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Abstract : A supercritical CB-process conditioned on explosion is again a Markov process. We

characterize the transition semigroup of the conditioned process by its Laplace transform and

by a Doob’s h-transform. The conditioned CB-process is constructed as the strong solution of

a stochastic integral equation. We use the distribution of the conditioned process to construct

directly the canonical Kuznetsov measure of the CB-process. The later is reconstructed from

positive paths picked up by a Poisson random measure based on the canonical Kuznetsov measure.
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1 Introduction

Continuous-state branching processes (CB-processes) are positive Markov processes introduced by Jǐrina

(1958) to model the random evolution of population dynamics. Those processes can be obtained as

rescaling limits of discrete Galton-Watson processes; see, e.g., Lamperti (1967a), Li (2011) and Grimvall

(1974). A representation of the processes was given by Lamperti (1967b) as time-changed spectrally

positive Lévy processes. The continuous-state branching processes with immigration (CBI-processes)

introduced by Kawazu and Watanabe (1971) are the natural generalizations of CB-processes. Stochastic

integral equations for general CBI-processes were established by Dawson and Li (2006, 2012) and Fu and

Li (2010).

Conditioned branching processes and conditional limit theorems have been studied in both discrete and

continuous state spaces by many authors. It is well-known that a non-degenerate branching goes either

extinction or explosion. It was showed in Li (2000, 2011) that a supercritical CB-process conditioned

on extinction is equivalent to a subcritical one and a critical or subcritical CB-process conditioned on

distant extinction time is equivalent to a special CBI-process. Li (2000, 2011) also showed the later can

be defined by a Doob’s h-transform related to the first moment; see also Lambert (2007). Bertoin et al.
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(2008) proved that the number of individuals with infinite lines of descents in a supercritical CB-process

evolves as an immortal supercritical Galton-Watson process. The analogous results of those for Galton-

Watson processes are classical; see, e.g., Athreya and Ney (1972, pp.47–60). However, as far as we know,

there are still no results on the characterizations and properties of the processes obtained by conditioning

supercritical branching processes on explosion.

The purpose of this note is to study the basic structures of supercritical CB-processes conditioned on

explosion. We here consider general conservative CB-processes which do not necessarily have finite first

moments. In Section 2, we recall some preliminary results. In Section 3, we show that a conditioned

supercritical CB-process is a Markov process and characterize the transition semigroup by its Laplace

transform and by a Doob’s h-transform. In Section 4, we give a construction of the conditioned process as

the unique strong solution of a stochastic integral equation, which shows the conditioned process can be

identified as a generalized CBI-process with dependent immigration. In Section 5, two applications of the

conditioned process are given. We first use the distribution of the conditioned CB-process to construct

directly the canonical Kuznetsov measure of the original CB-process, which extends the construction of Li

(2019a) under the first moment assumption. Then we give a reconstruction of CB-process from positive

paths picked up by a Poisson random measure based on the canonical Kuznetsov measure.

2 Preliminaries

We consider a conservative CB-process which is a [0,∞)-Markov process with Feller transition semigroup

(Qt)t≥0 satisfying the branching property :

Qt(x1 + x2, ·) = Qt(x1, ·) ∗Qt(x2, ·), t ∈ (0,∞), x1, x2 ∈ [0,∞),

where “∗” denotes the convolution operation. The process is characterized by its branching mechanism,

which is a function φ on [0,∞) with the following representation:

φ(λ) = bλ+ cλ2 +

∫
(0,∞)

(e−λz − 1 + λz1{z≤1})m(dz), λ ≥ 0, (2.1)

where b ∈ R and c ≥ 0 are constants, and (1 ∧ z2)m(dz) is a finite measure on (0,∞). We assume φ is

not linear and satisfies ∫
0+

1

|φ(λ)|
dλ =∞.

For every t, λ, x ∈ [0,∞), we have∫
[0,∞)

e−λyQt(x,dy) = e−xvt(λ), (2.2)

where the cumulant semigroup (vt)t≥0 is defined by

vt(λ) = λ−
∫ t

0

φ(vs(λ))ds, t, λ ≥ 0. (2.3)

Let C2
0 ([0,∞)) be the set of twice continuously differentiable functions with their derivatives up to the

second order vanish at ∞. It is known that (Qt)t≥0 has the generator A defined by

Af(x) = cxf ′′(x) + x

∫
(0,1]

[f(x+ z)− f(x)− zf ′(x)]m(dz)

− bxf ′(x) + x

∫
(1,∞)

[f(x+ z)− f(x)]m(dz), (2.4)
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where f ∈ C2
0 ([0,∞)). The branching property entails that (vt)t≥0 can be expressed canonically as

vt(λ) = htλ+

∫
(0,∞)

(1− e−λz)lt(dz), t, λ ≥ 0, (2.5)

where ht ≥ 0 and (1 ∧ z)lt(dz) is a finite measure on (0,∞). For every t ≥ 0 the function λ 7→ vt(λ) is

strictly increasing on [0,∞). Therefore the limit v̄t :=↑ limλ→∞ vt(λ) exists in (0,∞] for every t ≥ 0. It

was proved in Grey (1974) that v̄t <∞ for some t > 0 (and then for all t > 0) if and only if the following

condition (Grey’s condition) holds: φ(θ) > 0 and
∫∞
θ
φ(z)−1dz <∞ for large enough θ > 0.

3 The conditioned CB-process

Since φ is not linear, the function λ→ φ(λ) is strictly convex and there exists λ > 0 such that φ(λ) 6= 0.

Therefore the equation φ(λ) = 0 has at most one root in (0,∞). Let θ0 = inf{λ ≥ 0 : φ(λ) > 0} with

the convention inf ∅ = ∞. Let X = (Ω,F ,Ft, x(t),Qx) be a Hunt realization of the CB-process with

branching mechanism φ.

Proposition 3.1 For any x ∈ (0,∞), the limit x(∞) = limt→∞ x(t) exists Qx-a.s. in [0,∞] and

Qx{x(∞) = 0} = e−xθ0 , Qx{x(∞) =∞} = 1− e−xθ0 . (3.1)

Proof. As in the proof of Corollary 3.3 in Li (2019a) one can show that, by weak convergence of probability

measures on [0,∞],

lim
t→∞

Qt(x, ·) = e−xθ0δ0 + (1− e−xθ0)δ∞. (3.2)

We consider separately the cases θ0 =∞, θ0 = 0 and θ0 ∈ (0,∞). (1) When θ0 =∞, the process {x(t) :

t ≥ 0} is distributed identically with a random time change of a subordinator with Laplace exponent φ;

see, e.g., Theorem 12.2 in Kyprianou (2014). Then {x(t) : t ≥ 0} is Qx-a.s. increasing. Then (3.2) implies

that Qx{x(∞) =∞} = 1 for x ∈ (0,∞). (2) When θ0 = 0, we have φ′(0) ∈ [0,∞) and the CB-process is

critical or subcritical. In this case, it is well-known that t 7→ eφ
′(0)tx(t) is a positive martingale. By (3.2)

and martingale convergence theorem we see Qx{x(∞) = 0} = 1 for x ∈ [0,∞). (3) When θ0 ∈ (0,∞),

we have φ(θ0) = 0 and hence vt(θ0) = θ0 for t ≥ 0. Then t 7→ e−θ0x(t) is a positive martingale. By

martingale convergence theorem we see limt→∞ e−θ0x(t) exists Qx-a.s., so the limit x(∞) = limt→∞ x(t)

exists Qx-a.s. in [0,∞]. By (3.2), Qx[e−λx(∞)] = e−xθ0 and Qx[1− e−λx(∞)] = 1− e−xθ0 for λ > 0. Then

let λ ↓ 0, we have (3.1) for x ∈ [0,∞). �

It is well-known that zero is a trap for the CB-process. Let (Q◦t )t≥0 denote the restriction of its

transition semigroup (Qt)t≥0 to (0,∞). Let h(θ, x) = 1 − e−θx for θ, x ∈ [0,∞). In the special case

θ0 ∈ (0,∞), it is easy to see that h0(x) := θ−10 h(θ0, x) is an invariant function for (Q◦t )t≥0. In this case,

set

Ht(x, λ) =

{
h(θ0, x)−1h(vt(λ+ θ0)− vt(λ), x) if x > 0,

θ−10 (vt(λ+ θ0)− vt(λ)) if x = 0.
(3.3)

Theorem 3.2 Suppose that θ0 ∈ (0,∞). Then we can define a Feller transition semigroup (Q∞t )t≥0 on

[0,∞) by ∫
[0,∞)

e−λyQ∞t (x,dy) = e−xvt(λ)Ht(x, λ). (3.4)
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Moreover, we have Q∞t (x, dy) = h0(x)−1h0(y)Qt(x, dy) for x > 0 and

Q∞t (0,dy) = htδ0(dy) + h0(y)lt(dy), t, y ≥ 0. (3.5)

Proof. Since h0 is an invariant function for (Q◦t )t≥0, we can define a Markov transition semigroup (Q∞t )t≥0

on (0,∞) by Q∞t (x, dy) := h0(x)−1h0(y)Q◦t (x, dy). By (2.2) we have∫
(0,∞)

e−λyQ∞t (x, dy) = θ−10 h0(x)−1
∫
(0,∞)

e−λy(1− e−θ0y)Q◦t (x,dy)

= θ−10 h0(x)−1
∫
[0,∞)

(e−λy − e−(λ+θ0)y)Qt(x,dy)

= θ−10 h0(x)−1(e−xvt(λ) − e−xvt(λ+θ0)).

Then (3.4) holds for x > 0. By the continuity of the function (t, x) 7→ Ht(x, λ), we can extend (Q∞t )t≥0 to

a Feller transition semigroup on [0,∞) with Laplace transform given by (3.4). The relation (3.5) follows

by (2.5) and (3.4). �

Remark 3.3 In the critical case φ′(0) = 0, we have θ0 = 0 and h0(x) := x is an invariant function for

(Q◦t )t≥0. Note that

φ′(λ) = b+ 2cλ+

∫
(0,∞)

(1{z≤1} − e−λz)zm(dz), λ ≥ 0.

The results of Theorem 3.2 remain valid in this case if we understand

Ht(x, λ) ≡ exp

{
−
∫ t

0

φ′(vs(λ))ds

}
,

which is actually independent of x ≥ 0. In this case, the transition semigroup (Q∞t )t≥0 corresponds to a

special CBI-process; see, e.g., Li (2011, 2019a).

In the case θ0 ∈ (0,∞), if a positive Markov process has transition semigroup (Q∞t )t≥0, we call it a

supercritical CB-process conditioned on explosion. This terminology is justified by the next result.

Theorem 3.4 Suppose that θ0 ∈ (0,∞). Then for any x > 0 the process {x(t) : t ≥ 0} under the

conditional probability Q∞x := Qx(·|x(∞) =∞) is a Markov process with transition semigroup (Q∞t )t≥0.

Proof. Let t ≥ r ≥ 0 and let F be a bounded Fr-measurable random variable. For any λ ≥ 0 we can

use the Markov property to see that

Q∞x [F e−λx(t)] = Qx

{
x(∞) =∞

}−1
Qx

[
F e−λx(t)1{x(∞)=∞}

]
= Qx

{
x(∞) =∞

}−1
Qx

[
Qx

(
F e−λx(t)1{x(∞)=∞}

∣∣∣Ft

)]
= Qx

{
x(∞) =∞

}−1
Qx

[
F e−λx(t)Qx(t){x(∞) =∞}

]
= h0(x)−1Qx

[
F e−λx(t)h0(x(t))

]
. (3.6)

Using the relation Q∞t (x, dy) = h0(x)−1h0(y)Qt(x, dy) we can continue the calculations:

Q∞x [F e−λx(t)] = h0(x)−1Qx

[
F

∫
(0,∞)

e−λyh0(y)Qt−r(x(r),dy)

]
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= h0(x)−1Qx

[
Fh0(x(r))

∫
[0,∞)

e−λyQ∞t−r(x(r),dy)

]
= θ−10 h0(x)−1Qx

[
FQx(r){x(∞) =∞}

∫
[0,∞)

e−λyQ∞t−r(x(r),dy)

]
= Qx

{
x(∞) =∞

}−1
Qx

[
F1{x(∞)=∞}

∫
[0,∞)

e−λyQ∞t−r(x(r),dy)

]
= Q∞x

[
F

∫
[0,∞)

e−λyQ∞t−r(x(r),dy)

]
.

Then {x(t) : t ≥ 0} under Q∞x is a Markov process with transition semigroup (Q∞t )t≥0. �

Corollary 3.5 Suppose that θ0 ∈ (0,∞). Then for any T > 0 and x > 0 we have Q∞x (dω) =

h0(x)−1h0(x(T, ω))Qx(dω) on FT .

Proof. This is a consequence of (3.6) with r = T and λ = 0. �

Theorem 3.6 Suppose that θ0 ∈ (0,∞) and Grey’s condition holds. Let τ0 = inf{s ≥ 0 : x(s) = 0} be

the extinction time of the CB-process. Then Q∞x (·) = Qx(·|τ0 =∞).

Proof. By Proposition 3.1 we can remove a null set from Ω so that Ω = {x(∞) = 0} ∪ {x(∞) = ∞}.
The strong Markov property implies Qx{x(τ0 + t) > 0 for some t ≥ 0} = 0. Then, by remove another

null set from Ω, we have x(t) = x(t ∧ τ0) for all t ≥ 0. It follows that {τ0 < ∞} ⊂ {x(∞) = 0} and

so {x(∞) = ∞} ⊂ {τ0 = ∞}. By the arguments in the proof of Theorem 3.7 in Li (2019a) one can see

that Qx{τ0 < ∞} = e−xθ0 . Then Qx{τ0 < ∞} = Qx{x(∞) = 0} by Proposition 3.1. By removing a

null set from Ω again, we get {τ0 <∞} = {x(∞) = 0}, so {τ0 =∞} = {x(∞) = 0}c. Let 4 denote the

symmetric difference of events. It follows that

Qx({x(∞) =∞}4 {τ0 =∞}) = Qx({x(∞) = 0}c 4 {τ0 =∞}) = 0.

Then Q∞x (·) = Qx(·|x(∞) =∞) = Qx(·|τ0 =∞). �

Corollary 3.7 If θ0 ∈ (0,∞) and Grey’s condition holds, then for any F ∈ F we have Q∞x (F ) =

limT→∞Qx(F |τ0 ≥ T ).

4 Construction by a stochastic equation

Throughout this section, we assume θ0 ∈ (0,∞) and so φ′(0+) ∈ [−∞, 0). Suppose that (Ω,G ,Gt,P) is a

filtered probability space satisfying the usual hypotheses. Let {B(t) : t ≥ 0} be a (Gt)-Brownian motion.

Let M0(ds,dz,du) be a (Gt)-Poisson random measure on (0,∞)3 with intensity dsm(dz)du, where m(dz)

is defined in (2.1) and M̃0(ds,dz,du) the compensated measure. Let M1(ds,dz,du) be a (Gt)-Poisson

random measure on (0,∞)3 with intensity dsn(dz)du, where n(dz) = h0(z)m(dz) = θ−10 (1−e−θ0z)m(dz).

Assume those random elements are independent of each other. Let Y0 be a non-negative G0-measurable

random variable. We consider the stochastic integral equation

Yt = Y0 +

∫ t

0

(2cg(Ys−)− bYs−)ds+

∫ t

0

√
2cYs−dBs +

∫ t

0

∫ 1

0

∫ Ys−

0

zM̃0(ds,dz,du)

+

∫ t

0

∫ ∞
1

∫ Ys−

0

zM0(ds,dz,du) +

∫ t

0

∫ ∞
0

∫ g(Ys−)

0

zM1(ds,dz,du), (4.1)
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where g(x) = xe−θ0xh0(x)−1 = xθ0(eθ0x−1)−1 with g(0) = 1 by continuity. Here we make the conventions∫ b

a

=

∫
(a,b]

and

∫ ∞
a

=

∫
(a,∞)

for any real numbers a ≤ b.

Theorem 4.1 The SDE (4.1) has a unique non-negative strong solution and the solution is a conservative

Markov process in [0,∞) with the transition semigroup (Q∞t )t≥0.

Proof. Step 1. Let E = {1, 2}, U0 = (0, 1]× (0,∞) and U1 = (0,∞)2 × E. Let π(dy) = δ1(dy) + δ2(dy)

for y ∈ E. Then N0(ds,dz,du) := 1(0,1](z)M0(ds,dz,du) is a Poisson random measure on (0,∞) × U0

with intensity ds1(0,1](z)m(dz)du and

N1(ds,dz,du,dy) := 1(1,∞)(z)M0(ds,dz,du)δ1(dy) +M1(ds,dz,du)δ2(dy)

is a Poisson random measure on (0,∞)×U1 with intensity ds1(1,∞)(z)m(dz)duδ1(dy)+dsn(dz)duδ2(dy).

Clearly, N0 and N1 are independent. Let b(x) = 2cg(x) − bx and σ(x) =
√

2cx for x ∈ [0,∞). Let

g0(x, z, u) = z1(0,x](u) for (x, z, u) ∈ (0,∞)× (0, 1]× (0,∞) and

g1(x, z, u, y) = z1(1,∞)(z)1(0,x](u)1{y=1} + z1(0,g(x)](u)1{y=2}

for (x, z, u, y) ∈ (0,∞)3 × E. Note that

g′(x) = θ0eθ0x(1− e−θ0x − θ0x)(eθ0x − 1)−2 ≤ 0, x ≥ 0.

Moreover, we have g′′(x) ≥ 0 and |g(x)− g(y)| ≤ 1
2θ0|x− y| for x, y ≥ 0. By Proposition 1 in Palau and

Pardo (2018), there is a unique [0,∞]-valued strong solution {Yt : t ≥ 0} to

Yt = Y0 +

∫ t

0

b(Ys−)ds+

∫ t

0

σ(Ys−)dBs +

∫ t

0

∫
U0

g0(Ys−, z, u)Ñ0(ds,dz,du)

+

∫ t

0

∫
U1

g1(Ys−, z, u, y)N1(ds,dz,du,dy), (4.2)

which is a reformulation of (4.1). Then the SDE (4.1) has a unique [0,∞]-valued strong solution {Yt :

t ≥ 0}. More precisely, we have, for each n ≥ 1 and t ≥ 0,

Yt∧τn = Y0 +

∫ t∧τn

0

(2cg(Ys−)− bYs−)ds+

∫ t∧τn

0

√
2cYs−dBs

+

∫ t∧τn

0

∫ 1

0

∫ Ys−

0

zM̃0(ds,dz,du) +

∫ t∧τn

0

∫ ∞
1

∫ Ys−

0

zM0(ds,dz,du)

+

∫ t∧τn

0

∫ ∞
0

∫ g(Ys−)

0

zM1(ds,dz,du) (4.3)

where τn = inf{t ≥ 0 : Yt ≥ n}, and Yt =∞ for t ≥ τ∞ := limn→∞ τn.

Step 2. For f ∈ C2
0 ([0,∞)), we can use (4.3) and Itô’s formula to see

f(Yt) = f(Y0) +

∫ t

0

A∞f(Ys)ds+ local mart., (4.4)

where

A∞f(x) = Af(x) + 2cg(x)f ′(x) + g(x)

∫ ∞
0

[f(x+ z)− f(x)]n(dz). (4.5)
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For T ≥ 0 let C1,2([0, T ]× [0,∞)) denote the set of functions (t, x) 7→ G(t, x) which are C1 with respect

to t and C2
0 with respect to x. For any G ∈ C1,2([0, T ]× [0,∞)), we can deduce from (4.4) by standard

arguments that

G(t, Yt) = G(0, Y0) +

∫ t

0

[G′t(s, Ys) +A∞G(s, Ys)]ds+ local mart., (4.6)

where G′t is the derivative of G(t, x) with respect to t and A∞ acts on the function x 7→ G(s, x) .

Step 3. For any T ≥ 0 and λ > 0 we apply (4.6) to the function

G(t, x) = (e−vT−t(λ)x − e−vT−t(λ+θ0)x)(1− e−θ0x)−1.

Here we make the convention that e−λ·∞ = 0. Set eλ(x) = e−λx for x ≥ 0 and λ > 0. It is elementary

to check that A∞G(s, x) = −G′t(s, x), so t 7→ G(t, Yt) is a martingale. Then P[G(T, YT )|Gt] = G(t, Yt),

which implies P[e−λYT |Gt] = Q∞T−teλ(Yt) for λ > 0 and 0 ≤ t ≤ T . That shows {Yt : t ≥ 0} is a Markov

process with transition semigroup (Q∞t )t≥0. It follows that P{Yt < ∞ for all t ≥ 0} = 1. Then we get

the result. �

Remark 4.2 In view of (4.1) and (4.5), we can also think of {Yt : t ≥ 0} as a generalized CBI-

process with dependent immigration determined by the function g(x) = xθ0(eθ0x − 1)−1. In the critical

case φ′(0) = 0, we have θ0 = 0 and the process reduces to a special CBI-process, which is a CB-

process conditioned on large extinction times; see, e.g., Li (2011, Theorem 3.25). More general stochastic

equations of the type of (4.2) have been studied in Dawson and Li (2012) and Fu and Li (2010). A

construction of CB-processes with dependent immigration was given in Li (2019b) by solving a stochastic

equation driven by Poisson random measures on the space of positive paths.

5 Applications

Let D[0,∞) denote the space of [0,∞)-càdlàg paths on [0,∞). For any w ∈ D[0,∞) let α(w) = inf{s ≥
0 : w(s) > 0} and β(w) = sup{s ≥ 0 : w(s) > 0}. Let W = {w ∈ D[0,∞) : w(t) > 0 for t ∈ (α(w), β(w))

and w(t) = 0 for t ∈ [α(w), β(w))c}. On the space W , we define the σ-algebras W = σ(w(s) : s ∈ [0,∞))

and Wt = σ(w(s) : s ∈ [0, t]) for t ≥ 0. Let [0] ∈ W be the path which is constantly zero. For notation

convenience, we extend the definition of each w ∈W by setting w(s) = 0 for s < 0.

Theorem 5.1 There is a unique σ-finite measure N0 on (W,W ) satisfying N0({[0]}) = 0 and

N0(α(w) ≤ t1, w(t1) ∈ dx1, w(t2) ∈ dx2, . . . , w(tn) ∈ dxn, tn < β(w))

= lt1(dx1)Q◦t2−t1(x1,dx2) · · ·Q◦tn−1−tn−2
(xn−2,dxn−1)Q◦tn−tn−1

(xn−1,dxn), (5.1)

for {t1 < t2 < · · · < tn} ⊂ (0,∞) and {x1, x2, · · · , xn} ⊂ (0,∞). Moreover for t ≥ r > 0, λ ≥ 0 and a

positive Wr-measurable function F on W ,

N0[F (w)(1− e−λw(t))] = N0[F (w)(1− e−vt−r(λ)w(r))] + F ([0])[hrvt−r(λ)− htλ]. (5.2)

Proof. To construct a measure N0 satisfying (5.1) we may consider separately the cases φ′(∞) =∞ and

φ′(∞) < ∞. (1) In the case φ′(∞) = ∞, we have ht = 0 for every t > 0 and (lt)t>0 is an entrance law

for (Q◦t )t≥0. For θ0 = 0, we have φ′(0) ∈ [0,∞) and a construction of N0 was given in Theorem 6.1 of Li
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(2019a). The arguments there can be modified for θ0 ∈ (0,∞) as follows. For any T > 0 we first construct

a probability measure PT0 on (W,W ) so that {w(s) : s ∈ [0, T ]} under this measure is a Markov process

with initial state w(0) = 0 and transition semigroup (Q∞t )t≥0 and {w(s) : s ∈ [T,∞)} is a Markov process

with transition semigroup (Qt)t≥0. By Theorem 3.2 we have PT0 (w(s) = 0) = Q∞s (0, {0}) = 0 for every

0 < s ≤ T . Let NT
0 (dw) = h0(w(T ))−11{w(T )>0}P

T
0 (dw). The increasing limit N0 := limT→0 N

T
0 exists

and defines a σ-finite measure on (W,W ) satisfying (5.1). In this case, the measure N0 is supported by

{w ∈W : α(w) = 0, w(0) = 0}. (2) In the case of δ := φ′(∞) <∞, we have ht = e−δt for every t ≥ 0 and

(lt)t>0 is an entrance rule for (Q◦t )t≥0. Indeed, as in the proof of Theorem 3.15 of Li (2019a) one can see

vt(λ) = e−δtλ+

∫ t

0

e−δsds

∫
(0,∞)

(1− e−uvt−s(λ))m(du).

Then N0 can be constructed as in the proof of Theorem 2.2 of Li (2019b). In this case, the measure is

supported by {w ∈ W : α(w) > 0, w(α(w)) > 0}. The uniqueness of the measure satisfying (5.1) is a

consequence of the measure extension theorem. The relation (5.2) can be proved similarly as Theorem

2.3 in Li (2019b). �

The family (lt)t>0 of σ-finite measures on (0,∞) in the canonical representation (2.5) is an entrance

rule for the semigroup (Q◦t )t≥0 in the following sense: lrQ
◦
t−r ≤ lt for all t > r > 0 and lrQ

◦
t−r → lt as

r → t. The σ-finite measure N0 determined by (5.1) is referred to as the canonical Kuznetsov measure

associated with (lt)t>0. The existence of N0 follows also from general results in the theory of Markov

processes; see Kuznetsov (1974) and Getoor and Glover (1987). The reader can refer to Li (2019a, 2019b)

for constructions of the measure under the first moment assumption; see also Duquesne and Labbé (2014).

Theorem 5.2 Let x ≥ 0 and let N(dw) be a Poisson random measure on W with intensity xN0(dw).

Define X0 = x and

Xt = xht +

∫
W

w(t)N(dw), t > 0.

Define Nt = σ{N(A) : A ∈ Wt}. Then {(Xt,Nt) : t ≥ 0} is a CB-process with transition semigroup

(Qt)t≥0.

Proof. It is obvious that {Xt} is adapted to the filtration {Nt}. Note that the random variable Xt has

distribution Qt(x, ·). Indeed, for t > 0 and λ ≥ 0,

P[e−λXt ] = exp{−λxht} ·P
[

exp

{
− λ

∫
W

w(t)N(dw)

}]
= exp{−λxht} · exp

{
− xN0(1− e−λw(t))

}
= exp{−λxht} · exp

{
−
∫
(0,∞)

(1− e−λz)xlt(dz)

}
= e−xvt(λ).

Let t > r > 0 and let h be a bounded positive function on Wr with h([0]) = 0. For any λ ≥ 0, by (2.5)

and (5.2),

P

[
exp

{
−
∫
W

h(w)N(dw)− λXt

}]
= P

[
exp

{
− xhtλ−

∫
W

[h(w) + λw(t)]N(dw)

}]
= exp

{
− xhtλ− xN0(1− e−h(w)−λw(t))

}
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= exp

{
− xhtλ− xN0(1− e−h(w))

}
· exp

{
− xN0[e−h(w)(1− e−λw(t))]

}
= exp

{
− xhtλ− xN0(1− e−h(w))− x[hrvt−r(λ)− htλ]

}
· exp

{
− xN0[e−h(w)(1− e−vt−r(λ)w(r))]

}
= exp

{
− xhrvt−r(λ)− xN0(1− e−h(w)−vt−r(λ)w(r))

}
= P

[
exp

{
−
∫
W

h(w)N(dw)− vt−r(λ)Xr

}]
.

Then {(Xt,Nt) : t ≥ 0} is a CB-process with transition semigroup (Qt)t≥0. �

Remark 5.3 The reconstruction of the CB-process given in Theorem 5.2 shows that the population

can be divided into two parts. One part develops deterministically following the path t 7→ xht, the

other part consists of sample paths picked from W by the Poisson random measure N(dw). For similar

constructions, see Duquesne and Labbé (2014), Li (2011, 2019a, 2019b) and the references therein.
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