BRANCHING PARTICLE SYSTEMS WITH IMMIGRATION*

ZENG-HU LI

Department of Mathematics, Beijing Normal University Beijing 100875, P. R. China

In this note, we introduce a model of branching particle systems with immigration and show a result on the weak convergence of such systems to measure-valued Markov processes.

1. Notations.

Suppose that E is a topological Lusin space with the Borel σ -algebra $\mathcal{B}(E)$. Let $B^+(E) = \{ \text{ bounded positive } \mathcal{B}(E) \text{-measurable functions on } E \},$ $B^+_a(E) = \{ f : f \in B^+(E) \text{ and } f \leq a \}, a \geq 0,$ $C^+(E) = \{ f : f \in B^+(E) \text{ is continuous } \},$ $C^{++}(E) = \{ f : f \in C^+(E) \text{ is strictly positive } \},$ $M = \{ \text{ finite measures on } (E, \mathcal{B}(E)) \},$ $M_0 = \{ \pi : \pi \in M \text{ and } \pi(E) = 1 \},$ $M_1 = \{ \sigma : \sigma \in M \text{ is integer-valued } \},$ $M_k = \{ k^{-1}\sigma : \sigma \in M_1 \}, k = 2, 3, \cdots,$ $\delta_x = \text{ unit mass concentrated at } x, x \in E.$

We topologize M, and hence $M_k, k = 0, 1, 2, \cdots$, with the weak convergence topology. When E is a compact metric space, M is locally compact and metrizable. In this particular case, $D([0, \infty), M)$ denotes the space of cadlag functions from $[0, \infty)$ to M with the Skorohod topology.

For a $\mathcal{B}(E)$ -measurable function f and a measure $\mu \in M$, note $\langle \mu, f \rangle = \int f d\mu$. Finally, G denotes the totality of subcritical probability generating functions g, i.e.,

$$g(z) = \sum_{i=0}^{\infty} p_i z^i$$
 $(p_i \ge 0, \ \Sigma p_i = 1, \ \Sigma i p_i \le 1),$

¹⁹⁹¹ Mathematics Subject Classification. Primary 60J80; secondary 60G57.

Key words and phrases. particle system, branching, immigration, superprocess, weak convergence. * Supported in part by National Natural Science Foundation of China. Published in: Rencontres Franco-Chinoises en Probabilités et Statistiques (Wuhan, 1990), Probability and Statistics 249–254, Edited by Badrikian, A. et al., World Scientific, Singapore, 1993.

ZENG-HU LI

and \mathcal{G} is the σ -algebra on G generated by the mappings $F_z : g \mapsto g(z)$ as z runs over the unit interval [0, 1].

2. The particle system.

Suppose $\xi = (\xi_t, \mathcal{F}_t, \Pi_x)$ is a Borel right Markov process with state space $E, \gamma = \gamma(x) \in B^+(E)$ and $F = F(x, dg, d\pi)$ is a Markov kernel from E to $\mathcal{G} \times \mathcal{B}(M_0)$. A branching particle system with parameters (ξ, γ, F) is described by the following properties:

2.A) the particles in E move according to the law of the process ξ ;

2.B) for a particle α which is alive at time r and follows the path $(\xi_t, t \ge r)$, the conditional probability of survival during the time interval [r, t) is $\exp\{-\int_r^t \gamma(\xi_s) ds\}$;

2.C) when α dyes at point $x \in E$, it gives birth to a random number of offspring according to a generating function g^{α} , and the offspring are displaced in E from xaccording to a probability measure π^{α} , where $(g^{\alpha}, \pi^{\alpha})$, depending on the conditions at x, is a random variable in $G \times M_0$ with distribution $F(x, dg, d\pi)$.

It is assumed that the motions, life times and branchings of the particles and the first locations of the offspring are independent of each other.

For $t \ge 0$, let $X_t(B)$ be the number of particles of the system in set $B \in \mathcal{B}(E)$ at time t. Properties 2.A - C) imply that $X = (X_t, t \ge 0)$ is a Markov process in space M_1 with transition probabilities P_{σ} defined by the Laplace functionals,

$$P_{\sigma} \exp\langle X_t, -f \rangle = \exp\langle \sigma, -v_t \rangle, \quad f \in B^+(E), \sigma \in M_1, t \ge 0,$$
(2.1)

where

$$v_t(x) \equiv v_t(x, f) = -\log P_{\delta_x} \exp\langle X_t, -f \rangle$$

is the unique positive solution of

$$e^{-v_{t}(x)} = \prod_{x} e^{-f(\xi_{t}) - \int_{0}^{t} \gamma(\xi_{s}) ds}$$

$$+ \prod_{x} \int_{0}^{t} e^{-\int_{0}^{s} \gamma(\xi_{u}) du} \gamma(\xi_{s}) \iint_{G \times M_{0}} g(\langle \pi, e^{-v_{t-s}} \rangle) F(\xi_{s}, dg, d\pi) ds.$$
(2.2)

Equation (2.2) arises as follows: If we start one particle at time 0 at location x, this particle moves following a path of ξ and does not branch before time t (first term on the right hand side), or it splits at time $s \in [0, t]$ with probability

$$\exp\left\{-\int_0^s \gamma(\xi_u) du\right\} \gamma(\xi_s) ds$$

according to $F(\xi_s, dg, d\pi)$ and all the offspring evolve independently after birth in the same fashion (second term). A rigorous construction for process X can be given as for the branching particle system studied in [2].

Let $\Pi_t, t \ge 0$, be the transition semigroup of ξ . By Lemma 2.3 of [2], equation (2.2) can be written in an abbreviative form:

$$\int_{0}^{t} \Pi_{s} \gamma \Big[e^{-v_{t-s}} - \iint_{G \times M_{0}} g(\langle \pi, e^{-v_{t-s}} \rangle) F(dg, d\pi) \Big] ds = \Pi_{t} e^{-f} - e^{-v_{t}}.$$
(2.3)

Suppose that η is a finite measure on $(M_0, \mathcal{B}(M_0))$ and that $h(\pi, z)$ is a $\mathcal{B}(M_0 \times [0, 1])$ measurable function such that for each $\pi \in M_0$, $h(\pi, \cdot)$ belongs to G. A branching particle system with immigration with parameters $(\xi, \gamma, F, \eta, h)$ is described by properties 2.A - C) and the following

2.D) the entry times and distributions of new particles immigrating to E are governed by a Poisson random measure with intensity $ds \times \eta(d\pi)$;

2.E) $h(\pi, \cdot)$ gives the distribution of the number of new particles entering E with distribution π .

Here we assume that the immigration is independent of the evolution of the inner population and that the immigrants behave as the natives after entering E. The particle distribution process $(Y_t, t \ge 0)$ of the branching system with immigration is a Markov process with state space M_1 . Properties 2.A – E) lead through a calculation to the Laplace functional:

$$Q_{\sigma} \exp\langle Y_t, -f\rangle$$

$$= \exp\left\{-\langle \sigma, v_t \rangle - \int_0^t ds \int_{M_0} [1 - h(\pi, \langle \pi, e^{-v_s} \rangle)] \eta(d\pi) \right\},$$

$$f \in B^+(E), \sigma \in M_1, t \ge 0,$$

$$(2.4)$$

where Q_{σ} denotes the transition probability from σ of Y_t and v_t is defined by equation (2.3).^[6]

3. A limit theorem.

3.1. Let $Y(k) = \{Y_t(k), t \ge 0\}$ be a sequence of branching particle systems with immigration with parameters $(\xi, \gamma, F_k, k\eta, h_k), k = 1, 2, \cdots$. Then for each k,

$$Y^{(k)} = \{Y_t^{(k)} \equiv k^{-1}Y_t(k), t \ge 0\}$$

is a Markov process in M_k with transition probabilities $Q_{\sigma_k}^{(k)}$ determined by

$$Q_{\sigma_{k}}^{(k)} \exp\langle Y_{t}^{(k)}, -f\rangle$$

$$= \exp\left\{-\langle \sigma_{k}, kv_{t}^{(k)} \rangle - \int_{0}^{t} ds \int_{M_{0}} k[1 - h_{k}(\pi, \langle \pi, e^{-v_{s}^{(k)}} \rangle)]\eta(d\pi)\right\},$$

$$f \in B^{+}(E), \sigma_{k} \in M_{k}, t \geq 0,$$

$$(3.1)$$

ZENG-HU LI

where $v_t^{(k)}(x) \equiv v_t^{(k)}(x, f)$ satisfies (2.3) with F and f replaced by F_k and $k^{-1}f$, respectively.

If we assume $Y_0^{(k)}$ has the same distribution with $\mu_k := k^{-1} \langle k \mu \rangle$, where μ belongs to M and $\langle k \mu \rangle$ is a Poisson random measure with intensity $k \mu$, then

$$Q_{\mu_k}^{(k)} \exp\langle Y_t^{(k)}, -f\rangle$$

$$= \exp\left\{-\langle \mu, w_t^{(k)} \rangle - \int_0^t ds \int_{M_0} \psi_k(\pi, \langle \pi, w_s^{(k)} \rangle) \eta(d\pi)\right\},$$
(3.2)

where

$$w_t^{(k)}(x) \equiv w_t^{(k)}(x, f) = k[1 - e^{-v_t^{(k)}(x, f)}],$$
(3.3)

$$\psi_k(\pi,\lambda) = k[1 - h_k(\pi, 1 - \lambda/k)], \quad 0 \le \lambda \le k.$$
(3.4)

For simplicity, we assume that

 $F_k(x, dg, d\pi) = \zeta_k(x, \pi, dg)\tau(x, d\pi), \quad k = 1, 2, \cdots,$

where ζ_k and τ are Markov kernels from $E \times M_0$ to \mathcal{G} and from E to $\mathcal{B}(M_0)$, respectively. Let

$$\phi_k(x,\pi,\lambda) = k \left[1 - \int_G g(1-\lambda/k)\zeta_k(x,\pi,dg) \right], \quad 0 \le \lambda \le k,$$
(3.5)

and let

$$\varphi_k(x,f) = \int_{M_0} \phi_k(x,\pi,\langle \pi,f \rangle) \tau(x,d\pi).$$
(3.6)

It is easy to check that $w_t^{(k)}$ satisfies

$$w_t^{(k)} + \int_0^t \Pi_s \gamma [w_{t-s}^{(k)} - \varphi_k(w_{t-s}^{(k)})] ds = \Pi_t k (1 - e^{-f/k}), \quad t \ge 0.$$
(3.7)

If $\lim_{k\to\infty} \psi_k = \psi$ and $\lim_{k\to\infty} \phi_k = \phi$, then the limit functions have representations

$$\psi(\pi,\lambda) = \int_0^\infty (1 - e^{-\lambda u}) \frac{1}{u} n(\pi, du),$$
(3.8)

$$\phi(x,\pi,\lambda) = \int_0^\infty (1 - e^{-\lambda u}) \frac{1}{u} m(x,\pi,du),$$
(3.9)

where n and m are subMarkov kernels from M_0 and from $E \times M_0$ to $\mathcal{B}([0,\infty))$, respectively, and the values of the integrands at u = 0 are defined as λ .^[5] Conversely, it is easy to show that, for ψ and ϕ given by (3.8) and (3.9), there exist sequences ψ_k and ϕ_k in forms (3.4) and (3.5), respectively, such that

$$\psi_k(\pi,\lambda) = \psi(\pi,\lambda),$$

$$\phi_k(x,\pi,\lambda) = \phi(x,\pi,\lambda), \quad x \in E, \pi \in M_0, 0 \le \lambda \le k.$$

Lemma 3.1. Suppose that

3.A) $\phi_k(x, \pi, \lambda) \to \phi(x, \pi, \lambda) \ (k \to \infty)$ uniformly on the set $E \times M_0 \times [0, l]$ for every $l \ge 0$.

Then $w_t^{(k)}(x, f)$, and hence $kv_t^{(k)}(x, f)$, converge boundedly and uniformly on each set $[0, l] \times E \times B_a^+(E)$ of (t, x, f) to the unique bounded positive solution of the evolution equation

$$w_t + \int_0^t \Pi_s \gamma [w_{t-s} - \varphi(w_{t-s})] ds = \Pi_t f, \quad t \ge 0,$$
 (3.10)

where

$$\varphi(x,f) = \int_{M_0} \phi(x,\pi,\langle \pi,f\rangle) \tau(x,d\pi), \quad f \in B^+(E), x \in E.$$
(3.11)

The previous lemma can be proved in the same way as Lemma 3.3 of [2] (see also [6]). It follows that, for $(\xi, \gamma, \varphi, \eta, \psi)$ given as above, formula

$$Q_{\mu} \exp\langle Y_{t}, -f\rangle$$

$$= \exp\left\{-\langle \mu, w_{t} \rangle - \int_{0}^{t} ds \int_{M_{0}} \psi(\pi, \langle \pi, w_{s} \rangle) \eta(d\pi)\right\},$$

$$f \in B^{+}(E), \mu \in M, t \ge 0,$$

$$(3.12)$$

defines the transition probabilities Q_{μ} of a Markov process $Y = (Y_t, t \ge 0)$ in space M (see Lemma 3.1 of [2]). If 3.A) holds and if

3.B) $\psi_k(\pi, \lambda) \to \psi(\pi, \lambda) \ (k \to \infty)$ uniformly on the set $M_0 \times [0, l]$ for every $l \ge 0$, then

$$Q_{\mu_k}^{(k)} \exp\langle Y_t^{(k)}, -f \rangle \to Q_\mu \exp\langle Y_t, -f \rangle \quad (k \to \infty)$$
(3.13)

uniformly in $f \in B_a^+(E)$ for every fixed $\mu \in M, t \ge 0$ and $a \ge 0$.

Suppose that each particle in the kth system is weighted k^{-1} , then (3.13) states that the mass distributions of the particle systems approximate process Y when the single masses are small and the particle populations are large. We call Y a $(\xi, \gamma, \varphi, \eta, \psi)$ superprocess.

If A denotes the infinitesimal operator of ξ , then (3.10) is formally equivalent to

$$\frac{dw_t}{dt} = Aw_t + \gamma [\varphi(w_t) - w_t], \quad w_0 = f.$$
(3.14)

An equation of this form has been considered earlier by S. Watanabe [9].

3.2. Under suitable hypotheses, the $(\xi, \gamma, F_k, k\eta, h_k)$ -system $Y^{(k)}$ converges to the $(\xi, \gamma, \varphi, \eta, \psi)$ -superprocess Y weakly in $D([0, \infty), M)$. We now assume that

- E is a compact metric space and $\gamma \in C^+(E)$;

 $-\xi = (\xi_t, \Pi_x)$ is a Markov process in E with strongly continuous Feller transition semigroup Π_t ;

 $-\psi(\pi,\lambda)$ is given by (3.8);

 $-\varphi(\pi, f)$ is given by (3.9) and (3.11), and $\varphi(\cdot, f) \in C^{++}(E)$ for every $f \in C^{++}(E)$.

ZENG-HU LI

In the terminology of Watanabe [9], φ is a Ψ -function, and hence the solution $w_t(\cdot, f)$ to (3.10) defines a Ψ -semigroup, in particular, $w_t(\cdot, f) \in C^{++}(E)$ for $f \in C^{++}(E)$.

Consider the renormalized sequence of branching particle systems with immigration $Y^{(k)} = (Y_t^{(k)}, Q_{\sigma_k}^{(k)})$ defined in paragraph 3.1. Assume that $-\varphi_k(\cdot, f) \in C^+(E)$ for each $f \in C^+(E)$.

It follows from (3.7) that $w_t^{(k)}(\cdot, f)$, and hence $kv_t^{(k)}(\cdot, f)$, belong to $C^+(E)$ for $f \in C^+(E)$.^[3,7] If 3.A) holds, then by Lemma 3.1, when k is sufficiently large, $kv_t^{(k)}(\cdot, f) \in C^{++}(E)$ for $f \in C^{++}(E)$. Thus we see from (3.1) and (3.12) that $Y^{(k)}$ and Y have strongly continuous Feller transition semigroups. Since M is locally compact and separable, we can (and do) assume $Y^{(k)}$ and Y have sample paths in $D([0, \infty), M)$.^[1,4]

Theorem 3.2. If conditions 3.A - B are satisfied and if $Y_0^{(k)} \to Y_0$ $(k \to \infty)$ in distribution, then $Y^{(k)}$ converges to Y weakly in $D([0,\infty), M)$.

Proof. By Theorem 2.11 of [4, p172], it suffices to show

$$\sup_{\sigma_k \in M_k} \left| Q_{\sigma_k}^{(k)} \exp\langle Y_t^{(k)}, -f \rangle - Q_{\sigma_k} \exp\langle Y_t, -f \rangle \right| \to 0 \quad (k \to \infty)$$

for every $f \in C^{++}(E)$ and $t \ge 0$, which follows from (3.1), (3.12) and Lemma 3.1.

Acknowledgment. I would like to thank Professor P.J. Fitzsimmons for stimulating comments.

References

- 1. Dynkin, E.B., Markov Processes, Springer-Verlag, Berlin-Heidelberg-New York, 1965.
- 2. Dynkin, E.B., Branching particle systems and superprocesses, Ann. Probab., to appear.
- 3. El-Karoui N. and Roelly-Coppoletta, S., Study of a general class of measure-valued branching processes; a Levey-Hincin representation, preprint.
- Ethier, S.N. and Kurtz, T.G., Markov Processes: Characterization and Convergence, Wiley, New York, 1986.
- 5. Li, Zeng-Hu, Integral representations of continuous functions, Chinese Science Bulletin, to appear.
- 6. Li, Zeng-Hu, Measure-valued branching processes with immigration, preprint.
- Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin-Heidelberg-New York, 1983.
- 8. Sharpe, M.J., The General Theory of Markov Processes, Academic Press, New York, 1988.
- Watanabe,S., A limit theorem of branching processes and continuous state branching processes, J. Math. Kyoto Univ. 8 (1968), 141-167.