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In this note, we introduce a model of branching particle systems with immigration
and show a result on the weak convergence of such systems to measure-valued Markov
processes.

1. Notations.
Suppose that E is a topological Lusin space with the Borel σ-algebra B(E). Let

B+(E) = { bounded positive B(E)-measurable functions on E },
B+

a (E) = {f : f ∈ B+(E) and f ≤ a}, a ≥ 0,
C+(E) = {f : f ∈ B+(E) is continuous },
C++(E) = {f : f ∈ C+(E) is strictly positive },
M = { finite measures on (E,B(E)) },
M0 = {π : π ∈ M and π(E) = 1},
M1 = {σ : σ ∈ M is integer-valued },
Mk = {k−1σ : σ ∈ M1}, k = 2, 3, · · · ,
δx = unit mass concentrated at x, x ∈ E.

We topologize M, and hence Mk, k = 0, 1, 2, · · · , with the weak convergence topology.
When E is a compact metric space, M is locally compact and metrizable. In this
particular case, D([0,∞),M) denotes the space of cadlag functions from [0,∞) to M
with the Skorohod topology.

For a B(E)-measurable function f and a measure µ ∈ M, note 〈µ, f〉 =
∫

fdµ.
Finally, G denotes the totality of subcritical probability generating functions g, i.e.,

g(z) =
∞∑

i=0

piz
i (pi ≥ 0, Σpi = 1, Σipi ≤ 1),
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and G is the σ-algebra on G generated by the mappings Fz : g 7→ g(z) as z runs over
the unit interval [0, 1].

2. The particle system.
Suppose ξ = (ξt,Ft, Πx) is a Borel right Markov process with state space E, γ =

γ(x) ∈ B+(E) and F = F (x, dg, dπ) is a Markov kernel from E to G×B(M0). A branch-
ing particle system with parameters (ξ, γ, F ) is described by the following properties:

2.A) the particles in E move according to the law of the process ξ;
2.B) for a particle α which is alive at time r and follows the path (ξt, t ≥ r), the

conditional probability of survival during the time interval [r, t) is exp{− ∫ t

r
γ(ξs)ds};

2.C) when α dyes at point x ∈ E, it gives birth to a random number of offspring
according to a generating function gα, and the offspring are displaced in E from x
according to a probability measure πα, where (gα, πα), depending on the conditions at
x, is a random variable in G×M0 with distribution F (x, dg, dπ).
It is assumed that the motions, life times and branchings of the particles and the first
locations of the offspring are independent of each other.

For t ≥ 0, let Xt(B) be the number of particles of the system in set B ∈ B(E) at
time t. Properties 2.A − C) imply that X = (Xt, t ≥ 0) is a Markov process in space
M1 with transition probabilities Pσ defined by the Laplace functionals,

Pσ exp〈Xt,−f〉 = exp〈σ,−vt〉, f ∈ B+(E), σ ∈ M1, t ≥ 0, (2.1)

where
vt(x) ≡ vt(x, f) = − log Pδx exp〈Xt,−f〉

is the unique positive solution of

e−vt(x) =Πxe−f(ξt)−
R t
0 γ(ξs)ds (2.2)

+Πx

∫ t

0

e−
R s
0 γ(ξu)duγ(ξs)

∫∫

G×M0

g(〈π, e−vt−s〉)F (ξs, dg, dπ)ds.

Equation (2.2) arises as follows: If we start one particle at time 0 at location x, this
particle moves following a path of ξ and does not branch before time t (first term on
the right hand side), or it splits at time s ∈ [0, t] with probability

exp
{−

∫ s

0

γ(ξu)du
}
γ(ξs)ds

according to F (ξs, dg, dπ) and all the offspring evolve independently after birth in the
same fashion (second term). A rigorous construction for process X can be given as for
the branching particle system studied in [2].
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Let Πt, t ≥ 0, be the transition semigroup of ξ. By Lemma 2.3 of [2], equation (2.2)
can be written in an abbreviative form:

∫ t

0

Πsγ
[
e−vt−s −

∫∫

G×M0

g(〈π, e−vt−s〉)F (dg, dπ)
]
ds = Πte

−f − e−vt . (2.3)

Suppose that η is a finite measure on (M0,B(M0)) and that h(π, z) is a B(M0×[0, 1])-
measurable function such that for each π ∈ M0, h(π, ·) belongs to G. A branching
particle system with immigration with parameters (ξ, γ, F, η, h) is described by properties
2.A − C) and the following

2.D) the entry times and distributions of new particles immigrating to E are governed
by a Poisson random measure with intensity ds× η(dπ);

2.E) h(π, ·) gives the distribution of the number of new particles entering E with
distribution π.
Here we assume that the immigration is independent of the evolution of the inner
population and that the immigrants behave as the natives after entering E. The particle
distribution process (Yt, t ≥ 0) of the branching system with immigration is a Markov
process with state space M1. Properties 2.A − E) lead through a calculation to the
Laplace functional:

Qσ exp〈Yt,−f〉 (2.4)

= exp
{
−〈σ, vt〉 −

∫ t

0

ds

∫

M0

[1− h(π, 〈π, e−vs〉)]η(dπ)
}

,

f ∈ B+(E), σ ∈ M1, t ≥ 0,

where Qσ denotes the transition probability from σ of Yt and vt is defined by equation
(2.3).[6]

3. A limit theorem.
3.1. Let Y (k) = {Yt(k), t ≥ 0} be a sequence of branching particle systems with

immigration with parameters (ξ, γ, Fk, kη, hk), k = 1, 2, · · · . Then for each k,

Y (k) = {Y (k)
t ≡ k−1Yt(k), t ≥ 0}

is a Markov process in Mk with transition probabilities Q
(k)
σk determined by

Q(k)
σk

exp〈Y (k)
t ,−f〉 (3.1)

= exp
{
−〈σk, kv

(k)
t 〉 −

∫ t

0

ds

∫

M0

k[1− hk(π, 〈π, e−v(k)
s 〉)]η(dπ)

}
,

f ∈ B+(E), σk ∈ Mk, t ≥ 0,
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where v
(k)
t (x) ≡ v

(k)
t (x, f) satisfies (2.3) with F and f replaced by Fk and k−1f, respec-

tively.
If we assume Y

(k)
0 has the same distribution with µk := k−1〈kµ〉, where µ belongs to

M and 〈kµ〉 is a Poisson random measure with intensity kµ, then

Q(k)
µk

exp〈Y (k)
t ,−f〉 (3.2)

= exp
{
−〈µ,w

(k)
t 〉 −

∫ t

0

ds

∫

M0

ψk(π, 〈π,w(k)
s 〉)η(dπ)

}
,

where
w

(k)
t (x) ≡ w

(k)
t (x, f) = k[1− e−v

(k)
t (x,f)], (3.3)

ψk(π, λ) = k[1− hk(π, 1− λ/k)], 0 ≤ λ ≤ k. (3.4)

For simplicity, we assume that

Fk(x, dg, dπ) = ζk(x, π, dg)τ(x, dπ), k = 1, 2, · · · ,

where ζk and τ are Markov kernels from E×M0 to G and from E to B(M0), respectively.
Let

φk(x, π, λ) = k

[
1−

∫

G

g(1− λ/k)ζk(x, π, dg)
]

, 0 ≤ λ ≤ k, (3.5)

and let
ϕk(x, f) =

∫

M0

φk(x, π, 〈π, f〉)τ(x, dπ). (3.6)

It is easy to check that w
(k)
t satisfies

w
(k)
t +

∫ t

0

Πsγ[w(k)
t−s − ϕk(w(k)

t−s)]ds = Πtk(1− e−f/k), t ≥ 0. (3.7)

If lim
k→∞

ψk = ψ and lim
k→∞

φk = φ, then the limit functions have representations

ψ(π, λ) =
∫ ∞

0

(1− e−λu)
1
u

n(π, du), (3.8)

φ(x, π, λ) =
∫ ∞

0

(1− e−λu)
1
u

m(x, π, du), (3.9)

where n and m are subMarkov kernels from M0 and from E ×M0 to B([0,∞)), respec-
tively, and the values of the integrands at u = 0 are defined as λ.[5] Conversely, it is
easy to show that, for ψ and φ given by (3.8) and (3.9), there exist sequences ψk and
φk in forms (3.4) and (3.5), respectively, such that

ψk(π, λ) = ψ(π, λ),

φk(x, π, λ) = φ(x, π, λ), x ∈ E, π ∈ M0, 0 ≤ λ ≤ k.
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Lemma 3.1. Suppose that
3.A) φk(x, π, λ) → φ(x, π, λ) (k →∞) uniformly on the set E ×M0 × [0, l] for every

l ≥ 0.

Then w
(k)
t (x, f), and hence kv

(k)
t (x, f), converge boundedly and uniformly on each set

[0, l] × E × B+
a (E) of (t, x, f) to the unique bounded positive solution of the evolution

equation

wt +
∫ t

0

Πsγ[wt−s − ϕ(wt−s)]ds = Πtf, t ≥ 0, (3.10)

where
ϕ(x, f) =

∫

M0

φ(x, π, 〈π, f〉)τ(x, dπ), f ∈ B+(E), x ∈ E. (3.11)

The previous lemma can be proved in the same way as Lemma 3.3 of [2] (see also
[6]). It follows that, for (ξ, γ, ϕ, η, ψ) given as above, formula

Qµ exp〈Yt,−f〉 (3.12)

= exp
{
−〈µ,wt〉 −

∫ t

0

ds

∫

M0

ψ(π, 〈π,ws〉)η(dπ)
}

,

f ∈ B+(E), µ ∈ M, t ≥ 0,

defines the transition probabilities Qµ of a Markov process Y = (Yt, t ≥ 0) in space M
(see Lemma 3.1 of [2]). If 3.A) holds and if

3.B) ψk(π, λ) → ψ(π, λ) (k →∞) uniformly on the set M0 × [0, l] for every l ≥ 0,
then

Q(k)
µk

exp〈Y (k)
t ,−f〉 → Qµ exp〈Yt,−f〉 (k →∞) (3.13)

uniformly in f ∈ B+
a (E) for every fixed µ ∈ M, t ≥ 0 and a ≥ 0.

Suppose that each particle in the kth system is weighted k−1, then (3.13) states that
the mass distributions of the particle systems approximate process Y when the single
masses are small and the particle populations are large. We call Y a (ξ, γ, ϕ, η, ψ)-
superprocess.

If A denotes the infinitesimal operator of ξ, then (3.10) is formally equivalent to

dwt

dt
= Awt + γ[ϕ(wt)− wt], w0 = f. (3.14)

An equation of this form has been considered earlier by S. Watanabe [9].
3.2. Under suitable hypotheses, the (ξ, γ, Fk, kη, hk)-system Y (k) converges to the

(ξ, γ, ϕ, η, ψ)-superprocess Y weakly in D([0,∞),M). We now assume that
− E is a compact metric space and γ ∈ C+(E);
− ξ = (ξt, Πx) is a Markov process in E with strongly continuous Feller transition

semigroup Πt;
− ψ(π, λ) is given by (3.8);
− ϕ(π, f) is given by (3.9) and (3.11), and ϕ(·, f) ∈ C++(E) for every f ∈ C++(E).
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In the terminology of Watanabe [9], ϕ is a Ψ-function, and hence the solution wt(·, f)
to (3.10) defines a Ψ-semigroup, in particular, wt(·, f) ∈ C++(E) for f ∈ C++(E).

Consider the renormalized sequence of branching particle systems with immigration
Y (k) = (Y (k)

t , Q
(k)
σk ) defined in paragraph 3.1. Assume that

− ϕk(·, f) ∈ C+(E) for each f ∈ C+(E).
It follows from (3.7) that w

(k)
t (·, f), and hence kv

(k)
t (·, f), belong to C+(E) for f ∈

C+(E).[3,7] If 3.A) holds, then by Lemma 3.1, when k is sufficiently large, kv
(k)
t (·, f) ∈

C++(E) for f ∈ C++(E). Thus we see from (3.1) and (3.12) that Y (k) and Y have
strongly continuous Feller transition semigroups. Since M is locally compact and sepa-
rable, we can (and do) assume Y (k) and Y have sample paths in D([0,∞),M).[1,4]

Theorem 3.2. If conditions 3.A − B) are satisfied and if Y
(k)
0 → Y0 (k → ∞) in

distribution, then Y (k) converges to Y weakly in D([0,∞),M).

Proof. By Theorem 2.11 of [4, p172], it suffices to show

sup
σk∈Mk

∣∣∣Q(k)
σk

exp〈Y (k)
t ,−f〉 −Qσk

exp〈Yt,−f〉
∣∣∣ → 0 (k →∞)

for every f ∈ C++(E) and t ≥ 0, which follows from (3.1), (3.12) and Lemma 3.1.
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