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1 Introduction

The study of exponential functionals of random walks and Lévy processes has drawn the
attention of many researchers in recent years. Those functionals play important roles in the
study of probabilistic models in random environments among their other applications. Let
ξ = {ξ(t) : t ≥ 0} be a one-dimensional Lévy process. Given a constant α > 0, we define the
exponential functional:

Aαt (ξ) =

∫ t

0
e−αξ(s)ds, 0 ≤ t ≤ ∞. (1.1)

Here we allow Aα∞(ξ) = ∞. When ξ is a Brownian motion with drift, a characterization of the
distribution of Aαt (ξ) was obtained by Yor (1992, Proposition 2). For an exponentially distribut-
ed random variable T , positive and negative moments of AαT (ξ) were calculated by Carmona et
al. (1994, 1997). By a result of Bertoin and Yor (2005), we have Aα∞(ξ) < ∞ a.s. if and only
if limt→∞ ξ(t) = ∞ a.s. In this case, Bertoin and Yor (2005) gave some characterizations for
the distribution of Aα∞(ξ) and Pardo et al. (2012) established a Wiener-Hopf type factorization
for this functional. Let z 7→ F (z) be a positive decreasing function on (0,∞) that vanishes as
z →∞ at a certain rate. In the case of Aα∞(ξ) =∞, a natural problem is to evaluate the decay
rate as t→∞ of the expectation:

P[F (Aαt (ξ))] = P

[
F
(∫ t

0
e−αξ(s)ds

)]
. (1.2)
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In the special case where F (z) = a(a+ z)−1 and {ξ(t) : t ≥ 0} is a Brownian motion with drift,
the problem was studied by Kawazu and Tanaka (1993) in their work on the tail behavior of a
diffusion process in random environment. Other specific forms of the function F arising from
applications were discussed in Carmona et al. (1994, 1997).

Let {Zα(t) : t ≥ 0} be a spectrally positive (α + 1)-stable process with 0 < α ≤ 1 and
{L(t) : t ≥ 0} a Lévy process with no jump less than −1. Let c ≥ 0 be another constant. Given
the initial value x ≥ 0, we consider the following stochastic integral equation:

X(t) = x+

∫ t

0

1+α
√

(1 + α)cX(s−)dZα(s) +

∫ t

0
X(s−)dL(s). (1.3)

By Theorem 6.2 in Fu and Li (2010), there exists a unique positive strong solution {X(t) : t ≥ 0}
to (1.3). The solution is called a continuous-state branching process in random environment
(CBRE-process) with stable branching mechanism. Here the random environment is modeled
by the Lévy process {L(t) : t ≥ 0}. The reader may refer to He et al. (2016) and Palau and
Pardo (2015b) for discussions of more general CBRE-processes and to Bansaye et al. (2013) for
a special case. We shall see that there is another Lévy process {ξ(t) : t ≥ 0} determined by the
environment so that the survival probability of the CBRE-process up to time t ≥ 0 is given by

P(X(t) > 0) = P
[
1− exp

{
− x(cα)−1/αAαt (ξ)−1/α

}]
. (1.4)

Clearly, the right-hand side of (1.4) is a special case of (1.2). Based on the above expression,
the asymptotic behavior of the survival probability as t → ∞ were studied by Böinghoff and
Hutzenthaler (2012) for the case where α = 1 and the environment process is a Brownian motion
with drift. Their results were extended recently to the case 1 < α ≤ 1 by Palau and Pardo
(2015a). The main strategy of Böinghoff and Hutzenthaler (2012) and Palau and Pardo (2015a)
is the formula of Yor (1992) for the distribution of the exponential functional of the Brownian
motion with drift; see also Matsumoto and Yor (2003). Bansaye et al. (2013) studied the
problem in the case where the environment is given by a Lévy process with bounded variations
and showed some interesting applications of the results to a cell infection model. The key step
in their proof is to study the expectation (1.2) for F (x) = (1 +x)−1/β[1 + (1 +x)−γh(x)], where
0 < β ≤ 1 and γ ≥ 1 are constants and h is a bounded Lipschitz function. The asymptotics of
survival probabilities for classical Galton-Watson branching processes in random environment
(GWRE-processes) were studied earlier by Afanasy’ev et al. (2005), Dyakonova et al. (2004),
Geiger and Kersting (2002), Geiger et al. (2003), Guivarc’h and Liu (2001), Kozlov (1976), Liu
(1996) and Vatutin et al. (2013) among others. Roughly speaking, for critical branching the
survival probability decays at a polynomial rate and for subcritical branching it decays at an
exponential rate with three different polynomial modifying factors, which classify the processes
into weakly subcritical, intermediately subcritical and strongly subcritical ones. Those results
play important roles in the study of various conditional limit theorems of the CBRE- and GWRE-
processes. Unfortunately, in most of the results established before, the limiting coefficients were
not explicitly identified except in very special cases; see, e.g., Böinghoff and Hutzenthaler (2012).

The purpose of this paper is to study the asymptotic behavior of the expectation in (1.2) for
a general function F and a general Lévy process ξ. Under natural assumptions, we prove some
accurate results for asymptotics of the expectation as t → ∞. We shall see that five regimes
arise for the convergence rate. We also apply the results to study the survival probability of the
CBRE-process defined by (1.3). The feature of this work is that we give not only the convergence
rate but also the expression of the limiting coefficient in all regimes. The key of the results is the
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observation that the asymptotics of (1.2) only depends on the charge of probability on sample
paths of the Lévy process whose local infimum decreases slowly. This makes it possible for us
to determine the limiting coefficients by extensions of the conditional limit theorems of Hirano
(2001). The constants are expressed in terms of some transformations based on the renewal
functions associated with the ladder processes of ξ and its dual process. The main results of
the paper are presented in Section 2. The proofs for recurrent and transient Lévy processes are
given in Sections 3 and 4, respectively. The applications of the results to CBRE-processes are
discussed in Section 5.

We use some standard notations from the theory of Markov processes; see, for example,
Sharpe (1988). In particular, we use the symbol, say P, for a probability measure to denote the
corresponding expectation. For an event A and a random variable X, we write P(X|A) for the
conditional expectation of X given A and write P(X;A) for the expectation P(X1A), where 1A
is the indicator of A.

After putting the first version of this paper to Arxiv, we noticed the interesting work of
Palau et al. (2016), where some results for the asymptotics of exponential functionals of Lévy
processes were obtained and the results were also applied to study the survival probability of
the CBRE-process. But, as in most of the references mentioned above, they did not identify the
limiting coefficients.

Acknowledgements. We would like to thank Professor Gennady Samorodnitsky for en-
lightening comments on the literature of Lévy processes. We are grateful to Professors Juan
C. Pardo and Vladimir A. Vatutin for letting us know their papers on branching processes in
random environments. We thank the editors and two referees for their comments which helped
us in improving the presentation of the results. This work is supported by NSFC No. 11131003,
No. 11531001 and No. 11401012.

2 Asymptotics of exponential functionals

In this section, we present our main results on the asymptotic behavior of the expectation
(1.2). To this end, we first introduce some basic notations and establish some preliminary results
which are helpful for the understanding of the main theorem.

Let Ψ(λ) be the characteristic exponent of an infinitely divisible probability measure on the
one-dimensional Euclidean space R given by

Ψ(λ) = iaλ+
σ2

2
λ2 +

∫
R

(1− eiλx + iλx)ν(dx), λ ∈ R, (2.1)

where a ∈ R and σ ≥ 0 are constants and ν(dx) is a σ-finite measure on R supported by R \ {0}
and satisfying ∫

R
(|x| ∧ |x|2)ν(dx) <∞. (2.2)

We also need to consider the Laplace exponent Φ defined by

Φ(λ) = −aλ+
σ2

2
λ2 +

∫
R

(eλx − 1− λx)ν(dx), λ ∈ R. (2.3)
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Of course, we may have Φ(λ) = ∞ for some λ ∈ R. Let D(Φ) = {λ ∈ R : Φ(λ) < ∞}. Then
D(Φ) is necessarily an interval containing the origin. Let D+(Φ) = D(Φ) ∩ [0,∞). Let D◦(Φ)
and D◦+(Φ) denote the interior sets of D(Φ) and D+(Φ), respectively.

Let Ω be the set of all càdlàg paths from [0,∞) to R. For t ≥ 0 and ω ∈ Ω let ξt(ω) = ω(t)
denote the coordinate process. Let F = σ({ξs : s ≥ 0}) and Ft = σ({ξs : 0 ≤ s ≤ t}) be
the natural σ-algebras. For each x ∈ R there is a probability measure Px on (Ω ,F ) so that
{(ξt,Ft) : t ≥ 0} under this measure is a process with independent and stationary increments
and

Px[exp{iλξt}] = exp{iλx− tΨ(λ)}, t ≥ 0, λ ∈ R. (2.4)

Then ξ = (Ω ,F ,Ft, ξt,Px) is the canonical realization of the Lévy process with characteristic
exponent Ψ . Let P̂x denote the law of {−ξt : t ≥ 0} under P−x. Then ξ̂ = (Ω ,F ,Ft, ξt, P̂x) is
the dual process of ξ, which is also a Lévy process. For simplicity, write P = P0 and P̂ = P̂0.
It is well-known that under the integrability condition (2.2) we have

P0(ξt) = −P̂0(ξt) = −Φ′(0)t = −at, t ≥ 0.

To avoid triviality, in the sequel of the paper we make the following:

Assumption 1 The function Φ is strictly convex, so that the process ξ is not a deterministic
motion.

For notational convenience, we may write ξ(t) instead of ξt for t ≥ 0. It is known that:

(2.a) If a < 0, then P(limt→∞ ξ(t) = −∞) = 1.

(2.b) If a > 0, then P(limt→∞ ξ(t) =∞) = 1.

(2.c) If a = 0, then P(lim supt→∞ ξ(t) = − lim inft→∞ ξ(t) =∞) = 1.

In cases (2.a) and (2.b), the process ξ is transient, and in case (2.c) it is recurrent. See, e.g.,
Kyprianou (2014, pp.204–205) and Sato (1999, p.237, p.248 and p.255).

For any θ ∈ D(Φ), it is easy to see that t 7→ e−θx+θξ(t)−Φ(θ)t is a Px-martingale. Then, using

the Esscher transform, we can define the probability measure P
(θ)
x on (Ω ,F ) by

P(θ)
x (A) = e−θx

∫
A
eθξ(t)−Φ(θ)tdPx, A ∈ Ft, t ≥ 0. (2.5)

It is known that ξ(θ) = (Ω ,F ,Ft, ξ(t),P
(θ)
x ) is a Lévy process with Laplace exponent Φθ(λ) :=

Φ(λ+θ)−Φ(θ); see, e.g., Theorem 3.9 in Kyprianou (2014, p.83). Let ξ̂(θ) = (Ω ,F ,Ft, ξ(t), P̂
(θ)
x )

be its dual process. For simplicity, write P(θ) = P
(θ)
0 and P̂(θ) = P̂

(θ)
0 .

We define the supremum process S := (S(t) : t ≥ 0) by S(t) = sups∈[0,t] ξ(s). Let S − ξ :=
{S(t) − ξ(t) : t ≥ 0} be the reflected process, which is a Markov process with Feller transition
semigroup; see, e.g., Proposition 1 in Bertoin (1996, p.156). Let L = {L(t) : t ≥ 0} be the
local time at zero of S − ξ in the sense of Bertoin (1996, p.109). The inverse local time process
L−1 = {L−1(t) : t ≥ 0} is defined by

L−1(t) =
{ inf{s > 0 : L(s) > t}, t < L(∞);

∞, otherwise.
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The ladder height process H = {H(t) : t ≥ 0} of ξ is defined by

H(t) =
{ ξ(L−1(t)), t < L(∞);

∞, otherwise.

Note that H(t) = S(L−1(t)) when L−1(t) <∞. By Lemma 2 in Bertoin (1996, p.157), the two-
dimensional process (L−1, H) is a Lévy process (possibly killed at an exponential rate). This is
known as the ladder process of ξ and is characterized by

P[exp{−λ1L−1(t)− λ2H(t)}] = exp{−tκ(λ1, λ2)}, λ1, λ2 ≥ 0,

where the bivariate exponent κ(λ1, λ2) is given by

κ(λ1, λ2) = k exp
{∫ ∞

0

dt

t

∫
[0,∞)

(e−t − e−λ1t−λ2x)P(ξ(t) ∈ dx)
}
.

In particular, both L−1 and H are (possibly killed) subordinators. The constant k > 0 here is
determined by the normalization of the local time; see Corollary 10 in Bertoin (1996, pp.165–
166). In this work, we choose the normalization suitably so that k = 1; see also Hirano (2001,
p.293). The renewal function V associated with the ladder height process H is defined by

V (x) =

∫ ∞
0

P(H(t) ≤ x)dt = P
(∫

[0,∞)
1{S(t)≤x}dL(t)

)
, x ≥ 0; (2.6)

see, e.g., Bertoin (1996, p.171) and Chaumont and Doney (2005, p.950). Let V̂ and κ̂(λ1, λ2)
be defined similarly as the above from the dual process ξ̂.

For x ∈ R define the stopping time τ−x = inf{t ≥ 0 : ξ(t) < x}. Let bB[0,∞) denote the set
of bounded Borel functions on [0,∞). We can define a transition semigroup (qt)t≥0 on [0,∞) by

qtf(x) = Px

[
f(ξ(t))1{τ−0 >t}

]
, x ≥ 0, f ∈ bB[0,∞).

If P(lim supt→∞ ξ(t) = ∞) = 1, then V̂ is an invariant function for (qt)t≥0 by Lemma 1 of
Chaumont and Doney (2005, p.951). It follows that t 7→ V̂ (ξ(t))1{τ−0 >t}

is a Px-martingale for

each x ≥ 0; see also Bertoin (1996, p.184) and Hirano (2001, p.293). In this case, we have the
conservative Markov process Ξ = (Ω ,F ,Ft, ξ(t),Qx), where Qx is the probability measure on
(Ω ,F ) determined by

Qx(A) = V̂ (x)−1
∫
A
V̂ (ξ(t))1{τ−0 >t}

dPx, A ∈ Ft, t ≥ 0.

Similarly, in the case P̂(lim supt→∞ ξ(t) = ∞) = 1, we have the conservative Markov process
Ξ̂ = (Ω ,F ,Ft, ξ(t), Q̂x), where Q̂x is the probability measure on (Ω ,F ) determined by

Q̂x(A) = V (x)−1
∫
A
V (ξ(t))1{τ−0 >t}

dP̂x, A ∈ Ft, t ≥ 0.

Let V (θ) and V̂ (θ) be the renewal functions associated with the ladder height processes of

the Lévy processes ξ(θ) and ξ̂(θ), respectively. Let Ξ (θ) = (Ω ,F ,Ft, ξ(t),Q
(θ)
x ) and Ξ̂ (θ) =

(Ω ,F ,Ft, ξ(t), Q̂
(θ)
x ) be the resulting Markov processes, respectively.

For α > 0 let {Aαt (ξ) : 0 ≤ t ≤ ∞} be defined by (1.1).
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Proposition 2.1 (Carmona et al., 1997) For any α > 0 the following statements are equivalent:
(1) P[ξ(1)] > 0; (2) P(Aα∞(ξ) <∞) > 0; (3) P(Aα∞(ξ) <∞) = 1.

Lemma 2.2 For any α > 0, t > 0 and β ∈ D◦+(Φ) we have

P[Aαt (ξ)−β/α] ≤ t−β/αP[eβS(t)] ≤ 4t−β/αeβ(a+|a|)tP[eβξ(t)].

Proof. By applying Doob’s inequality to the submartingale t 7→ eβ[ξ(t)+at]/2 we have

P[eβS(t)] ≤ eβ|a|tP
[

sup
0≤s≤t

eβ[ξ(s)+as]
]
≤ eβ|a|tP

[
sup
0≤s≤t

(
eβ[ξ(s)+as]/2

)2]
≤ 4eβ|a|tP[eβ[ξ(t)+at]] = 4eβ(a+|a|)tP[eβξ(t)],

where the right-hand side is finite since β ∈ D◦+(Φ). It is simple to see that

P[Aαt (ξ)−β/α] ≤ P
[( ∫ t

0
e−αS(t)ds

)−β/α]
= t−β/αP[eβS(t)]

Then we obtain the result. 2

Lemma 2.3 For any α > 0, t ≥ 2 and β ∈ D◦+(Φ) we have

P[Aαt (ξ)−β/α] ≤ P
[

exp
{

min
k≤[t]−1

βξ(k)
}]

P[eβS(1)],

where [t] denotes the integer part of t.

Proof. For any j = 0, 1, · · · , [t]− 1, define

Z(j) = log
(∫ j+1

j
e−α(ξ(s)−ξ(j))ds

)
.

Then {Z(j) : j = 0, 1, · · · , [t]− 1} is a sequence of i.i.d. random variables. It is easy to see that

P[Aαt (ξ)−β/α] ≤ P
[( ∫ [t]

0
e−αξ(s)ds

)−β/α]
= P

[( [t]−1∑
j=0

e−αξ(j)+Z(j)
)−β/α]

≤ P[eβξ(κ)−βZ(κ)/α],

where κ = min{j ≤ [t] − 1 : ξ(j) = mink≤[t]−1 ξ(k)}. Since Z(κ) is independent of ξ(κ) and κ,
we have

P[Aαt (ξ)−β/α] ≤
[t]−1∑
k=0

P(κ = k)P[eβξ(κ)−βZ(κ)/α|κ = k]

=

[t]−1∑
k=0

P(κ = k)P[eβξ(κ)|κ = k]P[e−βZ(κ)/α]

=

[t]−1∑
k=0

P(κ = k)P[eβξ(κ)|κ = k]P[e−βZ(0)/α]
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≤
[t]−1∑
k=0

P(κ = k)P[eβξ(κ)|κ = k]P[eβS(1)]

= P
[

exp
{

min
k≤[t]−1

βξ(k)
}]

P[eβS(1)].

Then the desired result follows. 2

Lemma 2.4 If P(lim supt→∞ ξ(t) =∞) = 1, then for any α > 0 and x > 0 we have Qx[Aα∞(ξ)] <
∞.

Proof. By the definition of Qx and Fubini’s theorem, we have

Qx[Aα∞(ξ)] = V̂ (x)−1
∫ ∞
0

Px[e−αξ(r)V̂ (ξ(r)); τ−0 > r]dr

= V̂ (x)−1Px

[ ∫ τ−0

0
e−αξ(r)V̂ (ξ(r))dr

]
≤ V̂ (x)−1

∫ ∞
0

dV (y)

∫ x

0
e−α(y+x−z)V̂ (y + x− z)dV̂ (z),

where the last step follows by Theorem 20 in Bertoin (1996, p.176). By Corollary 5.3 in Kypri-
anou (2014, p.118) we have V̂ (y) ∼ y/P̂[H(1)] as y → ∞. Then we can take γ ∈ (0, α) and
C ≥ 0 so that e−(α−γ)yV̂ (y) ≤ C for y ≥ 0. It follows that

Qx[Aα∞(ξ)] ≤ CV̂ (x)−1
∫ ∞
0

e−γydV (y)

∫ x

0
dV̂ (z),

The right-hand side is clearly finite. 2

In the sequel of the paper, we also make the following:

Assumption 2 Fix the constants α > 0, β ∈ D◦+(Φ) and a decreasing and strictly positive
function F on (0,∞). Assume there exist C0 > 0 and β0 ∈ D+(Φ) so that F (z) ≤ C0z

−β0/α for
0 < z ≤ 1.

To simplify the presentation of the results, let us state the following conditions:

Condition 2.5 For each δ > 0 there is a constant Kδ > 0 so that |F (z) − F (y)| ≤ Kδ|z − y|
for z, y ≥ δ.

Condition 2.6 There is a constant K > 0 so that F (z) ≤ Kz−β/α for z ≥ 1.

Condition 2.7 There is a constant K > 0 so that F (z) ∼ Kz−β/α as z →∞.

Condition 2.8 The characteristic exponent of ξ satisfies ReΨ(λ) > 0 for all λ 6= 0.

Let % ∈ D◦(Φ) be the solution of Φ′(%) = 0. Let Ξ (%) and Ξ̂ (%) be defined as the above
with θ = %. Let W = Ω × Ω . For t ≥ 0 and w = (ω1, ω2) ∈ W let ξ1(t, w) = ω1(t) and
ξ2(t, w) = ω2(t). Let G = σ({(ξ1(s), ξ2(s)) : t ≥ 0}) and Gt = σ({(ξ1(s), ξ2(s)) : 0 ≤ s ≤ t}). Let

Q
(%)
(x,y) = Q

(%)
x ×Q(%)

y for x ≥ 0 and y ≥ 0. Then (W,G ,Gt, (ξ1(t), ξ2(t)),Q
(%)
(x,y)) is the independent

coupling of Ξ (%) and Ξ̂ (%).

The main theorem of this paper is the following:
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Theorem 2.9 (1) If 0 ∈ D◦(Φ) and Φ′(0) > 0, we have the finite and nonzero limit

lim
t→∞

P[F (Aαt (ξ))] = P[F (Aα∞(ξ))].

(2) Suppose that Conditions 2.5, 2.6 and 2.8 are satisfied. If 0 ∈ D◦(Φ) and Φ′(0) = 0, then
we have the finite and nonzero limit

lim
t→∞

t1/2P[F (Aαt (ξ))] =

√
2

πΦ′′(0)
P̂[H(1)]D2(α, F ),

where

D2(α, F ) = lim
x→∞

V̂ (x)Qx[F (e−αxAα∞(ξ))]. (2.7)

(3) Suppose that Conditions 2.5, 2.6 and 2.8 are satisfied and that 0 ∈ D◦(Φ) and Φ′(0) < 0 <
Φ′(β). Let % ∈ (0, β) be the solution of Φ′(%) = 0. Then we have the finite and nonzero
limit

lim
t→∞

t3/2e−tΦ(%)P[F (Aαt (ξ))] =
c(%)√

2πΦ′′(%)
D3(α, F ),

where

c(%) = exp
{∫ ∞

0
(e−t − 1)t−1e−tΦ(%)P(ξ(t) = 0)dt

}
, (2.8)

D3(α, F ) = lim
x→∞

e%xV̂ (%)(x)

∫ ∞
0

e−%yV (%)(y)G(x, y)dy (2.9)

and

G(x, y) = Q
(%)
(x,y){F (e−αx[Aα∞(ξ1) +Aα∞(ξ2)])}. (2.10)

(4) Suppose that Conditions 2.7 and 2.8 are satisfied and Φ′(β) = 0. Then we have the finite
and nonzero limit

lim
t→∞

t1/2e−tΦ(β)P[F (Aαt (ξ))] = K

√
2

πΦ′′(β)
P(β)[H(1)]D4(α, β),

where

D4(α, β) = lim
x→∞

V (β)(x)Q(β)
x [e−βxAα∞(−ξ)−β/α]. (2.11)

(5) Suppose that Condition 2.7 is satisfied and Φ′(β) < 0. Then we have the finite and nonzero
limit

lim
t→∞

e−tΦ(β)P[F (Aαt (ξ))] = KP(β)[Aα∞(−ξ)−β/α].
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Remark 2.10 It is known that Condition 2.8 holds if and only if σ > 0 or ν(R\{0,±r,±2r, · · · }) >
0 for every r > 0; see, e.g., Hirano (2001, p.294). Instead of this condition, if we assume for
some r > 0 the characteristic exponent has the representation:

Ψ(λ) =
∑
k∈Z

(1− eikrλ), λ ∈ R, (2.12)

the results of regimes (2) and (4) in the above theorem still hold. The proofs are modifications
of those given in Sections 3 and 4. However, it seems some extra work is needed to establish the
result in regime (3) for the characteristic exponent (2.12).

By using the above theorem we can give some simple derivations of the results of Böinghoff
and Hutzenthaler (2012), Carmona et al. (1994, 1997) and Kawazu and Tanaka (1993) on the
asymptotics of exponential functionals; see Xu (2016).

3 Recurrent Lévy processes

In this section, we give the proof of Theorem 2.9 in regime (2). Throughout the section, we
assume 0 ∈ D◦(Φ) and P[ξ(1)] = Φ′(0) = 0. It follows that 0 < P[ξ(1)2] = Φ′′(0) < ∞ by
Assumption 1. Then both ξ and ξ̂ are recurrent; see Theorem 36.7 in Sato (1999, p.248).

Proposition 3.1 (1) Let I(t) = inf0≤s≤t ξ(s). Then for x > 0 we have, as t→∞,

P(τ−−x > t) = P(I(t) > −x) ∼

√
2

πΦ′′(0)
P̂[H(1)]V̂ (x)t−1/2,

where 0 < P̂[H(1)] <∞.

(2) Suppose that Condition 2.8 holds. Then for any x > 0 and α > 0 we have, as t→∞,

P(e−αξ(t); τ−−x > t) ∼ ceαx√
2πΦ′′(0)

V̂ (x)t−3/2
∫ ∞
0

e−αzV (z)dz,

where

c = exp
{∫ ∞

0
(e−t − 1)t−1P(ξ(t) = 0)dt

}
.

Proof. Since P(I(t) > −x) = P̂(sup0≤s≤t ξ(s) < x), the first result follows from Lemma 11 of

Hirano (2001). From Corollary 4 (ii) in Doney (2007, p.31) it follows that 0 < P̂[H(1)] < ∞.
By the spatial homogeneity of the Lévy process we have

P(e−αξ(t); τ−−x > t) = P(e−α[x+ξ(t)]; τ−−x > t)eαx = Px(e−αξ(t); τ−0 > t)eαx.

Then the second result follows by Lemma A-(a) in Hirano (2001). 2

The discrete version of the following proposition for random walks was established in The-
orem 1 of Bertoin and Doney (1994). The result extends slightly Theorem 1 in Hirano (2001),
who considered the case where ξ(t) → −∞ as t → ∞. Based on Proposition 3.1(1), its proof
goes similarly as that given in Hirano (2001). For s ≥ 0 let D[0, s] denote the space of càdlàg
real functions on [0, s] equipped with the Skorokhod topology.
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Proposition 3.2 Let f be a bounded Borel function on D[0, s]. Then for any s ≥ 0 and x > 0
we have

P[f(ξ(r) : r ∈ [0, s])|τ−−x > t]→ Qx[f(ξ(r)− x : r ∈ [0, s])], t→∞.

Proof. Without loss of generality, we may assume 0 ≤ f ≤ 1. By the Markov property of ξ, for
any t > s ≥ 0,

P
[
f(ξ(r) : r ∈ [0, s]); τ−−x > t

]
= P

[
f(ξ(r) : r ∈ [0, s])Pξ(s)(τ

−
−x > t− s); τ−−x > s

]
.

From Proposition 3.1(1), we have, for any y ≥ −x, as t→∞,

Py(τ
−
−x > t)

P(τ−−x > t− s)
=

P(τ−−(y+x) > t)

P(τ−−x > t− s)
∼ V̂ (y + x)

V̂ (x)
. (3.1)

Using Fatou’s lemma we have

lim inf
t→∞

P
[
f(ξ(r) : r ∈ [0, s])

∣∣τ−−x > t
]

= lim inf
t→∞

P
[
f(ξ(r) : r ∈ [0, s]); τ−−x > t

]
P(τ−−x > t)

= lim inf
t→∞

P
[
f(ξ(r) : r ∈ [0, s])

Pξ(s)(τ
−
−x > t− s)

P(τ−−x > t)
; τ−−x > s

]
≥ P

[
f(ξ(r) : r ∈ [0, s]) lim inf

t→∞

Pξ(s)(τ
−
−x > t− s)

P(τ−−x > t)
; τ−−x > s

]
= P

[
f(ξ(r) : r ∈ [0, s])

V̂ (ξ(s) + x)

V̂ (x)
; τ−−x > s

]
= Px

[
f(ξ(r)− x : r ∈ [0, s])

V̂ (ξ(s))

V̂ (x)
; τ−0 > s

]
= Qx

[
f(ξ(r)− x : r ∈ [0, s])

]
.

By applying the above calculations to 1− f , we see

lim sup
t→∞

P
[
f(ξ(r) : r ∈ [0, s])

∣∣τ−−x > t
]

= 1− lim inf
t→∞

P
[
1− f(ξ(r) : r ∈ [0, s])

∣∣τ−−x > t
]

≤ 1−Qx

[
1− f(ξ(r)− x : r ∈ [0, s])

]
= Qx

[
f(ξ(r)− x : r ∈ [0, s])

]
.

Then we have the result. 2

The key of the proof of Theorem 2.9(2) is the observation that the asymptotics of the
expectation (1.2) only depends on the sample paths of the Lévy process with slowly decreasing
local infimum so that we can use the above two propositions to determine the limiting coefficient.
To show clearly the main ideas of the proof, we write the main steps into a series of lemmas.

Lemma 3.3 There exists a constant C ≥ 0 such that

lim sup
t→∞

t1/2P[Aαt (ξ)−β/α] ≤ C.
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Proof. By Theorem A in Kozlov (1976), there exists a constant C = Cβ ≥ 0 such that, as
t→∞,

P
[

exp
{

min
k≤[t]−1

βξ(k)
}]
∼ C([t]− 1)−1/2 ∼ Ct−1/2.

Then the desired result follows from Lemma 2.3. 2

Lemma 3.4 Suppose that Condition 2.8 holds. Then for any x > 0 there is a constant C =
Cx ≥ 0 so that

P[e−αξ(r); τ−−x > t] ≤ C(t− r)−1/2r−3/2, t > r > 0.

Proof. By the Markov property and the spatial homogeneity of the Lévy process,

P[e−αξ(r); τ−−x > t] = P[e−αξ(r)Pξ(r)(τ
−
−x > t− r); τ−−x > r]

= P[e−αξ(r)P(τ−−x−ξ(r) > t− r); τ−−x > r].

By Corollary 5.3 in Kyprianou (2014, p.118) we have y−1V̂ (y)→ {P̂[H(1)]}−1 as y →∞. Since
y 7→ V̂ (y) is increasing, we infer that y 7→ e−λyV̂ (y) is a bounded function on [0,∞) for any
λ ∈ (0, α). For x > x0 > 0 we can use Proposition 3.1 to see

P[e−αξ(r); τ−−x > t] = P[e−αξ(r)P(τ−−x−ξ(r) > t− r); τ−−x > r]

= P[e−αξ(r)P(τ−−x−ξ(r) > t− r); ξ(r) ≤ −x0, τ−−x > r]

+P[e−αξ(r)P(τ−−x−ξ(r) > t− r); ξ(r) > −x0, τ−−x > r]

≤ P[e−αξ(r)P(τ−x0−x > t− r); τ−−x > r]

+C(x)(t− r)−1/2P[e−αξ(r)V̂ (x+ ξ(r)); ξ(r) > −x0, τ−−x > r]

≤ C(x)V̂ (x− x0)(t− r)−1/2P[e−αξ(r); τ−−x > r]

+C(x)(t− r)−1/2P[e−(α−λ)ξ(r)eλx; ξ(r) > −x0, τ−−x > r]

≤ C(x)V̂ (x− x0)(t− r)−1/2eαxV̂ (x)r−3/2

+C(x)(t− r)−1/2eλxP[e−(α−λ)ξ(r); τ−−x > r]

≤ C(x)[V̂ (x− x0) + 1]eαxV̂ (x)(t− r)−1/2r−3/2.

That gives the desired result. 2

Lemma 3.5 Suppose that F is a bounded function satisfying Condition 2.6. Then there is a
constant C ≥ 0 so that, for any x > 0,

lim sup
t→∞

t1/2P[F (Aαt (ξ)); τ−−x ≤ t] ≤ Ce−βx[1 + V̂ (x)].

Proof. Since F is bounded and satisfies Condition 2.6, there is a constant C1 ≥ 0 such that
F (z) ≤ C1(1 ∧ z−β/α) for all z > 0. By Lemma 3.3 we can find an integer t0 ≥ 3 and some
constant C ≥ 0 such that

t1/2P[Aαt (ξ)−β/α] ≤ C, t ≥ t0.
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By Proposition 3.1(1), for any ε > 0 we have, as t→∞,

P(τ−−x > t)−1P(t < τ−−x ≤ t+ ε) =
P(τ−−x > t)−P(τ−−x > t+ ε)

P(τ−−x > t)

=
t−1/2 − (t+ ε)−1/2 + o(t−1/2)

t−1/2 + o(t−1/2)

=
t−1 − (t+ ε)−1 + o(t−1)

t−1/2[t−1/2 + (t+ ε)−1/2] + o(t−1)

=
εt−1(t+ ε)−1 + o(t−1)

t−1/2[t−1/2 + (t+ ε)−1/2] + o(t−1)

=
ε(t+ ε)−1 + o(1)

t1/2[t−1/2 + (t+ ε)−1/2] + o(1)
∼ εt−1/2.

It follows that

P(t < τ−−x ≤ t+ ε) ∼ 1√
2πΦ′′(0)

P̂[H(1)]V̂ (x)εt−3/2. (3.2)

By the strong Markov property, up to some adjustments of the value of C ≥ 0, we have

P[F (Aαt (ξ)); τ−−x ≤ t] ≤ C1P
[
1 ∧

(∫ t

0
e−αξ(r)dr

)−β/α
; τ−−x ≤ t

]
≤ C1

[t]−t0∑
i=1

P
[( ∫ t+τ−−x−i

τ−−x

e−αξ(r)dr
)−β/α

; i− 1 < τ−−x ≤ i
]

+C1P([t]− t0 < τ−−x ≤ t)

≤ C

[t]−t0∑
i=1

P
[
eβξ(τ

−
−x)Pξ(τ−−x)

[(Aαt−i(ξ)
−β/α]; i− 1 < τ−−x ≤ i

]
+CV̂ (x)(t0 + 1)([t]− t0)−3/2

≤ Ce−βx
[t]−t0∑
i=1

(t− i)−1/2P(i− 1 < τ−−x ≤ i)

+CV̂ (x)(t0 + 1)([t]− t0)−3/2

≤ Ce−βx(t− 1)−1/2 + CV̂ (x)e−βx
[t]−t0∑
i=2

(t− i)−1/2(i− 1)−3/2

+CV̂ (x)(t0 + 1)([t]− t0)−3/2.

Observe that

[t]−t0∑
i=2

(t− i)−1/2(i− 1)−3/2 ≤ (t− 2)−1/2 +

∫ t

3
(t− s)−1/2(s− 2)−3/2ds

≤ (t− 2)−1/2 + (t/2)−1/2
∫ t/2

3
(s− 2)−3/2ds

+(t/2− 2)−3/2
∫ t

t/2
(t− s)−1/2ds

≤ (t− 2)−1/2 + (t/2)−1/2
∫ ∞
3

(s− 2)−3/2ds

+(t/2− 2)−3/2
∫ t

0
(t− s)−1/2ds
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≤ (t− 2)−1/2 + 2(t/2)−1/2 + 2(t/2− 2)−3/2t1/2.

By combining the above estimates we get desired result. 2

Lemma 3.6 Suppose that Condition 2.8 holds and F is a globally Lipschitz function on (0,∞).
Then for any x > 0 we have

lim
s→∞

lim sup
t→∞

t1/2P[|F (Aαs (ξ))− F (Aαt (ξ))|; τ−−x > t] = 0.

Proof. Since F is decreasing and globally Lipschitz, there exists a constant C > 0 such that

0 ≤ F (Aαs (ξ))− F (Aαt (ξ)) ≤ C
∫ t

s
e−αξ(r)dr, t ≥ s ≥ 0.

Then it suffices to prove

lim
s→∞

lim sup
t→∞

t1/2
∫ t

s
P[e−αξ(r); τ−−x > t]dr = 0. (3.3)

By Lemma 3.4, for any s > 1 we have

lim sup
t→∞

t1/2
∫ t

s
P[e−αξ(r); τ−−x > t]dr

≤ lim sup
t→∞

Ct1/2
∫ t

s
(t− r)−1/2r−3/2dr

≤ lim sup
t→∞

C
(∫ t/2

s
r−3/2dr + t−1

∫ t

t/2
(t− r)−1/2dr

)
≤ lim sup

t→∞
C
(∫ ∞

s
r−3/2dr + t−1

∫ t

0
(t− r)−1/2dr

)
≤ Cs−1/2.

That proves (3.3). 2

Lemma 3.7 Suppose that Condition 2.8 holds and F is a globally Lipschitz function on (0,∞).
Then for any x > 0 we have the finite and nonzero limit

lim
t→∞

t1/2P[F (Aαt (ξ))]); τ−−x > t] =

√
2

πΦ′′(0)
P̂[H(1)]D2(x, α, F ), (3.4)

where

D2(x, α, F ) = V̂ (x)Qx[F (e−αxAα∞(ξ))]. (3.5)

Furthermore, the function x 7→ D2(x, α, F ) on (0,∞) is increasing, strictly positive and bounded.

Proof. From Lemma 2.4 it follows that Qx(Aα∞(ξ) < ∞) = 1. Since F (z) > 0 for each z > 0,
we have D2(x, α, F ) > 0. By the spatial homogeneity of the Lévy process and Proposition 3.2,
we have

lim
t→∞

P[F (Aαs (ξ))|τ−−x > t] = lim
t→∞

Px[F (Aαs (ξ − x))|τ−0 > t]

= lim
t→∞

Px[F (e−αxAαs (ξ))|τ−0 > t] = Qx[F (e−αxAαs (ξ))].
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Combining this with Proposition 3.1(1) and Lemma 3.6,

lim
t→∞

t1/2P[F (Aαt (ξ)); τ−−x > t] = lim
s→∞

lim
t→∞

t1/2P[F (Aαs (ξ)); τ−−x > t]

= lim
s→∞

lim
t→∞

t1/2P(τ−−x > t)P[F (Aαs (ξ))|τ−−x > t]

= lim
s→∞

√
2

πΦ′′(0)
P̂[H(1)]V̂ (x)Qx[F (e−αxAαs (ξ))]

=

√
2

πΦ′′(0)
P̂[H(1)]V̂ (x)Qx[F (e−αxAα∞(ξ))].

Since the left-hand side of (3.4) is increasing in x > 0, so is D2(x, α, F ). By Lemma 3.3 this
function is bounded on (0,∞). 2

Proof of Theorem 2.9(2). We first consider the special case where F is globally Lipschitz and
hence bounded on (0,∞). By Lemma 3.5 we have

lim
x→∞

lim sup
t→∞

t1/2P[F (Aαt (ξ)); τ−−x ≤ t] = 0.

Then we can use Lemma 3.7 to see

lim
t→∞

t1/2P[F (Aαt (ξ))] = lim
x→∞

lim
t→∞

t1/2P[F (Aαt (ξ)); τ−−x > t]

+ lim
x→∞

lim
t→∞

t1/2P[F (Aαt (ξ)); τ−−x ≤ t]

= lim
x→∞

√
2

πΦ′′(0)
P̂[H(1)]D2(x, α, F ).

By Lemma 3.7, the limit D2(α, F ) := limx→∞D2(x, α, F ) is finite, strictly positive and given
by (2.7). Then the result follows in the special case. In the general case, for n ≥ 1 let Fn(y) =
F (1/n)1{y≤1/n}+F (y)1{y>1/n} and Gn(y) = F (y)−Fn(y). Then each Fn is globally Lipschitz, so
D2(x, α, Fn) andD2(α, Fn) can be defined. Clearly, the limitD2(x, α, F ) := limn→∞D2(x, α, Fn)
exists and is given by (3.5). It is also easy to see that D2(x, α, F ) is bounded, strictly positive
and increasing on (0,∞). Then the limit D2(α, F ) := limx→∞D2(x, α, F ) exists and it is finite
and strictly positive. Observe that

P[F (Aαt (ξ))] = P[Gn(Aαt (ξ))] + P[Fn(Aαt (ξ))].

By multiplying this by t1/2 and taking the limit we have

lim
t→∞

t1/2P[F (Aαt (ξ))] = lim
t→∞

t1/2P[Gn(Aαt (ξ))] +

√
2

πΦ′′(0)
P̂[H(1)]D2(α, Fn). (3.6)

Under our Assumption 2, we can find constants C ≥ 0 and β1 ∈ D◦+(Φ) ∩ (β0,∞) so that

lim
t→∞

t1/2P[Gn(Aαt (ξ))] ≤ C lim sup
t→∞

t1/2P[Aαt (ξ)−β0/α;Aαt (ξ) ≤ 1/n]

≤ Cn−(β1−β0)/α lim sup
t→∞

t1/2P[Aαt (ξ)−β1/α]

≤ Cn−(β1−β0)/α.
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Then for k ≥ n ≥ 1 we have

0 ≤ D2(x, α, Fk)−D2(x, α, Fn)

=

√
πΦ′′(0)

2
P̂[H(1)]−1 lim

t→∞
t1/2P[Fk(A

α
t (ξ))− Fn(Aαt (ξ)), τ−−x > t]

≤
√
πΦ′′(0)

2
P̂[H(1)]−1 lim

t→∞
t1/2P[Gn(Aαt (ξ)), τ−−x > t]

≤
√
πΦ′′(0)

2
P̂[H(1)]−1Cn−(β1−β0)/α.

By letting k →∞ in the above we see

0 ≤ D2(x, α, F )−D2(x, α, Fn) ≤
√
πΦ′′(0)

2
P̂[H(1)]−1Cn−(β1−β0)/α,

and hence

0 ≤ D2(α, F )−D2(α, Fn) ≤
√
πΦ′′(0)

2
P̂[H(1)]−1Cn−(β1−β0)/α.

Then we can let n→∞ in (3.6) to get the result. 2

We remark that for the characteristic exponent given by (2.12) a result similar to Propo-
sition 3.1(2) was established in Lemma A-(b) of Hirano (2001). One may check that all the
arguments given above carry over to that case under obvious modifications.

4 Transient Lévy processes

In this section, we give the proof of Theorem 2.9 when a = Φ′(0) 6= 0. In this case, both ξ
and ξ̂ are transient by Theorem 36.7 in Sato (1999, p.248). In fact, the result of regime (1) is
a simple consequence of Proposition 2.1. The proof for regime (3) is based on an extension of
Theorem 2 of Hirano (2001), where the exponential functional was approximated by functionals
of two independent processes obtained by transformations. The proofs for regimes (4) and (5)
are also based on transformations of the underlying Lévy process.

Proof of Theorem 2.9(1). Under the condition, we have P[ξ(1)] > 0. It follows that limt→∞ ξ(t) =
∞ and hence P(Aα∞(ξ) < ∞) = 1 by Proposition 2.1. Then the result is immediate for any
bounded function F . For an unbounded function F , by Assumption 2 we have

P[F (Aαt (ξ))] ≤ C0P[Aαt (ξ)−β0/α] + P[F (Aαt (ξ))1{Aαt (ξ)≥1}].

The right-hand side is finite by Lemma 2.2. By monotone convergence, we get P[F (Aαt (ξ))]→
P[F (Aα∞(ξ))] decreasingly as t→∞. Clearly, the limit is finite and strictly positive. 2

Proposition 4.1 Suppose that Condition 2.8 holds and there exists % ∈ D◦+(Φ) satisfying
Φ′(%) = 0. Then for any x > 0 and θ ∈ D(Φ) ∩ (−%,∞) we have, as t→∞,

P(τ−−x > t) ∼Me%xV̂ (%)(x)t−3/2eΦ(%)t

∫ ∞
0

e−%zV (%)(z)dz

15



and

P(e−θξ(t); τ−−x > t) ∼MV̂ (%)(x)e(θ+%)xt−3/2eΦ(%)t

∫ ∞
0

e−(θ+%)zV (%)(z)dz,

where

M =
1√

2πΦ′′(%)
exp

{∫ ∞
0

(e−t − 1)t−1e−tΦ(%)P(ξ(t) = 0)dt
}
.

Proof. We only need to show the second result since the first one is its special case with θ = 0.
By the definition of P(%) we have

e−Φ(%)tP(e−θξ(t); τ−−x > t) = P(%)(e−(θ+%)ξ(t); τ−−x > t).

Since P(%)[ξ(1)] = Φ′(%) = 0 and P(%)[ξ(1)2] = Φ′′(%) < ∞, the desired result follows by
Proposition 3.1(2). 2

Recall that D[0, s] denotes the space of càdlàg real functions on [0, s] equipped with the
Skorokhod topology as specified in Ethier and Kurtz (1986, p.118). Let C0(R+) and C0(R2

+)
denote respectively the spaces of continuous function on R+ and R2

+ vanishing at infinity. The
following proposition is a simple extension of Theorem 2-(a) in Hirano (2001).

Proposition 4.2 Suppose that Condition 2.8 holds and there exists % ∈ D◦+(Φ) satisfying
Φ′(%) = 0. Let H ∈ C0(R2

+) and let f, g be continuous functions on D[0, s]. Then for any
x > 0 we have

lim
t→∞

P
[
H(f((ξ(r))0≤r≤s), g((ξ(t− r))0≤r≤s)

∣∣τ−−x > t
]

=
1

h(%)

∫ ∞
0

e−%yV (%)(y)Q
(%)
(x,y)[H(f((ξ1(r)− x)0≤r≤s), g((ξ2(r)− x)0≤r≤s)]dy, (4.1)

where

h(%) =

∫ ∞
0

e−%yV (%)(y)dy.

Proof. If H(x1, x2) = G1(x1)G2(x2) for G1, G2 ∈ C0(R+), we have (4.1) by Theorem 2-(a) in
Hirano (2001). The general result follows by the Stone-Weierstrass Theorem. 2

Lemma 4.3 Suppose that Condition 2.8 holds and there exists % ∈ D◦+(Φ) satisfying Φ′(%) = 0.
Then for any β ∈ D(Φ) ∩ (%,∞) there exists a constant C = Cβ > 0 such that

lim sup
t→∞

t3/2e−Φ(%)tP[Aαt (ξ)−β/α] ≤ C.

Proof. By Lemma 7(3) in Hirano (1998), under the conditions of the lemma there exists a
constant η(β) ≥ 0 such that

P
[

exp
{

min
k≤[t]−1

βξ(k)
}]
≤ η(β)([t]− 1)−3/2eΦ(%)([t]−1) ≤ 23/2η(β)e−Φ(%)t−3/2eΦ(%)t.

Then we have the result by Lemmas 2.2 and 2.3. 2
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Lemma 4.4 Suppose that Conditions 2.5 and 2.8 hold and there exists % ∈ D◦+(Φ) satisfying
Φ′(%) = 0. If F is a bounded function, in addition, then for any x > 0 and β ∈ D(Φ) ∩ (%,∞)
there is a constant C ≥ 0 so that

lim sup
t→∞

t3/2e−tΦ(%)P[F (Aαt (ξ)); τ−−x ≤ t− ε] ≤ Ce−βx + Ce−(β−%)xV̂ (%)(x),

and hence

lim
x→∞

lim sup
t→∞

t3/2e−tΦ(%)P[F (Aαt (ξ)); τ−−x ≤ t− ε] = 0.

Proof. This is a modification of the proof of Lemma 3.5. By Lemma 4.3, there exists a constant
C ≥ 0 so that

P[Aαt (ξ)−β/α] ≤ Ct−3/2eΦ(%)t, t ≥ 2.

For any η > 0, one can use Proposition 4.1 to see as the derivation of (3.2) that, as t→∞,

P(t < τ−−x ≤ t+ η) ∼Me%xV̂ (%)(x)(1− eΦ(%)η)t−3/2eΦ(%)t

∫ ∞
0

e−%zV (%)(z)dz,

where

M =
1√

2πΦ′′(%)
exp

{∫ ∞
0

(e−t − 1)t−1e−tΦ(%)P(ξ(t) = 0)dt
}
.

By adjusting the value of C ≥ 0 we have, for t ≥ 3 and 0 < ε ≤ 1,

P[F (Aαt (ξ)); τ−−x ≤ t− ε] ≤ C

[t]−2∑
i=1

P
[( ∫ t−i+τ−−x

τ−−x

e−αξ(r)dr
)−β/α

; i− 1 < τ−−x ≤ i
]

+CP
[( ∫ τ−−x+ε

τ−−x

e−αξ(r)dr
)−β/α

; [t]− 2 < τ−−x ≤ t− ε
]

= C

[t]−2∑
i=1

P
{
e−βξ(τ

−
−x)Pξ(τ−−x)

[Aαt−i(ξ)
−β/α]; i− 1 < τ−−x ≤ i

}
+CP

{
e−βξ(τ

−
−x)Pξ(τ−−x)

[Aαε (ξ)−β/α]; [t]− 2 < τ−−x ≤ t
}

≤ Ce−βx
[t]−2∑
i=1

P
{
Pξ(τ−−x)

[Aαt−i(ξ)
−β/α]; i− 1 < τ−−x ≤ i

}
+Ce−βxP

{
Pξ(τ−−x)

[Aαε (ξ)−β/α]; [t]− 2 < τ−−x ≤ t
}

≤ Ce−βx
[t]−2∑
i=1

eΦ(%)(t−i)(t− i)−3/2P(i− 1 < τ−−x ≤ i)

+Ce−βxP([t]− 2 < τ−−x ≤ t)

≤ Ce−(β−%)xV̂ (%)(−x)eΦ(%)(t−1)
[t]−2∑
i=2

(t− i)−3/2(i− 1)−3/2

+Ce−βxeΦ(%)(t−1)(t− 1)−3/2

+Ce−(β−%)xV̂ (%)(−x)(1− e3Φ(%))([t]− 2)−3/2eΦ(%)([t]−2),

17



where

[t]−2∑
i=2

(t− i)−3/2(i− 1)−3/2 ≤ (t− 2)−3/2 +

∫ t−2

2
(t− s− 1)−3/2(s− 1)−3/2ds

≤ (t− 2)−3/2 +
( t

2
− 1
)−3/2 ∫ t/2

2
(s− 1)−3/2ds

+
( t

2
− 1
)−3/2 ∫ t−2

t/2
(t− s− 1)−3/2ds

≤ (t− 2)−3/2 + 4
( t

2
− 1
)−3/2

.

Then we get the desired result. 2

Lemma 4.5 Suppose that Conditions 2.5 and 2.8 hold and there exists % ∈ D◦+(Φ) satisfying
Φ′(%) = 0. If F is a bounded function, in addition, then for any x > 0 we have

lim
s→∞

lim sup
t→∞

t3/2e−tΦ(%)P

[
F
(∫

[0,s]∪[t−s,t]
e−αξ(r)dr

)
− F (Aαt (ξ)); τ−−x > t

]
= 0.

Proof. As in the proof of Lemma 3.4, one can use Proposition 4.1 to see there is a constant
C = Cx ≥ 0 so that

e−Φ(%)tP
[
e−αξ(r); τ−−x > t

]
≤ C(t− r)−3/2r−3/2.

By elementary analysis we have∫ t−s

s
(t− r)−3/2r−3/2dr ≤ 2(t/2)−3/2

∫ ∞
s

r−3/2dr = 8
√

2t−3/2s−1/2.

Then we can prove the statement as in the proof of Lemma 3.6. 2

Lemma 4.6 Suppose that Conditions 2.5 and 2.8 hold and there exists % ∈ D◦+(Φ) satisfying
Φ′(%) = 0. If F is a bounded function, in addition, then for any x > 0 we have

lim
t→∞

t3/2e−tΦ(%)P[F (Aαt (ξ)); τ−−x > t] =
c(%)√

2πΦ′′(%)
D3(x, α, F ), (4.2)

where

D3(x, α, F ) = e%xV̂ (%)(x)

∫ ∞
0

e−%yV (%)(y)G(x, y)dy,

where G(·, ·) is defined by (2.10). Moreover, the function x 7→ D3(x, α, F ) is bounded, increasing
and strictly positive in (0,∞).

Proof. By the definition of the coupled process (W,G ,Gt, (ξ1(t), ξ2(t)),Q
(%)
(x,y)) given before The-

orem 2.9 we have

Q
(%)
(x,z)

[
Aα∞(ξ1) +Aα∞(ξ2)

]
= Q(%)

x

[
Aα∞(ξ)

]
+ Q̂(%)

z

[
Aα∞(ξ)

]
.
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The right-hand side is finite by Lemma 2.4. It follows that Q
(%)
(x,z){A

α
∞(ξ1) +Aα∞(ξ2) <∞} = 1.

Then D3(x, α, F ) is well-defined and strictly positive. By Lemma 4.5 we have

lim
t→∞

t3/2e−tΦ(%)P[F (Aαt (ξ)); τ−−x > t]

= lim
s→∞

lim
t→∞

t3/2e−tΦ(%)P
[
F
(∫

[0,s]∪[t−s,t]
e−αξ(r)dr

)
; τ−−x > t

]
.

By applying Propositions 4.1 and 4.2 with H(x1, x2) = F (x1 + x2), we have, for any s > 0,

lim
t→∞

t3/2e−Φ(%)tP
[
F
(∫ s

0
e−αξ(r)dr +

∫ t

t−s
e−αξ(r)dr

)
; τ−−x > t

]
= M(x)

∫ ∞
0

e−%yV (%)(y)Q
(%)
(x,y){F (e−αx[Aαs (ξ1) +Aαs (ξ2)])}dy,

where

M(x) =
c(%)√

2πΦ′′(%)
e%xV̂ (%)(x).

Then we get (4.2) by letting s→∞. As in the proof of Lemma 3.7 one can see that the function
x 7→ D3(x, α, F ) is bounded and increasing in (0,∞). 2

Proof of Theorem 2.9(3). We here only consider a bounded function F . The general case can
be treated similarly as in the proof of Theorem 2.9(2). By Lemma 4.6 we have

lim inf
t→∞

t3/2e−tΦ(%)P[F (Aαt (ξ))] ≥ lim
x→∞

lim
t→∞

t3/2e−tΦ(%)P[F (Aαt (ξ)); τ−−x > t]

= lim
x→∞

c(%)√
2πΦ′′(%)

D3(x, α, F )

=
c(%)√

2πΦ′′(%)
D3(α, F ).

On the other hand, for any ε > 0 and x < 0 we can write

t3/2e−tΦ(%)P[F (Aαt (ξ))] = t3/2e−tΦ(%)P[F (Aαt (ξ)); τ−−x ≤ t− ε]
+ t3/2e−tΦ(%)P[F (Aαt (ξ)); τ−−x > t− ε].

By Lemma 4.4, the first term on the right-hand side tends to zero as t → ∞ and x → −∞.
Since z 7→ F (z) is decreasing, we can use Lemma 4.6 to see

lim sup
t→∞

t3/2e−tΦ(%)P[F (Aαt (ξ))] ≤ lim
x→∞

lim
t→∞

t3/2e−tΦ(%)P[F (Aαt−ε(ξ)); τ
−
−x > t− ε]

= lim
x→∞

e−εΦ(%) c(%)√
2πΦ′′(%)

D3(x, α, F )

= e−εΦ(%) c(%)√
2πΦ′′(%)

D3(α, F ).

Since ε > 0 was arbitrary, we get

lim sup
t→∞

t3/2e−tΦ(%)P[F (Aαt (ξ))] ≤ c(%)√
2πΦ′′(%)

D3(α, F ).

That gives the desired result. 2
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Lemma 4.7 Suppose that Φ′(β) = 0. Then for any θ ∈ D◦+(Φ) ∩ (β,∞) we have

lim
t→∞

t1/2e−tΦ(β)P[Aαt (ξ)−θ/α] = 0.

Proof. By the definition of P(β) and the property of independent increments of {ξ(t) : t ≥ 0}
under this probability measure,

t1/2e−Φ(β)tP[Aαt (ξ)−θ/α] = t1/2e−Φ(β)tP[Aαt (ξ)−β/αAαt (ξ)−(θ−β)/α]

= t1/2P(β)
[( ∫ t

0
eβ[ξ(t)−ξ(s)]ds

)−β/α
Aαt (ξ)−(θ−β)/α

]
≤ t1/2P(β)

[( ∫ t

t/2
eβ[ξ(t)−ξ(s)]ds

)−β/α
Aαt/2(ξ)

−(θ−β)/α
]

= t1/2P(β)
[( ∫ t

t/2
eβ[ξ(t)−ξ(s)]ds

)−β/α]
P(β)[Aαt/2(ξ)

−(θ−β)/α]

= t1/2P(β)[Aαt/2(−ξ)
−β/α]P(β)[Aαt/2(ξ)

−(θ−β)/α],

where we have used the duality relation in the last equality; see, e.g., Lemma 3.4 in Kyprianou
(2014, p.77). Since {ξ(t) : t ≥ 0} is a recurrent Lévy process under P(β), the right-hand side
tends to zero as t→∞ by Lemma 3.3. 2

Proof of Theorem 2.9(4). By Assumption 2, for each y > 0 there is a constant C = Cy ≥ 0 so
that F (z) ≤ Cz−β0/α for 0 < z ≤ y. Upon an adjustment of the value of the constants, we may
assume β0 ∈ D◦+(Φ) ∩ (%,∞). By Lemma 4.7 we have

lim sup
t→∞

t1/2e−Φ(β)tP[F (Aαt (ξ));Aαt (ξ) < y]

≤ C lim sup
t→∞

t1/2e−Φ(β)tP[Aαt (ξ)−β0/α;Aαt (ξ) < y]

≤ C lim sup
t→∞

t1/2e−Φ(β)tP[Aαt (ξ)−β0/α] = 0,

and hence

lim
t→∞

t1/2e−Φ(β)tP[F (Aαt (ξ))] = lim
t→∞

t1/2e−Φ(β)tP[F (Aαt (ξ));Aαt (ξ) ≥ y]. (4.3)

By the duality relation of the Lévy process,

Aαt (ξ)−β/α
d
=
(∫ t

0
eα[ξ(t−s)−ξ(t)]ds

)−β/α d
= eβξ(t)Aαt (−ξ)−β/α.

It follows that

e−Φ(β)tP[Aαt (ξ)−β/α] = e−Φ(β)tP[eβξ(t)Aαt (−ξ)−β/α] = P(β)[Aαt (−ξ)−β/α]. (4.4)

By Condition 2.7, given any δ ∈ (0, 1) we can choose sufficiently large y > 0 so that

(1− δ)Kz−β/α ≤ F (z) ≤ (1 + δ)Kz−β/α, z > y.
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Then, in view of (4.3) and (4.4),

lim sup
t→∞

t1/2e−Φ(β)tP[F (Aαt (ξ))]

≤ (1 + δ)K lim sup
t→∞

t1/2e−Φ(β)tP[Aαt (ξ)−β/α;Aαt (ξ) ≥ y]

≤ (1 + δ)K lim sup
t→∞

t1/2e−Φ(β)tP[Aαt (ξ)−β/α]

= (1 + δ)K lim sup
t→∞

t1/2P(β)[Aαt (−ξ)−β/α]

= (1 + δ)K

√
2

πΦ′′(β)
P(β)[H(1)]D4(α, β), (4.5)

where the last equality follows by Theorem 2.9(2). On the other hand, by the definition of P(β)

we have

e−Φ(β)tP[F (Aαt (ξ))] ≥ (1− δ)Ke−Φ(β)tP[Aαt (ξ)−β/α;Aαt (ξ) ≥ y]

≥ (1− δ)KP(β)
[( ∫ t

0
eα[ξ(t)−ξ(s)]ds

)−β/α
;Aαt (ξ) ≥ y

]
.

Since P(β)[ξ(1)] = Φ′(β) = 0, from Proposition 2.1 it follows that P(β)(Aα∞(ξ) =∞) = 1. Then,
by dominated convergence and the duality relation,

lim inf
t→∞

t1/2e−Φ(β)tP[F (Aαt (ξ))]

≥ (1− δ)K lim inf
t→∞

t1/2P(β)
[( ∫ t

0
eα[ξ(t)−ξ(s)]ds

)−β/α]
= (1− δ)K lim inf

t→∞
t1/2P(β)[Aαt (−ξ)−β/α]

= (1− δ)K

√
2

πΦ′′(β)
P(β)[H(1)]D4(α, β), (4.6)

where we used Theorem 2.9(2) again for the last equality. Since δ ∈ (0, 1) was arbitrary, we get
the desired result by combining (4.5) and (4.6). 2

Proof of Theorem 2.9(5). Under the condition, we can take θ ∈ D◦+(Φ) ∩ (β,∞) satisfying
Φ(θ) < Φ(β) and Φ′(β) < Φ′(θ) < 0. Then we have

lim sup
t→∞

e−Φ(β)tP[Aαt (ξ)−θ/α] = lim sup
t→∞

e[Φ(θ)−Φ(β)]tP(θ)[Aαt (−ξ)−θ/α]

= lim sup
t→∞

e[Φ(θ)−Φ(β)]tP(θ)[Aα1 (−ξ)−θ/α] = 0.

The remaining arguments are modifications of those in the proof of Theorem 2.9(4). 2

5 Survival probability of the CBRE-process

Suppose that (Ω ,F ,Ft,P) is a filtered probability space satisfying the usual hypotheses.
Let σ ≥ 0 and b be real constants. Let (z ∧ z2)ν(dz) be a finite measure on R supported by
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R \ {0}. Let {B(t) : t ≥ 0} be an (Ft)-Brownian motion and N(ds, dz) an (Ft)-Poisson random
measure on (0,∞)×R with intensity dsν(dz). Let {L(t) : t ≥ 0} be an (Ft)-Lévy process with
the following Lévy-Itô decomposition:

L(t) = βt+ σB(t) +

∫ t

0

∫
[−1,1]

(ez − 1)Ñ(ds, dz) +

∫ t

0

∫
[−1,1]c

(ez − 1)N(ds, dz),

where [−1, 1]c = R \ [−1, 1] and Ñ(ds, dz) = N(ds, dz) − dsν(dz). Then {L(t) : t ≥ 0} has no
jump smaller than −1. We can define another Lévy process {ξ(t) : t ≥ 0} by

ξ(t) = a0t+ σB(t) +

∫ t

0

∫
R
zÑ(ds, dz),

where

a0 = β − σ2

2
−
∫
[−1,1]

(ez − 1− z)ν(dz) +

∫
[−1,1]c

zν(dz).

Clearly, the two processes {L(t) : t ≥ 0} and {ξ(t) : t ≥ 0} generate the same filtration.

Let 0 < α ≤ 1 and let {Zα(t) : t ≥ 0} be a spectrally positive (Ft)-stable process with
index (1 + α). Assume that {Zα(t) : t ≥ 0} is independent of {L(t) : t ≥ 0} and {ξ(t) : t ≥ 0}.
When α = 1, we think of {Zα(t) : t ≥ 0} as a Brownian motion. When 0 < α < 1, we assume
{Zα(t) : t ≥ 0} has Lévy measure:

m(dz) =
α1{z>0}dz

Γ(1− α)z2+α
.

Let c ≥ 0 be another constant and let {X(t) : t ≥ 0} be the CBRE-process defined by (1.3). Let
Pξ denote the conditional law given {L(t) : t ≥ 0} or {ξ(t) : t ≥ 0}. Let Z(t) = X(t) exp{−ξ(t)}.
By Theorem 1 in Bansaye et al. (2013) or Theorem 3.4 in He et al. (2016) we have

Pξ[e−λZ(t)|Fr] = exp{−Z(r)uξr,t(λ)}, λ ≥ 0, t ≥ r ≥ 0, (5.1)

where r 7→ uξr,t(λ) is the solution to

d

dr
uξr,t(λ) = ce−αξ(r)uξr,t(λ)1+α, uξt,t(λ) = λ.

By solving the above equation, we get

uξr,t(λ) =
(
cα

∫ t

r
e−αξ(s)ds+ λ−α

)−1/α
; (5.2)

see the proof of Proposition 4 in Bansaye et al. (2013). From (5.1) and (5.2) we see that the
survival probability of the CBRE-process up to time t ≥ 0 is given by

P(X(t) > 0) = P(Z(t) > 0) = lim
λ→∞

P
[
1− e−λZ(t)

]
= lim

λ→∞
P
[
1− exp{−xuξ0,t(λ)}

]
= P

[
Fx

(∫ t

0
e−αξ(s)ds

)]
, (5.3)

where Fx(z) = 1 − exp{−x(cαz)−1/α}; see also (3.2) in Bansaye et al. (2013). Let Φ(λ) =
logP exp{λξ(1)} denote the Laplace exponent of {ξ(t) : t ≥ 0}.

The following theorem is an immediate consequence of Theorem 2.9. Using the notation
introduced there, it gives characterizations of the five regimes of the asymptotics of the survival
probability of the CBRE-process:
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Theorem 5.1 Suppose that {0, 1} ⊂ D◦(Φ). Then we have the following five regimes of the
survival probability of the CBRE-process:

(1) (Supercritical case) If 0 < Φ′(0), we have the finite and nonzero limit

lim
t→∞

P(X(t) = 0) = P[Fx(Aα∞(ξ))].

(2) (Critical case) Suppose that Condition 2.8 is satisfied and Φ′(0) = 0. Then we have the
finite and nonzero limit

lim
t→∞

t1/2P(X(t) > 0) =

√
2

πΦ′′(0)
P̂[H(1)]D2(α, Fx).

(3) (Weakly subcritical case) Suppose that Condition 2.8 is satisfied and Φ′(0) < 0 < Φ′(1).
Let % ∈ (0, 1) be the solution of Φ′(%) = 0. Then we have the finite and nonzero limit

lim
t→∞

t3/2e−tΦ(%)P(X(t) > 0) =
c(%)√

2πΦ′′(%)
D3(α, Fx).

(4) (Intermediately subcritical case) Suppose that Condition 2.8 is satisfied and Φ′(1) = 0.
Then we have the finite and nonzero limit

lim
t→∞

t1/2e−tΦ(1)P(X(t) > 0) = x(cα)−1/α

√
2

πΦ′′(β)
P(1)[H(1)]D4(α, 1).

(5) (Strongly subcritical case) If Φ′(0) < 0, we have the finite and nonzero limit

lim
t→∞

e−tΦ(1)P(X(t) > 0) = x(cα)−1/αP(1)[Aα∞(−ξ)−1/α].

If there always exists % ∈ D◦(Φ) so that Φ′(%) = 0, the above theorem treats the five regimes
% < 0 < 1, 0 = % < 1, 0 < % < 1, 0 < % = 1 and 0 < 1 < % in the natural order. But, the
theorem does not assume the point % ∈ D◦(Φ) always exists.

The asymptotics of the survival probability of CBRE-processes have been studied by Böinghoff
and Hutzenthaler (2012), Bansaye et al. (2013), Palau and Pardo (2015a) and Palau et al. (2016).
The expression for the limiting coefficient was not given explicitly in Bansaye et al. (2013), Palau
and Pardo (2015a) and Palau et al. (2016). When the environment process is a Brownian motion
with drift, Böinghoff and Hutzenthaler (2012) computed accurately the limiting constant. In the
general case, it seems difficult to calculate directly the quantities of the expectations involved
in the expression. We would recommend the Mentor Carlo method in practical applications.
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16. Guivarc’h, Y. and Liu, Q. (2001): Propriétés asymptotiques des processus de branchement en
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