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Distributions of jumps in a continuous-state
branching process with immigration !

Xin He and Zenghu Li 2

Abstract. We study the distributional properties of jumps in a continuous-state
branching process with immigration. In particular, a representation is given for
the distribution of the first jump time of the process with jump size in a given
Borel set. From this result we derive a characterization for the distribution of the
local maximal jump of the process. The equivalence of this distribution and the
total Lévy measure is then studied. For the continuous-state branching process
without immigration, we also study similar problems for its global maximal
jump.
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1 Introduction

A continuous-state branching process (CB-process) is a nonnegative Markov process describing
the random evolution of a population in an isolated environment. The branching property
means that, if X = (X; : ¢ > 0) and Y = (Y; : t > 0) are two independent CB-processes
with the same transition semigroup, then X +Y = (X; +Y; : t > 0) is also a CB-process
with that transition semigroup. A continuous-state branching process with immigration (CBI-
process) is a generalization of the CB-process, which considers the possibility of input of
immigrants during the evolution of the population. The transition semigroup of the CBI-
process is uniquely determined by its branching mechanism ® and immigration mechanism
W, both are functions on the nonnegative half line. The reader may refer to Kawazu and
Watanabe (1971), Lamperti (1967a, 1967b) for early works on CB- and CBIl-processes as
biological models. See also Duquesne and Le Gall (2002), Kyprianou (2014) and Li (2011) for
up to date treatments of those processes. We also mention that the CBI-process has been used
widely in mathematical finance as models of interest rate, asset price and so on. A special
form of the process is known in the financial world as the Cox—Ingersoll-Ross model; see, e.g.,
Brigo and Mercurio (2006) and Lamberton and Lapeyre (1996).

The CBI-process is a Feller process, so it has a cadlag realization X = (X; : ¢t > 0). Let
AXg = X; — X5 (> 0) denote the size of the jump of X at time s > 0. In this work, we
are interested in distributional properties of jumps of the CBI-process. In particular, we shall
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give a representation of the distribution of the first occurrence time 74 of its jump with jump
size in some given Borel set A C (0,00). From this result we derive a characterization for the
distribution of the local maximal jump maxg<s<¢ AX, for any ¢ > 0. Under suitable assump-
tions, we prove this distribution and the total Lévy measure of the process are equivalent. For
the CB-process, we also study similar problems for the global maximal jump supg s AXs.
The tool of stochastic equations of the CBI-process established in Dawson and Li (2006) and
Fu and Li (2010) plays a key role in the proof of our main result. The results obtained in
this work are of clear interests in applications of the CB- and CBI-processes as biological and
financial models.

The paper is organized as follows. In Section 2, some basic facts on CB- and CBI-processes
are reviewed. In Section 3, we give the characterization of the distribution of the jump time
74 for A C (0,00). In Section 4, we establish a number of distributional properties of the local
and global maximal jumps of the process.

2 CB- and CBI-processes

In this section, we review several basic facts on CB- and CBI-processes for the convenience of

the reader. Let us fix a branching mechanism ®, which is a function on R4 := [0, 00) with the
representation
B(z2) = az + 22 + / mo(df) (e * — 1 + 20), z >0, (2.1)
(0,00)

where oo € R and 8 € R, are two constants, and 7 is a o-finite measure on (0, c0) satisfying
/ o(d0)(0 A 62) < oo (2.2)
(0,00)

A CB-process with branching mechanism & is a nonnegative Markov process with transition
semigroup (FP;)¢>o defined by

/ e NP (x, dy) = et P), A>0, (2.3)
Ry
where ¢t — v;(A) is the unique nonnegative solution of
t
ve(A) = A — / O (vs(A))ds, t>0, (2.4)
0
or, in the equivalent differential form,
d
@vt(A) = —®(ve(N)), vo(A) = A (2.5)

Under the integrability condition (2.2), the CB-process started from any deterministic initial
value has finite expectation. This in particular allows us to compensate large jumps of the
process generated by the branching mechanism; see the stochastic integral equation (3.1).

We say the CB-process is subcritical if a > 0, critical if a = 0, and supercritical if o < 0.
In view of (2.1), we have

d'(2) = a+ 2Bz + /OOO To(d0)O(1 — e=*%)
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which is increasing in z > 0. Then ® is a convex function. Consequently, the limit ®(c0) :=
lim,_,00 ®(2) exists in [—00,0] U {oo}. The limit ®'(c0) := lim, o ®’(2) exists in (—oo, x0].
In fact, we have

P'(00) =a+208 00+ / Omo(db)
0
with 0 - 0o = 0 by convention. Observe that ®(c0) € [—o0,0] if and only if ®'(c0) € (—o0, 0],
and ®(00) = oo if and only if ®'(c0) € (0,00]. For A > 0 let
7L\ =inf{z > 0: ®(2) > \}.

Of course, we have ®~1(\) = oo for all A > 0 if ®(00) € [~00,0]. If ®(c0) = oo, then
®=1:]0,00) — [®71(0),00) is the inverse of the restriction of ® to [®@71(0), 00).

The CBI-process generalizes the CB-process given above. Let W be an immigration mech-
anism, which is a function on R with representation
U(z) =~z + / m1(df)(1 — e’za), z >0, (2.6)
(0,00)

where v € Ry and 7; is a o-finite measure on (0, 00) satisfying

/ 71(d0)(1 A 0) < oo
(0,00)

A nonnegative Markov process is called a CBI-process with branching mechanism ® and im-
migration mechanism W if it has transition semigroup (Q¢):>0 given by

/IR<+ e NQu(z, dy) = exp{ — v (X)) — /Ot \Il(vs()\))ds}, A > 0. (2.7)

This reduces to a CB-process when ¥ = 0. The reader may refer to Kawazu and Watanabe
(1971) for discussion of CB- and CBI-processes with more general branching and immigration
mechanisms.

From (2.7) we see that (Q¢)¢>0 is a Feller semigroup, so the CBI-process has a Hunt process
realization; see, e.g., Chung (1982, p.75). Let X = (Q,.7,.%;, X;,P,) be such a realization.
Then the sample path {X; : ¢ > 0} is P,-a.s. cadag for every > 0. Let E, denote the
expectation with respect to the probability measure P,.

Proposition 2.1 Fort >0, x > 0 and A > 0 we have

E, [exp{ . A/Ot Xsds}} - exp{ ~ aup(\) — /Ot \Il(us(/\))ds}, (2.8)

where t — ug(\) is the unique nonnegative solution of

t
up(N) = A — / Bus(\)ds, >0, (2.9)
0
or, in the equivalent differential form,
d
%ut()\) =X — d(u(N)), up(A) = 0. (2.10)



Proof. As special cases of Theorem 9.16 in Li (2011), we have (2.8) with ¢ — us(\) being the
unique nonnegative solution of (2.9), which is equivalent to its differential form (2.10). O

Proposition 2.2 For A > 0, the mapping t — u(\) is strictly increasing and limy_,oc ur(A) =
d1(N).

Proof. Consider a Hunt realization X of the CB-process with branching mechanism ¢. By
Proposition 2.1, we have

E, [exp{ - )\/Ot XsdsH = ¢mou(N), (2.11)

As observed in the proof of Proposition 3.1 in Li (2011), we have P,(X; > 0) > 0 for z > 0
and t > 0. By (2.11) we see that ¢ — wu;(\) is strictly increasing, so (0/9t)ui(\) > 0 for all
A > 0. Let uoo(N) = limy—soo ug(N) € (0,00]. In the case ®(c0) € [—00,0], we have ®(z) <0
for all z > 0. Then (9/0t)us(A) > A and us(A) = oo. In the case ®(c0) = oo, we note
®(ur(N)) = A — (9/0t)u(A\) < A, and hence u;(A) < ®@1()), implying us(A) < @7H(N) < oco.
It follows that

0= Tim Zu () = A— lim ®(us(A) = A — B(us(N).

t—o0 Ot t—00

Then we have 1o () = ®7H(N). O

Corollary 2.3 Let X = (Q,.%, %, X, Ps) be a Hunt realization of the CB-process with
branching mechanism ®. Then for x > 0 and A > 0, we have

E, [exp { “A /OOO Xsds}] — exp{—a® (V). (2.12)

Note that (2.12) can also be derived from the theory of Lévy processes; see, e.g., Corol-
lary 12.10 in Kyprianou (2014).

3 Distributional properties of jump times

Let ® and ¥ be the branching and immigration mechanisms with representations (2.1) and
(2.6), respectively. Suppose that on a suitable filtered probability space (Q2,¥4,%;, P) satisfying
the usual hypotheses, we have a standard (%;)-Brownian motion (B; : t > 0), a (%;)-Poisson
point process (p; : t > 0) on (0, 00)? with characteristic measure 7(dz)dy, and a (%;)-Poisson
point process (¢ : t > 0) on (0, 00) with characteristic measure 1 (dz). Suppose that (By : t >
0), (pt : t >0), and (g : t > 0) are independent. Let Ny(ds, dz, dy) denote the Poisson random
measure on (0,00)% associated with (p; : t > 0), and Ny(ds, dz, dy) the compensated measure
of No(ds,dz,dy). Let Ni(ds,dz) denote the Poisson random measure on (0,00)? associated
with (p; : ¢ > 0). By the results of Dawson and Li (2006) and Fu and Li (2010), for any
%-measurable nonnegative random variable X there is a unique nonnegative strong solution
X = (X¢ : t > 0) of the stochastic equation

t
X, = X —|—/ \/28XdBg +/ / / zNo(ds, dz, dy)
0 (0,4 J(0,00) J(0,X5_]
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t
+/ (v — aXS)ds+/ / zNi(ds,dz). (3.1)
0 (0,2] /(0,00)

It was also proved in Dawson and Li (2006) and Fu and Li (2010) that X is a CBI-process
with branching mechanism ® and immigration mechanism ¥. For z > 0 let P, denote the
conditional law of X given Xy = x.

In the sequel, we give some results on the distributional properties of the first jump time
of the CBI-process with jump size in some given sets. To present the results, let us introduce
some notation. For any Borel set A C (0, 00) with mp(A4) + m1(A4) < oo, we define

Wa(z) = W(z) — /Am(de)u — e ) (3.2)
and
Ba(2) = B(z) + /A ro(dO)(1 — =), (3.3)

Then ® 4 is also a branching mechanism and ¥4 an immigration mechanism. For example, we
have

Dy(2) = anz+ 22 + / mo(d0)(e=* — 1+ 26), (3.4)
(0,00)\ A

where

OZA:Oé+/97T0(d0).
A

Proposition 3.1 Suppose that A C (0,00) is a Borel set with mo(A) + m1(A) < oco. For
t >0 let J(A) := Card{s € (0,t] : AXs; = Xs — Xs— € A}. Then for any x > 0 we have
P,(Ji(A) < 00) =1.

Proof. Let N§' and N§* be the restrictions of Ny to (0,00) x A x (0, 00) and (0, 00) x ((0, 00) \

A) x (0,00), respectively. Similarly, let Ni* and N{* be the restrictions of N to (0,00) x A
and (0,00) x ((0,00) \ A), respectively. Then we can rewrite (3.1) into

X; = Xo-i-/ \V2BXdBs + / / zNéL‘C(ds,dz,dy)
(0,t] J(0,00)\A J(0,X5_

t
/( —asXs) ds+/ / le (ds dz)
0,00)\
/ // ZN§ (ds, dz, dy) + / /le (ds,dz). (3.5)
(0,4] (0,X5_] 0,4]

Note that the last two terms on the right hand side of the above equation never jump simul-
taneously, so we have

Ji(A) —/ // Mds, dz, dy) + / /N{‘(ds,dz).
0,4 JAJ(0,X,-] (0] /A

For any £ > 1 let

Ji(k, A) / / N ds, dz, dy) + / /Nl (ds,dz).
0,t] (0,k] (0,4]
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It follows that
Ex[Jt(k, A)] = ktTro(A) + tﬂ'l(A) < 00,

and so Py (Jy(k, A) < 0o) = 1. Since s — X; is cadlag, we have supy.;<; Xs < oo. Note also
that Ji(A) < Ji(k, A) on the event sup;,<; Xs < k. It follows that

IN

iPm({Jt(A) =00} N { sup X, < k})
k=1

0<s<t

S e (10—t 4= 1 s 5, <)

0<s<t

b
Il
—

P, (Ji(k, A) = c0) = 0.

el
I
—

Then P, (J;(A) < 00) = 1. O

Theorem 3.2 Suppose that A C (0,00) is a Borel set with mo(A) + m(A) < co. Let 74 =
min{s > 0 : AX; = X, — X, € A}, which is well-defined by the result of Proposition 3.1.
Then for any x > 0 and t > 0 we have

t
P,(ta>t) = exp{ —tm(A) — muf(ﬂ'o(A)) — / \IIA(uf(wo(A)))ds}, (3.6)
0
where uf()\) s the unique nonnegative solution of
d
U (V) = A= au V), ug(h) =0. (3.7)

Proof. We shall use the notation introduced in the proof of Proposition 3.1. Let (X/ : ¢t > 0)
be the solution of

t
XA = X+ 26XAdB, + / / / 2N (ds, dz, dy)
! 0 F 04 JoconaJoxa) "
t

+/ (v—ozAXf)ds—k/ / =N{(ds, dz). (3.8)
0 (0,¢] 4 (0,00)\A

Then (X;“ :t > 0) is a CBI-process with branching mechanism ® 4 and immigration mechanism
W 4. By Theorem 2.2 in Dawson and Li (2012) we have X/ < X; for all ¢ > 0. (Intuitively,
we can obtain (X : ¢t > 0) by removing from (X; : ¢t > 0) all masses produced by jumps of
sizes in the set A.) We claim that, up to a null set,

{ra >t} = {/ // N(;“(ds,dz,dyH/ /N{‘(ds,dz) :o}. (3.9)
(0] JAJ(0,X2 ] (0,4 A

Indeed, since X, = X;f‘ for 0 < s < 74, we have

{Ta >t} ={ra>1t}nN {/ / / N§ (ds, dz, dy)
(0,t) JA J(0,Xs-]



+/ /Nf‘(ds,dz)zo}

(0,4 JA

C {/ // Ng‘(ds,dz,dy)Jr/ /N{‘(ds,dz)zo}.
(0,8 JAJ(0,XA ) (0,4] JA

Since AX;, € A when 74 <t, we have

{ra <t} C {ra < t}ﬁ{/ // N ds, dz, dy)
{ra} JA J(0,X,-]
—i—/ /N{q(ds,dz) >O}
{ra}JA
= {m gt}m{/ // Ng (ds, dz, dy)
{ra} JAJ(O.X21]
+/ /N{‘(ds,dz)>o}
{ra} /A
C {/ // Ng‘(ds,dz,dy)+/ /NlA(ds,dz) >0}.
(0,4] JAJ(0,XA ] (0] JA

Then (3.9) holds. Since (X! : ¢ > 0) is a strong solution of (3.8), it is progressively measurable
with respect to the filtration generated by B, N(f‘c and Nf‘c, which is independent of Né4 and
N{*. Then we have

P.(1a > t) = exp{—tm (A)}E, [exp{ — 1o(A) /O t des}} (3.10)

Finally, we get (3.6) by Proposition 2.1. O

Corollary 3.3 (1) If A and B are Borel subsets of (0,00) such that A C B and my(B) <
o0, then ui(mo(A)) < uP(mo(B)) for t > 0. (2) If A C (0,00) is a Borel set satisfying
m0(A) + 1 (A) =0, then Py(14 = 00) =1 for x > 0. (3) If ¥ # 0 and A C (0,00) is a Borel
set satisfying mo(A) + m1(A) > 0, then Py(t4 < 00) =1 for z > 0.

Proof. (1) By applying Theorem 3.2 to the special case ¥ = 0 we have
e—muf(ﬂo(z‘l)) — Px(TA > t) > Px(TB > t) — e—zutB(ﬂo(B))‘

Taking any > 0 we get the result. (2) By Theorem 3.2 we have P (74 > t) = 1 for every
t > 0. Then Py(74 = 00) = limy_00 Py(74 > t) = 1. (3) By choosing a smaller set if it is
necessary, we may assume 0 < mo(A4) +m1(A) < oo. If w1 (A) > 0, then tm(A) — 0o as t — oo.
In the case 71(A) = 0, we must have mo(A) > 0, so s — uZ(m(A)) is strictly increasing by
Proposition 2.2. Since ¥ # 0, one can see

lim t U4 (ul (m(A)))ds = co.

t—o00 0

In view of (3.6), we have P, (74 = 00) = limy_,oo P2 (74 > t) = 0 in both cases. O

Corollary 3.4 Suppose that W = 0. Then for any x > 0 and Borel set A C (0,00) satisfying
0 < mp(A) < o0, we have

P,(14 =00) = exp{—x@Zl(ﬂo(A))}.



Proof. By applying Theorem 3.2 to the special case ¥ = 0, we have
P,(14 = 00) = lim P,(74 > t) = lim exp{—zui (mo(A))}.
t—o0 t—o0

Then the result follows by Proposition 2.2. O

4 Local and global maximal jumps

Let X = (2, %, %, X;,P,) be a Hunt realization of the CBI-process with branching mecha-
nism ¢ and immigration mechanism W given by (2.1) and (2.6), respectively. In this section,
we shall give some characterizations of the local and global maximal jumps of the process.

Theorem 4.1 Suppose that r > 0 and mo(r,00) + m1(r,00) < oco. Then for any x > 0 and
t >0 we have

t
Pm( m(aox} AX; < r) = exp{ — tmi(r,00) — zuy (mo(r, 00)) — / V(. o0) (g (o (7, oo)))ds},
se(0,t 0

where uy () is the unique nonnegative solution of

Do) = A= B N), () =0 (11)

Proof. Since P (maxge(og AXt < 7) = Pu(7(00) > t), the result follows by Theorem 3.2. [

Corollary 4.2 Suppose that ¥ # 0. Then P, (supsc (g o0) AXs = sup(mo + m1)) = 1 for any
x >0, where sup(my + m1) = supsupp(mo + 71).

Proof. Since (mo + m1)(sup(mo + m1),00) = 0, for any ¢ > 0 we have Py(sup,cqAXs <
sup(mg + 1)) = 1 by Theorem 4.1. Then

Pz< sup AX < sup(my + 7T1)) = lim Pm< sup AX < sup(mp + 7r1)> =1.
s€(0,00) t—00 s€(0,¢]

For any z < sup(m + m1) we have (my + m1)[2,sup(mo + 71)] > 0. By Corollary 3.3 (3),

Pz( s(up )AXS € [z,sup(m + 7T1)]) > P (72 sup(motm)) < 00) = 1.
s€(0,00

Since z < sup(my + m1) was arbitrary, it follows that P, (sup AX = sup(mg + m1)) = 1. O

Corollary 4.3 Suppose that ¥ = 0. Then for any x > 0 and r > 0 satisfying 0 < mo(r,c0) <
oo we have

Px( sup AX, < r) = exp{—x@&loo) (mo(r, 00))}.
s€(0,00) ’

Proof. This follows by Theorem 4.1 and Proposition 2.2. O



Corollary 4.4 Suppose that ¥ = 0 and let sup(mp) = supsupp(mg). Then for any x > 0 we
have

P, ( sup AX. = sup(mo) ) = 1 = exp{ 2@ 7L . 1 (ro({sup(mo)}))}
se(0,00

with @9y = (o) = © and m({0}) = mo({oc}) = 0 by convention.

Proof. By the proof of Corollary 4.2 we have P (sup,c(o,o0) AXs < sup(mo)) = 1. For any
z < sup(mp) we have mo(z,sup(mp)] > 0. By Corollary 4.3 it follows that

Pu( s AX, € (2 sup()]) = 1 {8y (o= s00))
s€(0,00
Then we get the desired result by letting z — sup(m). O

Corollary 4.5 Suppose that @ > 0 and ¥V = 0. If the measure my has unbounded support,
then for any x > 0, we have, as r — 00,

P$< sup AX > 7") =1- exp{—a:cb(_rloo) (mo(r,00))} ~ E7r0(r, 00).
s€(0,00) ’ Q

Proof. By (3.4) we see by dominated convergence that (0/02)®(; 00)(0) = a(r ). It follows
that (8/62)@’&100)(0) = 1/0(rc)- Then, as 7 — oo,

(I)(;,loo) (WO(T’ OO)) ~ 7T0(T‘, OO)/a(r,oo) ~ 7TO(T’ OO)/O‘a
and the desired result follows from Corollary 4.3. (]

We remark that a special form of Corollary 4.3 has been obtained by Bertoin (2011). The
next theorem establishes the equivalence of the distribution of the local maximal jump of
the CBI-process and the total Lévy measure my + m1. In view of Theorem 4.1, we may have
P, (max,c(p AXs = 0) > 0, so we only discuss the absolute continuity on the set (0, c0).

Theorem 4.6 Suppose that x +~v > 0. Then for any t > 0, the measure mg + m and the
distribution P,(maxse (o AXs € -)|(0,00) are equivalent.

Proof. Recall that ¥ and W4 are defined by (2.6) and (3.2), respectively. If A C (0,00) is a
Borel set with m9(A) + m1(A) = 0, by Theorem 3.2 we have

Px( max AX, € A) <P (ra<t)=1-Py(rs >1t) =0.
s€(0,t

Then P (max,c AX € -)|(0,0) is absolutely continuous with respect to mo + 71. To prove
the absolute continuity of o + 1 with respect to Py (max,e(gqsup AX € -)|(0,0), We consider
a Borel set A C (0,00) and a constant r > 0. Since

{srél(aoﬁ} AX, € A} > {srg(ao?i} AXs e AN]r, oo)}

D {Tanfroc) < N {Troopa >t}
= {T[r,oo) < th\ {T[r,oo)\A <t}

9



we have

> <t)— <
P, ( SIél(aoﬁ} AX € A) = Px(T[r,oo) = t) Px(T[r,oo)\A — t)

Suppose that Py (supseoy AX € A) = 0. Then Py(7) ) < 1) = Pu(Tp00pa < 1), so the
result of Theorem 3.2 implies

t
try[r, 00) + mul[f’oo) (mo[r,00)) + / \IJ[TYOO)(ULT’OO) (mo[r,00)))ds
0
= tmi(fr,00) \ A) + x> (o [, 00) \ 4))
[ Wpoonaluly M (o[, )\ 4)))ds: (4.2)
0
By Corollary 3.3 (1) we have

u > (molr, 00)) 2w (o (r,00) \ 4)),  t=0. (4:3)

Then (4.2) implies

t
1 [r, 00) + wul"* (mo[r, 00)) + / W)y ooy (ul™) (o[, 50)) )l
0
t
< tmi([r,00) \ A) + zul™> (mo[r, 00)) + / Wiy s (7 (o[, 00)) ) s
0

By reorganizing the terms in the above inequality we obtain

t
1 ([, 00) N A) < / ds / (1 — e (molree))) 1 (46,
0 [r,o0)NA

It follows that 7 ([r,00) N A) = 0. Since r > 0 was arbitrary in the above, we have proved
m1(A) = 0. Using (4.2) and (4.3) we have

t
a:u,[f’oo)(wo[r, 00)) + ’y/ ug’”*’o) (mo[r, 00))ds
0
t
< 2w (mo([r, 00) \ A)) + / ul oM (g ([, 00) \ A))ds,
0
and so using (4.3) again we get

U1[tr700) (molr, 00)) = UET’OO)\A(T(O([T7 00) \ A)) =: a(r, ).

It follows that

0ul"™ (mo[r, o0)) _ Ay (o ([r, 00) \ A))
o ot '

Then we can use (3.7) to see

mo([r, 00)) = D0y (a(r; 1)) = mo([r; 00) \ A) = oo alalr, 1)),

and hence
q)[r,oo) (a(r7 t)) - (I)[r,oo)\A(G’(T’ t)) + 7T()([T', OO) N A)
But, by (3.3), we should have

Dp o) (a(r, 1)) = P oo alalr,t)) + /[TOO)M mo(d) (1 — e~y
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It follows that mo([r,00) N A) = 0, implying mo(A) = 0. That completes the proof. O

The conclusion of Theorem 4.6 is not necessarily true in the case x = v = 0. As a
counterexample, consider the case where Xy = 0, mg = ¢ and 7w = d2. In this case, we have
T2y <t when 7y1y < ¢, for otherwise X = 0 for all s € [0,¢]. It follows that

PO(;&% AX, = 1) —0.

Then 7o is not absolutely continuous with respect to Po(max,ec 4 AXs € -).

For critical and subcritical branching CB-processes without immigration, we may also
discuss the absolute continuity of the distribution of its global maximal jump. Such a result
is presented in the following:

Theorem 4.7 Suppose that o > 0 and ¥V = 0. Then for any x > 0 the Lévy measure my and
the distribution P;(Supse(o,00) AXs € )|(0,00) are equivalent.

Proof. Since ¥ = 0 and o > 0, we have X; — 0 almost surely as t = co. If A C (0,00) is a
Borel set so that mg(A) = 0, by Corollary 3.3 (2) we have

Pm( sup AX e A) <Pu(14a<00)=1—-Py(14a =00) =0.
s€(0,00)

Then P (sup,e(o,00) AXs € *)|(0,00) 18 absolutely continuous with respect to mo. Now suppose
that A C (0,00) is a Borel set with m9(A) > 0. For any r > 0, one can see as in the proof of
Theorem 4.6 that

Pz( sup AX, € A) > Po(Tj00) < 00) = Pu( 7004 < 00).
s€(0,00)
If Py (Sup,e(o,00) AXs € A) = 0, we have Py (7). o) < 00) = Py(7)y 00\ 4 < 00), s0 Corollary 3.4
implies
01 (rolr.o0)) = @1y (o[ 00\ A)) = a(r).
It follows that

Py o0y (a(r)) = mo[r,00) = mo([r, 00) \ A) + m(A N [r,00))
= (I)[r,oo)\A © (I)[;,loo)\A(TrO([T? OO) \A)) + 71'O(A N [T, OO))
= P onala(r)) + mo(AN[r,00)).

Then, as in the proof of Theorem 4.6, we must have my(A N [r,00)) = 0. This contradicts
mo(A) > 0 since 7 > 0 was arbitrary. It then follows that Py (sup,e(g o) AXs € A) > 0. O

In the above theorem, we only consider the critical and subcritical cases. The supercritical
case is more subtle since in that case we may have sup,e () AXs = sup(m) with strictly
positive probability by Corollary 4.4. We leave the consideration of the details to the interested
reader.
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