
Published in: Stochastic Models 35 (2019), 2: 167–196.

Sample paths of continuous-state branching
processes with dependent immigration 1

Zenghu Li

School of Mathematical Sciences, Beijing Normal University,

Beijing 100875, China. E-mail: lizh@bnu.edu.cn

Abstract: We prove the existence and pathwise uniqueness of the solution to a stochastic
integral equation driven by Poisson random measures based on Kuznetsov measures for
a continuous-state branching process. That gives a direct construction of the sample path
of a continuous-state branching process with dependent immigration. The immigration
rates depend on the population size via some functions satisfying a Yamada–Watanabe
type condition. We only assume the existence of the first moment of the process. The
existence of excursion law for the continuous-state branching process is not required. By
special choices of the ingredients, we can make changes in the branching mechanism or
construct models with competition.
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1 Introduction

The study of continuous-state branching processes (CB-processes) was started by Feller (1951),
who noticed that a branching diffusion process may arise in a limit theorem of Galton–Watson
discrete branching processes; see also Aliev and Shchurenkov (1982), Grimvall (1974) and
Lamperti (1967a). A characterization of CB-processes by random time changes of Lévy pro-
cesses was given by Lamperti (1967b). Continuous-state branching processes with immigration
(CBI-processes) are natural generalizations of the CB-processes. The convergence of rescaled
discrete branching processes with immigration to CBI-processes was studied in Aliev (1985),
Kawazu and Watanabe (1971) and Li (2006, 2011). From a mathematical point of view, the
continuous-state processes are usually easier to deal with because both their time and state
spaces are smooth, and the distributions that appear are infinitely divisible. A continuous CBI-
process with subcritical branching mechanism was used by Cox et al. (1985) to describe the evo-
lution of interest rates and it has been known in mathematical finance as the Cox–Ingersoll–Ross
model (CIR-model). Compared with other financial models introduced before, the CIR-model
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is more appealing as it is positive (= nonnegative) and mean-reverting. For general treatments
and backgrounds of CB- and CBI-processes, the reader may refer to Kyprianou (2014) and Li
(2011, 2019+). More complicated continuous-state population models involving a competition
mechanism were studied in Pardoux (2016), which extend the stochastic logistic growth model
of Lambert (2005).

In this paper, we are interested in a class of Markov processes, which we call continuous-
state branching processes with dependent immigration (CBDI-processes). By dependent im-
migration we mean the immigration rate depends on the state of the population via some func-
tion. This kind of immigration was studied in Dawson and Li (2003) and Fu and Li (2004)
for measure-valued diffusions and extended in Li (2011) to general branching and immigra-
tion mechanisms. In those references, the immigration models were constructed in terms of
stochastic equations driven by Poisson point measures on some path spaces. This approach is
essential since the uniqueness of the corresponding martingale problems is usually unknown. In
the references mentioned above, the immigration rate functions were assumed to be Lipschitz
and the existence of some excursion laws of the corresponding measure-valued branching pro-
cesses without immigration was required. In fact, some Poisson point measures based on the
excursion laws were used there to represent the continuous part of the immigration.

The main purpose of this paper is to give a construction of the CBDI-process in terms of a
stochastic equation of the type of Li (2011), but with non-Lipschitz immigration rate functions.
A special case of the construction was given in the recent work of Li and Zhang (2019) by ar-
guments of tightness and weak convergence, which require the existence of the second moment
and the excursion law for the corresponding CB-process. We here replace the second moment
assumption by the first moment one and remove the assumption on the existence of the excur-
sion law. We focus on the one-dimensional model to simplify the presentations, but the argu-
ments carry over to the measure-valued setting. In the stochastic equation considered here, the
continuous immigration is represented by an increasing deterministic path and a Poisson point
measure based on a Kuznetsov measure of the CB-process, which is slightly different from the
equation in Li and Zhang (2019). The point of our approach is it gives a direct construction
of the sample path of the CBDI-process with general branching and immigration mechanisms
from those of the corresponding CB-process without immigration. By special choices of the
ingredients, we can make changes in the branching mechanism of the CB-process or construct
a model with competition. These kinds of constructions have been proved useful for the study
of some financial problems; see, e.g., Bernis and Scotti (2019+) and Jiao et al. (2017). A more
precise description of our results is given as follows.

Suppose that c ≥ 0 and b are real constants and m(dz) is a σ-finite measure on (0,∞)
satisfying

∫∞
0

(z ∧ z2)m(dz) <∞. Let φ be a function on [0,∞) defined by

φ(λ) = bλ+ cλ2 +

∫
(0,∞)

(e−zλ − 1 + zλ)m(dz). (1.1)

A Markov process with state space [0,∞) is called a CB-process with branching mechanism φ
if it has transition semigroup (Qt)t≥0 given by∫

[0,∞)

e−λyQt(x, dy) = e−xvt(λ), λ ≥ 0, x ≥ 0, (1.2)
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where t 7→ vt(λ) is the unique positive solution of

∂

∂t
vt(λ) = −φ(vt(λ)), v0(λ) = λ. (1.3)

The family of functions (vt)t≥0 satisfies vr+t = vr ◦ vt for r, t ≥ 0 and is called the cumulant
semigroup of the process. This semigroup has canonical representation

vt(λ) = htλ+

∫
(0,∞)

(1− e−λz)lt(dz), t ≥ 0, λ ≥ 0, (1.4)

where ht ≥ 0 and lt(dz) is a σ-finite measure on (0,∞) satisfying
∫

(0,∞)
zlt(dz) < ∞; see Li

(2011, 2019+).

A generalization of the CB-process is described as follows. Let β ≥ 0 be a constant and
ν(dz) a σ-finite measure on (0,∞) satisfying

∫∞
0

(1 ∧ z)ν(dz) <∞. Let ψ be an immigration
mechanism defined by

ψ(λ) = βλ+

∫
(0,∞)

(1− e−λz)ν(dz), λ ≥ 0. (1.5)

A Markov process with state space [0,∞) is called a CBI-process if it has transition semigroup
(Pt)t≥0 given by∫

[0,∞)

e−λyPt(x, dy) = exp

{
− xvt(λ)−

∫ t

0

ψ(vs(λ))ds

}
, (1.6)

where λ ≥ 0 and x ≥ 0.

From (1.2) and (1.6) we see that (Qt)t≥0 and (Pt)t≥0 are Feller semigroups on [0,∞). Let
D = C2[0,∞) be the set of bounded continuous real functions on [0,∞) with bounded contin-
uous derivatives up to the second order. By Theorem 9.30 in Li (2011), the generator L0 of the
CB-process and the generator L1 of the CBI-process are respectively defined by

L0f(x) = cxf ′′(x)− bxf ′(x) + x

∫
(0,∞)

[
f(x+ z)− f(x)− zf ′(x)

]
m(dz), (1.7)

and

L1f(x) = L0f(x) + βf ′(x) +

∫
(0,∞)

[
f(x+ z)− f(x)

]
ν(dz), x ≥ 0, f ∈ D . (1.8)

We are interested in a generalization of the generators defined by (1.7) and (1.8). Let
x 7→ β(x) and (x, z) 7→ q(x, z) be positive Borel functions on [0,∞) and [0,∞) × (0,∞),
respectively. We assume the following conditions:

(1.A) (linear growth condition) there is a constant K ≥ 0 so that

β(x) +

∫
(0,∞)

q(x, z)zν(dz) ≤ K(1 + x), x ≥ 0;
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(1.B) (Yamada–Watanabe type condition) there is an increasing and concave function u 7→ r(u)
on [0,∞) so that

∫
0+
r(u)−1du =∞ and, for x, y ≥ 0,

|β(x)− β(y)|+
∫

(0,∞)

|q(x, z)− q(y, z)|zν(dz) ≤ r(|x− y|).

By a CBDI-process we mean a Markov process in [0,∞) with generator L defined by, for x ≥ 0
and f ∈ D ,

Lf(x) = L0f(x) + β(x)f ′(x) +

∫
(0,∞)

[
f(x+ z)− f(x)

]
q(x, z)ν(dz). (1.9)

Example 1.1 When β(x) ≡ β and q(x, z) ≡ 1 are constants, the operator (L,D) defined by
(1.9) generates a classical CBI-process.

Example 1.2 If β(x) ≡ βx and q(x, z) ≡ x for some constant β ≥ 0, then the operator (L,D)
defined by (1.9) generates a CB-process with branching mechanism

λ 7→ φ(λ)− βλ−
∫

(0,∞)

(1− e−λz)ν(dz).

Then a change of the branching mechanism can be achieved by using dependent immigration.

Example 1.3 Let x 7→ G(x) be a positive function on [0,∞) satisfying the Yamada–Watanabe
type condition and there is a constant β > 0 so that G(x) ≤ βx for all x ≥ 0. By setting
β(x) ≡ βx−G(x) and q(x, z) ≡ 0 in (1.9) we get, for x ≥ 0 and f ∈ D ,

Lf(x) = L0f(x) + βxf ′(x)−G(x)f ′(x).

Then (L,D) generates a CB-process with competition; see, e.g., Berestycki et al. (2018), Lam-
bert (2005) and Pardoux (2016). A more general class of population models, called continuous-
state nonlinear branching processes, have been studied in Li (2018a) and Li et al. (2017+).

Let (Ω,F ,Ft,P) be a filtered probability space satisfying the usual conditions. Let {B(t)}
be a (Ft)-Brownian motion and let {M(ds, dz, du)} and {N(ds, dz, du)} be (Ft)-Poisson
random measures on (0,∞)3 with intensities dsm(dz)du and dsν(dz)du, respectively. Sup-
pose that {B(t)}, {M(ds, dz, du)} and {N(ds, dz, du)} are independent of each other. Let
{M̃(ds, dz, du)} be the compensated measure of {M(ds, dz, du)}. By Theorem 5.1 in Fu and
Li (2010), for any F0-measurable positive random variable y(0) there is a pathwise unique
positive solution to the stochastic equation:

y(t) = y(0) +

∫ t

0

√
2cy(s−)dB(s) +

∫ t

0

∫ ∞
0

∫ y(s−)

0

zM̃(ds, dz, du)

+

∫ t

0

[β(y(s−))− by(s−)]ds+

∫ t

0

∫ ∞
0

∫ q(y(s−),z)

0

zN(ds, dz, du). (1.10)
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Here and in the sequel, we understand that, for b ≥ a ≥ 0,∫ b

a

= −
∫ a

b

=

∫
(a,b]

and
∫ ∞
a

=

∫
(a,∞)

. (1.11)

The reader may refer to Ikeda and Watanabe (1989) and Situ (2005) for the theory of stochastic
equations. We will show that a positive càdlàg process {y(t) : t ≥ 0} is a weak solution of
(1.10) if and only if it solves the martingale problem of (L,D). Then (1.10) gives a construc-
tion of the CBDI-process. From this equation we see that the immigration of {y(t) : t ≥ 0}
involves two parts: the continuous part given by the drift β(y(s−))ds and the discontinuous
part determined by the intensity q(y(s−), z) and Poisson random measure N(ds, dz, du). S-
tochastic equations in forms similar to (1.10) have also been studied in Bertoin and Le Gall
(2006), Dawson and Li (2006, 2012) and Li and Ma (2015).

Let D[0,∞) denote the space of positive càdlàg paths w = {w(t) : t ≥ 0}. For any
w ∈ D[0,∞) let α(w) = inf{s ≥ 0 : w(s) > 0} and ζ(w) = sup{s ≥ 0 : w(s) > 0}. Let W
be the set of paths w ∈ D[0,∞) such that w(t) > 0 for α(w) < t < ζ(w) and w(t) = 0 for
t < α(w) or t ≥ ζ(w). Let [0] ∈ W be the path that is constantly zero. On the space W we
define the σ-algebras W = σ({w(s) : s ≥ 0}) and Wt = σ({w(s) : 0 ≤ s ≤ t}) for t ≥ 0.

From (1.2) we see that zero is a trap for the CB-process. Let (Q◦t )t≥0 be the restriction of
the transition semigroup (Qt)t≥0 on (0,∞). For a σ-finite measure µ on (0,∞) write

µQ◦t (dy) =

∫
(0,∞)

µ(dx)Q◦t (x, dy), t ≥ 0, y > 0.

A family of σ-finite measures (κt)t>0 on (0,∞) is called an entrance rule for (Q◦t )t≥0 if
κrQ

◦
t−r ≤ κt for all t > r > 0 and κrQ◦t−r → κt as r → t.

Let (lt)t>0 be the family of σ-finite measures on (0,∞) determined by (1.4). By Theo-
rems 3.13 and 3.15 in Li (2019+) we see that (lt)t>0 is an entrance rule for (Q◦t )t≥0, which is
referred to as the canonical entrance rule of the CB-process. We shall give a simple and direct
construction of the σ-finite measure N0 on (W,W ) such that, for 0 < t1 < t2 < · · · < tn and
x1, x2, . . . , xn ∈ (0,∞),

N0(α(w) ≤ t1, w(t1) ∈ dx1, w(t2) ∈ dx2, . . . , w(tn) ∈ dxn, tn < ζ(w))

= lt1(dx1)Q◦t2−t1(x1, dx2)Q◦t3−t2(x2, dx3) · · ·Q◦tn−tn−1
(xn−1, dxn). (1.12)

We call N0 the canonical Kuznetsov measure of the CB-process. The existence of this measure
is also a consequence of a general result on Markov processes; see Theorem 3.8 in Glover
and Getoor (1987, p.63). The expression (1.12) intuitively means that the coordinate process
{w(t) : t > 0} under N0 is a Markov process in (0,∞) with transition semigroup (Q◦t )t≥0 and
one-dimensional distributions (lt)t>0.

Let Qx denote the distribution of the CB-process {x(t) : t ≥ 0} with initial value x(0) =
x ≥ 0. Let {(Xt,Ft)} be a CB-process with generator L0 defined by (1.7) with P[X0] < ∞.
Let {N0(ds, du, dw)} be a Poisson random measure on (0,∞)2×W with intensity dsduN0(dw)
and {N1(ds, dz, du, dw)} a Poisson random measure on (0,∞)3 ×W with intensity dsν(dz)
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duQz(dw). Suppose that {(Xt,Ft)}, {N0(ds, du, dw)} and {N1(ds, dz, du, dw)} are de-
fined on a complete probability space and are independent of each other. For t ≥ 0 let
Gt = σ(Ft ∪Ht), where

Ht = σ({N0((0, s]×B × A), N1((0, s]× C × A) :
0 < s ≤ t, B ∈ B(0,∞), C ∈ B(0,∞)2, A ∈ Wt−s}).

We consider the stochastic integral equation

Yt = Xt +

∫ t

0

ht−sβ(Ys−)ds+

∫ t

0

∫ β(Ys−)

0

∫
W

w(t− s)N0(ds, du, dw)

+

∫ t

0

∫ ∞
0

∫ q(Ys−,z)

0

∫
W

w(t− s)N1(ds, dz, du, dw). (1.13)

By a solution of (1.13) we mean a positive càdlàg process {Yt : t ≥ 0} that is adapted to the
filtration (Gt) and satisfies the equation a.s. for each t ≥ 0.

The main result of this paper shows that there is a pathwise unique solution {Yt : t ≥ 0}
of (1.13) and {(Yt,Gt) : t ≥ 0} is indeed a CBDI-process. Here the second and third terms on
the right-hand side of the equation represent the continuous part of the immigration and the last
term represents the discontinuous immigration. In Section 2, we provide the direct construction
of the canonical Kuznetsov measure defined by (1.12). We also give a reformulation of the
Markov property of the measure that is more convenient for our applications. In Section 3, we
construct some inhomogeneous immigration processes with deterministic immigration rates. In
Section 4, we construct immigration processes with predictable immigration rates and prove
some useful properties of them. The existence and uniqueness of solution to the stochastic
equation (1.13) are established in Section 5.

2 The canonical Kuznetsov measure

In this section, we give a simple and direct construction of the canonical Kuznetsov measure
defined by (1.12). For notational convenience, we extend the definition of each path w ∈ W
by setting w(s) = 0 for s < 0. Recall that Qx denotes the distribution on (W,W ) of the CB-
process {x(t) : t ≥ 0} with x(0) = x ≥ 0. For r ≥ 0 and w ∈ W , we define ρrw ∈ W by
ρrw(t) = w(t− r). Let Q(r)

x denote the image of Qx induced by the map w 7→ ρrw. Then Q
(r)
x

is supported by {w ∈ W : α(w) = r, w(r) = x}. Given any σ-finite measure µ on [0,∞) let

Q(r)
µ (A) =

∫
[0,∞)

Q(r)
x (A)µ(dx), A ∈ W . (2.1)

In particular, if µ is a probability measure, then Q
(0)
µ is the distribution on (W,W ) of the CB-

process with initial distribution µ and Q
(r)
µ is the image of Q(0)

µ induced by the map w 7→ ρrw.

Lemma 2.1 For any s > r ≥ 0 and any positive Wr-measurable function F on W we have
Q

(s)
µ ({w ∈ W : F (w) 6= F ([0])}) = 0.
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Proof. Let 0 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ r < s and let f1, f2, . . . , fn be bounded Borel functions
on [0,∞). For any x ≥ 0 we have

Q(s)
x

[
f1(w(r1))f2(w(r2)) · · · fn(w(rn))

]
= Qx

[
f1(w(r1 − s))f2(w(r2 − s)) · · · fn(w(rn − s))

]
= f1(0)f2(0) · · · fn(0)

= f1([0](r1))f2([0](r2)) · · · fn([0](rn)).

A monotone class argument shows Q(s)
x F (w) = F ([0]) for any positive Wr-measurable function

F on W , and so Q
(s)
x f(F (w)) = f(F ([0])) for any bounded Borel function f on [0,∞). Then

we have Q
(s)
x ({w ∈ W : F (w) 6= F ([0])}) = 0, which implies the desired result by (2.1). �

Theorem 2.2 Let (lt)t>0 be the canonical entrance rule for the CB-process determined by (1.4).
Then there is a unique σ-finite measure N0 on (W,W ) that does not charge the singleton {[0]} ∈
W and satisfies (1.12). Moreover, we have:

(1) If φ′(∞) =∞, then N0 is supported by {w ∈ W : α(w) = 0, w(0) = 0}.

(2) If δ := φ′(∞) < ∞, then N0 is supported by {w ∈ W : α(w) > 0, w(α(w)) > 0} and
has the representation

N0(F ) =

∫ ∞
0

e−δsQ(s)
m (F )ds, F ∈ W . (2.2)

Proof. In the case φ′(∞) = ∞, we have ht = 0 for all t > 0 and the result follows by
Theorem 6.1 in Li (2019+). In the case δ := φ′(∞) < ∞, let us define the σ-finite measure
N0 on (W,W ) by (2.2). Since Q

(r)
m is supported by {w ∈ W : α(w) = r, w(r) > 0}, we see

that N0 is supported by {w ∈ W : α(w) > 0, w(α(w)) > 0}. Let f1, . . . , fn be positive Borel
functions on [0,∞) with f1(0) = . . . = fn(0) = 0. Then

N0[f1(w(t1))] = N0

[
α(w) ≤ t1, f1(w(t1))

]
=

∫ t1

0

e−δsQ(s)
m [f1(w(t1))]ds

=

∫ t1

0

e−δsQ(0)
m [f1(w(t1 − s))]ds

=

∫ t1

0

e−δsds

∫
(0,∞)

f1(y)mQ◦t1−s(dy)

=

∫
(0,∞)

f1(y)lt1(dy),

where the last equality follows by Theorem 3.15 in Li (2019+). Then (1.12) holds for n = 1.
From the Markov property of Q(s)

m it follows that, for n ≥ 2,

N0

[
α(w) ≤ t1, f1(w(t1)) · · · fn−1(w(tn−1))fn(w(tn)), tn < ζ(w)

]
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= N0

[
α(w) ≤ t1, f1(w(t1)) · · · fn−1(w(tn−1))fn(w(tn))

]
=

∫ t1

0

e−δsQ(s)
m

[
f1(w(t1)) · · · fn−1(w(tn−1))fn(w(tn))

]
ds

=

∫ t1

0

e−δsQ(0)
m

[
f1(w(t1 − s)) · · · fn−1(w(tn−1 − s))fn(w(tn − s))

]
ds

=

∫ t1

0

e−δsQ(0)
m

[
f1(w(t1 − s)) · · · fn−1(w(tn−1 − s))Q◦tn−tn−1

fn(w(tn−1 − s))
]
ds

=

∫ t1

0

e−δsQ(s)
m

[
f1(w(t1)) · · · fn−1(w(tn−1))Q◦tn−tn−1

fn(w(tn−1))
]
ds

= N0

[
f1(w(t1)) · · · fn−1(w(tn−1))Q◦tn−tn−1

fn(w(tn−1))
]
.

Then we get (1.12) by induction, which determines the measure N0 uniquely by the measure
extension theorem. �

Theorem 2.3 Let t ≥ r > 0 and let F be a positive Wr-measurable function on W . Then for
any λ ≥ 0 we have

N0[F (w)(1− e−λw(t))] = N0[F (w)(1− e−vt−r(λ)w(r))] + F ([0])[hrvt−r(λ)− htλ]. (2.3)

Proof. In the case φ′(∞) =∞, we have hr = ht = 0 and (2.3) follows from (1.12). In the case
δ := φ′(∞) < ∞, the measure N0 is given by (2.2). By Lemma 2.1, for any s > r we have
Q

(s)
m ({w ∈ W : F (w) 6= F ([0])}) = 0. Then we use the Markov property of Q(s)

m to see

N0[F (w)(1− e−λw(t))] = N0

[
α(w) ≤ t, F (w)(1− e−λw(t))

]
=

∫ t

0

e−δsQ(s)
m [F (w)(1− e−λw(t))]ds

=

∫ r

0

e−δsQ(s)
m [F (w)(1− e−vt−r(λ)w(r))]ds

+

∫ t

r

e−δsQ(s)
m [F ([0])(1− e−λw(t))]ds

= N0

[
F (w)(1− e−vt−s(λ)w(r))

]
+F ([0])

∫ t

r

e−δsds

∫
(0,∞)

(1− e−xvt−s(λ))m(dx)

= N0[F (w)(1− e−vt−s(λ)w(r))] + F ([0])e−δr[vt−r(λ)− e−δ(t−r)λ],

where the last equality holds by Theorem 3.15 of Li (2019+). �

The existence of Markovian measures determined by entrance rules was first noticed by
Kuznetsov (1974). In the setting of Borel right Markov processes, it was proved in Glover and
Getoor (1987). The relation (2.3) gives a reformulation of the Markov property of the canonical
Kuznetsov measure, which is more convenient than (1.12) for the application in the next section.
In the special case of φ′(∞) =∞, we have ht = 0 for every t > 0 and the canonical Kuznetsov
measure N0 is known as the excursion law of the CB-process. In that special case, the property
(2.3) is already known; see, e.g., the proof of Theorem 8.24 in Li (2011).
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3 Deterministic immigration rates

In this section, we give constructions of some inhomogeneous CBI-processes with deterministic
immigration rates from random paths selected by Poisson point measures. The reader may
refer to Li (2011, 2019+) for similar constructions. Let {(Xt,Ft)}, {N0(ds, du, dw)} and
{N1(ds, dz, du, dw)} be as in the introduction.

Theorem 3.1 Let s 7→ ρ(s) be a positive locally integrable function on [0,∞). For t ≥ 0 let

Yt = Xt +

∫ t

0

ht−sρ(s)ds+

∫ t

0

∫ ρ(s)

0

∫
W

w(t− s)N0(ds, du, dw) (3.1)

and let Gt = σ(Ft ∪H 0
t ), where

H 0
t = σ({N0((0, s]×B × A) : 0 < s ≤ t, B ∈ B(0,∞), A ∈ Wt−s}). (3.2)

Then {(Yt,Gt) : t ≥ 0} is a Markov process in [0,∞) with inhomogeneous transition semigroup
(P ρ

r,t)t≥r≥0 given by∫
[0,∞)

e−λyP ρ
r,t(x, dy) = exp

{
− xvt−r(λ)−

∫ t

r

vt−s(λ)ρ(s)ds

}
. (3.3)

Proof. Let Zt = Yt − Xt for t ≥ 0. We first prove that {(Zt,H 0
t )} is a Markov process

with transition semigroup (P ρ
r,t)t≥r≥0. Let t ≥ r ≥ τ ≥ 0 and let F be a positive function on

(0,∞)2 ×W measurable with respect to B(0, τ ] ×B(0,∞) × Wr−τ . It suffices to show, for
any λ ≥ 0,

P

[
exp

{
−
∫ τ

0

∫ ∞
0

∫
W

F (s, u, w)N0(ds, du, dw)− λZt
}]

= P

[
exp

{
−
∫ τ

0

∫ ∞
0

∫
W

F (s, u, w)N0(ds, du, dw)

− vt−r(λ)Zr −
∫ t

r

vt−s(λ)ρ(s)ds

}]
.

Since {1{w=[0]}N0(ds, du, dw)} is independent of {1{w 6=[0]}N0(ds, du, dw)} and {Zt}, we can
assume F (s, u, [0]) = 0 in the following calculations. Writing G(s, u, w) = F (s, u, w)1{s≤τ}+
λw(t− s)1{u≤ρ(s)}, we have

P

[
exp

{
−
∫ τ

0

∫ ∞
0

∫
W

F (s, u, w)N0(ds, du, dw)− λZt
}]

= P

[
exp

{
− λ

∫ t

0

ht−sρ(s)ds−
∫ t

0

∫ ∞
0

∫
W

G(s, u, w)N0(ds, du, dw)

}]
= exp

{
− λ

∫ t

0

ht−sρ(s)ds−
∫ t

0

ds

∫ ∞
0

N0(1− e−G(s,u,w))du

}
= exp

{
− λ

∫ t

0

ht−sρ(s)ds−
∫ t

0

ds

∫ ∞
0

N0(1− e−F (s,u,w)1{s≤τ})du

}
9



· exp

{
−
∫ t

0

ds

∫ ∞
0

N0

[
e−F (s,u,w)1{s≤τ}(1− e−λw(t−s)1{u≤ρ(s)})

]
du

}
= exp

{
− λ

∫ t

0

ht−sρ(s)ds−
∫ t

0

ds

∫ ∞
0

N0(1− e−F (s,u,w)1{s≤τ})du

}
· exp

{
−
∫ r

0

ds

∫ ρ(s)

0

N0

[
e−F (s,u,w)1{s≤τ}(1− e−λw(t−s))

]
du

}
· exp

{
−
∫ t

r

ds

∫ ρ(s)

0

N0(1− e−λw(t−s))du

}
,

where, by Theorem 2.3,

N0

[
e−F (s,u,w)1{s≤τ}(1− e−λw(t−s))

]
= N0

[
e−F (s,u,w)1{s≤τ}(1− e−vt−r(λ)w(r−s))

]
+ hr−svt−r(λ)− ht−sλ.

Then we can use (1.4) and continue the calculation

P

[
exp

{
−
∫ τ

0

∫ ∞
0

∫
W

F (s, u, w)N0(ds, du, dw)− λZt
}]

= exp

{
− λ

∫ r

0

ht−sρ(s)ds− λ
∫ t

r

ht−sρ(s)ds

}
· exp

{
−
∫ r

0

ds

∫ ∞
0

N0(1− e−F (s,u,w)1{s≤τ})du

}
· exp

{
−
∫ r

0

ds

∫ ρ(s)

0

N0

[
e−F (s,u,w)1{s≤τ}(1− e−vt−r(λ)w(r−s))

]
du

}
· exp

{
−
∫ r

0

[
hr−svt−r(λ)− ht−sλ

]
ρ(s)ds

}
· exp

{
−
∫ t

r

ρ(s)ds

∫
(0,∞)

(1− e−yλ)lt−s(dy)

}
= exp

{
− vt−r(λ)

∫ r

0

hr−sρ(s)ds−
∫ t

r

vt−s(λ)ρ(s)ds

}
· exp

{
−
∫ r

0

ds

∫ ∞
0

N0(1− e−F (s,u,w)1{s≤τ})du

}
· exp

{
−
∫ r

0

ds

∫ ∞
0

N0

[
e−F (s,u,w)1{s≤τ}(1− e−vt−r(λ)w(r−s)1{u≤ρ(s)})

]
du

}
= exp

{
− vt−r(λ)

∫ r

0

hr−sρ(s)ds−
∫ t

r

vt−s(λ)ρ(s)ds

}
· exp

{
−
∫ r

0

ds

∫ ∞
0

N0

(
1− e−F (s,u,w)1{s≤τ}−vt−r(λ)w(r−s)1{u≤ρ(s)}

)
du

}
= exp

{
− vt−r(λ)

∫ r

0

hr−sρ(s)ds−
∫ t

r

vt−s(λ)ρ(s)ds

}
·P
[

exp

{
−
∫ r

0

∫ ∞
0

∫
W

[
F (s, u, w)1{s≤τ}

+ vt−r(λ)w(r − s)1{u≤ρ(s)}
]
N0(ds, du, dw)

}]
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= exp

{
− vt−r(λ)

∫ r

0

hr−sρ(s)ds−
∫ t

r

vt−s(λ)ρ(s)ds

}
·P
[

exp

{
−
∫ τ

0

∫ ∞
0

∫
W

F (s, u, w)N0(ds, du, dw)

−
∫ r

0

∫ ρ(s)

0

∫
W

vt−r(λ)w(r − s)N0(ds, du, dw)

}]
= P

[
exp

{
−
∫ τ

0

∫ ∞
0

∫
W

F (s, u, w)N0(ds, du, dw)

− vt−r(λ)Zr −
∫ t

r

vt−s(λ)ρ(s)ds

}]
.

Then {(Zt,H 0
t )} is a Markov process with transition semigroup (P ρ

r,t)t≥r≥0. Using the in-
dependence of {(Xt,Ft)} and {(Zt,H 0

t )}, one can see {(Yt,Gt)} is a Markov process with
transition semigroup (P ρ

r,t)t≥r≥0. �

Theorem 3.2 Let s 7→ ρ(s) be a positive locally integrable function on [0,∞) and (s, z) 7→
g(s, z) a positive measurable function on [0,∞)× (0,∞) such that∫ t

0

ds

∫
(0,∞)

g(s, z)zν(dz) <∞, t ≥ 0.

For t ≥ 0 let

Yt = Xt +

∫ t

0

ht−sρ(s)ds+

∫ t

0

∫ ρ(s)

0

∫
W

w(t− s)N0(ds, du, dw)

+

∫ t

0

∫ ∞
0

∫ g(s,z)

0

∫
W

w(t− s)N1(ds, dz, du, dw) (3.4)

and let Gt = σ(Ft ∪H 0
t ∪H 1

t ), where H 0
t is defined by (3.2) and

H 1
t = σ({N1((0, s]× C × A) : 0 < s ≤ t, C ∈ B(0,∞)2, A ∈ Wt−s}).

Then {(Yt,Gt) : t ≥ 0} is a Markov process in [0,∞) with inhomogeneous transition semigroup
(P ρ,g

r,t )t≥r≥0 given by∫
[0,∞)

e−λyP ρ,g
r,t (x, dy) = exp

{
− xvt−r(λ)−

∫ t

r

vt−s(λ)ρ(s)ds

−
∫ t

r

ds

∫
(0,∞)

(1− e−zvt−s(λ))g(s, z)ν(dz)

}
. (3.5)

Proof. Let Zt denote the last term on the right-hand side of (3.4). Let t ≥ r ≥ τ ≥ 0 and let F
be a positive function on (0,∞)3×W measurable relative to B[0, τ ]×B(0,∞)2×Wr−τ . For
λ ≥ 0, writing H(s, z, u, w) = F (s, z, u, w)1{s≤τ} + λw(t− s)1{u≤g(s,z)}, we have

P

[
exp

{
−
∫ τ

0

∫ ∞
0

∫ ∞
0

∫
W

F (s, z, u, w)N1(ds, dz, du, dw)− λZt
}]

11



= P

[
exp

{
−
∫ t

0

∫ ∞
0

∫ ∞
0

∫
W

H(s, z, u, w)N1(ds, dz, du, dw)

}]
= exp

{
−
∫ t

0

ds

∫ ∞
0

ν(dz)

∫ ∞
0

Qz(1− e−H(s,z,u,w))du

}
= exp

{
−
∫ t

0

ds

∫ ∞
0

ν(dz)

∫ ∞
0

Qz(1− e−F (s,z,u,w)1{s≤τ})du

−
∫ t

0

ds

∫ ∞
0

ν(dz)

∫ g(s,z)

0

Qz

[
e−F (s,z,u,w)1{s≤τ}(1− e−λw(t−s))

]
du

}
= exp

{
−
∫ r

0

ds

∫ ∞
0

ν(dz)

∫ ∞
0

Qz(1− e−F (s,z,u,w)1{s≤τ})du

−
∫ r

0

ds

∫ ∞
0

ν(dz)

∫ g(s,z)

0

Qz

[
e−F (s,z,u,w)1{s≤τ}(1− e−vt−r(λ)w(r−s))

]
du

−
∫ t

r

ds

∫ ∞
0

ν(dz)

∫ g(s,z)

0

Qz(1− e−λw(t−s))du

}
= P

[
exp

{
−
∫ r

0

∫ ∞
0

∫ ∞
0

∫
W

[
F (s, z, u, w)1{s≤τ}

+ vt−r(λ)w(t− s)1{u≤g(s,z)}
]
N1(ds, dz, du, dw)

−
∫ t

r

ds

∫ ∞
0

(
1− e−zvt−s(λ)

)
g(s, z)ν(dz)

}]
= P

[
exp

{
−
∫ τ

0

∫ ∞
0

∫ ∞
0

∫
W

F (s, z, u, w)N1(ds, dz, du, dw)

− vt−r(λ)Zr −
∫ t

r

ds

∫ ∞
0

(
1− e−zvt−s(λ)

)
g(s, z)ν(dz)

}]
.

Then {(Zt,H 1
t )} is a Markov process in [0,∞) with inhomogeneous transition semigroup

(P 0,g
r,t )t≥r≥0 defined by (3.5) with ρ = 0. By Theorem 3.1 we see {(Yt − Zt, σ(Ft ∪H 0

t ))} is
a Markov process in [0,∞) with inhomogeneous transition semigroup (P ρ,0

r,t )t≥r≥0 defined by
(3.5) with g = 0. Then the desired result follows by the independence of those two processes.
�

We may think of the process {Yt : t ≥ 0} defined by (3.4) as an inhomogeneous CBI-
process with immigration rates given by {(ρ(s), g(s, z)) : s ≥ 0, z > 0}.

4 Predictable immigration rates

Suppose that {(Xt,Ft)}, {N0(ds, du, dw)} and {N1(ds, dz, du, dw)} are given as in the in-
troduction. Let the filtration (Gt) be defined as in Theorem 3.2. Let L 1 denote the set of
(Gt)-predictable processes ρ = {ρ(t) : t ≥ 0} satisfying

‖ρ‖t := P

[ ∫ t

0

|ρ(s)|ds
]
<∞, t ≥ 0.

12



We identify ρ1, ρ2 ∈ L 1 if ‖ρ1 − ρ2‖t = 0 for every t ≥ 0 and define the metric d on L 1 by

d(ρ1, ρ2) =
∞∑
n=1

1

2n
(1 ∧ ‖ρ1 − ρ2‖n).

Let L 1
ν (0,∞) denote the set of two-parameter processes g = {g(t, z) : t ≥ 0, z > 0} that are

(Gt)-predictable in the sense of Li (2011, p.163) and satisfy

‖g‖ν,t := P

[ ∫ t

0

∫
(0,∞)

|g(s, z)|zν(dz)ds

]
<∞, t ≥ 0.

We identify g1, g2 ∈ L 1
ν (0,∞) if ‖g1 − g2‖ν,t = 0 for every t ≥ 0 and define the metric dν on

L 1
ν (0,∞) by

dν(g1, g2) =
∞∑
n=1

1

2n
(1 ∧ ‖g1 − g2‖ν,n).

For ρ ∈ L 1, g ∈ L 1
ν (0,∞) and a positive càdlàg process {Yt : t ≥ 0} we consider the

following properties:

(4.A) The process {Yt : t ≥ 0} has no negative jumps and the optional random measure

N0(ds, dz) :=
∑
s>0

1{∆Ys 6=0}δ(s,∆Ys)(ds, dz),

where ∆Ys = Ys − Ys−, has predictable compensator

N̂0(ds, dz) = Ys−dsm(dz) + g(s, z)dsν(dz) = Ysdsm(dz) + g(s, z)dsν(dz).

Let Ñ0(ds, dz) = N0(ds, dz)− N̂0(ds, dz). We have

Yt = Y0 +M c(t) +Md(t) +

∫ t

0

[
ρ(s) +

∫
(0,∞)

g(s, z)zν(dz)− bYs
]
ds, (4.1)

where {M c(t) : t ≥ 0} is a square-integrable continuous martingale with quadratic vari-
ation 2cYs−ds = 2cYsds and

Md(t) =

∫ t

0

∫ ∞
0

zÑ0(ds, dz), t ≥ 0, (4.2)

is a purely discontinuous martingale.

(4.B) For every f ∈ D , we have

f(Yt) = f(Y0) +

∫ t

0

[
ρ(s)f ′(Ys)− bYsf ′(Ys) + cYsf

′′(Ys)
]
ds

+

∫ t

0

ds

∫
(0,∞)

[
f(Ys + z)− f(Ys)

]
g(s, z)ν(dz) + local mart.

+

∫ t

0

Ysds

∫
(0,∞)

[
f(Ys + z)− f(Ys)− zf ′(Ys)

]
m(dz). (4.3)
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Proposition 4.1 The above properties (4.A) and (4.B) are equivalent.

Proof. If {Yt} has property (4.A), we may use Itô’s formula to see it has property (4.B). Con-
versely, let us assume {Yt} has property (4.B). For any λ > 0, by applying this property to the
function f(x) = e−λx we have

e−λYt = e−λY0 +

∫ t

0

e−λYs
[
bYsλ− ρ(s)λ+ cYsλ

2
]
ds

+

∫ t

0

g(s, z)ds

∫
(0,∞)

e−λYs
(
e−λz − 1

)
ν(dz) + local mart.

+

∫ t

0

Ysds

∫
(0,∞)

e−λYs
(
e−λz − 1 + λz

)
m(dz). (4.4)

Then the strictly positive process {e−λYt : t ≥ 0} is a special semi-martingale. By Itô’s formula,
we see {Yt : t ≥ 0} is also a special semi-martingale. Now define an optional random measure
N0(ds, dz) on (0,∞)× R by

N0(ds, dz) =
∑
s>0

1{∆Ys 6=0}δ(s,∆Ys)(ds, dz),

where ∆Ys = Ys − Ys−. Let N̂0(ds, dz) denote the predictable compensator of N0(ds, dz)
and let Ñ0(ds, dz) denote the compensated random measure; see Dellacherie and Meyer (1982,
pp.375). We can write

Yt = Y0 + Ut +M c
t +Md

t , (4.5)

where {U(t)} is a predictable process with locally bounded variations, {M c
t } is a continuous

local martingale and

Md(t) =

∫ t

0

∫
R
zÑ0(ds, dz)

is a purely discontinuous local martingale; see Dellacherie and Meyer (1982, p.353 and p.376)
or Jacod and Shiryaev (2003, pp.84–85). Let {Ct} denote the quadratic variation process of
{M c

t }. By (4.5) and Itô’s formula,

e−λYt = e−λY0 − λ
∫ t

0

e−λYs−dU(s) +
1

2
λ2

∫ t

0

e−λYs−dCs

+

∫ t

0

∫
R

e−λYs−
(
e−zλ − 1 + zλ

)
N0(ds, dz) + local mart.

= e−λY0 − λ
∫ t

0

e−λYs−dU(s) +
1

2
λ2

∫ t

0

e−λYs−dCs

+

∫ t

0

∫
R

e−λYs−
(
e−zλ − 1 + zλ

)
N̂0(ds, dz) + local mart. (4.6)

But, the canonical decomposition of the special semi-martingale {e−λYt : t ≥ 0} is unique; see,
e.g., Dellacherie and Meyer (1982, p.213). From (4.4) and (4.6) we see dCs = 2cYsds,

N̂0(ds, dz) = Ysdsm(dz) + g(s, z)dsν(dz)
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and

dU(s) =

[
ρ(s)− bYs +

∫
(0,∞)

g(s, z)zν(dz)

]
ds.

Then the process {Yt} has no negative jumps. �

Now let us consider a kind of stochastic immigration rates. Given positive processes ρ ∈ L 1

and g ∈ L 1
ν (0,∞), we define

Yt = Xt +

∫ t

0

ht−sρ(s)ds+

∫ t

0

∫ ρ(s)

0

∫
W

w(t− s)N0(ds, du, dw)

+

∫ t

0

∫ ∞
0

∫ g(s,z)

0

∫
W

w(t− s)N1(ds, dz, du, dw). (4.7)

Proposition 4.2 Let {Yt : t ≥ 0} be defined by (4.7). Then for any t ≥ 0 we have

P[Yt] = e−btP[X0] +

∫ t

0

e−b(t−s)P

[
ρ(s) +

∫ ∞
0

g(s, z)zν(dz)

]
ds. (4.8)

Proof. Recall that both s 7→ ρ(s) and (s, z) 7→ g(s, z) are predictable. From (4.7) we have

Yt = Xt +

∫ t

0

ht−sρ(s)ds+

∫ t

0

∫ ρ(s)

0

∫
W

w(t− s)Ñ0(ds, du, dw)

+

∫ t

0

ρ(s)ds

∫
W

w(t− s)N0(dw)

+

∫ t

0

∫ ∞
0

∫ g(s,z)

0

∫
W

w(t− s)Ñ1(ds, dz, du, dw)

+

∫ t

0

ds

∫ ∞
0

g(s, z)Qz[w(t− s)]ν(dz).

By (3.7) in Li (2011) or (3.5) in Li (2019+) we have P[Xt] = P[X0]e−bt = P[Y0]e−bt. It follows
that

P[Yt] = P[Xt] + P

[ ∫ t

0

ht−sρ(s)ds

]
+ P

[ ∫ t

0

N0[w(t− s)]ρ(s)ds

]
+P

[ ∫ t

0

ds

∫ ∞
0

Qz[w(t− s)]g(s, z)ν(dz)

]
= e−btP[X0] + P

[ ∫ t

0

(
ht−s +

∫ ∞
0

ylt−s(dy)

)
ρ(s)ds

]
+P

[ ∫ t

0

e−b(t−s)ds

∫ ∞
0

g(s, z)zν(dz)

]
.

Then we get desired equality from (3.4) in Li (2019+). �

We may interpret the process {Yt : t ≥ 0} defined by (4.7) as a generalization of the
inhomogeneous CBI-process with predictable immigration rates given by {(ρ(s), g(s, z)) : s ≥
0, z > 0}. Recall that we identify ρ1, ρ2 ∈ L 1 if ‖ρ1 − ρ2‖t = 0 for every t ≥ 0 and identify
g1, g2 ∈ L 1

ν (0,∞) if ‖g1 − g2‖ν,t = 0 for every t ≥ 0. By Proposition 4.2 one can see that
choosing different representatives of ρ ∈ L 1 and g ∈ L 1

ν (0,∞) in (4.7) only gives different
modifications of the process {Yt : t ≥ 0}.
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Theorem 4.3 The process {Yt : t ≥ 0} defined by (4.7) has a càdlàg modification and it
satisfies properties (4.A) and (4.B).

The proof of the above theorem is based on approximations of ρ ∈ L 1 and g ∈ L 1
ν (0,∞)

using simpler processes. Let L 0 denote the set of processes ρ ∈ L 1 of the form

ρ(s) = ρ(r1)1{0}(s) +
∞∑
i=0

ρ(ri+1)1(ri,ri+1](s), (4.9)

where {0 = r0 < r1 < r2 < · · · } is a sequence increasing to infinity and each ω 7→ ρ(ω, ri+1)
is Gri-measurable. Let L 0

ν (0,∞) denote the set of processes g ∈ L 1
ν (0,∞) of the form

g(s, z) = g(r1, z)1{0}(s) +
∞∑
i=0

g(ri+1, z)1(ri,ri+1](s), (4.10)

where {0 = r0 < r1 < r2 < · · · } is as above and each (ω, z) 7→ g(ω, ri+1, z) is Gri×B(0,∞)-
measurable.

Lemma 4.4 For positive processes ρ ∈ L 0 and g ∈ L 0
ν (0,∞), the results of Theorem 4.3

hold.

Proof. By choosing {0 = r0 < r1 < r2 < · · · } suitably, we can represent s 7→ ρ(s) and
(s, z) 7→ g(s, z) by (4.9) and (4.10) using the same sequence. Then under P(·|Gri−1

) we can
think of ρ(ri) as a deterministic constant and z 7→ g(ri, z) as a deterministic function. For i ≥ 1
let

Yi(t) = Xt +

∫ t∧ri

0

ht−sρ(s)ds+

∫ t∧ri

0

∫ ρ(s)

0

∫
W

w(t− s)N0(ds, du, dw)

+

∫ t∧ri

0

∫ ∞
0

∫ g(s,z)

0

∫
W

w(t− s)N1(ds, dz, du, dw)

and G i
t = σ(Ft ∪D i

t ), where

D i
t = σ({N0([(0, s ∧ ri]×B × A), N1((0, s ∧ ri]× C × A) :

0 < s ≤ t, B ∈ B(0,∞), C ∈ B(0,∞)2, A ∈ Wt−s}).

Then {Yi(t) : t ≥ 0} is adapted to the filtration {G i
t : t ≥ 0}. Note also that Yi(t) = Yt, G i

t = Gt
for 0 ≤ t ≤ ri and Yi(t) ≤ Yt, G i

t ⊂ Gt for t ≥ ri. We claim that the following properties hold:

(a.1) {(Yi(t),Gt) : ri−1 ≤ t ≤ ri} is a CBI-process under P(·|Gri−1
) with time-independent

immigration rate {(ρ(ri), g(ri, z)) : z > 0};

(a.2) {(Yi(t),Gt) : t ≥ ri} and {(Yi(t),G i
t ) : t ≥ ri} are CB-processes under both P(·|Gri−1

)
and P(·|Gri).
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For i = 1, those properties follow immediately from Theorem 3.2. Suppose they hold for some
i ≥ 1. Let

Zi(t) =

∫ t∧ri+1

t∧ri
ht−sρ(s)ds+

∫ t∧ri+1

t∧ri

∫ ρ(s)

0

∫
W

w(t− s)N0(ds, du, dw)

+

∫ t∧ri+1

t∧ri

∫ ∞
0

∫ g(s,z)

0

∫
W

w(t− s)N1(ds, dz, du, dw)

and

H i
t = σ({N0((ri, s ∧ ri+1]×B × A), N1((ri, s ∧ ri+1]× F × A) :

ri < s ≤ t, B ∈ B(0,∞), F ∈ B(0,∞)2, A ∈ Wt−s}).

Using Theorem 2.3 again we see:

(b.1) {(Zi(t),H i
t ) : ri ≤ t ≤ ri+1} is a CBI-process under P(·|Gri) with time-independent

immigration rate {ρ(ri+1), g(ri+1, z)) : z > 0};

(b.2) {(Zi(t),H i
t ) : t ≥ ri+1} is a CB-process under both P(·|Gri) and P(·|Gri+1

).

Here the processes {(Yi(t),G i
t ) : t ≥ ri} and {(Zi(t),H i

t ) : t ≥ ri} are independent of each
other under P(·|Gri). Note also that Yi+1(t) = Yi(t)+Zi(t) and G i+1

t = σ(G i
t ∪H i

t ) for t ≥ ri.
By Proposition 5.7 in Li (2019+), properties (a.1) and (a.2) also hold when i is replaced by
i + 1. Then they hold for all i ≥ 1 by induction. By applying Theorem 7.2 in Li (2019+) step
by step on the intervals [ri−1, ri], i = 1, 2, · · · we see {Yt : t ≥ 0} satisfies property (4.B). By
Proposition 4.1 it also satisfies property (4.A). �

Lemma 4.5 Suppose that ρ ∈ L 1 and g ∈ L 1
ν (0,∞) are positive processes. Let {ρk} ⊂ L 0

and {gk} ⊂ L 0
ν (0,∞) be positive sequences such that d(ρk, ρ) + dν(gk, g) → 0 as k → ∞.

Let {Yk(t) : t ≥ 0} be the positive càdlàg process defined by (4.7) with ρ = ρk and g = gk.
Then there is a positive càdlàg process {Y (t) : t ≥ 0} so that

lim
k→∞

P
[

sup
0≤s≤t

|Yk(s)− Y (s)|
]

= 0, t ≥ 0, (4.11)

and there is a subsequence {kn} ⊂ {k} so that a.s.

lim
n→∞

sup
0≤s≤t

|Ykn(s)− Y (s)| = 0, t ≥ 0. (4.12)

Proof. For any j, k ≥ 1, we can represent ρj, ρk and gj, gk in the form of (4.9) and (4.10) using
the same sequence {0 = r0 < r1 < r2 < · · · }. Then we have |Yj(t)− Yk(t)| ≤ Zj,k(t), where

Zj,k(t) =

∫ t

0

ht−s|ρj(s)− ρk(s)|ds+

∫ t

0

∫ ρj(s)∨ρk(s)

ρj(s)∧ρk(s)

∫
W

w(t− s)N0(ds, du, dw)

+

∫ t

0

∫ ∞
0

∫ gj(s,z)∨gk(s,z)

gj(s,z)∧gk(s,z)

∫
W

w(t− s)N1(ds, dz, du, dw). (4.13)
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We can rewrite the above expression into

Zj,k(t) =

∫ t

0

ht−s|ρj(s)− ρk(s)|ds+

∫ t

0

∫ |ρj(s)−ρk(s)|

0

∫
W

w(t− s)N j,k
0 (ds, du, dw)

+

∫ t

0

∫ ∞
0

∫ |gj(s,z)−gk(s,z)|

0

∫
W

w(t− s)N j,k
1 (ds, dz, du, dw),

where N j,k
0 (ds, du, dw) = N0(ds, ρj(s) ∧ ρk(s) + du, dw) is a Poisson random measure with

intensity dsduN0(dw) and N j,k
1 (ds, dz, du, dw) = N1(ds, dz, gj(s, z) ∧ gk(s, z) + du, dw) is

a Poisson random measure with intensity dsν(dz)duQz(dw). One can see that {(Zj,k(t),Gt) :
t ≥ 0} is a CBI-process with predictable immigration rates given by {(|ρj(s)−ρk(s)|, |gj(s, z)−
gk(s, z)|) : s ≥ 0, z > 0}. By Proposition 4.2 we see that

P[Zj,k(t)] ≤ e|b|t(‖ρj − ρk‖t + ‖gj − gk‖ν,t). (4.14)

By Lemma 4.4, the results of Theorem 4.3 hold for {(Zj,k(t),Gt)}. By Proposition 4.1, this
process has properties (4.A) and (4.B). In particular, it has no negative jumps and the optional
random measure

Nj,k(ds, dz) =
∑
s>0

1{∆Zj,k(s)6=0}δ(s,∆Zj,k(s))(ds, dz),

where ∆Zj,k(s) = Zj,k(s)− Zj,k(s−), has predictable compensator

N̂j,k(ds, dz) = Zj,k(s)dsm(dz) + |gk(s, z)− gj(s, z)|dsν(dz).

Let Ñj,k(ds, dz) = Nj,k(ds, dz)− N̂j,k(ds, dz) be the compensated random measure. We have

Zj,k(t) = M c
j,k(t) +Md

j,k(t) +

∫ t

0

[|ρj(s)− ρk(s)| − bZj,k(s)]ds

+

∫ t

0

ds

∫ ∞
0

|gj(s, z)− gk(s, z)|zν(dz), (4.15)

where {M c
j,k(t) : t ≥ 0} is a continuous local martingale with quadratic variation 2cZj,k(t)dt

and

Md
j,k(t) =

∫ t

0

∫ ∞
0

zÑj,k(ds, dz)

is a purely discontinuous local martingale. Using Hölder’s inequality and Doob’s martingale
inequality we get

P
[

sup
0≤s≤t

Zj,k(s)
]
≤ P

[ ∫ t

0

|ρj(s)− ρk(s)|ds
]

+ |b|P
[ ∫ t

0

Zj,k(s)ds

]
+P

[ ∫ t

0

ds

∫ ∞
0

|gj(s, z)− gk(s, z)|zν(dz)ds

]
+P

[
sup

0≤s≤t
|M c

j,k(t)|
]

+ P

[
sup

0≤s≤t

∣∣∣∣ ∫ s

0

∫ ∞
0

zÑ(dr, dz)

∣∣∣∣]
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≤ ‖ρj − ρk‖t + ‖gj − gk‖ν,t + |b|P
[ ∫ t

0

Zj,k(s)ds

]
+P

[
sup

0≤s≤t
|M c

j,k(t)|
]

+ P

[
sup

0≤s≤t

∣∣∣∣ ∫ s

0

∫ 1

0

zÑ(dr, dz)

∣∣∣∣]
+P

[∣∣∣∣ ∫ t

0

∫ ∞
1

zN(dr, dz)

∣∣∣∣+

∣∣∣∣ ∫ t

0

∫ ∞
1

zN̂(dr, dz)

∣∣∣∣]
≤ ‖ρj − ρk‖t + ‖gj − gk‖ν,t + |b|P

[ ∫ t

0

Zj,k(s)ds

]
+ 2

{
cP

[ ∫ t

0

Zj,k(s)ds

]} 1
2

+ 2

{
P

[ ∫ t

0

Zj,k(s)ds

∫ 1

0

u2m(du)

]} 1
2

+ 2

{
P

[ ∫ t

0

ds

∫ 1

0

|gj(s, z)− gk(s, z)|z2ν(dz)

]} 1
2

+ 2P

[ ∫ t

0

Zj,k(s)ds

∫ ∞
1

um(du)

]
+ 2P

[ ∫ t

0

ds

∫ ∞
1

|gj(s, z)− gk(s, z)|zν(dz)

]
.

By (4.14) one can find a locally bounded function t 7→ C(t) so that

P
[

sup
0≤s≤t

Zj,k(s)
]
≤ C(t)

(
‖ρj − ρk‖t + ‖gj − gk‖ν,t +

√
‖ρj − ρk‖t +

√
‖gj − gk‖ν,t

)
.

It follows that

lim
j,k→∞

P
[

sup
0≤s≤t

|Yj(s)− Yk(s)|
]
≤ lim

j,k→∞
P
[

sup
0≤s≤t

Zj,k(s)
]

= 0.

Then there is an increasing sequence of integers {kn} such that

P
[

sup
0≤s≤n

|Yj(s)− Yk(s)|
]
≤ 1/2n, j, k ≥ kn. (4.16)

Consequently, for every t ≥ 0,

P

[ ∞∑
n=1

sup
0≤s≤t

|Ykn(s)− Ykn+1(s)|
]
<∞.

Thus we have a.s.
∞∑
n=1

sup
0≤s≤t

|Ykn(s)− Ykn+1(s)| <∞.

That yields the existence of a càdlàg positive process {Y (t) : t ≥ 0} so that (4.12) holds a.s.
for every t ≥ 0. By letting j →∞ along the sequence {kn} in (4.16) we get

P
[

sup
0≤s≤n

|Y (s)− Yk(s)|
]
≤ 1/2n, k ≥ kn.
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Then we get (4.11). �

Proof of Theorem 4.3. By Proposition 10.3 in Li (2011, p.236), there are positive sequences
{ρk} ⊂ L 0 and {gk} ⊂ L 0

ν (0,∞) such that d(ρk, ρ) + dν(gk, g) → 0 as k → ∞. Let
{Yk(t) : t ≥ 0} be defined by (4.7) with ρ = ρk and g = gk. By Lemma 4.5, there is a positive
càdlàg process {Y (t) : t ≥ 0} and a sequence {kn} so that (4.11) and (4.12) hold for every
t ≥ 0. For each k ≥ 1 we have |Yt − Yk(t)| ≤ Zk(t), where

Zk(t) =

∫ t

0

ht−s|ρ(s)− ρk(s)|ds+

∫ t

0

∫ ρ(s)∨ρk(s)

ρ(s)∧ρk(s)

∫
W

w(t− s)N0(ds, du, dw)

+

∫ t

0

∫ ∞
0

∫ g(s,z)∨gk(s,z)

g(s,z)∧gk(s,z)

∫
W

w(t− s)N1(ds, dz, du, dw).

By the arguments leading to (4.14) we get

P[|Yt − Yk(t)|] ≤ P[Zk(t)] ≤ e|b|t(‖ρ− ρk‖t + ‖g − gk‖ν,t).

It follows that P[|Yt − Yk(t)|] → 0 as n → ∞. By choosing a smaller sequence {kn} we
have a.s. Yt = limn→∞ Ykn(t) = Y (t). Then the positive càdlàg process {Y (t) : t ≥ 0} is a
modification of {Yt : t ≥ 0}. By Lemma 4.4, property (4.B) holds for {Yk(t) : t ≥ 0} with
ρ = ρk and g = gk. Then the property holds for {Y (t) : t ≥ 0}. By Proposition 4.1 the process
{Y (t) : t ≥ 0} also has property (4.A). �

Proposition 4.6 Suppose that ρk, ρ ∈ L 1 and gk, g ∈ L 1
ν (0,∞) are positive processes such

that d(ρk, ρ) + dν(gk, g) → 0 as k → ∞. Let {Yt : t ≥ 0} be the positive càdlàg process
defined by (4.7). Let {Yk(t) : t ≥ 0} be the positive càdlàg process defined by the same formula
with ρ = ρk. Then we have

lim
k→∞

P
[

sup
0≤s≤t

|Yk(s)− Ys|
]

= 0, t ≥ 0, (4.17)

and there is a subsequence {kn} ⊂ {k} so that a.s.

lim
n→∞

sup
0≤s≤t

|Ykn(s)− Ys| = 0, t ≥ 0. (4.18)

Proof. For j, k ≥ 1 let {Zj,k(t) : t ≥ 0} be defined as in (4.13). Then {(Zj,k(t),Gt) : t ≥ 0} is a
CBI-process with predictable immigration rates given by {(|ρj(s)−ρk(s)|, |gj(s, z)−gk(s, z)|) :
s ≥ 0, z > 0}. By Proposition 4.1 and Theorem 4.3, the properties (4.A) and (4.B) hold for
{Zj,k(t) : t ≥ 0}. In particular, a decomposition like (4.15) is valid for this process. The
remaining arguments go as in the proof of Lemma 4.5. �

5 Solutions of the stochastic equations

In this section, we prove there is a pathwise unique solution to (1.13) and show the solution
is a Markov process with generator (L,D). Suppose that {(Xt,Ft)}, {N0(ds, du, dw)} and
{N1(ds, dz, du, dw)} are given as in the introduction. Let the filtration (Gt) be defined as in
Theorem 3.2. The following result gives a reformulation of (1.10) in terms of a martingale
problem.
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Proposition 5.1 A positive càdlàg process {Yt : t ≥ 0} is a weak solution of (1.10) if and only
if it solves the martingale problem of (L,D), that is, for every f ∈ D ,

f(Yt) = f(Y0) +

∫ t

0

Lf(Ys)ds+ local mart. (5.1)

Proof. If {Yt : t ≥ 0} is a weak solution of (1.10), we may use Itô’s formula to see it solves
the martingale problem given by (5.1). Conversely, let us assume {Yt : t ≥ 0} is a solution of
the martingale problem (5.1). By Proposition 4.1, the process has property (4.A) in Section 4
with ρ(s) = β(Ys−) and g(s, z) = q(Ys−, z). By Theorem III.7.1′ in Ikeda and Watanabe (1989,
p.90), on an extension of the original probability space there is a Brownian motion {B(s)} so
that

M c(t) =

∫ t

0

√
2cYs−dB(s), t ≥ 0.

By Theorem III.7.4 in Ikeda and Watanabe (1989, p.93), on a further extension of the probability
space there are independent Poisson time-space random measuresM(ds, dz, du) andN(ds, dz)
with intensities dsm(dz)du and dsν(dz), respectively, so that∫ t

0

∫ ∞
0

zÑ0(ds, dz) =

∫ t

0

∫ ∞
0

∫ Ys−

0

zM̃(ds, dz, du) +

∫ t

0

∫ ∞
0

∫ g(Ys−,z)

0

zN(ds, dz, du).

Then {Yt} is a weak solution of the stochastic equation (1.10). �

Proposition 5.2 Let {Yt : t ≥ 0} be a solution to (1.13). Then there is a locally bounded
function t 7→ C(t) so that

P[Yt] ≤ C(t)
(
1 + P[X0] +

√
P[X0]

)
, t ≥ 0. (5.2)

Proof. Let {τk : k ≥ 1} be the increasing sequence of stopping times defined by τk = inf{t ≥
0 : Yt ≥ k}. Then we have a.s. limk→∞ τk =∞. By (1.13) and Condition (1.A) we have

P[Yt1{t<τk}] ≤ P[Xt∧τk ] + P

[ ∫ t∧τk

0

(
ht−s + N0[w(t− s)]

)
β(Ys−)ds

]
+P

[ ∫ t∧τk

0

ds

∫ ∞
0

Qz[w(t− s)]q(Ys−, z)ν(dz)

]
≤ P[Xt∧τk ] + P

[ ∫ t∧τk

0

e−b(t−s)
(
β(Ys−) +

∫ ∞
0

q(Ys−, z)zν(dz)

)
ds

]
≤ P

[
sup

0≤s≤t
Xs

]
+KP

[ ∫ t

0

e−b(t−s)(1 + Ys−)1{s<τk}ds

]
.

By Corollary 7.3 in Li (2019+), there is a locally bounded function t 7→ C0(t) so that

P
[

sup
0≤s≤t

Xs

]
≤ C0(t)

(
P[X0] +

√
P[X0]

)
.
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Then t 7→ P[Yt1{t<τk}] is locally bounded and

P[Yt1{t<τk}] = C0(t)
(
P[X0] +

√
P[X0]

)
+KP

[ ∫ t

0

e−b(t−s)(1 + Ys)1{s<τk}ds

]
≤ C0(t)

(
P[X0] +

√
P[X0]

)
+Kte|b|t +Ke|b|t

∫ t

0

P[Ys1{s<τk}]ds.

By Gronwall’s inequality, we can can find a function t 7→ C(t) independent of k ≥ 1 so that

P[Yt1{t<τk}] ≤ C(t)
(
1 + P[X0] +

√
P[X0]

)
. (5.3)

Then (5.2) follows from (5.3) by Fatou’s lemma. �

Proposition 5.3 There is at most one solution to (1.13).

Proof. Suppose that {Yt : t ≥ 0} and {Zt : t ≥ 0} are two solutions of the equation. Then we
have |Yt − Zt| ≤ ξt ≤ Yt + Zt, where

ξt =

∫ t

0

ht−s|β(Ys−)− β(Zs−)|ds+

∫ t

0

∫ β(Ys−)∨β(Zs−)

β(Ys−)∧β(Zs−)

∫
W

w(t− s)N0(ds, du, dw)

+

∫ t

0

∫ ∞
0

∫ q(Ys−,z)∨q(Zs−,z)

q(Ys−,z)∧q(Zs−,z)

∫
W

w(t− s)N1(ds, dz, du, dw). (5.4)

By Proposition 5.2, the function t 7→ P[Yt +Zt] = P[Yt] +P[Zt] is locally bounded, then so is
t 7→ P[ξt]. We can rewrite (5.4) into

ξt =

∫ t

0

ht−s|β(Ys−)− β(Zs−)|ds+

∫ t

0

∫ |β(Ys−)−β(Zs−)|

0

∫
W

w(t− s)M0(ds, du, dw)

+

∫ t

0

∫ ∞
0

∫ |q(Ys−,z)−q(Zs−,z)|
0

∫
W

w(t− s)M1(ds, dz, du, dw),

where M0(ds, du, dw) is a spatial shift of N0(ds, du, dw) and M0(ds, du, dw) is a spatial shift
of N1(ds, dz, du, dw). By Proposition 4.2 and Condition (1.B),

P[ξt] = P

[ ∫ t

0

e−b(t−s)
(
|β(Ys−)− β(Zs−)|+

∫ ∞
0

|q(Ys−, z)− q(Zs−, z)|zν(dz)

)
ds

]
≤ e|b|tP

[ ∫ t

0

r(|Ys− − Zs−|)ds
]
≤ e|b|t

∫ t

0

r(P[|Ys − Zs|])ds

≤ e|b|t
∫ t

0

r(P[ξs])ds, (5.5)

where the last two inequalities hold by the convexity and monotonicity of u 7→ r(u). Now
define the continuous increasing function

u(t) =

∫ t

0

r(P[ξs])ds, t ≥ 0.
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We claim that u(t) = 0 for every t ≥ 0. Otherwise, there is a > 0 so that u(a) > 0. Let
v = inf{t ∈ [0, a] : u(t) > 0}. Then 0 ≤ v < a and u(v) = 0. Since u 7→ r(u) is increasing,
we get du(s) = r(P[ξs])ds ≤ r(e|b|su(s))ds by (5.5). For v < t ≤ a we have

a− t ≥
∫ a

t

r(e|b|su(s))ds

r(e|b|au(s))
≥
∫ a

t

du(s)

r(e|b|au(s))
= e−|b|a

∫ e|b|au(a)

e|b|au(t)

du

r(u)
.

By letting t→ v and using Condition (1.B) we conclude

a− v ≥ e−|b|a
∫ e|b|au(a)

0

r(u)−1du =∞,

which gives a contradiction. Then we must have u(t) = 0 and hence P[ξt] = 0 for every t ≥ 0.
That proves the pathwise uniqueness of solution to (1.13). �

Theorem 5.4 There is a pathwise unique solution {Yt : t ≥ 0} to (1.13). Moreover, the process
{(Yt,Gt) : t ≥ 0} solves the martingale problem (5.1) for (L,D).

Proof. The pathwise uniqueness of solution to (1.13) follows from Proposition 5.3. We shall
give the construction of a solution to the stochastic equation in two steps.

Step 1. Instead of (1.A), we assume the following stronger condition: there is a constant
K ≥ 0 so that

β(x) +

∫
(0,∞)

q(x, z)zν(dz) ≤ K, x ≥ 0. (5.6)

Let Y0(t) = Xt and define inductively

ρk(s) = β(Yk−1(s−)), gk(s, z) = q(Yk−1(s−), z)

and

Yk(t) = Xt +

∫ t

0

ht−sρk(s)ds+

∫ t

0

∫ ρk(s)

0

∫
W

w(t− s)N0(ds, du, dw)

+

∫ t

0

∫ ∞
0

∫ gk(s,z)

0

∫
W

w(t− s)N1(ds, dz, du, dw).

Then by Proposition 4.2 we one can show

P[Yk(t)] ≤ C1(t) := e−btP[X0] +K

∫ t

0

e−b(t−s)ds. (5.7)

For k, j ≥ 1 let the process {Zj,k(t) : t ≥ 0} be defined as in (4.13). Then |Yj(t) − Yk(t)| ≤
Zj,k(t) ≤ Yj(t) + Yk(t). From (5.7) it follows that P[Zj,k(t)] ≤ 2C1(t) for t ≥ 0. As in (5.5)
one can see

P[Zj,k(t)] ≤ e|b|t
∫ t

0

r
(
P[|Yj−1(s)− Yk−1(s)|]

)
ds ≤ e|b|t

∫ t

0

r
(
P[Zj−1,k−1(s)]

)
ds. (5.8)
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Let Rn(t) = supj,k≥nP[Zj,k(t)] ≤ 2C1(t). By (5.8) and dominated convergence,

lim
n→∞

Rn(t) ≤ e|b|t
∫ t

0

r
(

lim
n→∞

Rn−1(s)
)

ds = e|b|t
∫ t

0

r
(

lim
n→∞

Rn(s)
)

ds.

As in the last part of the proof of Proposition 5.3 we see

lim
j,k→∞

P[Zj,k(t)] = lim
n→∞

Rn(t) = 0. (5.9)

Observe that

‖ρj − ρk‖t + ‖gj − gk‖t,ν = P

[ ∫ t

0

(
|β(Yj−1(s−))− β(Yk−1(s−))|

+

∫ ∞
0

|q(Yj−1(s−), z)− q(Yk−1(s−), z)|zν(dz)

)
ds

]
≤ e|b|tP

[ ∫ t

0

r
(
|Yj−1(s)− Yk−1(s)|

)
ds

]
≤ e|b|t

∫ t

0

r
(
P[Zj−1,k−1(s)]

)
ds.

Then (5.9) implies that ‖ρj − ρk‖t + ‖gj − gk‖t,ν → 0 as j, k →∞. Since L 1 and L 1
ν (0,∞)

are complete, there are positive processes ρ ∈ L 1 and g ∈ L 1
ν (0,∞) so that ‖ρk−ρ‖t +‖gk−

g‖t,ν → 0 as k →∞. Define the process {Yt : t ≥ 0} by (4.7). By Condition (1.B) we have∫ t

0

P

[
|ρk(s)− β(Ys−)|+

∫
(0,∞)

|gk(s, z)− q(Ys−, z)|zν(dz)

]
ds

=

∫ t

0

P

[
|β(Yk−1(s))− β(Ys)|+

∫
(0,∞)

|q(Yk−1(s), z)− q(Ys, z)|zν(dz)

]
ds

≤
∫ t

0

P
[
r(|Yk−1(s)− Ys|)

]
ds ≤

∫ t

0

r
(
P[|Yk−1(s)− Ys|]

)
ds.

By Proposition 4.6, the right-hand side vanishes as k → ∞. Then we may identify s 7→ ρ(s)
and s 7→ β(Y (s−)) as elements of L 1 and identify (s, z) 7→ g(s, z) and (s, z) 7→ q(Y (s−), z)
as elements of L 1

ν (0,∞). Now (1.13) follows from (4.7). The martingale problem characteri-
zation (5.1) follows by Theorem 4.3.

Step 2. In the general case where (5.6) is not necessarily true, for n ≥ 1 we consider the
stochastic equation

Yt = Xt +

∫ t

0

ht−sβ(Ys−)ds+

∫ t

0

∫ β(Ys−∧n)

0

∫
W

w(t− s)N0(ds, du, dw)

+

∫ t

0

∫ ∞
0

∫ q(Ys−∧n,z)

0

∫
W

w(t− s)N1(ds, dz, du, dw). (5.10)

By Step 1 and Proposition 5.3, there is a pathwise unique solution {Yn(t) : t ≥ 0} to (5.10).
Let τn = inf{t ≥ 0 : Yn(t) ≥ n}. Then Yn(t) = Yn+1(t) for 0 ≤ t < τn. As in the
proof of Proposition 5.2, one can see τn → ∞ increasingly in probability as t → ∞. Then
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Y (t) = limn→∞ Yk(t) defines a process {Y (t) : t ≥ 0}. From (5.10) we see this process is a
solution to (1.13). �

Comparison properties of stochastic equations of the form (1.10) were studied in Bertoin
and Le Gall (2006), Dawson and Li (2012) and Fu and Li (2010). Those results have played
important roles in the study of stochastic flows induced by those equations. The next theorem
provides a comparison result for the stochastic equation (1.13).

Theorem 5.5 Let (β, q) and (β′, q′) be two sets of parameters satisfying Conditions (1.A)
and (1.B). Suppose that:

• x 7→ β(x) or x 7→ β′(x) is increasing on [0,∞);

• for each z > 0, x 7→ q(x, z) or x 7→ q′(x, z) is increasing on [0,∞).

• β(x) ≤ β′(x) and q(x, z) ≤ q′(x, z) for all x ≥ 0 and z > 0.

Let {Yt : t ≥ 0} be the solution of (1.13) and {Y ′t : t ≥ 0} the solution of the stochastic
equation with (β, q) replaced by (β′, q′). Then P(Yt ≤ Y ′t for all t ≥ 0) = 1.

Proof. For simplicity, we assume x 7→ β(x) is increasing. Let A = {z > 0 : x 7→ q(x, z) is
increasing}. Then x 7→ q′(x, z) is increasing for z ∈ A′ := (0,∞) \ A. Let {Yk(t)} be the
sequence defined as in the proof of Theorem 5.4, and let {Y ′k(t)} be defined in the same way
with (β, q) replaced by (β′, q′). By induction in k ≥ 1 we see that

Yk(t) = Xt +

∫ t

0

ht−sβ(Yk−1(s−))ds+

∫ t

0

∫ β(Yk−1(s−))

0

∫
W

w(t− s)N0(ds, du, dw)

+

∫ t

0

∫
A

∫ q(Yk−1(s−),z)

0

∫
W

w(t− s)N1(ds, dz, du, dw)

+

∫ t

0

∫
A′

∫ q′(Yk−1(s−),z)

0

∫
W

w(t− s)N1(ds, dz, du, dw)

≤ Xt +

∫ t

0

ht−sβ(Y ′k−1(s−))ds+

∫ t

0

∫ β(Y ′k−1(s−))

0

∫
W

w(t− s)N0(ds, du, dw)

+

∫ t

0

∫
A

∫ q(Y ′k−1(s−),z)

0

∫
W

w(t− s)N1(ds, dz, du, dw)

+

∫ t

0

∫
A′

∫ q′(Y ′k−1(s−),z)

0

∫
W

w(t− s)N1(ds, dz, du, dw)

≤ Xt +

∫ t

0

ht−sβ
′(Y ′k−1(s−))ds+

∫ t

0

∫ β′(Y ′k−1(s−))

0

∫
W

w(t− s)N0(ds, du, dw)

+

∫ t

0

∫ ∞
0

∫ q′(Y ′k−1(s−),z)

0

∫
W

w(t− s)N1(ds, dz, du, dw)

= Y ′k(t).

Then P(Yt ≤ Y ′t for all t ≥ 0) = 1 by the proof of Theorem 5.4. �
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processes with competition by pruning of Lévy trees. Probab. Theory Related Fields 172, 725–788.

Bernis, G. and Scotti, S. (2019+): Clustering effects through Hawkes processes. In: From Probability to
Finance – Lecture note of BICMR Summer School on Financial Mathematics. Series of Mathematical
Lectures from Peking University. Springer.

Bertoin, J. and Le Gall, J.-F. (2006): Stochastic flows associated to coalescent processes III: Limit theo-
rems. Illinois J. Math. 50, 147–181.

Cox, J., Ingersoll, J. and Ross, S. (1985): A theory of the term structure of interest rate. Econometrica
53, 385–408.

Dawson, D.A. and Li, Z. (2003): Construction of immigration superprocesses with dependent spatial
motion from one-dimensional excursions. Probab. Theory Related Fields 127, 37–61.

Dawson, D.A. and Li, Z. (2006): Skew convolution semigroups and affine markov processes. Ann.
Probab. 34, 1103–1142.

Dawson, D.A. and Li, Z. (2012): Stochastic equations, flows and measure-valued processes. Ann. Proba-
b. 40, 813–857.

Dellacherie, C. and Meyer, P.A. (1982): Probabilities and Potential. Chapters V–VIII. North-Holland,
Amsterdam.

Feller, W. (1951): Diffusion processes in genetics. In: Proceedings 2nd Berkeley Symp. Math. Statist.
Probab., 1950, 227–246. Univ. of California Press, Berkeley and Los Angeles.

Fu, Z. and Li, Z. (2004): Measure-valued diffusions and stochastic equations with Poisson process.
Osaka J. Math. 41, 724–744.

Fu, Z. and Li, Z. (2010): Stochastic equations of non-negative processes with jumps. Stochastic Process.
Appl. 120, 306–330.

Getoor, R.K. and Glover, J. (1987): Constructing Markov processes with random times of birth and
death. In: Seminar on Stochastic Processes, 1986 (Charlottesville, Va., 1986), 35–69. Progr. Probab.
Statist. 13. Birkhäuser, Boston, MA.
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