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Based on the results obtained in [3], we give the construction of a class of super-
processes by taking the rescaled limits of some branching particles systems in random
environments. The evolution equation characterizing this class of superprocesses is
essentially more general than the one we have known before, and is thus helpful in un-
derstanding the connection between measure-valued processes and nonlinear equations.

1. A model of branching particles

Suppose that E is a topological Lusin space with the Borel σ-algebra denoted by B(E).
Let

M = { finite Borel measures on E },
M0 = {π ∈ M : π(E) = 1},
G = { probability generating functions g(z) (0 ≤ z ≤ 1) satisfying g′(1) < ∞}.
B(E)+ = { bounded nonnegative Borel functions on E },
B(E)+a = {f ∈ B(E)+ : f(x) ≤ a} for a ≥ 0,
We topologize M and M0 by the usual weak convergence, and G by the pointwise

convergence. Suppose that ξ = (ξt,Πx) is a Borel right Markov process on E, γ = γ(x) ∈
B(E)+ and F = F (x, dπ, dg) is a Markov kernel from E to G×M0. A branching particle
system in random environments with parameters (ξ, γ, F ) is described as follows:

(i) The particles in E move according to the transition law of ξ.
(ii) For a particle α that is alive at time r and follows the path (ξs, s ≥ r), the

conditional probability of survival during the time interval [r, t] is exp{− ∫ t

r
γ(ξs)ds}.

(iii) When the particle α dies at point x, it gives birth to a random number of offspring
according to probability generating function gα and the offspring are displaced in E
according to probability measure πα, where (πα, gα) are random variables in M0 × G
with joint distribution F (x, dπ, dg).

The use of the term “random environments” is meant to suggest the randomness of
(πα, gα) in property (iii). Let Xt(B) denote the number of particles in set B ∈ B(E) that
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are alive at time t ≥ 0. If X0(E) < ∞, then (Xt, t ≥ 0) form a Markov process on M1,
the subspace of M comprising integer-valued measures on E. A rigorous construction
of this process has essentially been given as in [1]. Let Pσ denote the conditional law of
(Xt) given X0 = σ. Properties (i), (ii) and (iii) yield a characterization of the Laplace
functional:

(1.1) Pσ exp〈Xt,−f〉 = exp〈σ,−vt〉, f ∈ B(E)+, σ ∈ M1, t ≥ 0,

where 〈σ, f〉 =
∫

fdσ and vt(x) ≡ vt(x, f) is the unique positive solution of2

e−vt(x) = Πxe−f(ξt)−
∫ t

0
γ(ξs)ds

+ Πx

∫ t

0

e−
∫ s

0
γ(ξu)du

γ(ξs)
∫

G

∫

M0

g(〈π, e−vt−s〉)F (ξs, dπ, dg)ds.

This equation follows as we think about that if a particle starts moving from point x
at time 0, it follows a path of ξ and does not branch before time t, or it splits at time
s ∈ (0, t]. As in [1] it can be proved that the above equation is equivalent to

e−vt(x) −Πxe−f(ξt) +
∫ t

0

Πxγ(ξs)e−vt−s(ξs)ds(1.2)

=
∫ t

0

dsΠxγ(ξs)
∫

G

∫

M0

g(〈π, e−vt−s〉)F (ξs,dπ, dg).

2. Measure-valued processes

Let {Xt(k), t ≥ 0} be the mass distributions of a sequence of branching particle systems
in random environments with parameters (ξ, γk, Fk), k = 1, 2, · · · . Then for each k,

(2.1) X(k) = {X(k)
t := k−1Xt(k), t ≥ 0}

defines a Markov process on Mk := {k−1σ : σ ∈ M1}. Let σ(kµ) be a Poisson random
measure with intensity kµ ∈ M , and let P

(k)
µk denote the conditional law of the process

(X(k)
t , t ≥ 0) given X

(k)
0 = k−1σ(kµ). Then by (1.1) and (1.2) we get

(2.2) P (k)
µk

exp〈X(k)
t ,−f〉 = exp〈µ,−w

(k)
t 〉, f ∈ B(E)+, t ≥ 0,

where

(2.3) w
(k)
t (x) ≡ w

(k)
t (x, f) = k[1− exp{−v

(k)
t (x)}]
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satisfies the equation

w
(k)
t (x)−Πxk[1− e−f(ξt)/k] +

∫ t

0

Πxγ(ξs)w
(k)
t−s(ξs)ds(2.4)

=
∫ t

0

dsΠxγ(ξs)
∫

G

∫

M0

k[1− g(1− 〈π, w
(k)
t−s/k〉)]Fk(ξs, dπ,dg).

For each k, let ak, bk ∈ B(E)+ be strictly positive, and let gk ∈ B(E×[0, 1])+ be such
that gk(x, ·) ∈ G for all x. Suppose that τ(x, dπ) and τk(x, π, dg) are Markov kernels
from E to M0 and from E ×M0 to G, respectively. Let

γk(x) =ak(x) + bk(x),

Fk(x, dπ, dg) =ak(x)γ−1
k (x)δk(x, dπ, dg)

+ bk(x)γ−1
k (x)τk(x, π, dg)τ(x, dπ),

where δk(x, dπ, dg) denotes the unit mass concentrated on point (δx, gk(x, ·)) in space
M0×G. That is, the randomness of the environments at x only makes a partial influence,
represented by the second term, on the branching mechanism at this point. Then we
let

φk(x, z) = bk(x)z + kak(x)[gk(x, 1− z/k)− (1− z/k)], 0 ≤ z ≤ k,(2.5)

ζk(x, π, z) = kbk(x)
∫

G

[1− g(1− z/k)]τk(x, π, dg), 0 ≤ z ≤ k,(2.6)

ϕk(x, f) =
∫

M0

ζk(x, π, 〈π, f〉)τ(x, dπ).(2.7)

Now we assume the following conditions:
(1) For each l > 0, the sequence φk(x, z) is uniformly Lipschitz in z on E × [0, l];
(2) For each l > 0, φk(x, z) → φ(x, z) uniformly on E × [0, l];
(3) For each l > 0, the sequence ζk(x, π, z) is uniformly Lipschitz in z on E×M0×[0, l];
(4) For each l > 0, ζk(x, π, z) → ζ(x, π, z) uniformly on E ×M0 × [0, l].
Using the results of [3] one shows that φ and ζ have representations

(2.8) φ(x, z) = b(x)z + c(x)z2 +
∫ ∞

0

(e−zu − 1 + zu)m(x, du), z ≥ 0,

(2.9) ζ(x, π, z) = d(x, π)z +
∫ ∞

0

(1− e−zu)n(x, π, du), z ≥ 0,

where c ≥ 0, d ≥ 0 and b are bounded Borel functions, m and n are kernels from E and
from E ×M0 to (0,∞), respectively, such that

∫ ∞

0

u ∧ u2m(·,du) and
∫ ∞

0

u n(·, π,du)
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are bounded. Conversely, to any φ and ζ given by (2.8) and (2.9) there correspond
sequences φk and ζk in forms (2.5) and (2.6), respectively, such that (1) – (4) are
satisfied; see [4]. Let

(2.10) ϕ(x, f) =
∫

M0

ζ(x, π, 〈π, f〉)τ(x, dπ).

Under hypotheses (1) – (4), it can be proved that w
(k)
t (x, f) and kv

(k)
t (x, f) converge

boundedly and uniformly on each set [0, l]×E×B(E)+a of (t, x, f) to the unique positive
solution to the equation

(2.11) wt(x) +
∫ t

0

Πx[φ(ξs, wt−s(ξs))− ϕ(ξs, wt−s)]ds = Πxf(ξt), t ≥ 0.

Then we have

Theorem For (ξ, φ, ϕ) as the above, there exists a Markov process X = (Xt, Pµ) on
M with transition probabilities defined by

(2.12) Pµ exp〈Xt,−f〉 = exp〈µ,−wt〉, µ ∈ M, f ∈ B(E)+, t ≥ 0,

where wt(x) is given by (2.11).

We may call X a (ξ, φ, ϕ)-superprocess. In particular, if bk(x) = 0 (k = 1, 2, · · · ), the
randomness of the environments disappears and ϕ = lim ϕk = 0. In this case, (2.11)
degenerates to the familiar equation; see [1,5]. In the general case, since ϕ(ξs, wt−s)
depends on the values of wt−s outside ξs, one cannot write it into φ(ξs, wt−s(ξs)). For
this reason, equation (2.11) is essentially more general than the equation we met before.
This observation might serve as the base of a probability approach to some nonlinear
boundary value problems. Moreover, using this model we may deduce the existence of
a class of multitype measure-valued branching processes generalizing the results of [2],
which will be discussed elsewhere.
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