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Abstract. The measure-valued branching process with immigration is defined as
Yt = Xt + It, t ≥ 0, where Xt satisfies the branching property and It with I0 = 0
is independent of Xt. This formulation leads to the model of [12,14,15]. We prove a
large number law for Yt. Equilibrium distributions and spatial transformations are also
studied.

Key words: branching process, immigration, large number law, equilibrium distri-
bution, transformation

1. Introduction

The measure-valued branching process with immigration (MBI-process) arises as the
high density limit of a certain branching particle system with immigration; see Kawazu
and Watanabe [12], Konno and Shiga [13], Shiga [19], Dynkin [4,5] and Li [14,15] for
construction of the MBI-process and for detailed descriptions of the particle system.
Multitype MBI-processes have been considered by Gorostiza and Lopez-Mimbela [9]
and Li [16].

Suppose (Yt) is a measure-valued Markov process. It is natural to call (Yt) an MBI-
process provided

(Yt|Y0 = µ) = (Xt|X0 = µ) + It, t ≥ 0, (1.1)

(in distribution) where (Xt) is an MB-process, and (It) with I0 = 0 (the null measure)
a.s. is independent of (Xt). In section 2 of this draft we prove that under certain
regularity conditions this formulation will lead to the model proposed by Kawazu and
Watanabe [12]. Section 3 concerns the convergence of atYt as t → ∞, where (at) is a
suitable family of constants. Equilibrium distributions and spatial transformations are
discussed in section 4.
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2. The MBI-process

Let E be a topological Lusin space (that is, a homeomorph of a Borel subset of a compact
metric space) with the Borel σ-algebra B(E). We shall use the notation introduced in
Li [14]:

B(E)+ = { bounded nonnegative Borel functions on E },
M = { finite Borel measures on E },
M0 = {π : π ∈ M and π(E) = 1}.

Suppose that M and M0 are equipped with the usual weak topology. We call w a
cumulant and put w ∈ W if it is a functional on B(E)+ with representation

w(f) =
∫∫

R+×M0

(
1− e−u〈π,f〉

) 1 + u

u
G(du, dπ), (2.1)

where R+ = [0,∞), G is a finite measure on R+ ×M0, and the value of the integrand
at u = 0 is defined as 〈π, f〉 :=

∫
fdπ. It is well known that P is an infinitely divisible

probability measure on M if and only if the Laplace functional LP has the canonical
representation LP (f) = exp{−w(f)}, where w ∈ W.

A Markov process (Xt, Pµ) in the space M is an MB-process if it satisfies the branching
property,

Pµ exp〈Xt,−f〉 = exp〈µ,−wt〉, (2.2)

where Pµ denotes the conditional expectation given X0 = µ, and Wt : f 7→ wt is a
semigroup of operators on B(E)+, the so-called cumulant semigroup.

Let Qµ denote the conditional law of the MBI-process (Yt) in (1.1) given Y0 = µ.
Assume (Xt) satisfies (2.2). Then

Qµ exp〈Yt,−f〉 = exp {−〈µ,wt〉 − jt(f)} , (2.3)

where jt(f) = − log E exp〈It,−f〉. To ensure that (Yt) is Markovian, the (It) is not
arbitrary. Typically,

jt(f) =
∫ t

0

i(ws)ds, t ≥ 0, (2.4)

for some i ∈ W. The process (Yt, Qµ) defined by (2.3) and (2.4) will be called an
MBI-process with parameters (W, i). This is the case studied by Li [14,15].

When E is a one point set, Kawazu and Watanabe [12] proved that (2.3) and (2.4)
represent the most general form of the MBI-process (Yt) given by (1.1). The following
Theorem 2.1 shows that this generality remains valid in the present case. Following
Kawazu and Watanabe [12] and Watanabe [20], we call the cumulant semigroup (Wt)
a Ψ -semigroup if E is a compact metric space and (Wt) preserves C(E)++, the strictly
positive continuous functions on E.
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Theorem 2.1. Suppose Wt : f 7→ wt is a Ψ -semigroup and is (weakly) continuous on
C(E)++. Then (jt) has the form (2.4) with i ∈ W .

Proof. Since any probability measure P is uniquely determined by the Laplace func-
tional LP restricted to C(E)++, it is sufficient to prove (2.4) for all f ∈ C(E)++. We
shall follow the lead of [12]. For f ∈ C(E)++ and (u, π) ∈ [0,∞]×M0 define

ξ(u, π; f) =





(
1− e−u〈π,f〉) 1+u

u , 0 < u < ∞,

〈π, f〉, u = 0,

1, u = ∞.

(2.5)

Then ξ(u, π; f) is jointly continuous in (u, π) for fixed f. It is easy to see that exp(−jt)
has the form

exp{−jt(f)} = 1−
∫∫

[0,∞]×M0

ξ(u, π; f)Gt(du, dπ), (2.6)

where Gt is actually carried by (0,∞)×M0. The Chapman-Kolmogorov equation yields

jt+s(f) = jt(f) + js(wt), t, s ≥ 0. (2.7)

Thus jt(f) is increasing in t ≥ 0 for all f, so the limit

it(f) := lim
s→0+

jt+s(f)− jt(f)
s

≡ lim
s→0+

s−1js(wt) (2.8)

exists for almost all t ≥ 0. Consequently,

i0(f) = lim
s→0+

s−1js(f) (2.9)

exists for f in a dense subset D of C(E)++, and by (2.5) and (2.6)

sup
0<s<δ

s−1Gs([0,∞]×M0) < ∞

for some δ > 0. Since [0,∞] × M0 is a compact metric space, this implies {s−1Gs :
0 < s < δ} is relatively compact under the weak convergence. Suppose sn → 0 and
s−1

n Gsn → G as n →∞. Then

lim
n→∞

s−1
n jsn(f) = i(f), f ∈ C(E)++,

where
i(f) =

∫∫

[0,∞]×M0

ξ(u, π; f)G(du, dπ). (2.10)

By a standard argument one gets the existence of (2.9), and hence (2.8), for all f ∈
C(E)++, t ≥ 0 and it(f) = i(wt). Then (2.4) follows. Letting f → 0+ in (2.3) gives
G({∞} ×M0) = 0. ¤
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3. The (ξ, φ, i)-superprocess

3.1. Usually, the cumulant semigroup of the MBI-process is given by an evolution
equation. Let ξ = (Ω,F ,Ft, θt, ξt,Πx) be a Borel right Markov process[18] in space E
with semigroup (Πt) and φ a “branching mechanism” represented by

φ(x, z) = b(x)z + c(x)z2 +
∫ ∞

0

(
e−zu − 1 + zu

)
m(x, du), x ∈ E, z ≥ 0, (3.1)

where c ≥ 0 and b are B(E)-measurable functions and m is a kernel from E to B((0,∞))
such that

∫
u ∧ u2m(·, du) ∈ B(E)+. The MBI-process Y defined by (2.3) and (2.4) is

called a (ξ, φ, i)-superprocess if the associated cumulant semigroup is uniquely deter-
mined by

wt +
∫ t

0

Πt−sφ(ws)ds = Πtf, t ≥ 0. (3.2)

Several authors [4,5,13,etc] have studied the (ξ, φ, i)-superprocess in the special case
i(f) = 〈λ, f〉 for some λ ∈ M.

In this section we study the limiting behavior of the MBI-process. A typical case is
where

Qµ exp〈Yt,−f〉 = exp
{
−〈µ,wt〉 −

∫ t

0

〈λ,ws〉θds

}
, (3.3)

where λ ∈ M, 0 < θ ≤ 1 and wt satisfies

wt +
∫ t

0

Πt−s(ws)1+βds = Πtf, t ≥ 0, (3.4)

with 0 < β ≤ 1. For f(x) ≡ γ > 0, (3.2) has the solution

wt = γ(1 + βγβt)−1/β .

Thus

Qµ exp{−γYt(E)} = exp
{ −γµ(E)

(1 + βγβt)1/β
−

∫ t

0

γθλ(E)θds

(1 + βγβs)θ/β

}
. (3.5)

It is clear from (3.5) that Yt(E) → 0 (t →∞) in probability if λ(E) = 0. When λ(E) > 0
and β < θ, we have ∫ ∞

0

γθλ(E)θds

(1 + βγβs)θ/β
= const.γθ−β < ∞,

and

Qµ exp〈Yt,−f〉 → exp
{
−

∫ ∞

0

〈λ,ws〉θds

}
(t →∞) (3.6)
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uniformly on the set {0 ≤ f ≤ γ}. Therefore Yt → Y∞ set-wise in distribution, where
Y∞ is an M -valued random measure with Laplace functional given by the r.h.s. of (3.6).
When λ(E) > 0 and β ≥ θ, (3.5) shows that Yt(E) → ∞ (explodes) in probability as
t → ∞, so it can be vacuous to discuss the convergence of (Yt). In the next paragraph
we shall study the convergence of the process (atYt) for a suitably chosen family (at) of
constants.

3.2. We now assume ξ is the Brownian motion in Rd. The name super Brownian motion
is used at this time for the (ξ, φ, i)-superprocess. Let λ denote the Lebesgue measure
on Rd and let

Mp(Rd) := { σ-finite Borel measures µ on Rd such that∫
(1 + |x|p)−1µ(dx) < ∞ }

for p > d. Suppose wt is determined by

wt +
∫ t

0

Πt−s(ws)2ds = Πtf, t ≥ 0, (3.7)

where (Πt) denotes the semigroup of ξ. Then

Qµ exp〈Yt,−f〉 = exp
{
−〈µ,wt〉 −

∫ t

0

〈λ,ws〉ds

}
(3.8)

defines a super Brownian motion (Yt) in space Mp(Rd) (cf. [13,14]). Since the “immi-
gration measure” λ is nonzero, more and more “people” immigrate to the space E as
time goes on. The following theorem gives a large number law for (Yt) and completes
the observation of paragraph 3.1.

Theorem 3.1. For any bounded Borel set B ⊂ Rd and finite measure µ ∈ Mp(Rd),

t−1Yt(B) → λ(B) (t →∞) (3.9)

in probability w.r.t. Qµ.

Proof. It is, obviously, sufficient to prove the result for µ = 0. Our method of the proof
relies on the estimates of the moments of Yt. For fixed f ∈ Bp(Rd)+, the members of
B(Rd)+ upper bounded by const.(1 + |x|p)−1, we define

ϕ1∗
t (x) = ϕt(x) = Πtf(x), ut ∗ vt =

∫ t

0

Πt−susvsds,

ϕn∗
t =

n−1∑

k=1

ϕk∗
t ∗ ϕ

(n−k)∗
t , Φn(t) =

∫ t

0

〈λ, ϕn∗
s 〉ds.
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Put

Mn(t) = Q0〈Yt, f〉n,

Cn(t) = Q0[〈Yt, f〉 −M1(t)]n, n = 1, 2, · · · .

Routine computations give

Mn(t) =
n∑

k=1

(
n− 1
k − 1

)
k!Φk(t)Mn−k(t),

and

Cn(t) =
n∑

i=0

(
n

i

)
(−1)iMn−i(t)M1(t)i

=n!Φn(t) +
∑

const.Φk2
2 (t) · · ·Φkn−2

n−2 (t). (3.10)

Here the last summation is taken for all possible {k2, · · · , kn−2} satisfying 2k2 + · · · +
(n− 2)kn−2 = n, for instance,

C2(t) = 2Φ2(t), C3(t) = 6Φ3(t),

C4(t) = 24Φ4(t) + 12Φ2
2(t),

C5(t) = 120Φ5(t) + 120Φ2(t)Φ3(t).

Let pt(x− y) ≡ pt(x, y) denote the Brownian transition density. We have

C2(t) = 2
∫ t

0

ds
〈
λ,

∫ s

0

Πs−u(Πuf)2du
〉

= 2
∫ t

0

ds

∫ s

0

du

∫
[Πuf(x)]2dx

= 2
∫ t

0

ds

∫ s

0

du

∫
dx

∫
f(y)pu(y − x)dyΠuf(x)

= 2
∫ t

0

ds

∫ s

0

du

∫
f(y)dy

∫
pu(y − x)Πuf(x)dx

= 2
∫ t

0

ds

∫ s

0

du

∫
f(y)dy

∫
p2u(y − z)f(z)dz

=
∫ t

0

ds

∫ 2s

0

du

∫
dy

∫
dzf(y)f(z)pu(y − z).

If f is supported boundedly, then
∫

dy

∫
dzf(y)f(z)pu(y − z) < 1 ∧ u−d/2 · const.
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Now we use Chebyshev’s inequality to obtain

Q0

{∣∣t−1〈Yt, f〉 − 〈λ, f〉
∣∣ > ε

}

≤ ε−2t−2C2(t) → 0 (t →∞)

for every ε > 0, as desired. ¤
It is interesting and, undoubtedly, possible to extend the above theorem to some

more general cases. We shall leave the consideration of this to the reader. At times
one would like to consider the “weighted occupation time” Zt :=

∫ t

0
Ysds. Following the

computations of [10], we get the characterization of the joint law of Yt and Zt,

Qµ exp {−〈Yt, f〉 − 〈Zt, g〉} = exp
{
−〈µ, ut〉 −

∫ t

0

〈λ, us〉ds

}
, (3.11)

where ut is the solution of

ut +
∫ t

0

Πt−s(us)2ds = Πtf +
∫ t

0

Πsgds, t ≥ 0. (3.12)

A remarkable property of the process Zt is that for each µ ∈ Mp(Rd) and bounded
Borel B ⊂ Rd,

2t−2Zt(B) → λ(B) (t →∞) (3.13)

almost surely w.r.t. Qµ, which is proved by similar means as Theorem 1 of [11].

4. The (ξ, φ)-superprocess

In this section, we discuss the long-term behavior of the (ξ, φ)-superprocess (Xt) defined
by (2.2) and (3.2). The observations in paragraph 3.1 shows that usually we need start
the process with an infinite initial state to get interesting results (cf. [3]).

4.1. We fix some strictly positive reference function ρ ∈ B(E)+ and introduce the
following assumptions

2.A) For each T > 0, there exists CT > 0 such that Πtρ ≤ CT ρ for all 0 ≤ t ≤ T.
2.B) The branching mechanism φ given by (3.1) is subcritical, i.e., b ≥ 0.

Then the solution wt(f) of (3.2) satisfies wt(ρf) ≤ const.ρ, f ∈ B(E)+, on each finite
interval 0 ≤ t ≤ T. Thus we can assume the state space of (Xt) is Mρ := {ρ−1µ : µ ∈
M} [e.g. 1,3,6,14]. Mρ contains some infinite measures unless ρ is bounded away from
zero.
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Theorem 4.1. If m ∈ Mρ is Πt-invariant, then

Pm exp〈Xt,−f〉 → exp
{
−〈m, f〉+

∫ ∞

0

〈m,φ(ws)〉ds

}
(t →∞) (4.1)

uniformly on the set {0 ≤ f ≤ aρ} for every finite a ≥ 0, and the right hand side of
the above formula defines the Laplace functional of a equilibrium distribution Λm of X
such that

∫ 〈µ, ρ〉Λm(dµ) < ∞.

Proof. By (2.2), (3.2) and the Πt-invariance of m,

1 ≥ Pµ exp〈Xt,−f〉

=exp
{〈

m,−Πtf +
∫ t

0

Πt−sφ(ws)ds
〉}

=exp
{
〈m,−f〉+

∫ t

0

〈m,φ(ws)〉ds

}
.

Choosing f(x) = aρ(x) and letting t →∞, we have

∫ ∞

0

〈m,φ(ws(aρ))〉ds ≤ 〈m, aρ〉 < ∞.

If f(x) ≤ aρ(x), then 〈m,φ(ws(f))〉 ≤ 〈m,φ(ws(aρ))〉. Thus

∫ t

0

〈m,φ(ws(f))〉ds →
∫ ∞

0

〈m,φ(ws(f))〉ds (t →∞)

uniformly on the set {0 ≤ f ≤ aρ}, and the convergence (4.1) follows. By Lemma 2.1
of Dynkin [3], the r.h.s. of (4.1) is the Laplace functional of a probability measure Λm

on Mρ. Λm is clearly an invariant measure of X, so to finish the proof it is sufficient to
observe

∫
Λm(dµ)〈µ, f〉

= lim
β→0+

∫
Λm(dµ)β−1

(
1− e−β〈µ,f〉

)

= lim
β→0+

β−1

[
1− exp

{
−〈m,βf〉+

∫ ∞

0

〈m,φ(ws(βf))〉ds

}]

≤ lim
β→0+

β−1
(
1− e−〈m,βf〉

)

=〈m, f〉 < ∞

for any 0 ≤ f ≤ aρ. ¤
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Theorem 3.1 was clearly inspired by the work of Dynkin [3], where the invariant mea-
sures of the superprocess (Xt) was studied completely when φ(x, z) =const.z2. Suppose
Λ is an invariant measure of (Xt) such that

∫ 〈µ, ρ〉Λ(dµ) < ∞. One proves easily that

〈m, f〉 =
∫

Mρ

〈µ, f〉Λ(dµ) (4.2)

defines a measure m ∈ Mρ that is invariant under the subMarkov semigroup (Πb
t ) :

Πb
t f(x) = Πxf(ξt) exp

{− R t
0b(ξs)ds

}
.

4.2. Using the martingale characterization, El Karoui and Roelly-Coppoletta [6] showed
that the class of (ξ, φ)-superprocesses is stable under some spatial transformations. In
this paragraph we shall see that this stableness can also be derived easily from (2.2)
and (3.2). We shall not assume the transformations to be one to one.

Suppose γ is a measurable surjective map from (E,B(E)) onto another space (Ẽ,

B(Ẽ)). We assume
4.C) ρ is γ−1B(Ẽ)-measurable;
4.D) if f is γ−1B(Ẽ)-measurable, so is Πtf for all t ≥ 0;
4.E) for each fixed z ≥ 0, φ(·, z) is γ−1B(Ẽ)-measurable.

Let γ∗ be the map from B(Ẽ)+ to B(E)+ defined by γ∗f̃(x) = f̃(γx). By 4.D), ξ̃ =
(γξt, t ≥ 0) is a Markov process in Ẽ with the semigroup (Π̃t) determined by γ∗Π̃t =
Πtγ

∗ (cf. [2, p325] and [17, p66]). Put φ̃(x̃, z) = φ(x, z) for any γx = x̃. Operating the
equation

w̃t +
∫ t

0

Π̃t−sφ̃(w̃s)ds = Π̃tf̃

with γ∗ gives

γ∗w̃t +
∫ t

0

Πt−sφ(γ∗w̃s)ds = Πtγ
∗f̃ .

By the uniqueness of the solution to (3.2), we get

wt(γ∗f̃) = γ∗w̃t(f̃). (4.3)

Let X = (Xt, t ≥ 0) be a (ξ, φ)-superprocess, and let X̃t(B̃) = Xt ◦ γ−1(B̃), B̃ ∈ B(Ẽ).
By (2.2) and (4.3), X̃ = (X̃t, t ≥ 0) is a Markov process[2,17] in M̃ρ, the space of σ-
finite measures ν on (Ẽ,B(Ẽ)) satisfying 〈ν, ρ̃〉 < ∞, with transition probabilities P̃ν

determined by
P̃ν exp〈X̃t,−f̃〉 = exp〈ν,−w̃t(f̃)〉,

i.e., X̃ is a (ξ̃, φ̃)-superprocess.
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Example 4.2. Let ξ be a symmetric stable process in Rd. Suppose that φ(x, z) ≡ φ(z)
is independent of x ∈ Rd. Let γx be the spatial translation operator by x ∈ Rd. If
the (ξ, φ)-superprocess X has initial value λ, the Lebesgue measure on Rd, then by the
preceding result, Xt and Xt ◦ γ−1

x has the same distribution. Letting t → ∞, we see
that the equilibrium distribution Λ of X from λ is translation invariant.

Acknowledgement. We thank Prof. T. Shiga for sending us a reprint of his paper
[19].
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