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Distributions of jumps in a continuous-state
branching process with immigration 1
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Abstract. We study the distributional properties of jumps in a continuous-state
branching process with immigration. In particular, a representation is given for
the distribution of the first jump time of the process with jump size in a given
Borel set. From this result we derive a characterization for the distribution of the
local maximal jump of the process. The equivalence of this distribution and the
total Lévy measure is then studied. For the continuous-state branching process
without immigration, we also study similar problems for its global maximal
jump.
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1 Introduction

A continuous-state branching process (CB-process) is a nonnegative Markov process describing
the random evolution of a population in an isolated environment. The branching property
means that, if X = (Xt : t ≥ 0) and Y = (Yt : t ≥ 0) are two independent CB-processes
with the same transition semigroup, then X + Y = (Xt + Yt : t ≥ 0) is also a CB-process
with that transition semigroup. A continuous-state branching process with immigration (CBI-
process) is a generalization of the CB-process, which considers the possibility of input of
immigrants during the evolution of the population. The transition semigroup of the CBI-
process is uniquely determined by its branching mechanism Φ and immigration mechanism
Ψ, both are functions on the nonnegative half line. The reader may refer to Kawazu and
Watanabe (1971), Lamperti (1967a, 1967b) for early works on CB- and CBI-processes as
biological models. See also Duquesne and Le Gall (2002), Kyprianou (2014) and Li (2011) for
up to date treatments of those processes. We also mention that the CBI-process has been used
widely in mathematical finance as models of interest rate, asset price and so on. A special
form of the process is known in the financial world as the Cox–Ingersoll–Ross model; see, e.g.,
Brigo and Mercurio (2006) and Lamberton and Lapeyre (1996).

The CBI-process is a Feller process, so it has a càdlàg realization X = (Xt : t ≥ 0). Let
∆Xs := Xs − Xs− (≥ 0) denote the size of the jump of X at time s > 0. In this work, we
are interested in distributional properties of jumps of the CBI-process. In particular, we shall
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give a representation of the distribution of the first occurrence time τA of its jump with jump
size in some given Borel set A ⊂ (0,∞). From this result we derive a characterization for the
distribution of the local maximal jump max0<s≤t ∆Xs for any t > 0. Under suitable assump-
tions, we prove this distribution and the total Lévy measure of the process are equivalent. For
the CB-process, we also study similar problems for the global maximal jump sup0<s<∞∆Xs.
The tool of stochastic equations of the CBI-process established in Dawson and Li (2006) and
Fu and Li (2010) plays a key role in the proof of our main result. The results obtained in
this work are of clear interests in applications of the CB- and CBI-processes as biological and
financial models.

The paper is organized as follows. In Section 2, some basic facts on CB- and CBI-processes
are reviewed. In Section 3, we give the characterization of the distribution of the jump time
τA for A ⊂ (0,∞). In Section 4, we establish a number of distributional properties of the local
and global maximal jumps of the process.

2 CB- and CBI-processes

In this section, we review several basic facts on CB- and CBI-processes for the convenience of
the reader. Let us fix a branching mechanism Φ, which is a function on R+ := [0,∞) with the
representation

Φ(z) = αz + βz2 +

∫
(0,∞)

π0(dθ)(e
−zθ − 1 + zθ), z ≥ 0, (2.1)

where α ∈ R and β ∈ R+ are two constants, and π0 is a σ-finite measure on (0,∞) satisfying∫
(0,∞)

π0(dθ)(θ ∧ θ2) <∞. (2.2)

A CB-process with branching mechanism Φ is a nonnegative Markov process with transition
semigroup (Pt)t≥0 defined by∫

R+

e−λyPt(x, dy) = e−xvt(λ), λ ≥ 0, (2.3)

where t 7→ vt(λ) is the unique nonnegative solution of

vt(λ) = λ−
∫ t

0
Φ(vs(λ))ds, t ≥ 0, (2.4)

or, in the equivalent differential form,

d

dt
vt(λ) = −Φ(vt(λ)), v0(λ) = λ. (2.5)

Under the integrability condition (2.2), the CB-process started from any deterministic initial
value has finite expectation. This in particular allows us to compensate large jumps of the
process generated by the branching mechanism; see the stochastic integral equation (3.1).

We say the CB-process is subcritical if α > 0, critical if α = 0, and supercritical if α < 0.
In view of (2.1), we have

Φ′(z) = α+ 2βz +

∫ ∞
0

π0(dθ)θ(1− e−zθ)
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which is increasing in z ≥ 0. Then Φ is a convex function. Consequently, the limit Φ(∞) :=
limz→∞Φ(z) exists in [−∞, 0] ∪ {∞}. The limit Φ′(∞) := limz→∞Φ′(z) exists in (−∞,∞].
In fact, we have

Φ′(∞) = α+ 2β · ∞+

∫ ∞
0

θπ0(dθ)

with 0 · ∞ = 0 by convention. Observe that Φ(∞) ∈ [−∞, 0] if and only if Φ′(∞) ∈ (−∞, 0],
and Φ(∞) =∞ if and only if Φ′(∞) ∈ (0,∞]. For λ ≥ 0 let

Φ−1(λ) = inf{z ≥ 0 : Φ(z) > λ}.

Of course, we have Φ−1(λ) = ∞ for all λ ≥ 0 if Φ(∞) ∈ [−∞, 0]. If Φ(∞) = ∞, then
Φ−1 : [0,∞)→ [Φ−1(0),∞) is the inverse of the restriction of Φ to [Φ−1(0),∞).

The CBI-process generalizes the CB-process given above. Let Ψ be an immigration mech-
anism, which is a function on R+ with representation

Ψ(z) = γz +

∫
(0,∞)

π1(dθ)(1− e−zθ), z ≥ 0, (2.6)

where γ ∈ R+ and π1 is a σ-finite measure on (0,∞) satisfying∫
(0,∞)

π1(dθ)(1 ∧ θ) <∞.

A nonnegative Markov process is called a CBI-process with branching mechanism Φ and im-
migration mechanism Ψ if it has transition semigroup (Qt)t≥0 given by∫

R+

e−λyQt(x, dy) = exp

{
− xvt(λ)−

∫ t

0
Ψ(vs(λ))ds

}
, λ ≥ 0. (2.7)

This reduces to a CB-process when Ψ ≡ 0. The reader may refer to Kawazu and Watanabe
(1971) for discussion of CB- and CBI-processes with more general branching and immigration
mechanisms.

From (2.7) we see that (Qt)t≥0 is a Feller semigroup, so the CBI-process has a Hunt process
realization; see, e.g., Chung (1982, p.75). Let X = (Ω,F ,Ft, Xt,Px) be such a realization.
Then the sample path {Xt : t ≥ 0} is Px-a.s. càdàg for every x ≥ 0. Let Ex denote the
expectation with respect to the probability measure Px.

Proposition 2.1 For t ≥ 0, x ≥ 0 and λ ≥ 0 we have

Ex

[
exp

{
− λ

∫ t

0
Xsds

}]
= exp

{
− xut(λ)−

∫ t

0
Ψ(us(λ))ds

}
, (2.8)

where t 7→ ut(λ) is the unique nonnegative solution of

ut(λ) = tλ−
∫ t

0
Φ(us(λ))ds, t ≥ 0. (2.9)

or, in the equivalent differential form,

d

dt
ut(λ) = λ− Φ(ut(λ)), u0(λ) = 0. (2.10)
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Proof. As special cases of Theorem 9.16 in Li (2011), we have (2.8) with t 7→ ut(λ) being the
unique nonnegative solution of (2.9), which is equivalent to its differential form (2.10). �

Proposition 2.2 For λ > 0, the mapping t 7→ ut(λ) is strictly increasing and limt→∞ ut(λ) =
Φ−1(λ).

Proof. Consider a Hunt realization X of the CB-process with branching mechanism Φ. By
Proposition 2.1, we have

Ex

[
exp

{
− λ

∫ t

0
Xsds

}]
= e−xut(λ). (2.11)

As observed in the proof of Proposition 3.1 in Li (2011), we have Px(Xt > 0) > 0 for x > 0
and t ≥ 0. By (2.11) we see that t 7→ ut(λ) is strictly increasing, so (∂/∂t)ut(λ) > 0 for all
λ > 0. Let u∞(λ) = limt→∞ ut(λ) ∈ (0,∞]. In the case Φ(∞) ∈ [−∞, 0], we have Φ(z) ≤ 0
for all z ≥ 0. Then (∂/∂t)ut(λ) ≥ λ and u∞(λ) = ∞. In the case Φ(∞) = ∞, we note
Φ(ut(λ)) = λ− (∂/∂t)ut(λ) < λ, and hence ut(λ) < Φ−1(λ), implying u∞(λ) ≤ Φ−1(λ) <∞.
It follows that

0 = lim
t→∞

∂

∂t
ut(λ) = λ− lim

t→∞
Φ(ut(λ)) = λ− Φ(u∞(λ)).

Then we have u∞(λ) = Φ−1(λ). �

Corollary 2.3 Let X = (Ω,F ,Ft, Xt,Px) be a Hunt realization of the CB-process with
branching mechanism Φ. Then for x > 0 and λ > 0, we have

Ex

[
exp

{
− λ

∫ ∞
0

Xsds
}]

= exp{−xΦ−1(λ)}. (2.12)

Note that (2.12) can also be derived from the theory of Lévy processes; see, e.g., Corol-
lary 12.10 in Kyprianou (2014).

3 Distributional properties of jump times

Let Φ and Ψ be the branching and immigration mechanisms with representations (2.1) and
(2.6), respectively. Suppose that on a suitable filtered probability space (Ω,G ,Gt,P) satisfying
the usual hypotheses, we have a standard (Gt)-Brownian motion (Bt : t ≥ 0), a (Gt)-Poisson
point process (pt : t ≥ 0) on (0,∞)2 with characteristic measure π0(dz)dy, and a (Gt)-Poisson
point process (qt : t ≥ 0) on (0,∞) with characteristic measure π1(dz). Suppose that (Bt : t ≥
0), (pt : t ≥ 0), and (qt : t ≥ 0) are independent. Let N0(ds, dz, dy) denote the Poisson random
measure on (0,∞)3 associated with (pt : t ≥ 0), and Ñ0(ds, dz, dy) the compensated measure
of N0(ds, dz, dy). Let N1(ds, dz) denote the Poisson random measure on (0,∞)2 associated
with (pt : t ≥ 0). By the results of Dawson and Li (2006) and Fu and Li (2010), for any
G0-measurable nonnegative random variable X0 there is a unique nonnegative strong solution
X = (Xt : t ≥ 0) of the stochastic equation

Xt = X0 +

∫ t

0

√
2βXsdBs +

∫
(0,t]

∫
(0,∞)

∫
(0,Xs−]

zÑ0(ds, dz, dy)
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+

∫ t

0
(γ − αXs)ds+

∫
(0,t]

∫
(0,∞)

zN1(ds, dz). (3.1)

It was also proved in Dawson and Li (2006) and Fu and Li (2010) that X is a CBI-process
with branching mechanism Φ and immigration mechanism Ψ. For x ≥ 0 let Px denote the
conditional law of X given X0 = x.

In the sequel, we give some results on the distributional properties of the first jump time
of the CBI-process with jump size in some given sets. To present the results, let us introduce
some notation. For any Borel set A ⊂ (0,∞) with π0(A) + π1(A) <∞, we define

ΨA(z) = Ψ(z)−
∫
A
π1(dθ)(1− e−zθ) (3.2)

and

ΦA(z) = Φ(z) +

∫
A
π0(dθ)(1− e−zθ). (3.3)

Then ΦA is also a branching mechanism and ΨA an immigration mechanism. For example, we
have

ΦA(z) = αAz + βz2 +

∫
(0,∞)\A

π0(dθ)(e
−zθ − 1 + zθ), (3.4)

where

αA = α+

∫
A
θπ0(dθ).

Proposition 3.1 Suppose that A ⊂ (0,∞) is a Borel set with π0(A) + π1(A) < ∞. For
t > 0 let Jt(A) := Card{s ∈ (0, t] : ∆Xs = Xs − Xs− ∈ A}. Then for any x ≥ 0 we have
Px(Jt(A) <∞) = 1.

Proof. Let NA
0 and NAc

0 be the restrictions of N0 to (0,∞)×A× (0,∞) and (0,∞)× ((0,∞)\
A) × (0,∞), respectively. Similarly, let NA

1 and NAc

1 be the restrictions of N1 to (0,∞) × A
and (0,∞)× ((0,∞) \A), respectively. Then we can rewrite (3.1) into

Xt = X0 +

∫ t

0

√
2βXsdBs +

∫
(0,t]

∫
(0,∞)\A

∫
(0,Xs−]

zÑAc

0 (ds, dz, dy)

+

∫ t

0
(γ − αAXs)ds+

∫
(0,t]

∫
(0,∞)\A

zNAc

1 (ds, dz)

+

∫
(0,t]

∫
A

∫
(0,Xs−]

zNA
0 (ds, dz, dy) +

∫
(0,t]

∫
A
zNA

1 (ds, dz). (3.5)

Note that the last two terms on the right hand side of the above equation never jump simul-
taneously, so we have

Jt(A) =

∫
(0,t]

∫
A

∫
(0,Xs−]

NA
0 (ds, dz, dy) +

∫
(0,t]

∫
A
NA

1 (ds, dz).

For any k ≥ 1 let

Jt(k,A) =

∫
(0,t]

∫
A

∫
(0,k]

NA
0 (ds, dz, dy) +

∫
(0,t]

∫
A
NA

1 (ds, dz).
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It follows that

Ex[Jt(k,A)] = ktπ0(A) + tπ1(A) <∞,

and so Px(Jt(k,A) < ∞) = 1. Since s 7→ Xt is càdlàg, we have sup0<s≤tXs < ∞. Note also
that Jt(A) ≤ Jt(k,A) on the event sup0<s≤tXs < k. It follows that

Px(Jt(A) =∞) ≤
∞∑
k=1

Px

(
{Jt(A) =∞} ∩

{
sup
0<s≤t

Xs < k
})

=
∞∑
k=1

Px

(
{Jt(A) = Jt(k,A) =∞} ∩

{
sup
0<s≤t

Xs < k
})

≤
∞∑
k=1

Px(Jt(k,A) =∞) = 0.

Then Px(Jt(A) <∞) = 1. �

Theorem 3.2 Suppose that A ⊂ (0,∞) is a Borel set with π0(A) + π1(A) < ∞. Let τA =
min{s > 0 : ∆Xs = Xs − Xs− ∈ A}, which is well-defined by the result of Proposition 3.1.
Then for any x ≥ 0 and t ≥ 0 we have

Px(τA > t) = exp

{
− tπ1(A)− xuAt (π0(A))−

∫ t

0
ΨA(uAs (π0(A)))ds

}
, (3.6)

where uAt (λ) is the unique nonnegative solution of

d

dt
uAt (λ) = λ− ΦA(uAt (λ)), uA0 (λ) = 0. (3.7)

Proof. We shall use the notation introduced in the proof of Proposition 3.1. Let (XA
t : t ≥ 0)

be the solution of

XA
t = X0 +

∫ t

0

√
2βXA

s dBs +

∫
(0,t]

∫
(0,∞)\A

∫
(0,XA

s−]
zÑAc

0 (ds, dz, dy)

+

∫ t

0
(γ − αAXA

s )ds+

∫
(0,t]

∫
(0,∞)\A

zNAc

1 (ds, dz). (3.8)

Then (XA
t : t ≥ 0) is a CBI-process with branching mechanism ΦA and immigration mechanism

ΨA. By Theorem 2.2 in Dawson and Li (2012) we have XA
t ≤ Xt for all t ≥ 0. (Intuitively,

we can obtain (XA
t : t ≥ 0) by removing from (Xt : t ≥ 0) all masses produced by jumps of

sizes in the set A.) We claim that, up to a null set,

{τA > t} =

{∫
(0,t]

∫
A

∫
(0,XA

s−]
NA

0 (ds, dz, dy) +

∫
(0,t]

∫
A
NA

1 (ds, dz) = 0

}
. (3.9)

Indeed, since Xs = XA
s for 0 ≤ s < τA, we have

{τA > t} = {τA > t} ∩
{∫

(0,t]

∫
A

∫
(0,Xs−]

NA
0 (ds, dz, dy)
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+

∫
(0,t]

∫
A
NA

1 (ds, dz) = 0

}
⊂
{∫

(0,t]

∫
A

∫
(0,XA

s−]
NA

0 (ds, dz, dy) +

∫
(0,t]

∫
A
NA

1 (ds, dz) = 0

}
.

Since ∆XτA ∈ A when τA ≤ t, we have

{τA ≤ t} ⊂ {τA ≤ t} ∩
{∫
{τA}

∫
A

∫
(0,Xs−]

NA
0 (ds, dz, dy)

+

∫
{τA}

∫
A
NA

1 (ds, dz) > 0

}
= {τA ≤ t} ∩

{∫
{τA}

∫
A

∫
(0,XA

s−]
NA

0 (ds, dz, dy)

+

∫
{τA}

∫
A
NA

1 (ds, dz) > 0

}
⊂
{∫

(0,t]

∫
A

∫
(0,XA

s−]
NA

0 (ds, dz, dy) +

∫
(0,t]

∫
A
NA

1 (ds, dz) > 0

}
.

Then (3.9) holds. Since (XA
t : t ≥ 0) is a strong solution of (3.8), it is progressively measurable

with respect to the filtration generated by B, NAc

0 and NAc

1 , which is independent of NA
0 and

NA
1 . Then we have

Px(τA > t) = exp{−tπ1(A)}Ex

[
exp

{
− π0(A)

∫ t

0
XA
s ds

}]
. (3.10)

Finally, we get (3.6) by Proposition 2.1. �

Corollary 3.3 (1) If A and B are Borel subsets of (0,∞) such that A ⊂ B and π0(B) <
∞, then uAt (π0(A)) ≤ uBt (π0(B)) for t ≥ 0. (2) If A ⊂ (0,∞) is a Borel set satisfying
π0(A) + π1(A) = 0, then Px(τA =∞) = 1 for x ≥ 0. (3) If Ψ 6= 0 and A ⊂ (0,∞) is a Borel
set satisfying π0(A) + π1(A) > 0, then Px(τA <∞) = 1 for x ≥ 0.

Proof. (1) By applying Theorem 3.2 to the special case Ψ ≡ 0 we have

e−xu
A
t (π0(A)) = Px(τA > t) ≥ Px(τB > t) = e−xu

B
t (π0(B)).

Taking any x > 0 we get the result. (2) By Theorem 3.2 we have Px(τA > t) = 1 for every
t ≥ 0. Then Px(τA = ∞) = limt→∞Px(τA > t) = 1. (3) By choosing a smaller set if it is
necessary, we may assume 0 < π0(A)+π1(A) <∞. If π1(A) > 0, then tπ1(A)→∞ as t→∞.
In the case π1(A) = 0, we must have π0(A) > 0, so s 7→ uAs (π0(A)) is strictly increasing by
Proposition 2.2. Since Ψ 6= 0, one can see

lim
t→∞

∫ t

0
ΨA(uAs (π0(A)))ds =∞.

In view of (3.6), we have Px(τA =∞) = limt→∞Px(τA > t) = 0 in both cases. �

Corollary 3.4 Suppose that Ψ ≡ 0. Then for any x ≥ 0 and Borel set A ⊂ (0,∞) satisfying
0 < π0(A) <∞, we have

Px(τA =∞) = exp{−xΦ−1A (π0(A))}.
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Proof. By applying Theorem 3.2 to the special case Ψ ≡ 0, we have

Px(τA =∞) = lim
t→∞

Px(τA > t) = lim
t→∞

exp{−xuAt (π0(A))}.

Then the result follows by Proposition 2.2. �

4 Local and global maximal jumps

Let X = (Ω,F ,Ft, Xt,Px) be a Hunt realization of the CBI-process with branching mecha-
nism Φ and immigration mechanism Ψ given by (2.1) and (2.6), respectively. In this section,
we shall give some characterizations of the local and global maximal jumps of the process.

Theorem 4.1 Suppose that r ≥ 0 and π0(r,∞) + π1(r,∞) < ∞. Then for any x ≥ 0 and
t > 0 we have

Px

(
max
s∈(0,t]

∆Xt ≤ r
)

= exp

{
− tπ1(r,∞)− xurt (π0(r,∞))−

∫ t

0
Ψ(r,∞)(u

r
s(π0(r,∞)))ds

}
,

where urt (λ) is the unique nonnegative solution of

d

dt
urt (λ) = λ− Φ(r,∞)(u

r
t (λ)), ur0(λ) = 0. (4.1)

Proof. Since Px(maxs∈(0,t] ∆Xt ≤ r) = Px(τ(r,∞) > t), the result follows by Theorem 3.2. �

Corollary 4.2 Suppose that Ψ 6= 0. Then Px(sups∈(0,∞) ∆Xs = sup(π0 + π1)) = 1 for any
x ≥ 0, where sup(π0 + π1) = sup supp(π0 + π1).

Proof. Since (π0 + π1)(sup(π0 + π1),∞) = 0, for any t > 0 we have Px(sups∈(0,t] ∆Xs ≤
sup(π0 + π1)) = 1 by Theorem 4.1. Then

Px

(
sup

s∈(0,∞)
∆Xs ≤ sup(π0 + π1)

)
= lim

t→∞
Px

(
sup
s∈(0,t]

∆Xs ≤ sup(π0 + π1)
)

= 1.

For any z < sup(π0 + π1) we have (π0 + π1)[z, sup(π0 + π1)] > 0. By Corollary 3.3 (3),

Px

(
sup

s∈(0,∞)
∆Xs ∈ [z, sup(π0 + π1)]

)
≥ Px(τ[z,sup(π0+π1)] <∞) = 1.

Since z < sup(π0 + π1) was arbitrary, it follows that Px(sup ∆X = sup(π0 + π1)) = 1. �

Corollary 4.3 Suppose that Ψ ≡ 0. Then for any x ≥ 0 and r ≥ 0 satisfying 0 < π0(r,∞) <
∞ we have

Px

(
sup

s∈(0,∞)
∆Xs ≤ r

)
= exp{−xΦ−1(r,∞)(π0(r,∞))}.

Proof. This follows by Theorem 4.1 and Proposition 2.2. �
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Corollary 4.4 Suppose that Ψ ≡ 0 and let sup(π0) = sup supp(π0). Then for any x ≥ 0 we
have

Px

(
sup

s∈(0,∞)
∆Xs = sup(π0)

)
= 1− exp{−xΦ−1{sup(π0)}(π0({sup(π0)}))}

with Φ{0} = Φ{∞} = Φ and π0({0}) = π0({∞}) = 0 by convention.

Proof. By the proof of Corollary 4.2 we have Px(sups∈(0,∞) ∆Xs ≤ sup(π0)) = 1. For any
z < sup(π0) we have π0(z, sup(π0)] > 0. By Corollary 4.3 it follows that

Px

(
sup

s∈(0,∞)
∆Xs ∈ (z, sup(π0)]

)
= 1− exp{−xΦ−1(z,sup(π0)]

(π0(z, sup(π0)])}

Then we get the desired result by letting z → sup(π0). �

Corollary 4.5 Suppose that α > 0 and Ψ ≡ 0. If the measure π0 has unbounded support,
then for any x > 0, we have, as r →∞,

Px

(
sup

s∈(0,∞)
∆Xs > r

)
= 1− exp{−xΦ−1(r,∞)(π0(r,∞))} ∼ x

α
π0(r,∞).

Proof. By (3.4) we see by dominated convergence that (∂/∂z)Φ(r,∞)(0) = α(r,∞). It follows

that (∂/∂z)Φ−1(r,∞)(0) = 1/α(r,∞). Then, as r →∞,

Φ−1(r,∞)(π0(r,∞)) ∼ π0(r,∞)/α(r,∞) ∼ π0(r,∞)/α,

and the desired result follows from Corollary 4.3. �

We remark that a special form of Corollary 4.3 has been obtained by Bertoin (2011). The
next theorem establishes the equivalence of the distribution of the local maximal jump of
the CBI-process and the total Lévy measure π0 + π1. In view of Theorem 4.1, we may have
Px(maxs∈(0,t] ∆Xs = 0) > 0, so we only discuss the absolute continuity on the set (0,∞).

Theorem 4.6 Suppose that x + γ > 0. Then for any t > 0, the measure π0 + π1 and the
distribution Px(maxs∈(0,t] ∆Xs ∈ ·)|(0,∞) are equivalent.

Proof. Recall that Ψ and ΨA are defined by (2.6) and (3.2), respectively. If A ⊂ (0,∞) is a
Borel set with π0(A) + π1(A) = 0, by Theorem 3.2 we have

Px

(
max
s∈(0,t]

∆Xs ∈ A
)
≤ Px(τA ≤ t) = 1−Px(τA > t) = 0.

Then Px(maxs∈(0,t] ∆X ∈ ·)|(0,∞) is absolutely continuous with respect to π0 + π1. To prove
the absolute continuity of π0 +π1 with respect to Px(maxs∈(0,t] sup ∆X ∈ ·)|(0,∞), we consider
a Borel set A ⊂ (0,∞) and a constant r > 0. Since{

max
s∈(0,t]

∆Xs ∈ A
}
⊃
{

max
s∈(0,t]

∆Xs ∈ A ∩ [r,∞)
}

⊃ {τA∩[r,∞) ≤ t} ∩ {τ[r,∞)\A > t}
= {τ[r,∞) ≤ t} \ {τ[r,∞)\A ≤ t},
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we have
Px

(
max
s∈(0,t]

∆X ∈ A
)
≥ Px(τ[r,∞) ≤ t)−Px(τ[r,∞)\A ≤ t).

Suppose that Px(sups∈(0,t] ∆X ∈ A) = 0. Then Px(τ[r,∞) ≤ t) = Px(τ[r,∞)\A ≤ t), so the
result of Theorem 3.2 implies

tπ1[r,∞) + xu
[r,∞)
t (π0[r,∞)) +

∫ t

0
Ψ[r,∞)(u

[r,∞)
s (π0[r,∞)))ds

= tπ1([r,∞) \A) + xu
[r,∞)\A
t (π0([r,∞) \A))

+

∫ t

0
Ψ[r,∞)\A(u[r,∞)\A

s (π0([r,∞) \A)))ds. (4.2)

By Corollary 3.3 (1) we have

u
[r,∞)
t (π0[r,∞)) ≥ u[r,∞)\A

t (π0([r,∞) \A)), t ≥ 0. (4.3)

Then (4.2) implies

tπ1[r,∞) + xu
[r,∞)
t (π0[r,∞)) +

∫ t

0
Ψ[r,∞)(u

[r,∞)
s (π0[r,∞)))ds

≤ tπ1([r,∞) \A) + xu
[r,∞)
t (π0[r,∞)) +

∫ t

0
Ψ[r,∞)\A(u[r,∞)

s (π0[r,∞)))ds.

By reorganizing the terms in the above inequality we obtain

tπ1([r,∞) ∩A) ≤
∫ t

0
ds

∫
[r,∞)∩A

(1− e−θu
[r,∞)
s (π0[r,∞)))π1(dθ).

It follows that π1([r,∞) ∩ A) = 0. Since r > 0 was arbitrary in the above, we have proved
π1(A) = 0. Using (4.2) and (4.3) we have

xu
[r,∞)
t (π0[r,∞)) + γ

∫ t

0
u[r,∞)
s (π0[r,∞))ds

≤ xu
[r,∞)\A
t (π0([r,∞) \A)) + γ

∫ t

0
u[r,∞)\A
s (π0([r,∞) \A))ds,

and so using (4.3) again we get

u
[r,∞)
t (π0[r,∞)) = u

[r,∞)\A
t (π0([r,∞) \A)) =: a(r, t).

It follows that
∂u

[r,∞)
t (π0[r,∞))

∂t
=
∂u

[r,∞)\A
t (π0([r,∞) \A))

∂t
.

Then we can use (3.7) to see

π0([r,∞))− Φ[r,∞)(a(r, t)) = π0([r,∞) \A)− Φ[r,∞)\A(a(r, t)),

and hence
Φ[r,∞)(a(r, t)) = Φ[r,∞)\A(a(r, t)) + π0([r,∞) ∩A).

But, by (3.3), we should have

Φ[r,∞)(a(r, t)) = Φ[r,∞)\A(a(r, t)) +

∫
[r,∞)∩A

π0(dθ)(1− e−a(r,t)θ).
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It follows that π0([r,∞) ∩A) = 0, implying π0(A) = 0. That completes the proof. �

The conclusion of Theorem 4.6 is not necessarily true in the case x = γ = 0. As a
counterexample, consider the case where X0 = 0, π0 = δ1 and π1 = δ2. In this case, we have
τ{2} ≤ t when τ{1} ≤ t, for otherwise Xs = 0 for all s ∈ [0, t]. It follows that

P0

(
max
s∈(0,t]

∆Xs = 1
)

= 0.

Then π0 is not absolutely continuous with respect to P0(maxs∈(0,t] ∆Xs ∈ ·).

For critical and subcritical branching CB-processes without immigration, we may also
discuss the absolute continuity of the distribution of its global maximal jump. Such a result
is presented in the following:

Theorem 4.7 Suppose that α ≥ 0 and Ψ ≡ 0. Then for any x > 0 the Lévy measure π0 and
the distribution Px(sups∈(0,∞) ∆Xs ∈ ·)|(0,∞) are equivalent.

Proof. Since Ψ = 0 and α ≥ 0, we have Xt → 0 almost surely as t → ∞. If A ⊂ (0,∞) is a
Borel set so that π0(A) = 0, by Corollary 3.3 (2) we have

Px

(
sup

s∈(0,∞)
∆Xs ∈ A

)
≤ Px(τA <∞) = 1−Px(τA =∞) = 0.

Then Px(sups∈(0,∞) ∆Xs ∈ ·)|(0,∞) is absolutely continuous with respect to π0. Now suppose
that A ⊂ (0,∞) is a Borel set with π0(A) > 0. For any r > 0, one can see as in the proof of
Theorem 4.6 that

Px

(
sup

s∈(0,∞)
∆Xs ∈ A

)
≥ Px(τ[r,∞) <∞)−Px(τ[r,∞)\A <∞).

If Px(sups∈(0,∞) ∆Xs ∈ A) = 0, we have Px(τ[r,∞) <∞) = Px(τ[r,∞)\A <∞), so Corollary 3.4
implies

Φ−1[r,∞)(π0[r,∞)) = Φ−1[r,∞)\A(π0([r,∞) \A)) =: a(r).

It follows that

Φ[r,∞)(a(r)) = π0[r,∞) = π0([r,∞) \A) + π0(A ∩ [r,∞))

= Φ[r,∞)\A ◦ Φ−1[r,∞)\A(π0([r,∞) \A)) + π0(A ∩ [r,∞))

= Φ[r,∞)\A(a(r)) + π0(A ∩ [r,∞)).

Then, as in the proof of Theorem 4.6, we must have π0(A ∩ [r,∞)) = 0. This contradicts
π0(A) > 0 since r > 0 was arbitrary. It then follows that Px(sups∈(0,∞) ∆Xs ∈ A) > 0. �

In the above theorem, we only consider the critical and subcritical cases. The supercritical
case is more subtle since in that case we may have sups∈(0,∞) ∆Xs = sup(π0) with strictly
positive probability by Corollary 4.4. We leave the consideration of the details to the interested
reader.

Acknowledgement. We thank the referee and the editor for a number of suggestions on
the presentation of the results.

11



References

[1] Bertoin, J. (2011). On the maximal offspring in a critical branching process with infinite
variance. J. Appl. Probab. 48, 576–582.

[2] Brigo, D. and Mercurio, F. (2006). Interest Rate Models. 2nd ed. Springer, New York.

[3] Chung, K.L. (1982). Lectures from Markov Processes to Brownian Motion. Springer,
New York.

[4] Dawson, D. A. and Li, Z. (2006). Skew convolution semigroups and affine Markov pro-
cesses. Ann. Probab. 34, 1103–1142.

[5] Dawson, D. A. and Li, Z. (2012). Stochastic equations, flows and measure-valued process-
es. Ann. Probab. 40, 813–857.

[6] Duquesne, T. and Le Gall, J. F. (2002). Random trees, Lévy processes and spatial branch-
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