigroup associated with the (ξ, φ)-superprocess if and only if its Laplace
functional has the representation

∫

M(E)

e−ν(f)Nt(dν)

= exp
{
−

∫ t

0

[
γ(V̄sf) +

∫

M(ED)

(
1− exp

{−ν(V̄sf)
})

G(dν)
]
ds

}
,
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where γ ∈ M(ED), and 1∧ν(E)G(dν) is a finite measure on M(ED)◦. Although (Qt)t≥0

is a Borel right semigroup[2], the transition semigroup (QN
t )t≥0 defined by (0.5) is not

a Borel right semigroup on M(E) in general, but it can be extended to a Borel right
semigroup on M(ED).

II. Proofs of the Theorems

Proof of Theorem 1. The formula (1.1) gives the canonical representation for the Laplace
functionals of the infinitely divisible probability measures (Kt)t>0 on M(E), while (1.2)
and (1.3) give an alternative expression for the relation Kr+t = KrQt. Therefore the
former part of the theorem follows.

Now we suppose that (Kt)t>0 is a minimal probability entrance law for X. By a
well-known result on entrance laws, there is a probability measure QK on the space
M(E)(0,∞) under which the coordinate process {wt : t > 0} is a Markov process having
transition semigroup (Qt)t≥0 and one-dimensional distributions (Kt)t>0. Since (Kt)t>0

is minimal, for each f ∈ B(E)+ we have, QK-almost surely,

∫

M(E)

e−ν(f)Kt(dν) = lim
rat.r↓0

exp {−wr(Vt−rf)} , (2.1)

where “rat. r ↓ 0” means “r > 0 tends to 0 decreasingly along rational”. See e.g. [4].
It is known that a metric r can be introduced into E so that (E, r) become a compact
metric space, while the Borel σ-algebra induced by r coincides with B(E). Let D(E)+

be a countable dense subset of the space of strictly positive continuous functions on
(E, r). Choosing any path {wt : t > 0} in M(E)(0,∞) along which (2.1) holds for all
f ∈ D(E)+ one sees the infinite divisibility of (Kt)t>0. ¤

Proof of Theorem 2. If (Nt)t≥0 is given by (1.4), then (0.4) clearly holds. We shall prove
the converse. Suppose (Nt)t≥0 is a convolution semigroup associated with (Qt)t≥0.
Define

Jt(f) = − log
∫

M(E)

e−ν(f)Nt(dν), t ≥ 0, f ∈ B(E)+. (2.2)

Then the relation (0.4) is equivalent to

Jr+t(f) = Jt(f) + Jr(Vtf), r, t ≥ 0, f ∈ B(E)+. (2.3)

Consequently for f ∈ B(E)+, Jt(f) is a non-decreasing function of t ≥ 0. By (2.2) and
(2.3) together with the assumptions (1A) and (1B) one can show that Jt(f) → 0 as
t → 0. Let q = q(l, f) > 0 be such that Vtf(x) ≤ q for all 0 ≤ t ≤ l and x ∈ E. For
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0 ≤ c1 < d1 < · · · < cn < dn ≤ l, set σn =
∑n

i=1(di − ci). By induction in n = 1, 2, · · · ,
one finds easily

n∑

i=1

[Jdi
(f)− Jci

(f)] ≤ Jσn
(q). (2.4)

Therefore Jt(f) is absolutely continuous in t ≥ 0, say, Jt(f) =
∫ t

0
Is(f)ds. Let D(E)+

be as defined in the proof of Theorem 1. Then there is a Lebesgue null subset N of
[0,∞) such that

Is(f) = lim
r↓0

r−1 [Js+r(f)− Js(f)] , 0 ≤ s /∈ N, f ∈ D(E)+. (2.5)

Using (2.2) – (2.5) we get

Is(f) = lim
r↓0

∫

M(E)◦

(
1− e−ν(f)

)
H(r)

s (dν), 0 ≤ s /∈ N, f ∈ D(E)+, (2.6)

where
H(r)

s (dν) = r−1

∫

M(E)

Nr(dµ)Qs(µ, dν).

Then, by enlarging the Lebesgue null set N , we can assume Is(f) has the following
representation:

Is(f) = ηs(f) +
∫

M(E)◦

(
1− e−ν(f)

)
Hs(dν), 0 ≤ s /∈ N, f ∈ D(E)+,

where ηs ∈ M(E) and 1 ∧ ν(E)Hs(dν) is a finite measure on M(E)◦. Consequently,

Jt(f) =
∫ t

0

[
ηs(f) +

∫

M(E)◦

(
1− e−ν(f)

)
Hs(dν)

]
ds, t ≥ 0, f ∈ B(E)+. (2.7)

Now the equation (2.3) yields
∫ r

0

ηt+s(f)ds =
∫ r

0

ds

∫

E

ηs(dx)λt(x, f), r, t ≥ 0, f ∈ B(E)+.

By Fubini’s theorem, there are Lebesgue null subsets N ′ and N ′
s of [0,∞) such that

ηt+s =
∫

E

ηs(dx)λt(x, ·), 0 ≤ s /∈ N ′, 0 ≤ t /∈ N ′
s.

Choose a sequence 0 < sn /∈ N ′ with sn ↓ 0, and define

ηt =
∫

E

ηsn(dx)λt−sn(x, ·), t ≥ sn.
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Under this modification, (ηt)t>0 clearly satisfy (1.2), and for each t ≥ 0 and f ∈ B(E)+

the value
∫ t

0
ηs(f)ds remains unchanged. By a similar procedure, one can modify the

definition of (Ht)t>0 to make it satisfy (1.3) while (2.7) remains valid. Then the desired
result follows by Theorem 1. ¤
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