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In this note, we give a necessary and sufficient condition for a continuous function σ(λ), λ ≥ 0, to
have the integral representation

σ(λ) =
n−1∑
i=0

aiλ
i +

∫ ∞
0

[
e−λu − 1− (1 + un)−1

n−1∑
i=1

(−λu)i

i!

]
(1− e−u)−nG(du), (0.1)

where n is a positive integer, ai are constants (i = 0, 1, · · · , n − 1), G is a finite measure on [0,∞) and
the value of the integrand at u = 0 is defined by continuity as (−λ)n/n!. Using this condition, we get the
general description of some characters of superprocesses.

1. Lemmas

Recall that the Laplace transform of a finite measure G on [0,∞) is defined as

θ(λ) =
∫ ∞

0

e−λuG(du), λ ≥ 0, (1.1)

which determines G uniquely.
Given a function θ(λ), λ ≥ 0, we define the difference operator ∆h by

∆hθ(λ) = θ(λ+ h)− θ(λ), λ ≥ 0, h ≥ 0. (1.2)

Let ∆m
h = ∆h · · ·∆h (m− 1 times). We have

∆m
h θ(λ) = (−1)m

m∑
i=0

(
m
i

)
(−1)iθ(λ+ ih). (1.3)

We say that θ is completely monotone if it satisfies

(−1)i∆i
hθ(λ) ≥ 0, λ ≥ 0, h ≥ 0, i = 0, 1, 2, · · · . (1.4)

1Project supported in part by the National natural Science Foundation.

1



The Bernstein polynomials of a continuous function f(s), 0 ≤ s ≤ 1, are given by

Bf,m(s) =
m∑

i=0

(
m
i

)
∆i

1/mf(0)si, 0 ≤ s ≤ 1,m = 1, 2, · · · . (1.5)

It is well-known that
Bf,m(s) → f(s) (1.6)

uniformly on [0, 1] as m→∞ (see [1]).

Lemma 1. A continuous function θ(λ), λ ≥ 0, is the Laplace transform of a finite measure G on
[0,∞) if and only if it is completely monotone.

Proof. The necessity is an immediate consequence of formula (1.3). Assume (1.4) holds. For fixed
a > 0, we let γa(s) = θ(a− as), 0 ≤ s ≤ 1. The complete monotonicity of θ implies

∆i
hγa(0) ≥ 0, i = 0, 1, · · · ,m, h = m−1.

Then the Bernstein polynomial Bγa,m(s) has non-negative coefficients, and the function Bγa,m(e−λ/a),
λ ≥ 0, is the Laplace transform of a finite measure Ga,m on [0,∞). By the continuity theorem [1], it
follows that the function

θ(λ) = lim
a→∞

lim
m→∞

Bγa,m(e−λ/a), λ ≥ 0,

is the Laplace transform of a finite measure G on [0,∞). Q.E.D.

Lemma 2. A continuous function η(λ), λ ≥ 0, is a polynomial of degree less than n if and only if
∆n

hη(0) = 0 for all h ≥ 0.

Proof. The necessity of the condition is obvious. Assume ∆n
hη(0) = 0, h ≥ 0. For fixed a > 0, let

ηa(s) = η(as), 0 ≤ s ≤ 1. Since
∆n

hηa(0) = 0, 0 ≤ h ≤ n−1,

the polynomials of ηa have degree less than n:

Bηa,m(s) =
n−1∑
i=0

b
(m)
i si, m = n, n+ 1, · · · .

Here the b(m)
i can be represented as the linear combinations of

Bηa,m(1/n), Bηa,m(2/n), · · · , Bηa,m(n/n).

By (1.6) the limits
lim

m→∞
b
(m)
i = bi, i = 0, 1, · · · , n− 1,

exist and ηa(s) =
∑n−1

i=0 bis
i, 0 ≤ s ≤ 1. Setting ai = a−1bi, we get

η(s) =
n−1∑
i=0

bis
i, 0 ≤ s ≤ a.

Clearly, this formula in fact holds for all λ ≥ 0. Q.E.D.

2. The Main Theorem

Theorem. A continuous function σ(λ), λ ≥ 0, has representation (0.1) if and only if for every c ≥ 0
the function

θc(λ) := (−1)n∆n
c σ(λ), λ ≥ 0, (2.1)
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is completely monotone.

Proof. If σ is given by (0.1), then by (1.3) we get

θc(λ) =
∫ ∞

0

e−λu(1− e−cu)n(1− e−u)−nG(du).

Thus θc is the Laplace transform of a finite measure on [0,∞), and by Lemma 1 θc is completely monotone.
Conversely, assume that θc is completely monotone. By Lemma 1 we have

θc(λ) =
∫ ∞

0

e−λuGc(du), λ ≥ 0, (2.2)

where Gc is a finite measure on [0,∞). From (1.3) and the relation

(−1)n∆n
1 θc(λ) = ∆n

1∆n
c σ(λ) = ∆n

c ∆n
1σ(λ) = (−1)n∆n

c θ1(λ)

it follows that ∫ ∞
0

e−λu(1− e−u)nGc(du) =
∫ ∞

0

e−λu(1− e−cu)nG(du),

where G = G1. Therefore

Gc(du) = (1− e−cu)n(1− e−u)−nG(du), 0 < u <∞. (2.3)

Let

σ0(λ) =
∫ ∞

0

[
e−λu − 1− (1 + un)−1

n−1∑
i=1

(−λu)i

i!

]
(1− e−u)−nG(du), (2.4)

The function η(λ) := σ(λ)− σ0(λ), λ ≥ 0, is continuous and

(−1)n∆n+1
c η = (−1)n∆c[∆n

c σ(λ)−∆n
c σ0(λ)]

= ∆c

[ ∫ ∞
0

e−λuGc(du)−
∫ ∞

0

e−λu(1− e−cu)n(1− e−u)−nG(du)
]

= ∆c[Gc({0})− cnG({0})] = 0.

By Lemma 2, η(λ) is a polynomial of degree less than n + 1, say η(λ) =
∑n

i=0 aiλ
i. By (2.1) and (2.4),

we have

n!an = ∆n
1η(λ) = ∆n

1σ(λ)−∆n
1σ0(λ)

= (−1)n

[
θ1(λ)−

∫ ∞
0

e−λuG(du)
]

= 0.

Therefore σ(λ) =
∑n−1

i=0 aiλ
i + σ0(λ). Q.E.D.

3. Corollaries

Let {gk} be a sequence of (possibly defective) probability generating functions, i.e.

gk(s) =
∞∑

i=0

p
(k)
i si, 0 ≤ s ≤ 1, (3.1)

where p(k)
i ≥ 0 and

∑∞
i=0 p

(k)
i ≤ 1. Let {αk} and {βk} be two sequences of non-negative numbers and

βk → 0+ as k → ∞. In the study of superprocesses, we sometimes need to consider function sequences
as follows:

φk(λ) := αk[gk(1− βkλ)− (1− βkλ)], 0 ≤ λ ≤ β−1
k , (3.2)
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ψk(λ) := αk[1− gk(1− βkλ)], 0 ≤ λ ≤ β−1
k . (3.3)

Using Theorem 1, we can give the general representations of the limit functions of (3.2) and (3.3). Some
special forms of Corollary 1 in the following have been achieved earlier by E.B. Dynkin and Z.B. Li.

Corollary 1. If the sequence (3.2) converges to a continuous function φ(λ), λ ≥ 0, then the limit
function has the representation

φ(λ) = a+ bλ+
∫ ∞

0

(
e−λu − 1 +

λu

1 + u2

)
(1− e−u)−2F (du), (3.4)

where a ≤ 0 and b are constants, and F is a finite measure on [0,∞). The value of the integrand at u = 0
is defined as λ2/2.

Proof. Clearly, (3.4) is the special case of (0.1) when n = 2. For c ≥ 0, we let θc(λ) = ∆2
cφ(λ). It is

easy to check that
∆2

cφk(λ) = αk∆2
cgk(1− βk·)(λ).

Since g(n)
k is a power series with non-negative coefficients, so is ∆m

h g
(n)
k for every m ≥ 1. In particular,

using (3.2) we have

(−1)n dn

dλn
∆2

cφk(λ) = αkβ
n
k ∆2

cg
(n)
k (1− βk·)(λ) ≥ 0.

By mean-value theorem, it is simple to show inductively that (−1)n∆n
h∆2

cφk(λ) ≥ 0. Letting k →∞ we
obtain (−1)n∆n

h∆2
cφ(λ) ≥ 0. That is, θc(λ) is a completely monotone function of λ ≥ 0. By Theorem 1,

φ(λ) has representation (3.4). Clearly, a = φ(0) = limk→∞ φk(0) ≤ 0. Q.E.D.

Corollary 2. If the sequence (3.3) converges to a continuous function ψ(λ), λ ≥ 0, then ψ has the
representation

ψ(λ) = d+
∫ ∞

0

(1− e−λu)(1− e−u)−1G(du), (3.5)

where d ≥ 0 is a constant, G is a finite measure on [0,∞), and the value of the integrand at u = 0 is
defined as λ.

Proof. This is similar to the proof of Corollary 1. Q.E.D.
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