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Abstract. Starting from the cumulant semigroup of a measure-valued branching pro-
cess, we construct the transition probabilities of some Markov process Y (β) = (Y (β)

t , t ∈
R), which we call a measure-valued branching process with discrete immigration of
unit β. The immigration of Y (β) is governed by a Poisson random measure ρ on the
time-distribution space and a probability generating function h, both depending on β.
It is shown that, under suitable hypotheses, Y (β) approximates to a Markov process
Y = (Yt, t ∈ R) as β → 0+. The latter is the one we call a measure-valued branching
process with immigration. The convergence of branching particle systems with immi-
gration is also studied.
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1. Introduction

Let M be the totality of finite measures on a measurable space (E, E). Suppose that
X = (Xt, t ∈ R) is a Markov process in M with transition function P (r, µ; t, dν). X is
called a measure-valued branching process (MB-process) if

P (r, µ1 + µ2; t, ·) = P (r, µ1; t, ·) ∗ P (r, µ2; t, ·), µ1, µ2 ∈ M, r ≤ t, (1.1)

where “∗” denotes the convolution operation [cf. Dawson (1977), Dawson and Ivanoff
(1978), Watanabe (1968), etc]. When E is reduced to one point, X takes values in
R+ := [0,∞) and is called a continuous state branching process (CB-process).
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Continuous state branching processes with immigration (CBI-processes) were first in-
troduced by Kawazu and Watanabe (1971). Several authors have also studied measure-
valued branching processes with immigration (MBI-processes); see Dynkin (1991ab),
Konno and Shiga (1988), etc.

In the present paper, we study a general class of MBI-processes that covers the
models of the previous authors and can be regarded as the measure-valued counterpart
of the one of CBI-processes proposed by Kawazu and Watanabe. Section 2 contains
some preliminaries. The general definition for an MBI-process is given in section 3,
followed by the model of a measure-valued branching process with discrete immigration
(MBDI-process). The heuristic meanings of the latter are clear. It is shown that the
MBI-process is in fact an approximation for the MBDI-process with high rate and small
unit of immigration. In section 4, we study the convergence of branching particle systems
with immigration to MBI-processes. A branching system of particles with immigration
is not an MBDI-process in the terminology of this paper. The concluding section 5
contains a brief discussion of MBI-processes with σ-finite values whose study can be
reduced to that of the class with finite values studied in sections 3 and 4.

2. Preliminaries

2.1. We first introduce some notation. If F is a topological space, then B(F ) denotes
the σ-algebra of F generated by all open sets, and

B(F ) = { bounded B(F )-measurable functions on F },
C(F ) = {f : f ∈ B(F ) is continuous },
B(F )a = {f : f ∈ B(F ) and ‖f‖ ≤ a} for a ≥ 0.

Here “‖ · ‖”denotes the supremum norm. In the case F is locally compact,
C0(F ) = {f : f ∈ C(F ) vanishes at infinity }.

The subsets of nonnegative members of the function spaces are denoted by the super-
script “+”, and those of strictly positive members by “++”; e.g., B(F )+, C(F )++. If
F is a metric space, then D(R+, F ) stands for the space of cadlag functions from R+ to
F equipped with the Skorohod topology. Finally, δx denotes the unit mass concentrated
at x, and for a function f and a measure µ, 〈µ, f〉 =

∫
fdµ.

2.2. Suppose that E is a topological Lusin space, i.e., a homeomorph of a Borel subset
of some compact metric space. Let

M = { finite measures on (E,B(E)) },
M0 = {π : π ∈ M and π(E) = 1},
M1 = {σ : σ ∈ M is integer-valued },
Mk = {k−1σ : σ ∈ M1} for k = 2, 3, · · · .

We topologize M, and hence Mk, k = 0, 1, 2, · · · , with the weak convergence topology.
It is well known that M is locally compact and separable when E is a compact metric
space.
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The Laplace functional of a probability measure P on M is defined as

LP (f) =
∫

M

e−〈µ,f〉P (dµ), f ∈ B(E)+. (2.1)

P is said to be infinitely divisible if for each integer m > 0, there is a probability measure
Pm on M such that LP (f) = [LPm

(f)]m.
We say a functional w on B(E)+ belongs to the class W if it has the representation

w(f) =
∫∫

R+×M0

(
1− e−u〈π,f〉

) 1 + u

u
G(du, dπ), f ∈ B(E)+. (2.2)

where G is a finite measure on R+ × M0 and the value of the integrand at u = 0 is
defined as 〈π, f〉. The following result coincides with Theorem 1.2 of Watanabe (1968)
since (E,B(E)) is isomorphic to a compact metric space with the Borel σ-algebra.

Proposition 2.1. A probability measure P on M is infinitely divisible if and only if
− log LP (·) ∈ W. Q.E.D.

A family of operators W r
t : f 7→ wr

t (·, f) (r ≤ t ∈ R) on B(E)+ is called a cumulant
semigroup provided

2.A) for every fixed r ≤ t and x, wr
t (x, ·) belongs to W;

2.B) for all r ≤ s ≤ t, W r
s W s

t = W r
t and W r

r f ≡ f.
We say the cumulant semigroup is homogeneous if W r

t = Wt−r only depends on the
difference t − r ≥ 0. A homogeneous cumulant semigroup Wt, t ≥ 0, is called a Ψ -
semigroup provided E is a compact metric space and Wt preserves C(E)++ for all
t ≥ 0[cf. Watanabe (1968)].

2.3. Definition 2.2. Suppose that X = (Xt, Pr,µ) is an MB-process in the space M.
Let

wr
t (x) ≡ wr

t (x, f) = − log Pr,δx
exp〈Xt,−f〉. (2.3)

We say X is regular if for every f ∈ B(E)+ and r ≤ t, the function wr
t (·) belongs to

B(E)+ and
Pr,µ exp〈Xt,−f〉 = exp〈µ,−wr

t 〉, µ ∈ M. (2.4)

Here Pr,µ denotes the conditional expectation given Xr = µ.

An easy application of Proposition 2.1 gives the following

Proposition 2.3. Formula (2.4) defines the transition probabilities of a regular MB-
process X = (Xt, Pr,µ) if and only if W r

t : f 7→ wr
t is a cumulant semigroup. Q.E.D.
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If Wt : f 7→ wt is a homogeneous cumulant semigroup, then

Pµ exp〈Xt,−f〉 = exp〈µ,−wt〉 (2.5)

determines the transition probabilities of a homogeneous MB-process X = (Xt, Pµ). In
the case E is a compact metric space, Watanabe (1968) showed that a homogeneous
MB-process is a Feller process if and only if it is regular and the corresponding cumulant
semigroup is a Ψ -semigroup.

2.4. A special form of the MB-process is the “superprocess” that arises as the high
density limit of a branching particle system. Suppose that

2.C) ξ = (Ω,F ,Fr
t , ξt(ω),Πr,x) is a Markov process in the space E with right

continuous sample paths and Borel measurable transition probabilities, i.e., for every
f ∈ B(E) and t ∈ R the function 1{r≤t}Πr,xf(ξt) is measurable in (r, x);

2.D) K = K(ω, t) is a continuous additive functional of ξ such that sup
ω
|K(ω, t)| < ∞

for every t ∈ R;
2.E) φ = φs(x, λ) is a B(R× E ×R+)-measurable function given by

φs(x, λ) = bs(x)λ + cs(x)λ2 +
∫ ∞

0

(
e−λu − 1 + λu

)
ms(x, du),

where cs(x) is nonnegative, ms(x, ·) is carried by (0,∞), and the function

|bs(x)|+ cs(x) +
∫ ∞

0

u ∧ u2ms(x, du)

of (s, x) is bounded on R× E.
A regular MB-process X = (Xt, Pr,µ) is called a (ξ,K, φ)-superprocess if it has the

cumulant semigroup f 7→ wr
t determined by the evolution equation

wr
t (x) + Πr,x

∫ t

r

φs(ξs, w
s
t (ξs))K(ds) = Πr,xf(ξt), r ≤ t. (2.6)

The existence and the uniqueness of the solution to the above equation have been proved
by Dynkin (1991ab). Note that the hypothesis

∫
u ∧ u2m(ds) < ∞ makes things work

only for the MB-processes with finite first moments. [Dynkin also assumed bs(x) ≥ 0
for 2.E), but this restriction is not essential; see section 4 of this paper.]

3. MBI-processes

3.1. Definition 3.1. Let E be a topological Lusin space. Suppose that
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3.A) W r
t : f 7→ wr

t (r ≤ t ∈ R) is a cumulant semigroup such that for every f ∈
B(E)+ and u ≤ t ∈ R, the function wr

t (x) of (r, x) restricted to [u, t] × E belongs to
B([u, t]× E)+;

3.B) H is a measure on R×M0 such that H([u, t]×M0) < ∞ for every u ≤ t ∈ R;
3.C) ψs(π, λ) is a B(R×M0 ×R+)-measurable function given by

ψs(π, λ) = ds(π)λ +
∫ ∞

0

(1− e−λu)ns(π, du), s ∈ R, π ∈ M0, λ ∈ R+,

where ds(π) is nonnegative, ns(π, ·) is carried by (0,∞), and

sup
s,π

[
ds(π) +

∫ ∞

0

1 ∧ u ns(π, du)
]

< ∞.

A Markov process Y = (Yt, Qr,µ) in the space M is called an MBI-process with param-
eters (W,H,ψ) if

Qr,µ exp〈Yt,−f〉

=exp




−〈µ,wr

t 〉 −
∫∫

(r,t]×M0

ψs(π, 〈π, ws
t 〉)H(ds, dπ)





(3.1)

for f ∈ B(E)+, µ ∈ M and r ≤ t.

Remark 3.2. i) That the right hand side of (3.1) is indeed a Laplace transform follows
once we observe that the functional is positive definite on semigroup B(E)+. [See Berg
et al. (1984) and Fitzsimmons (1988) for details on positive definite functionals.] This
fact also follows from the proof of Theorem 3.5 in paragraph 3.3.

ii) We call the MBI-process defined by (3.1) a (ξ,K, φ, H, ψ)-superprocess if the cor-
responding cumulant semigroup f 7→ wr

t is determined by equation (2.6). Dynkin
(1991ab) has studied the (ξ, K, φ, H, ψ)-superprocess in the case where H is carried by
R× {δx : x ∈ E} and ψs(π, λ) ≡ λ.

A time homogeneous MBI-process Y = (Yt, Qµ) is determined by three parameters
(W,η, ψ) :

Qµ exp〈Yt,−f〉

=exp
{
−〈µ,wt〉 −

∫ t

0

ds

∫

M0

ψ(π, 〈π,ws〉)η(dπ)
}

, (3.2)

where Wt : f 7→ wt is a homogeneous cumulant semigroup, η is a finite measure on M0,
and ψ = ψ(π, λ), given by 3.C), does not depend on s. Note that if Wt is a strongly
continuous Ψ -semigroup on C(E)++, then the process Y has a strongly continuous
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Feller semigroup on C0(M), so it has a version in D(R+,M) [see, for example, Ethier
and Kurtz (1986)].

Example 3.3. When E is reduced to one point, the MBI-process takes values in R+

and is called a CBI-process. In this case (3.2) becomes

Qµe−zYt = exp
{
−µwt −

∫ t

0

ψ(ws)ds

}
, z ≥ 0, µ ≥ 0, t ≥ 0. (3.3)

Kawazu and Watanabe (1971) showed that if the process Y is stochastically continuous
for every Qµ, then wt satisfies

dwt

dt
= −φ(wt), w0 = z, (3.4)

for a function φ with the representation

φ(λ) = bλ + cλ2 +
∫ ∞

0

(
e−λu − 1 +

λu

1 + u2

)
m(du), (3.5)

where c ≥ 0 and
∫∞
0

1 ∧ u2m(du) < ∞.

3.2. An MBDI-process Y = (Yt, t ∈ R) depends on four parameters (W,H, h, β), where
W and H are given by 3.A and B), β is a positive number, and

3.D) hs(π, z) =
∞∑

i=0

qs
i (π)zi, for every (s, π) ∈ R × M0, is a probability generating

function with all qi = qs
i (π) measurable in (s, π).

Such a process is characterized by the following properties:
(i) the evolution of the branch (Xt, t ≥ r) of Y with Xr = µ a.s. is determined by

the Laplace functional (2.4);
(ii) the entry times and entry distributions of the immigrants are governed by a

Poisson random measure ρ on the product space R×M0 with intensity H(ds, dπ);
(iii) the generating function hs(π, ·) describes the number of drops, each of those

having mass β, entering E at time s with distribution π(dx).
We refer to β as the immigration unit. Suppose that different drops of the immigrants

land in E independently of each other and that the immigration is independent of the
inner population. Then the MBDI-process is a Markov process in space M. Let Qr,µ

denote the conditional law of (Yt, t ≥ r) given Yr = µ, and let D denote the distribution
of the random measure ρ on space

{
ζ ≡

ζ(R×M0)∑
α=1

δ(sα,πα) : (sα, πα) ∈ R×M0

}
.
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Properties (i)-(iii) lead through a calculation to the Laplace functional:

Qr,µ exp〈Yt,−f〉

= exp〈µ,−wr
t 〉

∫
D(dζ)

∏

r<sα≤t

∞∑

i=0

qsα
i (πα)

〈
πα, exp{−βwsα

t }〉i

= exp〈µ,−wr
t 〉

∫
D(dζ) exp

∫∫

(r,t]×M0

log hs(π, 〈π, e−βws
t 〉)ζ(ds, dπ)

= exp




−〈µ,wr

t 〉 −
∫∫

(r,t]×M0

[
1− hs(π, 〈π, e−βws

t 〉)
]
H(ds, dπ)





. (3.6)

3.3. Consider a sequence of MBDI-processes Y (k) = (Y (k)
t , Q

(k)
r,µ) with parameters

(W,αkH, hk, k−1), where αk ≥ 0, k = 1, 2, · · · . By (3.6) we have

Q(k)
r,µ exp〈Y (k)

t ,−f〉

=exp




−〈µ,wr

t 〉 −
∫∫

(r,t]×M0

ψs
k(π, 〈π, ws

t (k)〉)H(ds, dπ)





, (3.7)

where
ws

t (k, x) = k
[
1− exp{−k−1ws

t (x)}] , (3.8)

and
ψs

k(π, λ) = αk [1− hs
k(π, 1− λ/k)] , 0 ≤ λ ≤ k. (3.9)

Since ws
t (k) → ws

t as k →∞, it is natural to assume the sequence ψk to converge if one
hopes to obtain Yt = lim

k→∞
Y

(k)
t in some sense.

Lemma 3.4. i) Suppose that
3.E) ψs

k(π, λ) → ψs(π, λ) (k →∞) boundedly and uniformly on the set R×M0× [0, l]
of (s, π, λ) for each l ≥ 0.
Then ψs(π, λ) has the representation 3.C).

ii) To each function ψ given by 3.C) there corresponds a sequence in form (3.9) such
that

ψs
k(π, λ) = ψs(π, λ), s ∈ R, π ∈ M0, 0 ≤ λ ≤ k.

Proof. Assertion i) was proved in Li (1991). To get ii) one can set
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αk = 1 + sup
s,π

[
kds(π) +

∫ ∞

0

(1− e−ku)ns(π, du)
]

and

hs
k(π, z) = 1 + kα−1

k ds(π)(z − 1) + α−1
k

∫ ∞

0

(eku(z−1) − 1)ns(π, du). Q.E.D.

Condition 3.E) usually implies αk →∞. Thus the following theorem shows that the
MBI-process is an approximation for the MBDI-process with high rate and small unit
of immigration.

Theorem 3.5. i) Let Y (k) be as above, and let Y be the MBI-process defined by (3.1).
If 3.E) holds, then for every µ ∈ M, r ≤ t1 < · · · < tn ∈ R and a ≥ 0,

Q(k)
r,µ exp

n∑

i=1

〈Y (k)
ti

,−fi〉 → Qr,µ exp
n∑

i=1

〈Yti ,−fi〉 (k →∞) (3.10)

uniformly in f1, · · · , fn ∈ B(E)+a .
ii) For each MBI-process Y defined by (3.1), there is a sequence of MBDI-processes

Y (k) such that (3.10) is satisfied.

Proof. It suffices to show assertion i) since ii) follows immediately from i) and Lemma
3.4. We do this by induction in n.

Fix a ≥ 0 and r ≤ t ∈ R. By 3.A) and (3.8), ws
t (k, x, f) → ws

t (x, f) (k → ∞)
boundedly and uniformly in (s, x, f) ∈ [r, t]× E ×B(E)+a . Thus 3.E) yields

∫∫

(r,t]×M0

ψs
k(π, 〈π, ws

t (k)〉)H(ds, dπ)

→
∫∫

(r,t]×M0

ψs(π, 〈π, ws
t 〉)H(ds, dπ) (k →∞) (3.11)

uniformly in f ∈ B(E)+a . To see that the right hand side of (3.1) is indeed the Laplace
functional of a probability measure we appeal to the following

Lemma 3.6 (Kallenberg,1983; Dynkin,1991a). Suppose that Pk, k = 1, 2, · · · , are prob-
ability measures on M. If LPk

(f) → L(f) (k → ∞) uniformly in f ∈ B(E)+a for every
a ≥ 0, then L is the Laplace functional of a probability measure on M. Q.E.D.

Then it follows immediately that (3.1) really defines the transition probabilities of a
Markov process Y in space M and that (3.10) holds for n = 1.
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Now assuming (3.10) is true for n = m, we show the fact for n = m + 1. Let
r ≤ t1 < · · · < tm+1 ∈ R and f1, · · · , fm+1 ∈ B(E)+. Then

Q(k)
r,µ exp

m+1∑

i=1

〈Y (k)
ti

,−fi〉

=Q(k)
r,µQ(k)

r,µ

{
m+1∏

i=1

exp〈Y (k)
ti

,−fi〉
∣∣∣∣Y

(k)
t , t ≤ tm

}

=Q(k)
r,µ

m∏

i=1

exp〈Y (k)
ti

,−fi〉Q(k)
r,µ

{
exp〈Y (k)

tm+1
,−fm+1〉

∣∣Y (k)
tm

}

=Q(k)
r,µ

m∏

i=1

exp〈Y (k)
ti

,−fi〉 · exp〈Y (k)
tm

,−wtm
tm+1

(fm+1)〉

· exp




−

∫∫

(tm,tm+1]×M0

ψs
k

(
π, 〈π, ws

tm+1
(k, fm+1)〉

)
H(ds, dπ)





=Q(k)
r,µ

m−1∏

i=1

exp〈Y (k)
ti

,−fi〉 · exp〈Y (k)
tm

,−fm − wtm
tm+1

(fm+1)〉

· exp




−

∫∫

(tm,tm+1]×M0

ψs
k

(
π, 〈π, ws

tm+1
(k, fm+1)〉

)
H(ds, dπ)





.

By (3.11) and the induction hypothesis we have

lim
k→∞

Q(k)
r,µ exp

m+1∑

i=1

〈Y (k)
ti

,−fi〉

=Qr,µ

m−1∏

i=1

exp〈Yti ,−fi〉 · exp〈Ytm ,−fm − wtm
tm+1

(fm+1)〉

· exp




−

∫∫

(tm,tm+1]×M0

ψs
(
π, 〈π, ws

tm+1
(fm+1)〉

)
H(ds, dπ)





=Qr,µ exp
m+1∑

i=1

〈Yti ,−fi〉,

and the convergence is uniform in f1, · · · , fm+1 ∈ B(E)+a . Q.E.D.
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If E is a compact metric space, then the n-dimensional product topological space
Mn = {(µ1, · · · , µn) : µ1, · · · , µn ∈ M} is locally compact and separable, and the
function class

F (µ1, · · · , µn) = exp
n∑

i=1

〈µi,−fi〉, fi ∈ C(E)++,

is convergence determining. Thus (3.10) implies that Y (k) converges to Y in finite
dimensional distributions.

3.4. In this paragraph, we prove a result on the weak convergence in space D(R+,M)
of homogeneous MBDI-processes. Let Y (k) = (Y (k)

t , t ≥ 0) be a sequence of MBDI-
processes with parameters (W (k), αkηk, hk, k−1), where for each k,

− W
(k)
t : f 7→ w

(k)
t is a strongly continuous Ψ -semigroup on C(E)++;

− αk is a positive number;
− ηk is a finite measure on M0;
− hk(π, ·), for every π ∈ M0, is a probability generating function with hk(π, z)

jointly continuous in (π, z).
The transition probabilities Q

(k)
µ of Y (k) are defined by

Q(k)
µ exp〈Y (k)

t ,−f〉

=exp
{
−〈µ,w

(k)
t 〉 −

∫ t

0

ds

∫

M0

ψk(π, 〈π, ws(k)〉)ηk(dπ)
}

, (3.12)

with
wt(k, x) = k

[
1− exp{−k−1w

(k)
t (x)}

]
(3.13)

and
ψk(π, λ) = αk [1− hk(π, 1− λ/k)] , 0 ≤ λ ≤ k. (3.14)

Clearly Y (k) has a strongly continuous Feller semigroup on C0(M), so we can assume
it has sample paths in D(R+,M).

Theorem 3.7. Let Wt : f 7→ wt(f) be a strongly continuous Ψ -semigroup on C(E)++,
and let Y = (Yt, t ≥ 0) be an MBI-process in D(R+,M) with parameters (W,η, ψ) with
initial distribution Λ. Suppose that

3.F) for every f ∈ C(E)++, w
(k)
t (x, f) → wt(x, f) (k → ∞) uniformly in (t, x) on

each set [0, l]× E;
3.G) ηk → η weakly;
3.H) ψk(π, λ) → ψ(π, λ) uniformly in (π, λ) on each set M0 × [0, l];
3.I) Y

(k)
0 has limiting distribution Λ.

Then Y (k) converges weakly to Y in the space D(R+,M) as k →∞.
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Proof. By Theorem 2.5 of Ethier and Kurtz (1986, p167), it is sufficient to prove

sup
µ∈M

∣∣∣Q(k)
µ exp〈Y (k)

t ,−f〉 −Qµ exp〈Yt,−f〉
∣∣∣ → 0 (k →∞) (3.15)

for every fixed f ∈ C(E)++ and t ≥ 0. Let 2a = inf
x

wt(x). By 3.F), there is a k1 such

that w
(k)
t ≥ a for all k > k1.

Suppose 0 < ε < 1. If µ(E) ≥ a−1 log ε−1, we have
∣∣∣Q(k)

µ exp〈Y (k)
t ,−f〉 −Qµ exp〈Yt,−f〉

∣∣∣

≤ e−〈µ,w
(k)
t 〉 + e−〈µ,wt〉 < 2ε for k > k1.

If µ(E) < a−1 log ε−1, then
∣∣∣Q(k)

µ exp〈Y (k)
t ,−f〉 −Qµ exp〈Yt,−f〉

∣∣∣

≤
∣∣∣〈µ,w

(k)
t 〉 − 〈µ, wt〉

∣∣∣

+
∣∣∣∣
∫ t

0

ds

∫

M0

ψk(π, 〈π, ws(k)〉)ηk(dπ)−
∫ t

0

ds

∫

M0

ψ(π, 〈π,ws〉)η(dπ)
∣∣∣∣

≤a−1‖w(k)
t − wt‖ log ε−1 + ε1(k) + ε2(k) + ε3(k),

where

ε1(k) =
∫ t

0

ds

∫

M0

|ψk(π, 〈π,ws(k)〉)− ψ(π, 〈π, ws(k)〉)|ηk(dπ),

ε2(k) =
∫ t

0

ds

∫

M0

|ψ(π, 〈π, ws(k)〉)− ψ(π, 〈π, ws〉)|ηk(dπ),

ε3(k) =
∫ t

0

∣∣∣∣
∫

M0

ψ(π, 〈π,ws〉)ηk(dπ)−
∫

M0

ψ(π, 〈π, ws〉)η(dπ)
∣∣∣∣ ds.

By 3.F), there exits k2 such that

a−1‖w(k)
t − wt‖ log ε−1 < ε for k > k2.

3.F) also implies wt(k, x) → wt(x) boundedly and uniformly on each set [0, l]×E. Then
3.G) and 3.H) yield the existence of k3 such that ε1(k) + ε2(k) < ε for k > k3. By 3.G)
and the dominated convergence theorem there is a k4 such that ε3(k) < ε for k > k4.
Thus (3.15) follows. Q.E.D.

4. Particle systems and superprocesses
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4.1. As usual, let E be a topological Lusin space. Suppose we have ξ, K, H and h
given by 2.C), 2.D), 3.B) and 3.D) respectively. Assume that

4.A) gs(x, z) =
∞∑

i=0

ps
i (x)zi, for every (s, x) ∈ R × E, is a probability generating

function with the ps
i (x) and

∞∑
i=1

ips
i (x) belonging to B(R× E)+.

A branching particle system with immigration with parameters (ξ, K, g, H, h) is de-
scribed as follows:

(i) The particles in E move according to the law of ξ.
(ii) For a particle which is alive at time r and follows the path (ξt, t ≥ r), the

conditional probability of survival during the time interval [r, s) is e−K(r,s).
(iii) When a particle dies at time s at point x ∈ E, it gives birth to a random number

of offspring at the death site according to the generating function gs(x, ·).
(iv) The entry times and distributions of new particles immigrating to E are governed

by a Poisson random measure with intensity H(ds, dπ).
(v) The generating function hs(π, ·) gives the distribution of the number of new

particles entering E at time s with distribution π.
For t ∈ R, let Yt(B) be the number of particles of the system in set B ∈ B(E) at

time t. Under standard independence hypotheses, (Yt, t ∈ R) form a Markov process in
space M1. [Note that the state space of the particle system is different from that of the
MBDI-process.] The rigorous construction of the process can be reduced to constructing
a branching particle system with parameters (ξ,K, g) generated by a single particle,
which was given in Dynkin (1991a). The transition probabilities Qr,σ of (Yt, t ∈ R) are
determined by the Laplace functionals [cf. (3.6)]:

Qr,σ exp〈Yt,−f〉

=exp




−〈σ, vr

t 〉 −
∫∫

(r,t]×M0

[
1− hs(π, 〈π, e−vs

t 〉)
]
H(ds, dπ)





,

f ∈ B(E)+, σ ∈ M1, r ≤ t, (4.1)

where vr
t (x) ≡ vr

t (x, f) is the unique positive solution of

e−vr
t (x) =Πr,xe−f(ξt)−K(r,t)

+ Πr,x

∫ t

r

e−K(r,s)gs(ξs, e
−vs

t (ξs))K(ds). (4.2)

This equation arises as follows: If we start one particle at time r at point x, this
particle moves following a path of ξ and does not branch before time t with probability
e−K(r,t) [first term on the right hand side], or it splits at time s ∈ (r, t] with probability
e−K(r,s)K(ds) according to gs(ξs, ·) and all the offspring evolve independently after birth
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in the same fashion [second term]. By Lemma 2.3 of Dynkin (1991a), (4.2) is equivalent
to

Πr,xe−f(ξt)−e−vr
t (x)

=Πr,x

∫ t

r

[
e−vs

t (ξs) − gs(ξs, e
−vs

t (ξs))
]
K(ds). (4.3)

4.2. Let Y (k) = {Yt(k), t ∈ R} be a sequence of branching particle systems with
immigration with parameters (ξ, γkK, gk, αkH, hk), where αk ≥ 0, γk ≥ 0, k = 1, 2, · · · .
Then

Y (k) = {Y (k)
t := k−1Yt(k), t ∈ R}

is a Markov process in space Mk with transition probabilities Q
(k)
r,σk determined by

Q(k)
r,σk

exp〈Y (k)
t ,−f〉

=exp




−〈σk, kvr

t (k)〉 −
∫∫

(r,t]×M0

ψs
k(π, 〈π, ws

t (k)〉)H(ds, dπ)





,

f ∈ B(E)+, σk ∈ Mk, r ≤ t, (4.4)

where ψs
k(π, λ) is given by (3.9), vr

t (k, x) ≡ vr
t (k, x, f) satisfies

Πr,xe−f(ξt)/k−e−vr
t (k,x)

=Πr,x

∫ t

r

γk

[
e−vs

t (k,ξs) − gs
k(ξs, e

−vs
t (k,ξs))

]
K(ds) (4.5)

and
ws

t (k, x) ≡ ws
t (k, x, f) = k[1− e−vs

t (k,x,f)]. (4.6)

Let Q
(k)
r,µk denote the conditional law of (Y (k)

t , t ≥ r) given Y
(k)
r = k−1σ(kµ), where

µ belongs to M and σ(kµ) is a Poisson random measure with intensity kµ. Then

Q(k)
r,µk

exp〈Y (k)
t ,−f〉

=exp




−〈µ,wr

t (k)〉 −
∫∫

(r,t]×M0

ψs
k(π, 〈π, ws

t (k)〉)H(ds, dπ)





. (4.7)

It is easy to check that wr
t (k) satisfies

wr
t (k, x) + Πr,x

∫ t

r

φs
k(ξs, w

s
t (k, ξs))K(ds) = Πr,xk[1− e−f(ξt)/k] (4.8)
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with
φs

k(x, λ) = kγk [gs
k(x, 1− λ/k)− (1− λ/k)] , 0 ≤ λ ≤ k. (4.9)

For the sequence (4.9) we note

bk = sup
s,x

∣∣∣∣
d

dλ
φs

k(x, λ)
∣∣∣∣
λ=0

. (4.10)

Lemma 4.1. i) Suppose that
4.B) φs

k(x, λ) → φs(x, λ) (k →∞) uniformly on each set R× E × [0, l];
4.C) φs(x, λ) is Lipschitz in λ uniformly on each set R× E × [0, l].

Then φs(x, λ) has the representation 2.E).
ii) If φs(x, λ) is given by 2.E), then it satisfies 4.C) and there is a sequence φs

k(x, λ)
in form (4.9) such that 4.B) holds and

d

dλ
φs

k(x, λ)
∣∣
λ=0

= bs(x), s ∈ R, x ∈ E. (4.11)

Proof. Assertion i) follows easily by a result of Li (1991), so we shall prove ii) only.
Suppose that φs(x, λ) is given by 2.E). 4.C) holds clearly. Let

γ1,k = 1 + sup
s,x

∫ ∞

0

u(1− e−ku)ms(x, du)

and
gs
1,k(x, z) = z + k−1γ−1

1,k

∫ ∞

0

[
eku(z−1) − 1 + ku(1− z)

]
ms(x, du).

It is easy to check that

φs
1,k(x, λ) : = kγ1,k

[
gs
1,k(x, 1− λ/k)− (1− λ/k)

]

=
∫ ∞

0

(e−λu − 1 + λu)ms(x, du).

Let
b = sup

s,x
|bs(x)|, c = sup

s,x
cs(x).

Assuming γ2,k := b + 2kc > 0 and setting

gs
2,k(x, z) =





z + γ−1
2,k

[
bs(x)(1− z) + kcs(x)(1− z)2

]
if bs(x) ≥ 0

γ−1
2,k

[
1
2b(1 + z2) + 1

2bs(x)(1− z2)

+kcs(x)(1− z)2 + 2kcz
]

if bs(x) < 0,
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we have

φs
2,k(x, λ) : = kγ2,k

[
gs
2,k(x, 1− λ/k)− (1− λ/k)

]

=
{

bs(x)λ + cs(x)λ2 if bs(x) ≥ 0

bs(x)λ + cs(x)λ2 + (2k)−1[b− bs(x)]λ2 if bs(x) < 0.

Finally we let

γk = γ1,k + γ2,k and gk = γ−1
k (γ1,kg1,k + γ2,kg2,k).

Then the sequence φs
k(x, λ) defined by (4.9) is equal to φs

1,k(x, λ)+φs
2,k(x, λ) that satisfies

4.B) and (4.11). Q.E.D.

Lemma 4.2. If conditions 4.B and C) are fulfilled and if
4.D) sup

k
bk < ∞,

then wr
t (k, x, f), and hence kvr

t (k, x, f), converge boundedly and uniformly on each set
[u, t]×E ×B(E)+a of (r, x, f) to the unique bounded positive solution of equation (2.6).

Proof. Since − d
dλφs

k(x, λ) ≤ bk, (4.8) implies that

wr
t (k, x) ≤ ‖f‖+ bkΠr,x

∫ t

r

ws
t (k, ξs)K(ds). (4.12)

By the generalized Gronwall’s inequality proved by Dynkin (1991a), we get

wr
t (k, x) ≤ ‖f‖Πr,xebkK(r,t). (4.13)

Using (4.8) and (4.13), the convergence of wr
t (k) is proved in the same way as Lemma

3.3 of Dynkin (1991a). The convergence of kvr
t (k) follows by (4.6). Q.E.D.

Based on Lemmas 4.1 and 4.2, the following result can be obtained similarly as
Theorem 3.5.

Theorem 4.3. i) Let Y (k) be the sequence of renormalized branching particle systems
with immigration defined by (4.7), and let Y be the (ξ, K, φ,H, ψ)-superprocess. Assume
that conditions 3.E) and 4.B,C,D) are satisfied. Then for every µ ∈ M, r ≤ t1 < · · · <
tn and a ≥ 0,

Q(k)
r,µk

exp
n∑

i=1

〈Y (k)
ti

,−fi〉 → Qr,µ exp
n∑

i=1

〈Yti ,−fi〉 (k →∞) (4.14)

uniformly in f1, · · · , fn ∈ B(E)+a .
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ii) To each (ξ,K, φ,H, ψ)-superprocess Y there corresponds a sequence of branching
particle systems with immigration Y (k) satisfying (4.14). Q.E.D.

Suppose that each particle in the kth system is weighted k−1. (4.14) states that the
mass distribution of the particle system approximates to the process Y when the single
mass becomes small and the particle population becomes large. Typically, γk →∞ and
αk → ∞, which mean that the rates of the branching and the immigration get high.
It is also possible to prove a result on the weak convergence in space D(R+,M) of the
branching system of particles with immigration. The discussions are similar to those of
section 3 and left to the reader.

5. Transformations of the measure space

By transformations of the state space M, large classes of MBI-processes that may take
infinite (but σ-finite) values can be obtained from the MBI-processes with finite values
that we have discussed in sections 3 and 4.

For ρ ∈ B(E)++ we let
Mρ = {µ : µ is a measure on (E,B(E)) such that 〈µ, ρ〉 < ∞},
Mρ

0 = {τ : τ ∈ Mρ and 〈τ, ρ〉 = 1}.
Suppose that W r

t : f 7→ wr
t (f) is a cumulant semigroup on B(E)+ such that

5.A) for every f ∈ B(E)+ and u ≤ t ∈ R, the function ρ−1(x)wr
t (x, ρf) of (r, x)

restricted to [u, t]× E belongs to B([u, t]× E)+.

We define the operators Ŵ r
t : f 7→ ŵr

t (f) on B(E)+ by

ŵr
t (f) = ρ−1wr

t (ρf) (5.1)

[cf. El Karoui and Roelly-Coppoletta (1989)]. It is easy to see that Ŵ r
t , r ≤ t ∈ R,

also form a cumulant semigroup. If (Ŷt, t ∈ R) is an MBI-process in M with parameters
(Ŵ ,H, ψ) [Definition 3.1], then

Y = (Yt := ρ−1Ŷt, t ∈ R) (5.2)

is an MBI-process in the space Mρ with transition probabilities Qr,µ determined by

Qr,µ exp〈Yt,−f〉

=exp




−〈µ,wr

t 〉 −
∫∫

(r,t]×Mρ
0

ψs
ρ(τ, 〈τ, ws

t 〉)Hρ(ds, dτ)





,

f ∈ B(E)+, µ ∈ Mρ, r ≤ t, (5.3)

where
Hρ(ds, dτ) = H(ds, dρτ) and ψs

ρ(τ, λ) = ψs(ρτ, λ).
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Example 5.1. Suppose that 0 < β ≤ 1 and that Πt is the semigroup of the d-
dimensional Brownian motion. Then equation

wt +
∫ t

0

Πt−s(ws)1+βds = Πtf, t ≥ 0, (5.4)

defines a homogeneous cumulant semigroup Wt : f 7→ wt. For p > d, let ρ(x) =
(1 + |x|p)−1, x ∈ Rd, and let

Mp(Rd) = {µ : µ is a Borel measure on Rd such that 〈µ, ρ〉 < ∞}.
Iscoe (1986) showed that Wt satisfies condition 5.A). Assume 0 < θ ≤ 1 and λ ∈ Mp(Rd).
Then formula

Qµ exp〈Yt,−f〉 = exp
{
−〈µ,wt〉 −

∫ t

0

〈λ, ws〉θds

}
(5.5)

defines an MBI-process Y = (Yt, Qµ) in the space Mp(Rd). When β = θ = 1, Y has
continuous sample paths almost surely [in a suitable topology in Mp(Rd); see Konno
and Shiga (1988)].
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