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Abstract. A general continuous-state branching processes in random environment
(CBRE-process) is defined as the strong solution of a stochastic integral equation. The
environment is determined by a Lévy process with no jump less than −1. We give char-
acterizations of the quenched and annealed transition semigroups of the process in terms
of a backward stochastic integral equation driven by another Lévy process determined
by the environment. The process hits zero with strictly positive probability if and only
if its branching mechanism satisfies Grey’s condition. In that case, a characterization
of the extinction probability is given using a random differential equation with blowup
terminal condition. The strong Feller property of the CBRE-process is established by a
coupling method. We also prove a necessary and sufficient condition for the ergodicity of
the subcricital CBRE-process with immigration.
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1 Introduction

Galton-Watson processes in random environments (GWRE-processes) were introduced
by Smith [29] and Smith and Wilkinson [30] as extensions of classical Galton-Watson
processes (GW-processes). Those extensions possess many interesting new properties.
For instance, different regimes for the survival probability arise in the subcritical regime.
For recent results on the speed of decay of the survival probability, the reader may refer
to [1, 2, 12, 32] and the references therein.
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Let {W (t) : t ≥ 0} be a Brownian motion and {S(t) : t ≥ 0} a Brownian motion
with drift. We assume the two processes are independent of each other. By the Yamada-
Watanabe theorem, for any constants c ≥ 0, σ ≥ 0 and b ∈ R there is a unique positive
strong solution to the stochastic differential equation:

dX(t) =
√

2cX(t)dW (t)− bX(t)dt+ σX(t)dS(t). (1.1)

The solution {X(t) : t ≥ 0} is called a continuous-state branching diffusion in ran-
dom environment (CBRE-diffusion). The environment here is determined by the process
{S(t) : t ≥ 0}. It was proved in Kurtz [19] that the CBRE-diffusion arises as the limit
of a sequence of suitably rescaled GWRE-processes; see also Helland [14]. A diffusion
approximation of the GWRE-process was actually conjectured by Keiding [18]. It turn-
s out that the CBRE-diffusion is technically more tractable than the GWRE-process.
In the particular case of σ = 0, the CBRE-diffusion reduces to the well-known Feller
branching diffusion, which belongs to an important class of positive Markov processes
called continuous-state branching processes (CB-processes); see Feller [10], Jǐrina [16] and
Lamperti [20, 21].

In the work of Böinghoff and Hutzenthaler [5], it was shown that the survival proba-
bility of the CBRE-diffusion can be represented explicitly in terms of an exponential func-
tional of the environment process {S(t) : t ≥ 0}. Based on the representation, Böinghoff
and Hutzenthaler [5] gave an exact characterization for the decay rate of the survival
probability of the CBRE-diffusion in the critical and subcritical cases. The results of [5]
are more complete than the corresponding results for the GWRE-processes in the sense
that they calculated the accurate limiting constants. In addition, they characterized the
CBRE-diffusion conditioned to never go extinct and established a backbone construction
for the conditioned process. See also Hutzenthaler [15] for some related results.

Continuous-state branching processes with immigration (CBI-processes), which gener-
alize the CB-processes, were introduced by Kawazu and Watanabe [17] as rescaling limits
of Galton-Watson processes with immigration (GWI-processes); see also Aliev [3] and Li
[22, 23]. Let b ∈ R and c ≥ 0 be given constants. Let m(dz) be a Radon measure on
(0,∞) satisfying

∫∞
0

(z ∧ z2)m(dz) < ∞. Suppose that {W (t) : t ≥ 0} is a Brownian

motion, {η(t) : t ≥ 0} is an increasing Lévy process with η(0) = 0 and M̃(ds, dz, du) is a
compensated Poisson random measure on (0,∞)3 with intensity dsm(dz)du. We assume
those three noises are independent of each other. By Dawson and Li [6, Theorems 5.1
and 5.2] or Fu and Li [11, Corollary 5.2], there is a unique positive strong solution to

X(t) = X(0)− b
∫ t

0

X(s)ds+

∫ t

0

√
2cX(s)dW (s)

+

∫ t

0

∫ ∞
0

∫ X(s−)

0

zM̃(ds, dz, du) + η(t). (1.2)

It was shown in [6, 11] that the solution {X(t) : t ≥ 0} is a CBI-process. The process
{η(t) : t ≥ 0} describes the inputs of the immigrants. Here and in the sequel, we

understand
∫ b
a

=
∫

(a,b]
and

∫∞
a

=
∫

(a,∞)
for any a ≤ b ∈ R.
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A class of continuous-state branching processes in random environments (CBRE-
processes) were introduced by Bansaye et al. [4], where the environments were defined
by Lévy processes with bounded variation. The authors gave a criticality classification
of their CBRE-processes according to the long time behavior of the environmental Lévy
process. They also characterized the Laplace exponent of the processes using a backward
ordinary differential equation involving the environment process. For stable branching
CBRE-processes, Bansaye et al. [4] calculated explicitly the survival probability and char-
acterized its decay rate in the critical and subcritical cases. In addition, they showed some
interesting applications of their results to a cell infection model. The results of Bansaye
et al. [4] were extended by Palau and Pardo [27] to the case where the environment was
given by a Brownian motion with drift.

The CBRE-processes studied in [4, 27] can be generalized to continuous-state branch-
ing processes with immigration in random environment (CBIRE-processes). Let {L(t) :
t ≥ 0} be a Lévy process with no jump less than −1 and assume it is independent of
the three noises in (1.2). It is natural to define a CBIRE-process {Y (t) : t ≥ 0} by the
stochastic equation

Y (t) = Y (0)− b
∫ t

0

Y (s)ds+

∫ t

0

√
2cY (s)dW (s) + η(t)

+

∫ t

0

∫ ∞
0

∫ Y (s−)

0

zM̃(ds, dz, du) +

∫ t

0

Y (s−)dL(s). (1.3)

Here the influence of the environment is represented by the Lévy process {L(t) : t ≥ 0}.
The existence and uniqueness of the positive strong solution to the above equation follow
from the results of Dawson and Li [7], Fu and Li [11] and Li and Pu [25]; see Sections 3
and 5 for details. In the very recent work of Palau and Pardo [28], a further generalization
of the CBIRE-process was introduced by considering a competition mechanism. For that
purpose, those authors first established some general existence and uniqueness results on
stochastic equations following the arguments in [7, 11, 25]. The long term behavior of the
CBIRE-process was also studied in [28].

The purpose of this paper is to study the basic structures of the CBRE- and CBIRE-
processes. In Section 2, we introduce two random cumulant semigroups, which are im-
portant tools in the study of those processes. The semigroups are defined in terms of a
backward stochastic equations driven by a Lévy process. The existence of them follows
from a general result in Li [23] on Dawson-Watanabe superprocesses. In Section 3, a con-
struction of the CBRE-process is given by applying the results of [7, 11, 25] on stochastic
equations driven by time-space noises. Then we give characterizations of the quenched
and annealed transition probabilities of the CBRE-process. In particular, we show the
annealed transition semigroup is a Feller semigroup. In Section 4, we show the CBRE-
process hits zero with strictly positive probability if and only if its branching mechanism
satisfies Grey’s condition. In that case, we give a characterization of the extinction proba-
bilities by the solution of a random differential equation with blowup terminal condition.
The strong Feller property of the CBRE-process is established by a coupling method.
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Some of the results are extended in Section 5 to CBIRE-processes. In addition, we give a
necessary and sufficient condition for the ergodicity of subcritical CBIRE-processes. Most
of the results here are obtained or presented using stochastic equations driven by Lévy
processes, which are more elegant than those in the classical discrete setting.

We refer to Ethier and Kurtz [9] and Sharpe [31] for the general theory and terminolo-
gy of Markov processes. For the convenience of the reader, we here review two important
concepts. Consider a locally compact and superable metric space E and let C0(E) de-
note the class of continuous functions on the space vanishing at infinity. The transition
semigroup (Tt)t≥0 of a Markov process with state space E is called a Feller semigroup
if the operators (Tt)t≥0 map C0(E) into itself and limt→0+ Ttf(x) = f(x) for x ∈ E and
f ∈ C0(E). We say a Feller semigroup (Tt)t≥0 has strong Feller property if for each t > 0
the operator Tt maps bounded Borel functions into bounded continuous functions. The
strong Feller property plays an important role in the study of Markov processes; see, e.g.,
Hairer and Mattingly [13] and Wang [33].

Acknowledgements. We thank Professors Yueyun Hu and Zhan Shi for helpful
discussions on branching processes in random environments. We are grateful to Sandra
Palau for pointing out a gap in the original proof of Theorem 3.1 and a referee for a list
of comments which helped us in improving the presentation of the results.

2 Random cumulant semigroups

In this section, we introduce some random cumulant semigroups, which generalize
that of a classical CB-process. Those semigroups are important tools in the study of the
CBRE-process. Let I ⊂ R be an interval and ζ = {ζ(t) : t ∈ I} a càdlàg function. Let φ
be a branching mechanism given by

φ(z) = bz + cz2 +

∫ ∞
0

(e−uz − 1 + uz)m(du), z ≥ 0. (2.1)

where b ∈ R and c ≥ 0 are constants and (z ∧ z2)m(dz) is a finite measure on (0,∞).
From [23, Theorem 6.10] it follows that, for any t ∈ I and λ ≥ 0, there is a unique positive
solution r 7→ uζr,t(λ) to the integral evolution equation

uζr,t(λ) = λ−
∫ t

r

eζ(s)φ(e−ζ(s)uζs,t(λ))ds, r ∈ I ∩ (−∞, t]. (2.2)

Moreover, there is an inhomogeneous transition semigroup (P ζ
r,t)t≥r∈I on [0,∞) defined

by ∫
[0,∞)

e−λyP ζ
r,t(x, dy) = e−xu

ζ
r,t(λ), λ ≥ 0. (2.3)
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By a simple transformation, we can define another inhomogeneous transition semigroup
(Qζ

r,t)t≥r∈I on [0,∞) by∫
[0,∞)

e−λyQζ
r,t(x, dy) = e−xv

ζ
r,t(λ), λ ≥ 0, (2.4)

where

vζr,t(λ) = e−ζ(r)uζr,t(e
ζ(t)λ). (2.5)

The uniqueness of the solution to (2.2) implies that

uζr,t(λ) = uζr,s ◦ u
ζ
s,t(λ), λ ≥ 0, t ≥ s ≥ r ∈ I. (2.6)

There is a similar relation for (vζr,t)t≥r∈I . By (2.2) and Lebesgue’s theorem one can see

r 7→ uζr,t(λ) is also the unique positive continuous solution to the differential equation

d

dr
uζr,t(λ) = eζ(r)φ(e−ζ(r)uζr,t(λ)), a.e. r ∈ I ∩ (−∞, t] (2.7)

with terminal condition uζt,t(λ) = λ.

Proposition 2.1 Let (P ζ
r,t)t≥r∈I be defined by (2.3). Then for any x ≥ 0 and t ≥ r ∈ I

we have ∫
[0,∞)

yP ζ
r,t(x, dy) = xe−b(t−r). (2.8)

Proof. By differentiating both sides of (2.2) and solving the resulted integral equation
we obtain (d/dλ)uζr,t(0+) = e−b(t−r). Then we get the desired equality by differentiating
both sides of (2.3). 2

Proposition 2.2 For any t ≥ r ∈ I, the mapping λ 7→ uζr,t(λ) is strictly increasing on
[0,∞).

Proof. In view of (2.3) and (2.8), we have uζr,t(λ) ≤ λe−b(t−r) by Jessen’s inequality. Fix

a bounded interval J ⊂ I and let M = sups∈J(e−ζ(s) ∨ eζ(s)) and L = sup{|φ(z)| : 0 ≤ z ≤
Me−b}. By (2.2), for t ≥ r ∈ J with t− r ≤ 1 we have

uζr,t(1) = 1−
∫ t

r

eζ(s)φ(e−ζ(s)uζs,t(1))ds ≥ 1− (t− r)ML.

Then, as t− r ≤ 1 ∧ (ML)−1, we have uζr,t(1) > 0, so (2.3) implies P ζ
r,t(x, (0,∞)) > 0 for

any x > 0, and hence λ 7→ uζr,t(λ) is strictly increasing. Using (2.3) we see λ 7→ uζr,t(λ) is
strictly increasing for any t ≥ r ∈ J . Since J ⊂ I was arbitrary, the desired result follows.
2
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Proposition 2.3 If b ≥ 0, then t 7→ uζr,t(λ) is decreasing on I ∩ [r,∞) and r 7→ uζr,t(λ) is
increasing on I ∩ (−∞, t].

Proof. From (2.3) we see that λ 7→ uζr,t(λ) is increasing. Since b ≥ 0, we have φ(z) ≥ 0

for every z ≥ 0. Then (2.2) implies uζr,t(λ) ≤ λ. By (2.6) we see uζr,t(λ) ≤ uζs,t(λ) and

uζr,t(λ) ≤ uζr,s(λ) for r ≤ s ≤ t ∈ I. 2

When the function ζ is degenerate (ζ(t) = 0 for all t ∈ I), both (uζr,t)t≥r∈I and

(vζr,t)t≥r∈I reduce to the cumulant semigroup of a classical CB-process with branching

mechanism φ; see, e.g., [23, Chapter 3]. In the general case, we may think of (uζr,t)t≥r∈I
as an inhomogeneous cumulant semigroup determined by the time-dependent branching
mechanism (s, z) 7→ eζ(s)φ(e−ζ(s)z). The idea of the proof of [23, Theorem 6.10] is to reduce
the construction of an inhomogeneous cumulant semigroup to that of a homogeneous one
by some time-space processes. The transformation from (uζr,t)t≥r∈I to (vζr,t)t≥r∈I is a time-
dependent variation of the one used in the proof of [23, Theorem 6.1].

We next consider some randomization of the inhomogeneous cumulant semigroups
defined above. Let (Ω,F ,Ft,P) be a filtered probability space satisfying the usual hy-
potheses. Let a ∈ R and σ ≥ 0 be given constants and (1 ∧ z2)ν(dz) a finite measure
on (0,∞). Suppose that {B(t) : t ≥ 0} is an (Ft)-Brownian motion with B(0) = 0 and
N(ds, dz) is an (Ft)-Poisson random measure on (0,∞)× R with intensity dsν(dz). Let
{ξ(t) : t ≥ 0} be an (Ft)-Lévy process with the following Lévy-Itô decomposition:

ξ(t) = at+ σB(t) +

∫ t

0

∫
[−1,1]

zÑ(ds, dz) +

∫ t

0

∫
[−1,1]c

zN(ds, dz), (2.9)

where [−1, 1]c = R \ [−1, 1]. Let {L(t) : t ≥ 0} be the (Ft)-Lévy process defined by

L(t) = βt+ σB(t) +

∫ t

0

∫
[−1,1]

(ez − 1)Ñ(ds, dz) +

∫ t

0

∫
[−1,1]c

(ez − 1)N(ds, dz),

where

β = a+
σ2

2
+

∫
[−1,1]

(ez − 1− z)ν(dz). (2.10)

Clearly, the two processes {ξ(t) : t ≥ 0} and {L(t) : t ≥ 0} generate the same filtration.

Let (uξr,t)t≥r≥0 and (vξr,t)t≥r≥0 be the random cumulant semigroups defined by (2.2)

and (2.5) with ζ = ξ. From (2.2) we see that r 7→ vξr,t(λ) is the pathwise unique positive
solution to

vξr,t(λ) = eξ(t)−ξ(r)λ−
∫ t

r

eξ(s)−ξ(r)φ(vξs,t(λ))ds, 0 ≤ r ≤ t. (2.11)

From (2.11) we see that the left-continuous process {vξt−s,t(λ) : 0 ≤ s ≤ t} is progressively
measurable with respect to the filtration generated by the Lévy process {Lt(s) := L(t−)−
L((t− s)−) : 0 ≤ s ≤ t}.
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Theorem 2.4 For any t ≥ 0 and λ ≥ 0, the process {vξr,t(λ) : 0 ≤ r ≤ t} is the pathwise
unique positive solution to

vξr,t(λ) = λ−
∫ t

r

φ(vξs,t(λ))ds+

∫ t

r

vξs,t(λ)L(
←−
ds), 0 ≤ r ≤ t, (2.12)

where the backward stochastic integral is defined by∫ t

r

vξs,t(λ)L(
←−
ds) =

∫ (t−r)−

0

vξt−s,t(λ)Lt(ds).

Proof. Let ξt(r) = ξ(t−) − ξ((t − r)−) and Bt(r) = B(t) − B(t − r) for 0 ≤ r ≤ t. Let
Nt(ds, dz) be the Poisson random measure defined by

Nt([0, r]×B) = N([t− r, t]×B), 0 ≤ r ≤ t, B ∈ B(R).

From (2.9) we have

ξt(r) = ar + σBt(r) +

∫ r

0

∫
[−1,1]

zÑt(ds, dz) +

∫ r

0

∫
[−1,1]c

zNt(ds, dz).

On the other hand, from (2.11) we have ft(r) := vξ(t−r)−,t(λ) = eξt(r)Ft(r), where

Ft(r) = λ−
∫ r

0

e−ξt(s)φ(ft(s))ds.

By Itô’s formula,

ft(r) = λ+

∫ r

0

eξt(s−)Ft(s)ξt(ds) +
σ2

2

∫ r

0

eξt(s)Ft(s)ds

+

∫ r

0

∫
R
eξt(s−)Ft(s)(e

z − 1− z)Nt(ds, dz) +

∫ r

0

eξt(s)Ft(ds)

= λ+

∫ r

0

ft(s−)Lt(ds)−
∫ r

0

φ(ft(s))ds.

It follows that

vξr,t(λ) = λ+

∫ r−

0

ft(s−)Lt(ds)−
∫ r

0

φ(ft(s))ds

= λ+

∫ (t−r)−

0

vξt−s,t(λ)Lt(ds)−
∫ t−r

0

φ(vξt−s,t(λ))ds

= λ+

∫ t

r

vξs,t(λ)L(
←−
ds)−

∫ t

r

φ(vξt−s,t(λ))ds.

That proves the existence of the solution to (2.12). Conversely, assuming r 7→ vξr,t(λ) is a
solution to (2.12), one can use similar calculations to see it also solves (2.11). Then the
pathwise uniqueness for (2.12) is a consequence of that for (2.11). 2
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3 Construction of CBRE-processes

Let (Ω,F ,Ft,P) be a filtered probability space satisfying the usual hypotheses. Let
{ξ(t) : t ≥ 0} and {L(t) : t ≥ 0} be (Ft)-Lévy processes given as in Section 2. Let
b ∈ R and c ≥ 0 be constants and (z∧ z2)m(dz) a finite measure on (0,∞). Suppose that
{W (t) : t ≥ 0} is an (Ft)-Brownian motion and M(ds, dz, du) is an (Ft)-Poisson random
measure on (0,∞)3 with intensity dsm(dz)du. We assume both of those are independent
of the Lévy process {L(t) : t ≥ 0}. Given a positive F0-measurable random variable
X(0), we consider the following stochastic integral equation:

X(t) = X(0)− b
∫ t

0

X(s)ds+

∫ t

0

√
2cX(s)dW (s)

+

∫ t

0

∫ ∞
0

∫ X(s−)

0

zM̃(ds, dz, du) +

∫ t

0

X(s−)dL(s), (3.1)

where M̃(ds, dz, du) = M(ds, dz, du)− dsm(dz)du.

Theorem 3.1 There is a unique positive strong solution {X(t) : t ≥ 0} to (3.1).

Proof. Let E = {1, 2} and U0 = A0∪B0, where A0 = {1}×(0,∞)2 and B0 = {2}×[−1, 1].
Let π(du) = δ1(du) + δ2(du) for u ∈ E. Then W (ds, du) := dW (s)δ1(du) + dB(s)δ2(du)
is a Gaussian white noise on (0,∞) × E with intensity dsπ(dz). Let µ0(dy, dz, du) =
δ1(dy)m(dz)du for (y, z, u) ∈ A0 and µ0(dy, dz) = δ2(dy)ν(dz) for (y, z) ∈ B0. Then
N0(ds, dy, dz, du) := δ1(dy)M(ds, dz, du) is a Poisson random measure on (0,∞) × A0

with intensity dsδ1(dy)m(dz)du andN0(ds, dy, dz) := δ2(dy)N(ds, dz) is a Poisson random
measure on (0,∞)×B0 with intensity dsδ2(dy)ν(dz). Let b(x) = (β − b)x for x ∈ [0,∞)
and σ(x, u) =

√
2cx1{u=1} + σx1{u=2} for (x, u) ∈ [0,∞)× E. Let g0(x, y, z, u) = z1{u≤x}

for (x, y, z, u) ∈ [0,∞) × A0 and g0(x, y, z) = x(ez − 1) for (x, y, z) ∈ [0,∞) × B0. By
modifying [25, Theorem 6.1] to the setting of [7, Theorem 2.5], one can see there is a
unique positive strong solution to the stochastic equation

X(t) = X(0) +

∫ t

0

b(X(s))ds+

∫ t

0

∫
A0

g0(X(s−), y, z, u)Ñ0(ds, dy, dz, du)

+

∫ t

0

∫
E

σ(X(s), u)W (ds, du) +

∫ t

0

∫
B0

g0(X(s−), y, u)Ñ0(ds, dy, du).

The above equation can be rewritten into

X(t) = X(0) +

∫ t

0

√
2cX(s)dW (s) +

∫ t

0

∫ ∞
0

∫ X(s−)

0

zM̃(ds, dz, du)

+ (β − b)
∫ t

0

X(s)ds+ σ

∫ t

0

X(s)dB(s) +

∫ t

0

∫
[−1,1]

X(s−)(ez − 1)Ñ(ds, dz).
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Since the process

t 7→
∫ t

0

∫
[−1,1]c

(ez − 1)N(ds, dz)

has at most a finite number of jumps in each bounded time interval, as in the proof of
[11, Proposition 2.2], one can see that there is also a unique positive strong solution to

X(t) = X(0) +

∫ t

0

√
2cX(s)dW (s) +

∫ t

0

∫ ∞
0

∫ X(s−)

0

zM̃(ds, dz, du)

+ (β − b)
∫ t

0

X(s)ds+ σ

∫ t

0

X(s)dB(s) +

∫ t

0

∫
[−1,1]

X(s−)(ez − 1)Ñ(ds, dz)

+

∫ t

0

∫
[−1,1]c

X(s−)(ez − 1)N(ds, dz). (3.2)

The above equation is just a reformulation of (3.1). Then we have the result of the
theorem. 2

Remark 3.2 A result more general than Theorem 3.1 was given in Corollary 1 of Palau
and Pardo [28] as a consequence of their Theorem 1, which was proved by modifying the
arguments in [7, 11, 25]. The above proof explains how the results in [7, 11, 25] should be
used directly in the current situation. The proof can be modified to construct more complex
models with extra structures such as immigration, competition and so on. In fact, since
the results on stochastic equations in [7, 11, 25] are formulated in the abstract setting,
they are quite flexible for applications.

We call the solution {X(t) : t ≥ 0} to (3.1) a CBRE-process, which is a càdlàg
strong Markov process. Here the random environment is provided by the Lévy process
{L(t) : t ≥ 0}. By Itô’s formula one can see {X(t) : t ≥ 0} has strong generator A defined
as follows: For f ∈ C2[0,∞),

Af(x) = (β − b)xf ′(x) + cxf ′′(x) + x

∫ ∞
0

[f(x+ z)− f(x)− zf ′(x)]m(dz)

+
σ2

2
x2f ′′(x) +

∫
[−1,1]

[f(xez)− f(x)− x(ez − 1)f ′(x)]ν(dz)

+

∫
[−1,1]c

[f(xez)− f(x)]ν(dz). (3.3)

Proposition 3.3 Let Z(t) = X(t)e−ξ(t) for t ≥ 0. Then we have

Z(t) = X(0)− b
∫ t

0

e−ξ(s)X(s)ds+

∫ t

0

e−ξ(s)
√

2cX(s)dW (s)

+

∫ t

0

∫ ∞
0

∫ X(s−)

0

ze−ξ(s−)M̃(ds, dz, du). (3.4)

In particular, the process {Z(t) : t ≥ 0} is a positive local martingale when b = 0.
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Proof. Let f(x, y) = xe−y. Then xf ′x(x, y) = −f ′y(x, y) = f(x, y) and −xf ′′xy(x, y) =
f ′′yy(x, y) = f(x, y). Observe that the Poison random measure N(ds, dz) actually does not
produce any jump of t 7→ Z(t). By (3.1) and Itô’s formula,

Z(t) = X(0)− b
∫ t

0

f ′x(X(s), ξ(s))X(s)ds+

∫ t

0

f ′x(X(s), ξ(s))
√

2cX(s)dW (s)

+

∫ t

0

∫ ∞
0

∫ X(s−)

0

f ′x(X(s−), ξ(s−))zM̃(ds, dz, du)

+ β

∫ t

0

f ′x(X(s), ξ(s))X(s)ds+ σ

∫ t

0

f ′x(X(s), ξ(s))X(s)dB((s)

+

∫ t

0

∫
[−1,1]

f ′x(X(s−), ξ(s−))X(s−)(ez − 1)Ñ(ds, dz)

+

∫ t

0

∫
[−1,1]c

f ′x(X(s−), ξ(s−))X(s−)(ez − 1)N(ds, dz)

+ a

∫ t

0

f ′y(X(s), ξ(s))ds+

∫ t

0

∫
[−1,1]

f ′y(X(s−), ξ(s−))zÑ(ds, dz)

+σ

∫ t

0

f ′y(X(s), ξ(s))dB((s) +

∫ t

0

∫
[−1,1]c

f ′y(X(s−), ξ(s−))zN(ds, dz)

+σ2

∫ t

0

[
f ′′xy(X(s), ξ(s))X(s) +

1

2
f ′′yy(X(s), ξ(s))

]
ds

+

∫ t

0

∫ ∞
0

∫ X(s−)

0

[f(X(s−) + z, ξ(s))− f(X(s−), ξ(s))

−f ′x(X(s−), ξ(s))z]M(ds, dz, du)

+

∫ t

0

∫
R
[f(X(s−)ez, ξ(s−) + z)− f(X(s−), ξ(s−))

−f ′x(X(s−), ξ(s−))X(s−)(ez − 1)− f ′y(X(s−), ξ(s−))z]N(ds, dz)

= X(0)− b
∫ t

0

f ′x(X(s), ξ(s))X(s)ds+

∫ t

0

f ′x(X(s), ξ(s))
√

2cX(s)dW (s)

+

∫ t

0

∫ ∞
0

∫ X(s−)

0

f ′x(X(s−), ξ(s−))zM̃(ds, dz, du)

+ β

∫ t

0

f ′x(X(s), ξ(s))X(s)ds+ σ

∫ t

0

f ′x(X(s), ξ(s))X(s)dB((s)

+ a

∫ t

0

f ′y(X(s), ξ(s))ds+ σ

∫ t

0

f ′y(X(s), ξ(s))dB((s)

+σ2

∫ t

0

[
f ′′xy(X(s), ξ(s))X(s) +

1

2
f ′′yy(X(s), ξ(s))

]
ds

−
∫ t

0

ds

∫
[−1,1]

[f ′x(X(s), ξ(s))X(s)(ez − 1) + f ′y(X(s), ξ(s))z]ν(dz).

By reorganizing the terms on the right-hand side we get the desired equality. 2

It is easy to see that the two Lévy processes {ξ(t) : t ≥ 0} and {L(t) : t ≥ 0} generate
the same σ-algebra. Let Pξ denote the quenched law given {ξ(t) : t ≥ 0} or {L(t) : t ≥
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0}. The following theorem shows that the random cumulant semigroups (uξr,t)t≥r≥0 and

(vξr,t)t≥r≥0 are connected with the processes {Z(t) : t ≥ 0} and {X(t) : t ≥ 0}, respectively.

Theorem 3.4 Let (P ξ
r,t)t≥r≥0 and (Qξ

r,t)t≥r≥0 be defined by (2.3) and (2.4), respectively,
with ζ = ξ. Then for any λ ≥ 0 and t ≥ r ≥ 0 we have

Pξ[e−λZ(t)|Fr] = exp{−Z(r)uξr,t(λ)} =

∫
[0,∞)

e−λyP ξ
r,t(Z(r), dy) (3.5)

and

Pξ[e−λX(t)|Fr] = exp{−X(r)vξr,t(λ)} =

∫
[0,∞)

e−λyQξ
r,t(X(r), dy). (3.6)

Proof. Fix λ ≥ 0. For t ≥ r ≥ 0, let Ht(r) = exp{−Z(r)uξr,t(λ)}. By (2.2) and
Proposition 3.3, given the environment {ξ(t) : t ≥ 0}, we can use Itô formula to see

Ht(t) = Ht(r)−
∫ t

r

Ht(s)Z(s)eξ(s)φ(e−ξ(s)uξs,t(λ))ds

−
∫ t

r

Ht(s−)uξs,t(λ)dZ(s) + c

∫ t

r

Ht(s)u
ξ
s,t(λ)2e−2ξ(s)X(s)ds

+

∫ t

r

∫ ∞
0

∫ X(s−)

0

Ht(s−)
[

exp{−ze−ξ(s−)uξs,t(λ)}

−1 + ze−ξ(s−)uξs,t(λ)
]
M(ds, dz, du)

= Ht(r)−
∫ t

r

Ht(s)X(s)φ(e−ξ(s)uξs,t(λ))ds+ b

∫ t

r

Ht(s)u
ξ
s,t(λ)e−ξ(s)X(s)ds

−
∫ t

r

Ht(s)u
ξ
s,t(λ)e−ξ(s)

√
2cX(s)dW (s) + c

∫ t

r

Ht(s)e
−2ξ(s)uξs,t(λ)2X(s)ds

+

∫ t

r

∫ ∞
0

∫ X(s−)

0

Ht(s−)
[

exp{−ze−ξ(s−)uξs,t(λ)}

−1 + ze−ξ(s−)uξs,t(λ)
]
M(ds, dz, du)

= Ht(r)−
∫ t

r

Ht(s−)uξs,t(λ)e−ξ(s)
√

2cX(s)dW (s)

+

∫ t

r

∫ ∞
0

∫ X(s−)

0

Ht(s−)
[

exp{−ze−ξ(s−)uξs,t(λ)}

−1 + ze−ξ(s−)uξs,t(λ)
]
M̃(ds, dz, du).

Since {Ht(r) : t ≥ r} is a bounded process, by taking the quenched expectation in both
sides we get Pξ[Ht(t)|Fr] = Ht(r). That gives (3.5), and as a consequence we get (3.6).
2

Corollary 3.5 If P[Z(0)] = P[X(0)] <∞, then {ebtZ(t) : t ≥ 0} is a martingale.
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Proof. Let t ≥ r ≥ 0 and let F be a bounded random variable measurable with respect
to the σ-algebra generated by Fr ∪ σ(ξ). By (3.5) and Proposition 2.1, we have

P[FebtZ(t)] = P{FebtPξ[Z(t)|Fr]} = P

[
Febt

∫
[0,∞)

yP ξ
r,t(Z(r), dy)

]
= P[FebrZ(r)].

Then {ebtZ(t) : t ≥ 0} is a martingale. 2

By Theorem 3.4 we see that {Z(t) : t ≥ 0} and {X(t) : t ≥ 0} are actually CB-
processes under the quenched law with inhomogeneous cumulant semigroups (uξr,t)t≥r≥0

and (vξr,t)t≥r≥0, respectively. The next theorem gives a characterization of the transition
semigroup of {X(t) : t ≥ 0} under the annealed law.

Theorem 3.6 The Markov process {X(t) : t ≥ 0} has Feller transition semigroup (Qt)t≥0

defined by ∫
[0,∞)

e−λyQt(x, dy) = P[e−xv
ξ
0,t(λ)], λ ≥ 0. (3.7)

Proof. By (2.4) one can see that (3.7) defines a probability kernel Qt(x, dy). In view of
(3.6), for any bounded Fr-measurable random variable F we have

P[Fe−λX(t)] = P[FPξ(e−λX(t)|Fr)] = P[F exp{−X(r)vξr,t(λ)}].

The pathwise uniqueness of the solution to (2.12) implies that the random variable vξr,t(λ)
is measurable with respect to the σ-algebra generated by {L(s) − L(t) : r ≤ s ≤ t}, so
it is independent of {X(s) : 0 ≤ s ≤ r}. Moreover, this random variable is identically
distributed with vξ0,t−r(λ). It follows that

P[Fe−λX(t)] = P

[
F

∫
[0,∞)

e−yλQt−r(X(r), dy)

]
.

Then {X(t) : t ≥ 0} has transition semigroup (Qt)t≥0. Let C0[0,∞) be the set of con-
tinuous functions on [0,∞) vanishing at infinity. Since the right-hand side of (3.7) is
continuous in x ≥ 0, the continuity theorem implies that Qt(x, ·) depends on x ≥ 0 con-
tinuously by weak convergence. By Proposition 2.2, for t ≥ 0 we have a.s. vξ0,t(1) > 0,
so (3.7) implies Qt(x, J) → 0 as x → ∞ for any bounded interval J ⊂ [0,∞). Then
the operator Qt maps C0[0,∞) into itself. Let {X(x, t) : t ≥ 0} be the solution of (3.1)
with X(x, 0) = x ≥ 0. The right continuity of the process implies that limt→0+ Qtf(x) =
limt→0+ P[f(X(x, t))] = f(x) for any f ∈ C0[0,∞). Then (Qt)t≥0 is a Feller semigroup.
2

Under the annealed law, the process {Z(t) : t ≥ 0} usually does not satisfy the
Markov property, but {(ξ(t), Z(t)) : t ≥ 0} is a two-dimensional Markov process. Let
F∞ = σ(∪t≥0Ft). By Corollary 3.5, there is a probability measure P̃ on (Ω,F∞) so that
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P̃(F ) = P[FebtZ(t)] for each bounded Ft-measurable random variable F . Let P̃ξ denote
the quenched law under P̃ given the environment {ξ(t) : t ≥ 0}. By differentiate both
sides of (2.4) we obtain

φ′(z) = b+ 2cz +

∫ ∞
0

u(1− e−uz)m(du), z ≥ 0. (3.8)

Theorem 3.7 For any λ ≥ 0 and t ≥ r ≥ 0, we have

P̃ξ[e−λX(t)|Fr] = exp

{
−X(r)vξr,t(λ)−

∫ t

r

φ′0(vξs,t(λ))ds

}
, (3.9)

where φ′0(z) = φ′(z)− b.

Proof. From (2.4) one can see that λ 7→ vξr,t(λ) is infinitely differentiable in (0,∞). By
differentiating both sides of (2.2) we obtain

d

dλ
uξr,t(λ) = 1−

∫ t

r

φ′(e−ξ(s)uξs,t(λ))
d

dλ
uξs,t(λ)ds.

Then we can solve the equation to get

d

dλ
uξr,t(λ) = exp

{
−
∫ t

r

φ′(e−ξ(s)uξs,t(λ))ds

}
.

Let F be a bounded random variable measurable with respect to the σ-algebra generated
by Fr ∪ σ(ξ). From (3.5) it follows that

P[Fe−λZ(t)] = P[FPξ(e−λZ(t)|Fr)] = P[F exp{−Z(r)uξr,t(λ)}].

By differentiating both sides in λ > 0 we have

P[Fe−λZ(t)Z(t)] = P

[
F exp

{
− Z(r)uξr,t(λ)−

∫ t

r

φ′(e−ξ(s)uξs,t(λ))ds

}
Z(r)

]
,

and hence

P[Fe−λX(t)Z(t)] = P

[
F exp

{
−X(r)vξr,t(λ)−

∫ t

r

φ′(vξs,t(λ))ds

}
Z(r)

]
.

It follows that

P̃[Fe−λX(t)] = P̃

[
F exp

{
−X(r)vξr,t(λ)−

∫ t

r

φ′0(vξs,t(λ))ds

}]
.

Then we have (3.9). The extension of the equality to λ ≥ 0 is immediate. 2

By Theorem 3.7 one can show as in the proof of Theorem 3.6 that {X(t) : t ≥ 0} is a
Markov process under P̃ with Feller transition semigroup (Q̃t)t≥0 defined by∫

[0,∞)

e−λyQ̃t(x, dy) = P

[
exp

{
− xvξ0,t(λ)−

∫ t

0

φ′0(vξs,t(λ))ds

}]
, λ ≥ 0. (3.10)

This is a special case of a larger class of transition semigroups to be given in Section 5.
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4 Survival and extinction probabilities

In this section, we assume X(0) = x > 0 is a deterministic constant for simplicity. Let
P or Px denote the annealed law and Pξ or Pξ

x the quenched law given {ξ(t) : t ≥ 0}. In
addition, we assume b = φ′(0) = 0 so that z 7→ φ(z) is positive and increasing on [0,∞).
This restriction is not essential since all the results obtained here can be applied to the
general case if one replaces the environment process {ξ(t) : t ≥ 0} with {ξ(t)− bt : t ≥ 0}.
Let τ0 = inf{t ≥ 0 : X(t) = Z(t) = 0} denote the extinction time of the CBRE-
process. From (2.4) one can see that vξ0,t(λ) is increasing in λ ≥ 0. For t > 0 let

v̄ξ0,t := limλ→∞ v
ξ
0,t(λ) ∈ [0,∞]. Then

ūξ0,t := lim
λ→∞

uξ0,t(λ) = lim
λ→∞

vξ0,t(e
−ξ(t)λ) = v̄ξ0,t. (4.1)

By (3.5) and (3.6) we have the following characterizations of the extinction probabilities:

Pξ
x(τ0 ≤ t) = Pξ

x(Z(t) = 0) = Pξ
x(X(t) = 0) = e−xū

ξ
0,t = e−xv̄

ξ
0,t (4.2)

and

Px(τ0 ≤ t) = Px(Z(t) = 0) = Px(X(t) = 0) = P(e−xū
ξ
0,t) = P(e−xv̄

ξ
0,t). (4.3)

We say the branching mechanism φ satisfies Grey’s condition if∫ ∞
1

φ(z)−1dz <∞. (4.4)

Theorem 4.1 The following statements are equivalent:

(1) φ satisfies Grey’s condition;

(2) Px(Z(t) = 0) = Px(X(t) = 0) > 0 for some and hence all t > 0;

(3) P(ūξ0,t <∞) = P(v̄ξ0,t <∞) > 0 for some and hence all t > 0;

(4) P(ūξ0,t <∞) = P(v̄ξ0,t <∞) = 1 for some and hence all t > 0.

Proof. From (4.3) we see (2)⇔(3)⇐(4). Then we only need to show (3)⇒(1)⇒(4). From
(2.7) we have

t =

∫ t

0

1

eξ(s)φ(e−ξ(s)uξs,t(λ))
duξs,t(λ). (4.5)

Suppose that P(v̄ξ0,t < ∞) = P(ūξ0,t < ∞) > 0 for some t > 0. Choose the constants

0 < M1 < M2 <∞ so that the event A := {ūξ0,t <∞} ∩ {M1 ≤ eξ(s) ≤ M2 for s ∈ [0, t]}
has strictly positive probability. Since z 7→ φ(z) is increasing, by (4.5) we have on A that

t ≥
∫ t

0

1

M2φ(M−1
1 uξs,t(λ))

duξs,t(λ) =
M1

M2

∫ M−1
1 λ

M−1
1 uξ0,t(λ)

1

φ(z)
dz.
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By letting λ→∞ we have on A that

M1

M2

∫ ∞
M2ū

ξ
0,t

1

φ(z)
dz ≤ t.

Then (4.4) holds. That proves (3)⇒(1). Now suppose that Grey’s condition (4.4) is
satisfied. Fix any t > 0. Choose sufficiently large n ≥ 1 so that the event Ωn := {1/n ≤
eξ(s) ≤ n for s ∈ [0, t]} has strictly positive probability. By (4.5), on the event Ωn we have

t ≤
∫ t

0

n

φ(n−1uξs,t(λ))
duξs,t(λ) = n2

∫ n−1λ

n−1uξ0,t(λ)

1

φ(z)
dz,

which implies

n2

∫ ∞
n−1ūξ0,t

1

φ(z)
dz ≥ t.

It follows that ūξ0,t = v̄ξ0,t < ∞ on Ωn. Since P(∪∞n=1Ωn) = 1, we have P(v̄ξ0,t < ∞) =

P(ūξ0,t <∞) = 1. 2

Corollary 4.2 Under Grey’s condition, for any t > 0, the function r 7→ u(r) := ūξr,t = v̄ξr,t
on [0, t) is the minimal positive continuous solution to

d

dr
u(r) = eξ(r)φ(e−ξ(r)u(r)), a.e. r ∈ (0, t) (4.6)

with blowup terminal condition u(t−) =∞.

Proof. For any t > s > r > 0 we have ūξr,t = limλ→∞ u
ξ
r,s(u

ξ
s,t(λ)) = uξr,s(ū

ξ
s,t). From (2.7)

we see the differential equation in (4.6) is satisfied first for a.e. r ∈ (0, s) and then for
a.e. r ∈ (0, t). Since ūξt−,t ≥ uξt−,t(λ) = λ for any λ ≥ 0, we have the terminal property

ūξt−,t = ∞. Now suppose that r 7→ w(r) is another positive continuous solution to (4.6).
By the uniqueness of the solution to (2.7) we have w(r) = uξr,s(w(s)) for 0 ≤ r ≤ s < t.

For any λ ≥ 0 we can choose s ∈ (r, t) so that w(s) ≥ λe|b|t. By Proposition 2.1
and Jensen’s inequality one can see uξs,t(λ) ≤ λe−b(t−s) ≤ λe|b|t. From monotonicity of

λ 7→ uξr,s(λ) we get w(r) = uξr,s(w(s)) ≥ uξr,s(λe
|b|t) ≥ uξr,s(u

ξ
s,t(λ)) = uξr,t(λ). Then

w(r) ≥ ūξr,t = limλ→∞ u
ξ
r,t(λ). 2

Theorem 4.3 Let v̄ξ :=↓ limt→∞ v̄
ξ
0,t ∈ [0,∞] and τ0 := inf{t ≥ 0 : X(t) = 0}. Then

Px(τ0 <∞) = lim
t→∞

Px(τ0 ≤ t) = lim
t→∞

Px(X(t) = 0) = P[e−xv̄
ξ

].

Moreover, we have v̄ξ <∞ if and only if Grey’s condition (4.4) holds.
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Proof. From Pξ
x(τ0 ≤ t) = Pξ

x(X(t) = 0) = e−xv̄
ξ
0,t we see t 7→ v̄ξ0,t is decreasing, so v̄ξ is

well defined. From (4.2) it follows that

Px(τ0 <∞) = lim
t→∞

Px(τ0 ≤ t) = lim
t→∞

Px(X(t) = 0) = lim
t→∞

P[e−xv̄
ξ
0,t ] = P[e−xv̄

ξ

].

The second statement follows immediately from Theorem 4.1. 2

Corollary 4.4 Suppose that lim inft→∞ ξ(t) = −∞ and Grey’s condition (4.4) holds.
Then

Px(τ0 =∞) = lim
t→∞

Px(τ0 > t) = lim
t→∞

Px(X(t) > 0) = 0.

Proof. Suppose that p(x) := Px(τ0 = ∞) = 1 − P[e−xv̄
ξ
] > 0. Then we have P(v̄ξ >

0) > 0, so x 7→ p(x) is strictly increasing. Under the assumption lim inft→∞ ξ(t) = −∞,
we have lim inft→∞X(t) = 0 as observed by Bansaye et al. [4, Corollary 2]. Then the
stopping time σ = inf{t > 0 : ξ(t) < x/2} is a.s. finite. By Theorem 4.3 and the strong
Markov property, we have

p(x) = Px[PX(σ)(τ0 =∞)] = Px[Px/2(τ0 =∞)] = p(x/2),

which yields a contradiction. Then we must have p(x) = Px(τ0 =∞) = 0. 2

Theorem 4.5 Under Grey’s condition, the transition semigroup (Qt)t≥0 defined by (3.7)
has the strong Feller property.

Proof. We here need to introduce a simple reformulation of the stochastic equation (3.1).
By El Karoui and Méléard [8, Theorem III.6], on an extension of the original probability
space we can define an (Ft)-Gaussian white noise W (ds, du) on (0,∞)2 with intensity
dsdu so that ∫ t

0

√
X(s)dW (s) =

∫ t

0

∫ X(s)

0

W (ds, du).

Then we may rewrite (3.1) into

X(t) = X(0) +

∫ t

0

X(s−)dL(s) +
√

2c

∫ t

0

∫ X(s)

0

W (ds, du)

+

∫ t

0

∫ ∞
0

∫ X(s−)

0

zM̃(ds, dz, du). (4.7)

(Recall the condition b = 0 introduced at the beginning of this section.) By a modification
of the proof of Theorem 3.1, one can see for each x ≥ 0 there is a unique positive strong
solution {Yt(x) : t ≥ 0} to (4.7) with Y0(x) = x. Clearly, this solution is also a Markov
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process with transition semigroup (Qt)t≥0. As in the proof of [7, Theorem 3.2], one
can show that, for y ≥ x ≥ 0 and t ≥ 0 we have a.s. Yt(y) ≥ Yt(x) and the process
{Yt(y)− Yt(x) : t ≥ 0} is identically distributed with the solution {X(t) : t ≥ 0} to (4.7)
with X(0) = y− x. Let T (x, y) = inf{t ≥ 0 : Yt(x) = Yt(y)} = inf{t ≥ 0 : Yt(y)− Yt(x) =
0}. Then Yt(x) = Yt(y) a.s. for t ≥ T (x, y). Let f be a bounded Borel function on [0,∞).
By (4.2), for any t > 0 we have

|Qtf(x)−Qtf(y)| ≤ P[|f(Yt(x))− f(Yt(y))|1{T (x,y)>t}]

≤ 2‖f‖P(T (x, y) > t) = 2‖f‖P[1− e−(y−x)v̄ξ0,t ],

where ‖ ·‖ denotes the supremum norm. The right-hand side tends to zero as |x−y| → 0.
Then Qtf is a continuous function on [0,∞). That proves the strong Feller property of
(Qt)t≥0. 2

In view of the result of Corollary 4.4, one may naturally expect a characterization of
the decay rate of the survival probability Px(τ0 > t) as t → ∞. This problem for the
CBRE-diffusion was studied by Böinghoff and Hutzenthaler [5]. More recently, Bansaye et
al. [4] studied the problem for a CBRE-process with stable branching and finite variation
Lévy environment. Palau and Pardo [27] studied the same problem for a CBRE-process
with stable branching in a random environment given by a Brownian motion with drift.
The decay rate of the survival probability for a CBRE-process with stable branching and
a general Lévy environment was studied in Li and Xu [26]. The strong Feller property of
classical CBI-processes was proved in Li and Ma [24].

5 CBIRE-processes

In this section, we discuss the CBIRE-process defined by (1.3). Let h ≥ 0 be a constant
and (1 ∧ u)n(du) a finite measure on (0,∞). Suppose that (Ω,F ,Ft,P) is a filtered
probability space satisfying the usual hypotheses. Let the processes {W (t) : t ≥ 0} and
{L(t) : t ≥ 0} and the Poisson random measure M(ds, dz, du) be as before. In addition,
let {η(t) : t ≥ 0} be an increasing (Ft)-Lévy process with

P(e−λη(t)) = e−tψ(λ), λ ≥ 0, (5.1)

where

ψ(λ) = hλ+

∫ ∞
0

(1− e−λu)n(du). (5.2)

We assume that all those noises are independent of each other. The construction and
basic properties of the CBIRE-process are provided by the following results. We here
omit their proofs since they follow by modifications of the arguments in Sections 3 and 4.

Theorem 5.1 For any positive F0-measurable random variable Y (0), there is a unique
positive strong solution {Y (t) : t ≥ 0} to (1.3).
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Proposition 5.2 Let {Y (t) : t ≥ 0} be defined by (1.3) and Z(t) = Y (t) exp{−ξ(t)} for
t ≥ 0. Then we have

Z(t) = Y (0)− b
∫ t

0

e−ξ(s)Y (s)ds+

∫ t

0

e−ξ(s)
√

2cY (s)dW (s)

+

∫ t

0

∫ ∞
0

∫ Y (s−)

0

ze−ξ(s−)M̃(ds, dz, du) +

∫ t

0

e−ξ(s)dη(s).

Theorem 5.3 Let Pξ be the quenched law given {ξ(t) : t ≥ 0}. Then for any λ ≥ 0 and
t ≥ r ≥ 0, we have

Pξ[e−λY (t)|Fr] = exp

{
− Y (r)vξr,t(λ)−

∫ t

r

ψ(vξs,t(λ))ds

}
.

Theorem 5.4 The Markov process {Y (t) : t ≥ 0} defined by (1.3) has Feller transition
semigroup (Q̄t)t≥0 defined by∫

[0,∞)

e−λyQ̄t(x, dy) = P

[
exp

{
− xvξ0,t(λ)−

∫ t

0

ψ(vξs,t(λ))ds

}]
. (5.3)

Theorem 5.5 Under Grey’s condition, the transition semigroup (Q̄t)t≥0 defined by (5.3)
has the strong Feller property.

The transition semigroup (Q̄t)t≥0 given by (5.3) generalizes the one defined by (3.10).
We can give another useful characterization of this semigroup. For this purpose, let us
make an extension of the probability space (Ω,F ,P) so that an independent copy {L′(t) :
t ≥ 0} of the Lévy process {L(t) : t ≥ 0} is defined. By the Lévy-Itô decomposition we
have

L′(t) = βt+ σB′(t) +

∫ t

0

∫
[−1,1]

(ez − 1)Ñ ′(ds, dz) +

∫ t

0

∫
[−1,1]c

(ez − 1)N ′(ds, dz),

where {B′(t) : t ≥ 0} is a Brownian motion and N ′(ds, dz) is a Poisson random measure
on (0,∞)× R with intensity dsν(dz). Let {ξ′(t) : t ≥ 0} be the Lévy process defined by

ξ′(t) = at+ σB′(t) +

∫ t

0

∫
[−1,1]

zÑ ′(ds, dz) +

∫ t

0

∫
[−1,1]c

zN ′(ds, dz).

Set L(t) = −L′(−t−) and ξ(t) = −ξ′(−t−) for t < 0. Then {L(t) : −∞ < t < ∞} and
{ξ(t) : −∞ < t < ∞} are time homogeneous Lévy processes with L(0) = ξ(0) = 0. We
can extend (2.12) easily to r ≤ t ∈ R. In particular, for any λ ≥ 0 there is a pathwise
unique positive solution r 7→ vξr,0(λ) to

vξr,0(λ) = λ−
∫ 0

r

φ(vξs,0(λ))ds+

∫ 0

r

vξs,0(λ)L(
←−
ds), r ≤ 0.
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The result of Theorem 2.4 can be extended to r ≤ t ∈ R. Then r 7→ vξr,0(λ) is also the
pathwise unique positive solution to

vξr,0(λ) = e−ξ(r)λ−
∫ 0

r

eξ(s)−ξ(r)φ(vξs,0(λ))ds, r ≤ 0. (5.4)

It follows that r 7→ uξr,0(λ) := eξ(r)vξr,0(λ) is the pathwise unique positive solution to

uξr,0(λ) = λ−
∫ 0

r

eξ(s)φ(e−ξ(s)uξs,t(λ))ds, r ≤ 0. (5.5)

By the time homogeneity of the Lévy process {ξ(t) : −∞ < t <∞}, we have∫
[0,∞)

e−λyQ̄t(x, dy) = P

[
exp

{
− xvξ−t,0(λ)−

∫ 0

−t
ψ(vξs,0(λ))ds

}]
. (5.6)

In the subcricital case, a necessary and sufficient condition for the ergodicity of the tran-
sition semigroup (Q̄t)t≥0 defined by (5.3) is provided by the following theorem:

Theorem 5.6 Suppose that a1 := P[ξ(1)] < b. Then there is a probability measure µ on
[0,∞) so that Q̄t(x, ·)→ µ weakly as t→∞ for every x ≥ 0 if and only if∫ ∞

1

log(u)n(du) <∞.

Under the above condition, we have∫
[0,∞)

e−λyµ(dy) = P

[
exp

{
−
∫ 0

−∞
ψ(vξs,0(λ))ds

}]
. (5.7)

Proof. Under the assumption, we may adjust the parameters in (1.3) so that b > 0 > a1.
Then uξ−t,0(λ) ≤ e−btλ by Gronwall’s inequality, and hence uξ−t,0(λ) → 0 as t → ∞. In
view of (5.3), by applying [23, Theorem 1.20] and dominated convergence we conclude
that Q̄t(x, ·) converges to a probability measure µ as t → ∞ for every x ≥ 0 if and only
if a.s.

f(ξ, λ) :=

∫ 0

−∞
ψ(vξs,0(λ))ds =

∫ 0

−∞
ψ(e−ξ(s)uξs,0(λ))ds <∞, λ ≥ 0.

Clearly, µ is given by (5.7) if the above condition is satisfied. For any z > 0, define
τλ(z) = sup{r < 0 : uξr,0(λ) ≤ z}. By (5.5) and a change of the variable, we have

f(ξ, λ) =

∫ 0

−∞

ψ(e−ξ(s)uξs,0(λ))

φ(e−ξ(s)uξs,0(λ))
e−ξ(s)duξs,0(λ) =

∫ λ

0

ψ(e−ξ(τλ(z))z)

φ(e−ξ(τλ(z))z)
e−ξ(τλ(z))dz.
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Since ξ(t) → ∞ as t → −∞, we have a.s. M := sups≤0 e
−ξ(s) < ∞. It is simple to see

that φ(z) = bz + o(z) as z → 0. Then f(ξ, λ) <∞ if and only if∫ λ

0

dz

∫ ∞
0

1− exp{−e−ξ(τλ(z))zu}
z

n(du)

=

∫ ∞
0

n(du)

∫ λu

0

1− exp{−e−ξ(τλ(y/u))y}
y

dy <∞. (5.8)

For all u > 0 we have 1− exp{−e−ξ(τλ(y/u))y} ≤My. It follows that∫
(0,1]

n(du)

∫ λu

0

1− exp{−e−ξ(τλ(y/u))y}
y

dy ≤Mλ

∫
(0,1]

un(du) <∞.

For u > 1 we have 1− exp{−e−ξ(τλ(y/u))y} → 1 as y →∞. Then (5.8) holds if and only if∫
(1,∞)

n(du)

∫ λu

0

1

y
dy =

∫
(1,∞)

log(λu)n(du) <∞.

That implies the desired result. 2

Corollary 5.7 Suppose that a1 := P[ξ(1)] < b. Let (Q̃t)t≥0 be the transition semigroup
defined by (3.10). Then there is a probability measure µ on [0,∞) so that Q̃t(x, ·) → µ
weakly as t→∞ for every x ≥ 0 if and only if∫ ∞

1

u log(u)m(du) <∞.

Under the above condition, we have∫
[0,∞)

e−λyµ(dy) = P

[
exp

{
−
∫ 0

−∞
φ′0(vξs,0(λ))ds

}]
,

where φ′0(z) = φ′(z)− b.

Proof. One can see that (3.10) is the special form of (5.3) with ψ = φ′0. Then we get the
results by Theorem 5.6. 2
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