
Published in: Acta Mathematicae Applicatae Sinica (English Series) 36 (2020), 2: 1–13.

Moments of continuous-state branching
processes with or without immigration 1

Lina Ji and Zenghu Li

School of Mathematical Sciences, Beijing Normal University,
Beijing 100875, People’s Republic of China

E-mails: jilina@mail.bnu.edu.cn, lizh@bnu.edu.cn

Abstract

For a positive continuous function f satisfying some standard conditions,
we study the f -moments of continuous-state branching processes with or
without immigration. The main results give criteria for the existence of the
f -moments. The characterization of the processes in terms of stochastic
equations plays an essential role in the proofs.
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1 Introduction

Branching processes in discrete state space were introduced as probabilistic models for
the stochastic evolution of populations. For the basic theory of those processes we refer to
Athreya and Ney (1972) and Harris (1965). Jǐrina (1958) defined continuous-state branch-
ing processes (CB-processes) in both discrete and continuous times. Those processes with
continuous times were obtained in Lamperti (1967a) as weak limits of rescaled discrete
branching processes. Lamperti (1967b) showed that they are in one-to-one correspon-
dence with spectrally Lévy processes via simple random time changes. Continuous-state
branching processes with immigration (CBI-processes) are more general population mod-
els taking into consideration the influence of the environments. They were introduced
by Kawazu and Watanabe (1971) as rescaled limits of discrete branching processes with
immigration; see also Aliev (1985). The approach of stochastic equations for CB- and
CBI-processes have been developed by Dawson and Li (2006, 2012), Fu and Li (2010) and
Li (2011) with some applications.

Moment properties play important roles in the study of limit theorems of branching
processes. The integer-moments for the processes can be easily represented thanks to the
simple forms of the generating functions or Laplace transforms of the distributions. The
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characterization of general function moments is usually more difficult. Suppose that f is
a positive continuous function on [0,∞) satisfying the following:

Condition A. There exist constants c ≥ 0 and K > 0 such that

(A1) f is convex on [c,∞);

(A2) f(xy) ≤ Kf(x)f(y) for all x, y ∈ [c,∞).

A typical example satisfying the above condition is the function f(x) = xα| log x|β
(α ≥ 1, β ≥ 0). For a branching process with continuous time and discrete state space it
was proved in Athreya (1969) that the existence of the f -moment is equivalent to that of
its offspring distribution; see also Athreya and Ney (1972). The proof of Athreya (1969)
was essentially based on a construction of the process from two sequences of random
variables giving the split times and the progeny numbers. The result was generalized in
Bingham (1976) to a CB-process for the function f(x) = xn with integer n ≥ 2, which
corresponds to integer-moments. A recursive formula for integer-moments of multi-type
CBI-processes was given recently by Barczy et al. (2015). As far as we know, the result of
Athreya (1969) has not been extended to the general f -moment in the continuous-state
setting. The difficulty of such an extension lies in the fact that the CB-process cannot
be constructed in the simple way as the discrete-state process in Athreya (1969). We
notice that a result on the f -moment of the CB-process for f(x) = x log x was presented
in Section 5 of Grey (1974). It was mentioned there the topic would be studied elsewhere,
but we could not find the subsequent work in the literature.

The purpose of this paper is to study general f -moments of CB- and CBI-processes
with continuous time. Our two main theorems are stated in Section 2, giving criteria for
the existence of the f -moments. The results yield immediately those of Bingham (1976)
and Grey (1974). The proofs of the main theorems are given in Sections 3 and 4. Our
strategy for the proofs is to use the characterization of the CB- and CBI-processes as
strong solutions of stochastic equations established in Dawson and Li (2006, 2012). We
here do not assume the existence of the first moment of the branching Lévy measure, so
we shall need to generalize slightly their results. Throughout the paper, we make the
convention that, for a ≤ b ∈ R,∫ b

a

=

∫
(a,b]

and

∫ ∞
a

=

∫
(a,∞)

.

2 Main Results

We first review some basic facts on CB- and CBI-processes with continuous time. The
reader may refer to Kawazu and Watanabe (1971) for the details; see also Kyprianou
(2014) and Li (2011). A branching mechanism is a continuous function φ on [0,∞) with
the representation

φ(λ) = βλ+
1

2
σ2λ2 +

∫ ∞
0

(
e−zλ − 1 + zλ1{z≤1}

)
m(dz), λ ≥ 0, (2.1)
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where β ∈ R and σ ≥ 0 are constants, and m(dz) is a σ-finite measure on (0,∞) satisfying∫ ∞
0

(1 ∧ z2)m(dz) <∞.

The above integrability condition is weaker than that assumed in Li (2011). Throughout
this paper, we assume ∫

0+

1

|φ(λ)|
dλ =∞. (2.2)

(This is a correction of (1.21) in Kawazu and Watanabe (1971).) By Kawazu and Watan-
abe (1971, Theorem 1.2), the CB-process with branching mechanism φ is a conservative
Markov process on [0,∞) with transition semigroup (Qt)t≥0 defined by∫

[0,∞)

e−λyQt(x, dy) = exp{−xvt(λ)}, λ, x ≥ 0, (2.3)

where t→ vt(λ) is the unique positive solution of

vt(λ) = λ−
∫ t

0

φ(vs(λ))ds, λ, t ≥ 0. (2.4)

A generalization of the CB-process can be defined as follows. The reader may refer to
Li (2006) for the details. By an immigration mechanism we mean a continuous positive
function ψ on [0,∞) given by

ψ(λ) = hλ+

∫ ∞
0

(1− e−λz)n(dz), (2.5)

where h ≥ 0 is a constant and n(dz) is a σ-finite measure on (0,∞) satisfying∫ ∞
0

(1 ∧ z)n(dz) <∞.

Then there is a family (γs)s≥0 of infinitely divisible probability measures on [0,∞) so that∫
[0,∞)

e−λyγt(dy) = exp

{
−
∫ t

0

ψ(vs(λ))ds

}
, λ ≥ 0.

A Markov process on [0,∞) is called CBI-process with branching mechanism φ and im-
migration mechanism ψ if it has transition semigroup (Qγ

t )t≥0 given by∫
[0,∞)

e−λyQγ
t (x, dy) = exp

{
− xvt(λ)−

∫ t

0

ψ(vs(λ))ds

}
, λ, x ≥ 0. (2.6)

The main results of this paper are the following:

Theorem 2.1. Suppose that f satisfies Condition A. Let {Xt : t ≥ 0} be CB-processes
with P(X0 > 0) > 0. Then for any t > 0 we have Pf(Xt) <∞ if and only if Pf(X0) <∞
and

∫∞
1
f(z)m(dz) <∞.
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Theorem 2.2. Suppose that f satisfies Condition A. Let {Yt : t ≥ 0} be a CBI-process.
Then for every t > 0 we have Pf(Yt) < ∞ if and only if

∫∞
1
f(z)(m + n)(dz) < ∞ and

Pf(Y0) <∞.

The proofs of the above theorems are given in the next two sections. We shall need
the following proposition, which is a special case of Theorem 4.3 in Barczy et al. (2015):

Proposition 2.3. Let {Yt : t ≥ 0} be a CBI-process with P(Y r
0 ) < ∞. Suppose that∫∞

1
zr(m + n)(dz) < ∞ for some integer r ≥ 1. Then P(Y r

t ) < ∞ for every t ≥ 0.
Moreover, we have

P(Yt) = e−b̃tP(Y0) +
h̃

b̃
(1− e−b̃t),

where

b = β −
∫ ∞

1

zm(dz), h̃ = h+

∫ ∞
0

zn(dz).

For 2 ≤ k ≤ r we have the recursion formula:

P(Y k
t ) = e−kbtP(Y k

0 ) + k
[
h̃+

σ2

2
(k − 1)

] ∫ t

0

e−kb(t−s)P(Y k−1
s )ds

+
k−2∑
j=0

(
k

j

)∫ ∞
0

zk−jm(dz)

∫ t

0

e−kb(t−s)P(Y j+1
s )ds

+
k−2∑
j=0

(
k

j

)∫ ∞
0

zk−jn(dz)

∫ t

0

e−kb(t−s)P(Y j
s )ds. (2.7)

For continuous-time branching processes and age dependent branching processes in
discrete state space, some similar results as the above were established by Athreya (1969);
see also Athreya and Ney (1972, p.153). By taking f(x) = xn or f(x) = x log x in
Theorem 2.1, we obtain the results of Theorem 6.1 of Bingham (1976) and Section 5 of
Grey (1974), respectively. The result of Theorem 2.1 should also be compared with that
of Theorem 25.3 in Sato (1999) for Lévy processes.

3 Moments of CB-processes

In this section, we discuss the f -moment of the CB-process with branching mechanism φ
given by (2.1). We shall first give a construction of the process in terms of a stochastic
equation. This construction generalizes slightly the results of Dawson and Li (2006, 2012)
and plays an important role in the study of the f -moment.

Let (Ω,G ,P) be a complete probability space with the augmented filtration (Gt)t≥0.
Let W (ds, du) be a (Gt)-time-space Gaussian white noise on (0,∞)2 based on the Lebesgue
measure dsdu. Let M(ds, dz, du) be a (Gt)-time-space Poisson random measure on
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(0,∞)3 with intensity dsm(dz)du. Let M̃(ds, dz, du) denote the compensated measure
of M(ds, dz, du). For any given G0-measurable positive random variable X0, we consider
the stochastic integral equation

Xt = X0 + σ

∫ t

0

∫ Xs−

0

W (ds, du) +

∫ t

0

∫ 1

0

∫ Xs−

0

zM̃(ds, dz, du)

− β
∫ t

0

Xs−ds+

∫ t

0

∫ ∞
1

∫ Xs−

0

zM(ds, dz, du). (3.1)

Theorem 3.1. There is a unique positive strong solution to (3.1) and the solution (Xt)t≥0

is a CB-process with transition semigroup (Qt)t≥0 defined by (2.3).

Proof. In the special case where (z ∧ z2)m(dz) is a finite measure on (0,∞), we can let
b = β −

∫∞
1
zm(dz) and rewrite (3.1) into

Xt = X0 − b
∫ t

0

Xs−ds+ σ

∫ t

0

∫ Xs−

0

W (ds, du) +

∫ t

0

∫ ∞
0

∫ Xs−

0

zM̃(ds, dz, du).

Then the theorem holds in this case by Theorem 2.5 or Theorem 3.1 in Dawson and Li
(2012); see also Dawson and Li (2006). In the general case, for each integer k ≥ 1 there

is a unique positive strong solution {X(k)
t : t ≥ 0} to the stochastic equation

Xt = X0 + σ

∫ t

0

∫ Xs−

0

W (ds, du) +

∫ t

0

∫ 1

0

∫ Xs−

0

zM̃(ds, dz, du)

− β
∫ t

0

Xs−ds+

∫ t

0

∫ ∞
1

∫ Xs−

0

(z ∧ k)M(ds, dz, du). (3.2)

In view of (3.2), we have X
(k+1)
t = X

(k)
t for 0 ≤ t < Sk and k ≥ 1, where Sk = inf{t > 0 :

X
(k)
t −X

(k)
t− ≥ k}. It is easy to see that the process t 7→ Xt := limk→∞X

(k)
t is a solution

to (3.1). The pathwise uniqueness of the solution of (3.1) follows from that of (3.2). By

Theorem 3.1 of Dawson and Li (2012) one sees that {X(k)
t : t ≥ 0} is a CB-process with

branching mechanism φk defined by

φk(λ) = βλ+
σ2

2
λ2 +

∫ ∞
0

(e−λ(z∧k) − 1 + λz1{z≤1})m(dz). (3.3)

The transition semigroup (Q
(k)
t )t≥0 of this process is determined by∫

[0,∞)

e−λyQ
(k)
t (x, dy) = exp{−xv(k)

t (λ)}, λ, x ≥ 0,

where t 7→ v
(k)
t (λ) is the unique positive solution of

v
(k)
t (λ) = λ−

∫ t

0

φk(v
(k)
s (λ))ds, λ, t ≥ 0. (3.4)

By comparison theorem we see v
(k)
t (λ) ≤ v

(k+1)
t (λ) ≤ vt(λ), where t 7→ vt(λ) is the unique

positive solution to (2.4). It follows that v
(k)
t (λ) → vt(λ) increasingly as k → ∞. Then

(Xt)t≥0 is a CB-process with branching mechanism φ.
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Let {Xt(x) : t ≥ 0} be the solution of (3.1) with X0(x) = x ≥ 0. Then {Xt(x) : t ≥ 0}
is a CB-process with transition semigroup (Qt)t≥0.

Theorem 3.2. The path-valued process x 7→ {Xt(x) : t ≥ 0} has positive and independent
increments. Furthermore, for any y ≥ x ≥ 0 the difference {Xt(y) −Xt(x) : t ≥ 0} is a
CB-process with initial value y − x.

Proof. When (z∧ z2)m(dz) is a finite measure on (0,∞), the theorem is a consequence of
Theorems 3.2 and 3.3 in Dawson and Li (2012). In the general case, it follows from the
approximation of the solution given in the proof of Theorem 3.1.

We next study the existence of the f -moment of the CB-process. Instead of Condi-
tion A, we here introduce the following more convenient condition:

Condition B. There exists a constant K > 0 such that

(B1) f(x) is convex and nondecreasing on [0,∞);

(B2) f(xy) ≤ Kf(x)f(y) for all x, y ∈ [0,∞);

(B3) f(x) > 1 for all x ∈ [0,∞).

This replacement of the condition is not essential. Indeed, as observed in Athreya and
Ney (1972, p.154), for any unbounded function f on [0,∞) satisfying Condition A there
is a constant a ≥ 0 so that the function x 7→ fa(x) := f(a ∨ x) satisfies Condition B. Of
course, a probability measure on [0,∞) has finite f -moment if and only if it has finite
fa-moment.

Let τ0(x) = 0 and for k ≥ 1 let τk(x) denote the kth jump time with jump size in
(1,∞) of {Xt(x) : t ≥ 0}.

Proposition 3.3. Suppose that f satisfies Condition B. Then for any t ≥ 0 and y ≥ x > 0
we have

P[f(Xt(y))1{t<τk(y)}] ≤ Kf(1 + y/x)P[f(Xt(x))1{t<τk(x)}]. (3.5)

Proof. Let X
(i)
t (x) = Xt(ix)−Xt((i−1)x). By Theorem 3.2, {X(i)

t (x) : t ≥ 0}, i = 1, 2, . . .

are i.i.d. CB-processes with X
(i)
0 (x) = x. Let τ

(i)
k (x) and σk denote the kth jump times of

{X(i)
t (x) : t ≥ 0} and {Xt(y)−Xt(y − x) : t ≥ 0} with jump size in (1,∞), respectively.

Let bxc denote the largest integer smaller than or equal to x ≥ 0. Since τ
(i)
k (x) ≥ τk(y)

and σk ≥ τk(y), by Condition B we have

P[f(Xt(y))1{t<τk(y)}] = P

[
f

( by/xc∑
i=1

X
(i)
t (x) +Xt(y)−Xt(by/xcx)

)
1{t<τk(y)}

]

≤ P

[
f

( by/xc∑
i=1

X
(i)
t (x) +Xt(y)−Xt(y − x)

)
1{t<τk(y)}

]

≤ Kf(by/xc+ 1)P

{
f

(
1

by/xc+ 1

[ by/xc∑
i=1

X
(i)
t (x)
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+Xt(y)−Xt(y − x)

])
1{t<τk(y)}

}
≤ Kf(by/xc+ 1)P

{
1

by/xc+ 1

[ by/xc∑
i=1

f(X
(i)
t (x))1{t<τ (i)k (x)}

+ f(Xt(y)−Xt(y − x))1{t<σk}

]}
≤ Kf(y/x+ 1)P[f(Xt(x))1{t<τk(x)}].

That proves (3.5).

Corollary 3.4. Suppose that f satisfies Condition B. Then for any t ≥ 0 and y ≥ x > 0
we have

Pf(Xt(y)) ≤ Kf(1 + y/x)Pf(Xt(x)). (3.6)

Consequently, we have Pf(Xt(y)) <∞ if and only if Pf(Xt(x)) <∞.

Proof. By letting n → ∞ in (3.5) we obtain the first result. The second one is then an
immediate consequence.

Proposition 3.5. Suppose that f satisfies Condition B. Let {Xt : t ≥ 0} be a CB-process
with branching mechanism φ and arbitrary initial distribution. Then we have

Pf(Xt) ≤
1

2
K2f(2)

[
f(1) + Pf(X0)

]
Pf(Xt(1)), t ≥ 0. (3.7)

Proof. Without loss of generality, we may assume {Xt : t ≥ 0} solves the stochastic
equation (3.1). By Corollary 3.4, the Markov property and the convexity of f we have

P[f(Xt)|G0] ≤ Kf(1 +X0)Pf(Xt(1)) ≤ 1

2
K2f(2)

[
f(1) + f(X0)

]
Pf(Xt(1)).

When X0 < 1, the first inequality follows from Theorem 3.2. Then we get (3.7) by taking
the expectation.

Proposition 3.6. Suppose that f satisfies Condition B. Let {Xt : t ≥ 0} be a CB-process
with branching mechanism φ and arbitrary initial distribution. If Pf(Xt) < ∞ for some
t ≥ 0, then Pf(X0) <∞.

Proof. As in the proof of Proposition 3.3, let bxc denote the largest integer smaller than
or equal to x ≥ 0. By Condition B we have

Pf(X0) ≤ Pf(bX0c+ 1) ≤ 1

2
Kf(2){Pf(bX0c) + f(1)}.

Then it suffices to show Pf(bX0c) < ∞. From Proposition 3.1 in Li (2011) and the

proof of Theorem 3.1, we see vt(λ) > 0 for any λ > 0. Let X
(i)
t = Xt(i) − Xt(i − 1).

Then {X(i)
t : t ≥ 0}, i = 1, 2, · · · are i.i.d. CB-processes with X

(i)
0 = 1. From (2.3) we

7



see P(Xt(1) ∈ (0,∞)) = Qt(1, (0,∞)) > 0. Then there is ε > 0 so that P(X
(i)
t ≥ ε) =

P(Xt(1) ≥ ε) ∈ (0, 1). Now define the sequence of i.i.d. random variables {δ1, δ2, . . . } by

δi =

{
1, if X

(i)
t ≥ ε;

0, otherwise.

Then P(δi = 1) = P(X
(i)
t ≥ ε) ∈ (0, 1). Observe that

bX0c∑
i=1

δi ≤ ε−1

bX0c∑
i=1

X
(i)
t ≤ ε−1Xt.

By Condition B we have

Pf

( bX0c∑
i=1

δi

)
≤ Pf(ε−1Xt) ≤ Kf(ε−1)Pf(Xt) <∞.

By the property of independent increments of the noises in (3.1), the G0-measurable ran-

dom variable X0 is independent of {X(i)
t : t ≥ 0}, i = 1, 2, . . . . Then bX0c is independent

of the sequence {δ1, δ2, . . . }. Under Condition B we have limx→∞ f(x) =∞. By Lemmas 4
and 5 of Athreya and Ney (1972, pp.156–157) we have Pf(bX0c) <∞.

Lemma 3.7. Suppose that f satisfies Condition B and
∫∞

1
zrm(dz) <∞ for every r ≥ 1.

Then for any x ≥ 0 the function t 7→ Pf(Xt(x)) is locally bounded on [0,∞).

Proof. It is easy to see that the function z 7→ g(z) := f(ez) is convex and nondecreasing
on [0,∞). By Condition B, there exists a constant K > 0, such that

g(z + y) = f(ezey) ≤ Kf(ez)f(ey) = Kg(z)g(y), z, y ≥ 0.

By Lemma 25.5 of Sato (1999, p.160), there is some c > 0 and some integer r ≥ 1 so
that g(z) ≤ cerz for z ≥ 0. It follows that f(z) ≤ czr for z ≥ 1, so f(z) ≤ f(1) + czr for
z ≥ 0. By Theorem 6.1 of Bingham (1976) or Proposition 2.3 in Section 2, we can get
P(Xt(x)r) <∞. Then

Pf(Xt(x)) ≤ f(1) + cP[Xt(x)r] <∞.

Since
∫∞

1
zm(dz) <∞, we can rewrite (2.1) into

φ(λ) = bλ+
1

2
σ2λ2 +

∫ ∞
0

(
e−λz − 1 + λz

)
m(dz), λ ≥ 0, (3.8)

where

b = β −
∫ ∞

1

zm(dz).

In this case, we have ∫
[0,∞)

yQt(x, dy) = xe−bt, t, x ≥ 0.
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See Li (2011, Chapter 3). Then the Markov property implies that t 7→ Wt(x) := ebtXt(x)
is a martingale, and hence t 7→ f(Wt(x)) is a positive sub-martingale. For t ∈ [0, T ] we
have

Pf(Xt(x)) = Pf(e−btWt(x)) ≤ Kf(e−bt)Pf(Wt(x))

≤ Kf(e−bt)Pf(WT (x)) ≤ Kf(1 ∨ e−bT )Pf(ebTXT (x))

≤ K2f(1 ∨ e−bT )f(ebT )Pf(XT (x)).

Then t 7→ Pf(Xt(x)) is a locally bounded function.

Recall that τk(x) is the kth jump time with jump size in (1,∞) of the process {Xt(x) :
t ≥ 0}. Let Gx(dt) = P(τ1(x) ∈ dt) and µk(t) = P(f(Xt(1)); t < τk(1)) for t ≥ 0. Notice
that µ0(t) = 0 for t ≥ 0 since τ0(1) = 0. A characterization of the distribution Gx(dt) can
be derived from Theorem 3.1 of He and Li (2016).

Proposition 3.8. Suppose that f satisfies Condition B and
∫∞

1
f(z)m(dz) < ∞. Then

for every T > 0 there are constants c1(T ) ≥ 0 and c2(T ) ≥ 0 so that

µk(t) ≤ c1(T ) + c2(T )

∫ t

0

µk−1(t− u)G1(du), t ∈ (0, T ], k ≥ 1. (3.9)

Proof. To avoid triviality, we assume m(1,∞) > 0. Recall that {Xt(x) : t ≥ 0} is
the strong solution of (3.1) with X0(x) = x ≥ 0. On the same probability space, let
{Zt(x) : t ≥ 0} be the strong solution of the stochastic equation

Zt(x) = x− β
∫ t

0

Zs−(x)ds+ σ

∫ t

0

∫ Zs−(x)

0

W (ds, du)

+

∫ t

0

∫ 1

0

∫ Zs−(x)

0

zM̃(ds, dz, du). (3.10)

Then {Zt(x) : t ≥ 0} is a CB-process with branching mechanism

φ1(λ) = βλ+
1

2
σ2λ2 +

∫ 1

0

(e−λz − 1 + λz)m(dz), λ ≥ 0.

Let D denote the space of all càdlàg paths t 7→ x(t) from [0,∞) to itself equipped with
the Skorokhod topology. Let F = σ{x(s) : s ≥ 0} and Ft = σ{x(s) : 0 ≤ s ≤ t}, t ≥ 0
be the natural σ-algebras on D. Let Px denote the distribution of {Xt(x) : t ≥ 0} on
D. Then (D,F ,Ft,Px) is the canonical realization of the CB-process with transition
semigroup (Qt)t≥0. Let σk denote the kth jump time of {x(t) : t ≥ 0} with jump size
in (1,∞). In view of (3.1) and (3.10), we can use the notation in the theory of Markov
processes to write

µk(t) = P[f(Xt(1))1{t<τ1(1)}] + P[f(Xt(1))1{τ1(1)≤t<τk(1)}]

= P[f(Zt(1))1{t<τ1(1)}] + P{1{τ1(1)≤t}P[f(Xt(1))1{t<τk(1)}|Gτ1(1)]}
≤ Pf(Zt(1)) + P{1{τ1(1)≤t}(PXs(1)[f(x(t− s))1{t−s<σk−1}])|s=τ1(1)}
= Pf(Zt(1)) + P{1{τ1(1)≤t}PZτ1(1)(1)+∆Xτ1(1)(1)[f(x(t− τ1(1)))1{t−τ1(1)<σk−1}]}.
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From the stochastic equation (3.1) we see P(τ1(1) ∈ ds,∆Xτ1(1)(1) ∈ dz) = G1(ds)m̂1(dz),
where m̂1(dz) = m(1,∞)−11{z>1}m(dz). Then, by Proposition 3.3,

µk(t) ≤ Pf(Zt(1)) +

∫ t

0

G1(ds)

∫ ∞
1

P{PZs(1)+z[f(x(t− s))1{t−s<σk−1}]}m̂1(dz)

≤ c1(T ) +K

∫ t

0

µk−1(t− s)G1(ds)

∫ ∞
1

Pf(Zs(1) + z + 1)m̂1(dz),

where c1(T ) = sup0≤t≤T Pf(Zt(1)) <∞ by Lemma 3.7 and∫ ∞
1

Pf(Zs(1) + z + 1)m̂1(dz)

≤ Kf(3)

∫ ∞
1

Pf
(1

3
[Zs(1) + z + 1]

)
m̂1(dz)

≤ 1

3
Kf(3)

[
Pf(Zs(1)) +

∫ ∞
1

f(z)m̂1(dz) + f(1)

]
≤ 1

3
Kf(3)

[
c1(T ) +

∫ ∞
1

f(z)m̂1(dz) + f(1)

]
=: c(T ) <∞.

Then we get (3.9) with c2(T ) = Kc(T ).

Proposition 3.9. Suppose that f satisfies Condition B and
∫∞

1
f(z)m(dz) < ∞. Then

for any x ≥ 0 the function t 7→ Pf(Xt(x)) is locally bounded on [0,∞).

Proof. Let c1(T ) ≥ 0 and c2(T ) ≥ 0 be provided by Proposition 3.8. By Lemma 2 of
Athreya and Ney (1972, p.145) there is a bounded positive function t 7→ µ(t) on [0, T ]
satisfying

µ(t) = c1(T ) + c2(T )

∫ t

0

µ(t− u)dG1(u), 0 ≤ t ≤ T. (3.11)

In view of (3.9) and (3.11), one can show by induction that µk(t) ≤ µ(t) for all 0 ≤ t ≤ T
and n ≥ 1. Since σk → ∞ as n → ∞ we have Pf(Xt(1)) = limn→∞ µk(t) ≤ µ(t). Then
the result follows by Corollary 3.4.

Proof of Theorem 2.1. Without loss of generality, we may assume {Xt : t ≥ 0} solves the
stochastic equation (3.1). Suppose that Pf(X0) < ∞ and

∫∞
1
f(z)m(dz) < ∞. Then

Pf(Xt(1)) <∞ by Proposition 3.9, and so Pf(Xt) <∞ by Proposition 3.5. Conversely,
suppose that Pf(Xt) <∞ for some t > 0. By Proposition 3.6 we have Pf(X0) <∞. Let
τ1 denote the first jump time of {Xt : t ≥ 0} with jump size ∆Xτ1 := Xτ1−Xτ1− ∈ (1,∞)
and let G(dt) = P(τ1 ∈ dt). To avoid triviality, we assume m(1,∞) > 0, so (3.1) implies
that t 7→ G(0, t] is strictly increasing on [0,∞). Using the notation introduced in the
proof of Proposition 3.8, we have

Pf(Xt) ≥ P[f(Xt)1{τ1≤t}] = P{1{τ1≤t}PXτ1
f(x(t− τ1))}

≥ P{1{τ1≤t}(P∆Xsf(x(t− s))|s=τ1} =

∫ t

0

Pf(ξt−s)G(ds),
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where {ξt : t ≥ 0} is a CB-process with initial distribution P(ξ0 ∈ dz) = m̂1(dz). Then
there must be some s ∈ (0, t] so that Pf(ξt−s) <∞. By Proposition 3.6 we have

Pf(ξ0) =

∫ ∞
1

f(z)m̂1(dz) <∞.

Then
∫∞

1
f(z)m(dz) <∞. That proves the theorem.

4 Moments of CBI-processes

In this section, we discuss the f -moment of the CBI-process. As in the previous section,
we first give a construction of the process in terms of a stochastic equation.

Let (Ω,G ,P) be a complete probability space with the augmented filtration (Gt)t≥0.
Let W (ds, du) be a (Gt)-time-space Gaussian white noise on (0,∞)2 based on the Lebesgue
measure dsdu. Let M(ds, dz, du) and N(ds, dz) be (Gt)-time-space Poisson random
measures on (0,∞)3 and (0,∞)2 with intensities dsm(dz)du and dsn(dz), respective-
ly. Suppose that W (ds, du), M(ds, dz, du) and N(ds, dz) are independent of each other.
Let M̃(ds, dz, du) denote the compensated measure of M(ds, dz, du). For any given G0-
measurable positive random variable Y0, we consider the stochastic integral equation

Yt = Y0 + σ

∫ t

0

∫ Ys−

0

W (ds, du) +

∫ t

0

∫ 1

0

∫ Ys−

0

zM̃(ds, dz, du)

+

∫ t

0

(h− βYs)ds+

∫ t

0

∫ ∞
1

∫ Ys−

0

zM(ds, dz, du)

+

∫ t

0

∫ ∞
0

zN(ds, dz). (4.1)

Theorem 4.1. There is a unique positive strong solution to (4.1) and the solution (Yt)t≥0

is a CBI-process with transition semigroup (Qγ
t )t≥0 defined by (2.6).

Theorem 4.2. For any x ≥ 0 let {Yt(x) : t ≥ 0} be the solution to (4.1) with Y0(x) =
x ≥ 0. Then the path-valued process x 7→ {Yt(x) : t ≥ 0} has positive and independent
increments. Furthermore, for any y ≥ x ≥ 0 the difference {Yt(y) − Yt(x) : t ≥ 0} is a
CB-process with initial value y − x.

The above theorems generalize the results of Dawson and Li (2012). We here omit
their proofs since the arguments are quite similar to those for the corresponding results
in Section 3.

Proposition 4.3. Suppose that f satisfies Condition B. Let {Xt : t ≥ 0} be a CB-process

and {Yt : t ≥ 0} a CBI-process with X0
d
= Y0. Then

Pf(Yt) ≤
1

2
Kf(2)

[
Pf(Yt(0)) + Pf(Xt)

]
, t ≥ 0. (4.2)
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Proof. Without loss of generality, we assume {Yt : t ≥ 0} and {Xt : t ≥ 0} are solutions
of (4.1) and (3.1), respectively, with Y0 = X0. Since f satisfies Condition B, we have

Pf(Yt) = Pf(Yt(0) + Yt − Yt(0))

≤ Kf(2)Pf
(1

2
[Yt(0) + Yt − Yt(0)]

)
≤ 1

2
Kf(2)

[
Pf(Yt(0)) + Pf(Yt − Yt(0))

]
=

1

2
Kf(2)

[
Pf(Yt(0)) + Pf(Xt)

]
,

where the last equality follows by Theorem 4.2.

Lemma 4.4. Suppose that f satisfies Condition B and
∫∞

1
zr(m+ n)(dz) <∞ for every

r ≥ 1. Then for any x ≥ 0 the function t→ Pf(Yt(x)) is locally bounded on [0, ∞).

Proof. By differentiating both sides of (2.6) we obtain the moment formula∫
[0,∞)

yQγ
t (x, dy) = xe−bt +

[
h+

∫ ∞
0

un(du)
] ∫ t

0

e−bsds.

It is then easy to check that the process t→ ebtYt(x) is a sub-martingale. Based on those,
the result follows in the same way as in the proof of Lemma 3.7. We leave the details to
the reader.

Let ζ0(x) = 0 and let ζk(x) be the kth jump time of {Yt(x) : t ≥ 0} with jump size
in (1,∞). Let H(dt) = P(ζ1(0) ∈ dt) and νk(t) = P(f(Yt(0)); t < ζk(0)) for t ≥ 0. A
characterization of the distribution H(dt) was given by He and Li (2016).

Proposition 4.5. Suppose that f satisfies Condition B and
∫∞

1
f(z)(m + n)(dz) < ∞.

Then for every T > 0 there is a constant 0 ≤ c3(T ) <∞ so that

νk(t) ≤ c3(T ) +
1

2
Kf(2)

∫ t

0

νk−1(t− s)H(ds), 0 ≤ t ≤ T, k ≥ 1. (4.3)

Proof. Let (D,F ,Ft, x(t)) and {σk : k = 1, 2, . . . } be as in the proof of Proposition 3.8.
Let Px and Pγ

x denote the laws on (D,F ) of {Xt(x) : t ≥ 0} and {Yt(x) : t ≥ 0},
respectively. Then (D,F ,Ft, x(t),Px) is a canonical realization of the CB-process with
transition semigroup (Qt)t≥0 and (D,F ,Ft, x(t),Pγ

x) is a canonical realization of the CBI-
process with transition semigroup (Qγ

t )t≥0. Let us also consider the stochastic equation

Zt = Z0 + σ

∫ t

0

∫ Zs−

0

W (ds, du) +

∫ t

0

∫ 1

0

∫ Zs−

0

zM̃(ds, dz, du)

+

∫ t

0

(h− βZs−)ds+

∫ t

0

∫ 1

0

zN(ds, dz). (4.4)

Let {Zt(x) : t ≥ 0} denote the solution with Z0(x) = x ≥ 0. In view of (4.1) and (4.4),
we have

νk(t) = P[f(Yt(0))1{t<ζ1(0)}] + P[f(Yt(0))1{ζ1(0)≤t<ζk(0)}]
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= P[f(Zt(0))1{t<ζ1(0)}] + P{1{ζ1(0)≤t}P[f(Yt(0))1{t<ζk(0)}|Gζ1(0)]}
≤ Pf(Zt(0)) + P{1{ζ1(0)≤t}(P

γ
Ys(0)[f(x(t− s))1{t−s<σk−1}])|s=ζ1(0)}

= Pf(Zt(0)) + P{1{ζ1(0)≤t}(P
γ
Zs(0)+∆Ys(0)[f(x(t− s))1{t−s<σk−1}])|s=ζ1(0)}

≤ c0(T ) + P

{∫ t

0

H(ds)

∫ ∞
1

Pγ
Zs(0)+z[f(x(t− s))1{t−s<σk−1}]ηs(dz)

}
,

where c0(T ) = sup0≤t≤T Pf(Zt(0)) <∞ by Lemma 4.4 and

ηs(dz) = 1{Ys−(0)m(1,∞)+n(1,∞)>0}
Ys−(0)m(dz) + n(dz)

Ys−(0)m(1,∞) + n(1,∞)
.

Observe that ηs(dz) ≤ (m̂1 + n̂1)(dz), where m̂1(dz) = m(1,∞)−11{z>1}m(dz) and
n̂1(dz) = n(1,∞)−11{z>1}n(dz). By Theorem 4.2 and Corollary 3.4,

νk(t) ≤ c0(T ) +
1

2
Kf(2)P

{∫ t

0

H(ds)

∫ ∞
1

PZs(0)+z[f(x(t− s))1{t−s<σk−1}]ηs(dz)

}
+

1

2
Kf(2)P

{∫ t

0

H(ds)

∫ ∞
1

Pγ
0 [f(x(t− s))1{t−s<σk−1}]ηs(dz)

}
≤ c0(T ) +

1

2
K2f(2)

∫ t

0

µk−1(t− s)H(ds)

∫ ∞
1

Pf(Zs(0) + z + 1)ηs(dz)

+
1

2
Kf(2)

∫ t

0

Pγ
0 [f(x(t− s))1{t−s<σk−1}]H(ds)

≤ c0(T ) +

∫ t

0

µ(t− s)h0(s)H(ds) +
1

2
Kf(2)

∫ t

0

νk−1(t− s)H(ds),

where s 7→ µ(s) is defined in the proof of Proposition 3.9 and

h0(s) =
1

2
K2f(2)

∫ ∞
1

Pf(Zs(0) + z + 1)(m̂1 + n̂1)(dz)

≤ 1

6
K3f(2)f(3)

{
2c0(T ) +

∫ ∞
1

f(z)(m̂1 + n̂1)(dz) + 2f(1)

}
=: c4(T ).

It is easy to see that

c3(T ) := c0(T ) + c4(T ) sup
0≤t≤T

∫ t

0

µ(t− s)H(ds) <∞.

Then we have (4.3).

Proof of Theorem 2.2. Suppose that Pf(Y0) < ∞ and
∫∞

1
f(z)(m + n)(dz) < ∞. Using

Proposition 4.5 we see as in the proof of Proposition 3.9 that Pf(Yt(0)) = limk→∞ νk(t) <
∞. Then Pf(Yt) < ∞ by Theorem 2.1 and Proposition 4.3. Conversely, suppose that
Pf(Yt) < ∞ for some t > 0. Let {Xt : t ≥ 0} be a solution of (3.1) with Y0 = X0. By
Theorem 4.2 we see

Pf(Xt) = Pf(Yt − Yt(0)) ≤ Pf(Yt) <∞.
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Then Theorem 2.1 implies Pf(Y0) = Pf(X0) < ∞. Moreover, let ζ1 be the first jump
time of {Yt : t ≥ 0} with jump size in (1,∞) and H̃(dt) = P(ζ1 ∈ dt). Using the notation
introduced in the proof of Proposition 4.5, we have

Pf(Yt) ≥ P[f(Yt)1{ζ1≤t}] = P{1{ζ1≤t}P[f(Yt)|Gζ1 ]}
= P{1{ζ1≤t}(P

γ
Ys
f(x(t− s)))|s=ζ1}

≥ P{1{ζ1≤t}(P∆Ysf(x(t− s)))|s=ζ1}

=

∫ t

0

P

{∫ ∞
1

Pzf(x(t− s))η̃s(dz)

}
H̃(ds),

where

η̃s(dz) = 1{Ys−m(1,∞)+n(1,∞)>0}
Ys−m(dz) + n(dz)

Ys−m(1,∞) + n(1,∞)
.

To avoid triviality, in the following we assume (m + n)(1,∞) > 0. From (4.1) we see
t 7→ H̃(0, t] is strictly increasing on [0,∞). Then there must be some s ∈ (0, t] so that,
a.s., ∫ ∞

1

Pzf(x(t− s))η̃s(dz) <∞.

Since {Yt : t ≥ 0} is a Hunt process, we have P(Ys− = Ys) = 1. Let {Xt : t ≥ 0} be the
solution of (3.1) with X0 = Y0. By comparison we have a.s. Ys ≥ Xs. Then Theorem 3.5
of Li (2011, p.59) implies that P(Ys− > 0) = P(Ys > 0) ≥ P(Xs > 0) > 0. It follows that∫ ∞

1

Pzf(x(t− s))(m̂1 + n̂1)(dz) <∞.

This means P(ξt−s) < ∞ for a CB-process {ξt : t ≥ 0} with initial distribution P(ξ0 ∈
dz) = 2−1(m̂1 + n̂1)(dz). By Proposition 3.6 we have

Pf(ξ0) =
1

2

∫ ∞
1

f(z)(m̂1 + n̂1)(dz) <∞.

Then
∫∞

1
f(z)(m+ n)(dz) <∞. That proves the theorem.
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