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Abstract

Recently, Kurtz (2007, 2014) obtained a general version of the Yamada–Watanabe and Engelbert theo-
rems relating existence and uniqueness of weak and strong solutions of stochastic equations covering also the
case of stochastic differential equations with jumps. Following the original method of Yamada and Watanabe
(1971), we give alternative proofs for the following two statements: pathwise uniqueness implies uniqueness
in the sense of probability law, and weak existence together with pathwise uniqueness imply strong existence
for stochastic differential equations with jumps.

1 Introduction

In order to prove existence and pathwise uniqueness of a strong solution for stochastic differential equations, it
is an important issue to clarify the connections between weak and strong solutions. The first pioneering results
are due to Yamada and Watanabe [28] for certain stochastic differential equations driven by Wiener processes.

We investigate stochastic differential equations with jumps. Let U be a second-countable locally compact
Hausdorff space equipped with its Borel σ-algebra B(U). Let m be a σ-finite Radon measure on (U,B(U)),
meaning that the measure of compact sets is always finite. Let U0, U1 ∈ B(U) be disjoint subsets. Let d, r ∈ N.
Let b : [0,∞)×Rd → Rd, σ : [0,∞)×Rd → Rd×r, f : [0,∞)×Rd×U → Rd and g : [0,∞)×Rd×U → Rd be
Borel measurable functions, where [0,∞)×Rd×U is equipped with its Borel σ-algebra B([0,∞)×Rd×U) =
B([0,∞))⊗B(Rd)⊗B(U) (see, e.g., Dudley [7, Proposition 4.1.7]). Consider a stochastic differential equation
(SDE)

(1.1)

Xt = X0 +

∫ t

0

σ(s,Xs) dW s +

∫ t

0

∫
U0

f(s,Xs−, u) Ñ(ds,du)

+

∫ t

0

b(s,Xs) ds+

∫ t

0

∫
U1

g(s,Xs−, u)N(ds,du), t ∈ [0,∞),

where (W t)t>0 is an r-dimensional standard Brownian motion, N(ds,du) is a Poisson random measure on

(0,∞)×U with intensity measure dsm(du), Ñ(ds,du) := N(ds,du)− dsm(du), and (Xt)t>0 is a suitable
process with values in Rd.

Yamada and Watanabe [28] proved that weak existence and pathwise uniqueness imply uniqueness in the
sense of probability law and strong existence for the SDE (1.1) with f = 0 and g = 0. Engelbert [8] and
Cherny [3] extended this result to a somewhat more general class of equations and gave a converse in which
the roles of existence and uniqueness are reversed, that is, joint uniqueness in the sense of probability law (see,
Engelbert [8, Definition 5]) and strong existence imply pathwise uniqueness. The original Yamada–Watanabe
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result arises naturally in the procedure of proving existence of solutions of a SDE; for a detailed discussion, see
Kurtz [16, pages 1–2].

Jacod [11] generalized the above mentioned result of Yamada and Watanabe for a SDE driven by a semi-
martingale, where the coefficient may depend on the paths both of the solution and of the driving process. The
Yamada–Watanabe result has been generalized by Ondreját [20] and Röckner et al. [23] for stochastic evolution
equations in infinite dimensions, and by Tappe [25] for semilinear stochastic partial differential equations with
path-dependent coefficients.

Recently, there has been a renewed interest in generalizations of the results of Yamada and Watanabe [28].
Kurtz [15], [16] continued the direction of Engelbert [8] and Jacod [11]. He studied general stochastic models
which relate stochastic inputs with stochastic outputs, and obtained a general version of the Yamada–Watanabe
and Engelbert theorems relating existence and uniqueness of weak and strong solutions of stochastic models
with the message that the original results are not limited to SDEs driven by Wiener processes. In order to
derive the original Yamada–Watanabe results from this general theory, proofs of pathwise uniqueness require
appropriate adaptedness conditions, so two new notions, compatibility and partial compatibility between inputs
and outputs have been introduced. Due to Example 3.9 in Kurtz [15] and Page 7 in Kurtz [16], the results are
valid for SDEs driven by a Wiener process and Poisson random measures.

Following the ideas of Yamada and Watanabe [28], we are going to give alternative proofs for the following
two statements:

1.1 Theorem. Pathwise uniqueness for the SDE (1.1) implies uniqueness in the sense of probability law.

1.2 Theorem. Weak existence and pathwise uniqueness for the SDE (1.1) imply strong existence.

Note that Theorems 1.1 and 1.2 are generalizations of Proposition 1 and Corollary 1 in Yamada and Watan-
abe [28] (we do not intend to deal with generalization of their Corollary 3). The definition of weak and strong
solutions of the SDE (1.1), pathwise uniqueness for the SDE (1.1) and uniqueness in the sense of probability
law, and a detailed, precise formulation of Theorem 1.2 will be given in the paper. In the course of the proofs
we developed a sequence of lemmas discussing several kinds of measurability, see Lemmas 5.1 and 5.3, and we
also presented a key observation on the preservation of the joint distribution of the parts of the SDE (1.1), see
Lemmas A.2 and A.4.

Our alternative proofs show the power of the original method of Yamada and Watanabe [28], these proofs
can be followed step by step and every technical detail is transparent in the paper. This raises a question
whether Kurtz’s result could be proved via the walked-out path by Yamada and Watanabe.

Note that Situ [24, Theorem 137] also considered the SDE (1.1) with Rd \ {0} instead of U and with
g = 0, and proved Theorems 1.1 and 1.2 under the resctrictive assumption

(1.2)

∫
Rd\{0}

∥u∥2

1 + ∥u∥2
m(du) <∞.

This assumption was needed for introducing an auxiliary càdlàg process in Lemma 139 in Situ [24]. In fact, one
can get rid of condition (1.2) by using the space of point measures on R+ × U as the space of trajectories of
Poisson point processes instead of the space of càdlàg functions, see the proofs of Theorems 1.1 and 1.2. We
call the attention that in the literature the result of Situ [24, Theorem 137] has been usually referred to without
checking condition (1.2), see, e.g., Li and Mytnik [18, equation (3.1)], Dawson and Li [5, equation (2.9)], Döring
and Barczy [6, equation (3.23)] and Li and Pu [19, equations (4.6) and (5.1)], but Theorem 1.2 covers these
situations as well.

We remark that Zhao [29] already adapted the original method of Yamada and Watanabe for the SDE (1.1)
driven only by a compensated Poisson random measure, i.e., with σ = 0 and g = 0, but for processes with
values in a separable Hilbert space instead of Rd-valued processes. Comparing with the results of the present
paper, note that we explicitly stated and proved in Theorem 1.1 that pathwise uniqueness for the SDE (1.1)
implies uniqueness in the sense of probability law.

2 Preliminaries

Let Z+, N, R, R+ and R++ denote the set of non-negative integers, positive integers, real numbers,
non-negative real numbers and positive real numbers, respectively. For x, y ∈ R, we will use the notations
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x ∧ y := min{x, y}. By ∥x∥ and ∥A∥, we denote the Euclidean norm of a vector x ∈ Rd and the
induced matrix norm of a matrix A ∈ Rd×d, respectively. Throughout this paper, we make the conventions∫ b
a
:=
∫
(a,b]

and
∫∞
a

:=
∫
(a,∞)

for any a, b ∈ R with a < b. By C(R+,Rℓ) and D(R+,Rℓ) we denote

the set of continuous and càdlàg Rℓ-valued functions defined on R+, equipped with a metric inducing the
local uniform topology (see, e.g., Jacod and Shiryaev [12, Section VI.1a]) and a metric inducing the so-called
Skorokhod topology (see, e.g., Jacod and Shiryaev [12, Theorem VI.1.14]), respectively. Moreover, C(R+,Rℓ)
and D(R+,Rℓ) denote the corresponding Borel σ-algebras on them.

Recall that U is a second-countable locally compact Hausdorff space. Note that U is homeomorphic to
a separable complete metric space, see, e.g., Kechris [14, Theorem 5.3]. For our later purposes, we recall the
notion of the space of point measures on R+ × U , of the space of simple point measures on R+ × U , and of
the vague convergence. We follow Resnick [21, Chapter 3] and Ikeda and Watanabe [10, Chapter I, Sections 8
and 9].

A point measure on R+ × U is a measure π of the following form: let F ⊂ N and let {(ti, ui) : i ∈ F}
be a countable collection of (not necessarily distinct) points of R+ × U , and let

π :=
∑
i∈F

δ(ti,ui)

assuming also that π([0, t] × B) < ∞ for all t ∈ R+ and compact subsets B ∈ B(U) (i.e., π is a Radon
measure meaning that the measure of compact sets is always finite, and consequently, it is locally finite), where
δ(ti,ui) denotes the Dirac measure concentrated on the point (ti, ui). Thus

π([0, t]×B) = #{i ∈ F : (ti, ui) ∈ [0, t]×B}, t ∈ R+, B ∈ B(U).

A point function (or point pattern) p on U is a mapping p : D(p) → U , where the domain D(p) is a
countable subset of R++ such that {s ∈ D(p) : s ∈ (0, t], p(s) ∈ B} is finite for all t ∈ R+ and compact
subsets B ∈ B(U). The counting measure Np on R++ × U corresponding to p is defined by

Np((0, t]×B) := #{s ∈ D(p) : s ∈ (0, t], p(s) ∈ B}, t ∈ R++, B ∈ B(U).

Note that there is a (natural) bijection between the set of point functions on U and the set of point measures
π on R+ × U with π({t} × U) 6 1, t ∈ R++, and π({0} × U) = 0. Namely, if p : D(p) → U is a point
function, then the corresponding point measure is its counting measure Np =

∑
t∈D(p) δ(t,p(t)). The set of all

point measures on R+ × U will be denoted by M(R+ × U), and define a σ-algebra M(R+ × U) on it to
be the smallest σ-algebra containing all sets of the form

{π ∈M(R+ × U) : π([0, t]×B) ∈ A} for t ∈ R+, B ∈ B(U), A ∈ B([0,∞]).

Alternatively, M(R+×U) is the smallest σ-algebra making all the mappings M(R+×U) ∋ π 7→ π([0, t]×B) ∈
[0,∞], t ∈ R+, B ∈ B(U), measurable.

Note that there is a (natural) bijection between the set of point processes (randomized point functions)
p defined on a probability space (Ω,F ,P) with values in the space of point functions on U (in the sense
of Ikeda and Watanabe [10, Chapter I, Definition 9.1]) and the set of F/M(R+ × U)-measurable mappings
p : Ω → M(R+ × U) with p(ω)({t} × U) 6 1 for all ω ∈ Ω and t ∈ R++, and p(ω)({0} × U) = 0 for all
ω ∈ Ω (which are (special) point processes in the sense of Resnick [21, page 124]).

A point process p on U is called a Poisson point process if its counting measure Np is a Poisson random
measure on R+×U (for the definition of Poisson random measure see, e.g., Ikeda and Watanabe [10, Chapter I,
Definition 8.1]). A Poisson point process is stationary if and only if its intensity measure is of the form ds ν(du)
for some measure ν on (U,B(U)), which is called its charateristic measure. If ν is a Radon measure, then
Np((0, t]×B) is Poisson distributed with parameter tν(B) ∈ R+, hence {s ∈ D(p) : s ∈ (0, t], p(s) ∈ B} is
finite with probability one for all t ∈ R+ and compact subsets B ∈ B(U). Consequently, a stationary Poisson
point process with a Radon charateristic measure is a stationary Poisson point process in the sense of Ikeda
and Watanabe [10, Chapter I, Definition 9.1].

Next we recall vague convergence. Let Cc(R+ × U,R+) be the space of R+-valued continuous functions
defined on R+ × U with compact support. For π, πn ∈ M(R+ × U), n ∈ N, we say that πn converges
vaguely to π as n→ ∞ if

lim
n→∞

∫
R+×U

f dπn =

∫
R+×U

f dπ
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for all f ∈ Cc(R+ × U,R+). For a topology on M(R+ × U) giving this notion of convergence, see page 140
in Resnick [21]. Recall that M(R+ × U) coincides with the Borel σ-algebra generated by the open sets with
respect to the vague topology on M(R+ × U), see, e.g., Resnick [21, Exercises 3.4.2(b) and 3.4.5].

In what follows we equip the spaces C(R+,Rℓ), D(R+,Rℓ), ℓ ∈ N, and M(R+×U) with some σ-algebras
that will be used later on. For each ℓ ∈ N, let us equip C(R+,Rℓ) and D(R+,Rℓ) with the σ-algebras

Ct(R+,Rℓ) := φ−1
t (C(R+,Rℓ)) and Dt(R+,Rℓ) := φ−1

t (D(R+,Rℓ)), t ∈ R+,

respectively, where φt : D(R+,Rℓ) → D(R+,Rℓ) is the mapping

(2.1) (φt(z))(s) := z(t ∧ s), z ∈ D(R+,Rℓ), s ∈ R+,

which stops the function z at t. It is easy to check that for all t ∈ R+, Ct(R+,Rℓ) coincides with the
smallest σ-algebra containing all the finite-dimensional cylinder sets of the form{

w ∈ C(R+,Rℓ) : (w(t1), . . . , w(tn)) ∈ A
}
, n ∈ N, A ∈ B(Rnℓ), t1, . . . , tn ∈ [0, t],

and then

C(R+,Rℓ) = σ

( ∪
t∈R+

Ct(R+,Rℓ)

)
,(2.2)

see, e.g., Problem 2.4.2 in Karatzas and Shreve [13]. Similarly, for all t ∈ R+, Dt(R+,Rℓ) coincides with the
smallest σ-algebra containing all the finite-dimensional cylinder sets of the form{

y ∈ D(R+,Rℓ) : (y(t1), . . . , y(tn)) ∈ A
}
, n ∈ N, A ∈ B(Rnℓ), t1, . . . , tn ∈ [0, t],

and then

D(R+,Rℓ) = σ

( ∪
t∈R+

Dt(R+,Rℓ)

)
,

hence Dt(R+,Rℓ) coincides with D0
t (Rℓ) in Definition VI.1.1 in Jacod and Shiryaev [12]. Finally, let us equip

M(R+ × U) with the σ-algebras Mt(R+ × U), t ∈ R+, being the smallest σ-algebra containing all sets of
the form

{π ∈M(R+ × U) : π([0, s]×B) ∈ A} with s ∈ [0, t], B ∈ B(U), A ∈ B([0,∞]).

Note that

M(R+ × U) = σ

( ∪
t∈R+

Mt(R+ × U)

)
,(2.3)

since the union of the generator system of the σ-algebras Mt(R+ × U), t ∈ R+, forms a generator system of
M(R+ × U).

3 Notions of weak and strong solutions

If (Ω,F ,P) is a probability space, then, by P-null sets from a sub σ-algebra H ⊂ F , we mean the elements
of the set

{A ⊂ Ω : ∃B ∈ H such that A ⊂ B and P(B) = 0 }.

3.1 Definition. Let n be a probability measure on (Rd,B(Rd)). A weak solution of the SDE (1.1) with
initial distribution n is a tuple

(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
, where

(D1) (Ω,F , (Ft)t∈R+ ,P) is a filtered probability space satisfying the usual hypotheses (i.e., (Ft)t∈R+ is right
continuous and F0 contains all the P-null sets in F);

(D2) (W t)t∈R+ is an r-dimensional standard (Ft)t∈R+-Brownian motion;

(D3) p is a stationary (Ft)t∈R+-Poisson point process on U with characteristic measure m;
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(D4) (Xt)t∈R+ is an Rd-valued (Ft)t∈R+-adapted càdlàg process such that

(a) the distribution of X0 is n,

(b) P
(∫ t

0

(
∥b(s,Xs)∥+ ∥σ(s,Xs)∥2

)
ds <∞

)
= 1, t ∈ R+,

(c) P
(∫ t

0

∫
U0

∥f(s,Xs, u)∥2 dsm(du) <∞
)
= 1, t ∈ R+,

(d) P
(∫ t

0

∫
U1

∥g(s,Xs−, u)∥N(ds,du) <∞
)
= 1, t ∈ R+, where N(ds,du) is the counting measure

of p on R++ × U ,

(e) equation (1.1) holds P-a.s., where Ñ(ds,du) := N(ds,du)− dsm(du).

For the definitions of an (Ft)t∈R+ -Brownian motion and an (Ft)t∈R+ -Poisson point process, see, e.g., Ikeda
and Watanabe [10, Chapter I, Definition 7.2 and Chapter II, Definition 3.2].

In the next remark we point out that the integrals in the SDE (1.1) are well-defined under the conditions of
Definition 3.1 and have càdlàg modifications as functions of t.

3.2 Remark. If conditions (D1), (D2) and (D4)(b) are satisfied, then
(∫ t

0
σ(s,Xs) dW s

)
t∈R+

is well-defined

and has continuous sample paths almost surely, see, Ikeda and Watanabe [10, Chapter II, Definition 1.9]. Indeed,
(σ(t,Xt))t∈R+ is (Ft)t∈R+-adapted (since X is (Ft)t∈R+ -adapted and σ is measurable), (σ(t,Xt))t∈R+ is
measurable (since X is measurable, because it has right-continuous paths, see Karatzas and Shreve [13, Remark

1.1.14], and σ is measurable), and P
(∫ t

0
∥σ(s,Xs)∥2 ds <∞

)
= 1, t ∈ R+.

Concerning conditions (D4)(c) and (d), note that the mappings R+×U0×Ω ∋ (s, u, ω) 7→ f(s,Xs−(ω), u) ∈
Rd and R+ × U1 × Ω ∋ (s, u, ω) 7→ g(s,Xs−(ω), u) ∈ Rd are (Ft)t∈R+-predictable, see Lemma A.1.

Hence condition (D4)(c) is satisfied if and only if the mapping R+×U0×Ω ∋ (s, u, ω) 7→ f(s,Xs−(ω), u) ∈ Rd
is in the (multidimensional version of the) class F 2,loc

p defined on page 62 in Ikeda and Watanabe [10], i.e., if
it is (Ft)t∈R+ -predictable and there exists a sequence (τn)n∈N of (Ft)t∈R+ -stopping times such that τn ↑ ∞
almost surely as n→ ∞ and

(3.1) E
(∫ t∧τn

0

∫
U0

∥f(s,Xs, u)∥2 dsm(du)

)
<∞, t ∈ R+, n ∈ N.

Indeed, if (D4)(c) holds then (3.1) is satisfied for

τn := inf

{
t ∈ R+ :

∫ t

0

∫
U0

∥f(s,Xs, u)∥2 dsm(du) > n

}
∧ n, n ∈ N,

where τn ↑ ∞ almost surely as n→ ∞. On the other hand, (3.1) implies P
(∫ t∧τn

0

∫
U0

∥f(s,Xs, u)∥2 dsm(du) <∞
)
=

1 for all t ∈ R+ and n ∈ N, and hence (D4)(c), because τn ↑ ∞ almost surely as n→ ∞.

Moreover, if conditions (D1), (D3) and (D4)(c) are satisfied, then the process(∫ t

0

∫
U0

f(s,Xs−, u) Ñ(ds,du)

)
t∈R+

is well-defined and has càdlàg sample paths almost surely. Indeed, for each n ∈ N,(∫ t∧τn

0

∫
U0

f(s,Xs−, u) Ñ(ds,du)

)
t∈R+

=

(∫ t

0

∫
U0

1[0,τn](s)f(s,Xs−, u) Ñ(ds,du)

)
t∈R+

,

see page 63 in Ikeda and Watanabe [10]. The integrand R+×U0×Ω ∋ (s, u, ω) 7→ 1[0,τn](s)f(s,Xs−(ω), u) ∈ Rd

belongs to the (multidimensional version of the) class F 2
p defined on page 62 in Ikeda and Watanabe [10],

hence the process on the right hand side is a square integrable (Ft)t∈R+-martingale, see page 63 in Ikeda and
Watanabe [10]. By Theorem 1.3.13 in Karatzas and Shreve [13], this process has a càdlàg modification. Here
we point out that for using this theorem, we need completeness and right continuity of the filtration (Ft)t∈R+ .
Further, we also obtain∫ t∧τn

0

∫
U0

f(s,Xs−, u) Ñ(ds,du)
a.s.−→

∫ t

0

∫
U0

f(s,Xs−, u) Ñ(ds,du) as n→ ∞
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for all t ∈ R+, since τn ↑ ∞ almost surely as n→ ∞.

Recalling that the mapping R+ × U1 × Ω ∋ (s, u, ω) 7→ g(s,Xs−(ω), u) ∈ Rd is (Ft)t∈R+ -predictable,
condition (D4)(d) is satisfied if and only if the mapping R+ ×U1 ×Ω ∋ (s, u, ω) 7→ g(s,Xs−(ω), u) ∈ Rd is in
the (multidimensional version of the) class F p defined on page 61 in Ikeda and Watanabe [10].

Further, if conditions (D1), (D3) and (D4)(d) are satisfied, then, by definition, the process(∫ t

0

∫
U1

g(s,Xs−, u)N(ds,du)

)
t∈R+

=

 ∑
s∈(0,t]∩D(p)

g(s,Xs−, p(s))1U1(p(s))


t∈R+

is well-defined and has càdlàg sample paths, where D(p) is the domain of p (being a countable subset of
R++). Indeed, for each ω ∈ Ω, by definition, the mappings

R+ ∋ t 7→
∑

s∈(0,t]∩D(p)(ω)

g(s,Xs−(ω), p(s)(ω))1U1(p(s)(ω)),

R+ ∋ t 7→
∑

s∈(0,t)∩D(p)(ω)

g(s,Xs−(ω), p(s)(ω))1U1(p(s)(ω))

are right and left continuous, respectively. 2

3.3 Remark. If m(U1) < ∞, then condition (D4)(d) is satisfied automatically, since then E(N((0, t] ×
U1) = tm(U1) < ∞ implies P(N((0, t] × U1) < ∞) = 1, and hence

∫ t
0

∫
U1

∥g(s,Xs−, u)∥N(ds,du) =∑
s∈(0,t]∩D(p) ∥g(s,Xs−, p(s))∥1U1

(p(s)) is a finite sum with probability one. 2

3.4 Remark. Note that if conditions (D1)–(D3) are satisfied, then W and p are automatically independent
according to Theorem 6.3 in Chapter II of Ikeda and Watanabe [10], since the intensity measure dsm(du) of
p is deterministic.

Moreover, if
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
is a weak solution of the SDE (1.1), then F0, W and p are

mutually independent, and hence X0, W and p are mutually independent as well. Indeed, the conditional
joint charateristic function of W and the counting measure of p with respect to F0 equals to the product
of the (unconditional) charateristic functions of W and the counting measure of p, see equation (6.12) in
Chapter II of Ikeda and Watanabe [10] applied with X = W and s = 0, and then one can use Lemma 2.6.13
in Karatzas and Shreve [13]. Since X0 is measurable with respect to F0 due to (D4), we have the mutual
independence of X0, W and p.

The thinnings p0 and p1 of p onto U0 and U1 are again stationary (Ft)t∈R+ -Poisson point processes
on U0 and U1, respectively, and their characteristic measures are the restrictions m|U0 and m|U1 of m
onto U0 and U1, respectively (this can be checked calculating their conditional Laplace transforms, see Ikeda
and Watanabe [10, page 44]).

Remark that for any weak solution of the SDE (1.1), X0, the Brownian motion W and the stationary
Poisson point processes p0 and p1 are mutually independent according again to Theorem 6.3 in Chapter II of
Ikeda and Watanabe [10]. Indeed, one can argue as before taking into account also that the intensity measures
of p0 and p1 are deterministic, and condition (6.11) of this theorem is satisfied, because p0 and p1 live on
disjoint subsets of U . 2

3.5 Definition. We say that pathwise uniqueness holds for the SDE (1.1) if whenever
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
and

(
Ω,F , (Ft)t∈R+ ,P,W , p, X̃

)
are weak solutions of the SDE (1.1) such that P(X0 = X̃0) = 1, then

P(Xt = X̃t for all t ∈ R+) = 1.

3.6 Remark. One may also consider the following more strict definition of pathwise uniqueness. Namely, one
could say that pathwise uniqueness holds for the SDE (1.1) if whenever

(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
and(

Ω,F , (F̃t)t∈R+ ,P,W , p, X̃
)

are weak solutions of the SDE (1.1) such that P(X0 = X̃0) = 1, then P(Xt =

X̃t for all t ∈ R+) = 1. Note that in this definition we require that W is an (Ft)t∈R+ -Brownian motion and

an (F̃t)t∈R+-Brownian motion as well, and since it is not necessarily true that W is an (σ(Ft ∪ F̃t))t∈R+ -
Brownian motion, it is not clear whether this more strict definition of pathwise uniqueness and the one given
in 3.5 are equivalent. According to Ikeda and Watanabe [10, Chapter IV, Remark 1.3], they are equivalent. We
also point out that in our statements and proofs we use pathwise uniqueness in the sense of Definition 3.5, and
we do not use the above mentioned equivalence of the two kinds of definitions. 2
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3.7 Definition. We say that uniqueness in the sense of probability law holds for the SDE (1.1) if whenever(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
and

(
Ω̃, F̃ , (F̃t)t∈R+ , P̃, W̃ , p̃, X̃

)
are weak solutions of the SDE (1.1) with the

same initial distribution, i.e., P(X0 ∈ B) = P̃(X̃0 ∈ B) for all B ∈ B(Rd), then P(X ∈ C) = P̃(X̃ ∈ C)
for all C ∈ D(R+,Rd).

Now we define strong solutions. Consider the following objects:

(E1) a probability space (Ω,F ,P);

(E2) an r-dimensional standard Brownian motion (W t)t∈R+ ;

(E3) a stationary Poisson point process p on U with characteristic measure m;

(E4) a random vector ξ with values in Rd, independent of W and p.

3.8 Remark. Note that if conditions (E1)–(E4) are satisfied, then ξ, W and p are automatically mutually
independent according to Remark 3.4. 2

Provided that the objects (E1)–(E4) are given, let (Fξ,W, p
t )t∈R+ be the augmented filtration generated by ξ,

W and p, i.e., for each t ∈ R+, Fξ,W, p
t is the σ-field generated by σ(ξ; W s, s ∈ [0, t]; p(s), s ∈ (0, t]∩D(p))

and by the P-null sets from σ(ξ; W s, s ∈ R+; p(s), s ∈ R++ ∩ D(p)) (which is similar to the definition in
Karatzas and Shreve [13, page 285]). One can check that

• (Fξ,W, p
t )t∈R+ satisfies the usual hypotheses;

• (W t)t∈R+ is a standard (Fξ,W, p
t )t∈R+-Brownian motion;

• p is a stationary (Fξ,W, p
t )t∈R+

-Poisson point process on U with characteristic measure m.

Indeed, by Remark 3.8, W is a standard (σ(ξ; W s, s ∈ [0, t]; p(s), s ∈ (0, t] ∩D(p)))t∈R+ -Brownian motion,
and p is a stationary (σ(ξ; W s, s ∈ [0, t]; p(s), s ∈ (0, t] ∩ D(p)))t∈R+-Poisson point process on U with
characteristic measure m. Hence, by Theorems 6.4 and 6.5 in Chapter II in Ikeda and Watanabe [10], (W , p)
has the strong Markov property with respect to the filtration (σ(ξ; W s, s ∈ [0, t]; p(s), s ∈ (0, t] ∩D(p)))t∈R+

.

Then Proposition 2.7.7 in Karatzas and Shreve [13] yields that the augmented filtration (Fξ,W, p
t )t∈R+ satisfies

the usual hypotheses. Moreover, the augmentation of σ-fields does not disturb the definition of a standard
Wiener process and a stationary Poisson point process, hence (W t)t∈R+ is a standard (Fξ,W, p

t )t∈R+ -Brownian

motion, and p is a stationary (Fξ,W, p
t )t∈R+ -Poisson point process on U with characteristic measure m. For

the standard Wiener process, see, e.g., Karatzas and Shreve [13, Theorem 2.7.9]. The main point is to show
that W t −W s is independent of Fξ,W ,p

s for all s, t ∈ R+ with s < t, and p(t) − p(s) is independent
of Fξ,W ,p

s for all s, t ∈ D(p) with s < t, detailed as follows (in order to shed some light what is going on
behind). Let s, t ∈ R+ with s < t, and F ∈ Fξ,W, p

s . Then, by Problem 2.7.3 in Karatzas and Shreve

[13], there exists F̃ ∈ σ(ξ; W u, u ∈ [0, s]; p(u), u ∈ (0, s] ∩ D(p)) such that F∆F̃ is a P-null set from

σ(ξ; W u, u ∈ R+; p(u), u ∈ R++∩D(p)), where F∆F̃ denotes the symmetric difference of F and F̃ . Using
that

P(A) = P(B) + P(A ∩ (Ω \B))− P((Ω \A) ∩B), A,B ∈ F ,
we get for all K ∈ B(Rr),

P({W t −W s ∈ K} ∩ F )

= P({W t −W s ∈ K} ∩ F̃ )

+ P({W t −W s ∈ K} ∩ F ∩ ({W t −W s ̸∈ K} ∪ (Ω \ F̃ )))

− P(({W t −W s ̸∈ K} ∪ (Ω \ F )) ∩ {W t −W s ∈ K} ∩ F̃ )

= P({W t −W s ∈ K} ∩ F̃ ) + P({W t −W s ∈ K} ∩ F ∩ (Ω \ F̃ ))

− P({W t −W s ∈ K} ∩ (Ω \ F ) ∩ F̃ )

= P({W t −W s ∈ K} ∩ F̃ ) = P(W t −W s ∈ K)P(F̃ ) = P(W t −W s ∈ K)P(F ),
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where the last but one step follows from the independence of W t −W s and F̃ . A similar argument shows
the independence of p(t)− p(s) and F .

3.9 Definition. Suppose that the objects (E1)–(E4) are given. A strong solution of the SDE (1.1) on (Ω,F ,P)
and with respect to the standard Brownian motion W , the stationary Poisson point process p and initial
value ξ, is an Rd-valued (Fξ,W, p

t )t∈R+-adapted càdlàg process (Xt)t∈R+ with P(X0 = ξ) = 1 satisfying
(D4)(b)–(d).

Clearly, if (Xt)t∈R+ is a strong solution, then
(
Ω,F , (Fξ,W, p

t )t∈R+ ,P,W , p,X
)

is a weak solution with
initial distribution being the distribution of ξ.

4 Proof of Theorem 1.1

Our presentation as follows is a generalization of the one given in Section 5.3.D in Karatzas and Shreve [13].

Let us consider a weak solution
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
of the SDE (1.1) with initial distribution n

on (Rd,B(Rd)). Then P(X0 ∈ B) = n(B), B ∈ B(Rd). We put Y t := Xt − X0 for t ∈ R+, and we
regard the solution X as consisting of four parts: X0, W , p and Y . Let us consider the product space

Θ := Rd × C(R+,Rr)×M(R+ × U)×D(R+,Rd)(4.1)

equipped with the Borel σ-algebra

B(Θ) = B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)⊗D(R+,Rd),

see, e.g., Dudley [7, Proposition 4.1.7]. The quadruplet (X0,W , p,Y ) induce the probability measure P on
(Θ,B(Θ)) according to the prescription

P (A) := P[(X0,W , p,Y ) ∈ A], A ∈ B(Θ).(4.2)

We denote by θ = (x, w, π, y) a generic element of Θ. The marginal of P on the x-coordinate of θ is
the probability measure n on (Rd,B(Rd)), the marginal on the w-coordinate is an r-dimensional Wiener
measure PW, r on (C(R+,Rr), C(R+,Rr)), the marginal on the π-coordinate is the distribution PU,m on
(M(R+ × U),M(R+ × U)) of a stationary Poisson point process p on U with characteristic measure m.
Moreover, the distribution of the triplet (x, w, π) under P is the product measure n×PW, r×PU,m because
X0 is F0-measurable and W , p and F0 are independent, see Remark 3.4. Furthermore, P(Y 0 = 0) = 1.

The product space Θ defined in (4.1) is a complete, separable metric space, since Rd is a complete,
separable metric space with the usual Euclidean metric, C(R+,Rr) is a complete, separable metric space with
a metric inducing the local uniform topology (see, e.g., Jacod and Shiryaev [12, Section VI.1a]), D(R+,Rd) is
a complete, separable metric space with a metric inducing the so-called Skorokhod topology (see, e.g., Jacod
and Shiryaev [12, Theorem VI.1.14]), and the vague topology on the space M(R+×U) of all point measures on
R+×U is metrizable as a complete, separable metric space (see, e.g., Resnick [21, Proposition 3.17, page 147]).
Hence there exists a regular conditional probability for B(Θ) given (x, w, π), by an application of Karatzas
and Shreve [13, Chapter 5, Theorem 3.19] with the random variable Θ ∋ (x, w, π, y) 7→ (x, w, π). We shall be
interested in conditional probabilities of sets in B(Θ) only of the form Rd × C(R+,Rr) ×M(R+ × U) × F ,
where F ∈ D(R+,Rd). Consequently, with a slight abuse of notation, there exists a function

Q : Rd × C(R+,Rr)×M(R+ × U)×D(R+,Rd) → [0, 1](4.3)

enjoying the following properties:

(R1) for each x ∈ Rd, w ∈ C(R+,Rr) and π ∈M(R+×U), the set function D(R+,Rd) ∋ F 7→ Q(x, w, π, F )
is a probability measure on (D(R+,Rd),D(R+,Rd));

(R2) for each F ∈ D(R+,Rd), the mapping Rd × C(R+,Rr) ×M(R+ × U) ∋ (x, w, π) 7→ Q(x, w, π, F ) is
B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)/B([0, 1])-measurable;

(R3) for each G ∈ B(Rd)⊗ C(R+,Rr)⊗M(R+ × U) and F ∈ D(R+,Rd), we have

P (G× F ) =

∫
G

Q(x, w, π, F )n(dx)PW, r(dw)PU,m(dπ).
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We can call Q(x, w, π, ·) as the regular conditional probability for D(R+,Rd) given (x, w, π).

Let us now consider two weak solutions
(
Ω(i),F (i), (F (i)

t )t∈R+ ,P
(i),W (i), p(i),X(i)

)
, i ∈ {1, 2} of the SDE

(1.1) with the same initial distribution n on (Rd,B(Rd)), thus

P(1)[X
(1)
0 ∈ B] = P(2)[X

(2)
0 ∈ B] = n(B), B ∈ B(Rd).

According to (4.2), let

Pi(A) := P(i)[(X
(i)
0 ,W (i), p(i),Y (i)) ∈ A], A ∈ B(Θ), i ∈ {1, 2},

and, as explained before, there exist functions

Qi : Rd × C(R+,Rr)×M(R+ × U)×D(R+,Rd) → [0, 1], i ∈ {1, 2},(4.4)

enjoying the properties (R1)–(R3).

First, we bring the two triplets (X(i),W (i), p(i)), i ∈ {1, 2}, together on the same, canonical space, while
preserving the joint distribution of the coordinates within each triplet. Let Ω := Θ × D(R+,Rd) equipped
with the σ-algebra F , which is the completion of the product σ-algebra B(Θ)⊗D(R+,Rd) by the collection
N of null sets under the probability measure

P1,2(A) :=

∫
Rd×C(R+,Rr)×M(R+×U)

(∫
D(R+,Rd)×D(R+,Rd)

1A(x, w, π, y
(1), y(2))

Q1(x, w, π,dy
(1))Q2(x, w, π, dy

(2))

)
n(dx)PW, r(dw)PU,m(dπ)

(4.5)

for A ∈ B(Θ)⊗D(R+,Rd), where we have denoted by (x, w, π, y(1), y(2)) a generic element of Ω, and then
we extend P1,2 to F . Especially, for all G ∈ B(Rd)⊗ C(R+,Rr)⊗M(R+ × U) and F1, F2 ∈ D(R+,Rd),

P1,2(G× F1 × F2) =

∫
G

Q1(x, w, π, F1)Q2(x, w, π, F2)n(dx)PW, r(dw)PU,m(dπ).

In order to endow (Ω,F ,P1,2) with a filtration that satisfies the usual conditions, for each t ∈ R+, we take
Gt := σ(fs,B : s ∈ [0, t], B ∈ B(U)), where the mapping fs,B : Ω → Rd × Rr × [0,∞]× Rd × Rd is defined by

fs,B(x, w, π, y
(1), y(2)) :=

(
x, ws, π([0, s]×B), y(1)s , y(2)s

)
, (x, w, π, y(1), y(2)) ∈ Ω,

and put

G̃t := σ(Gt ∪N ), Ft := G̃t+ :=
∩
ε>0

G̃t+ε, t ∈ R+.

We note that for each t ∈ R+,

Gt = Ĝt = B(Rd)⊗ Ct(R+,Rr)⊗Mt(R+ × U)⊗Dt(R+,Rd)⊗Dt(R+,Rd),

where Ĝt := σ(f̂s,B : s ∈ [0, t], B ∈ B(U)), and the mapping f̂s,B : Ω → Ω is defined by

f̂s,B(x, w, π, y
(1), y(2)) :=

(
x, (wt∧s)t∈R+ , π|[0,s]×B , (y

(1)
t∧s)t∈R+ , (y

(2)
t∧s)t∈R+

)
for (x, w, π, y(1), y(2)) ∈ Ω. Indeed, for all t ∈ R+, by definition, the σ-algebra Gt coincides with the
σ-algebra generated by the sets

E1 × {w ∈ C(R+,Rr) : w(s) ∈ E2} × {π ∈M(R+ × U) : π([0, s]×B) ∈ E3}

× {y(1) ∈ D(R+,Rd) : y(1)(s) ∈ E4} × {y(2) ∈ D(R+,Rd) : y(2)(s) ∈ E5}

for s ∈ [0, t], B ∈ B(U), E1 ∈ B(Rd), E2 ∈ B(Rr), E3 ∈ B([0,∞]) and E4, E5 ∈ B(Rd). Moreover, as in

Problem 2.4.2 in Karatzas and Shreve [13], the σ-algebra Ĝt coincides with the σ-algebra generated by the
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sets

E1 × {w ∈ C(R+,Rr) : (w(t1,1 ∧ s), . . . , w(t1,n1 ∧ s)) ∈ E2}

× {π ∈M(R+ × U) : (π([0, t2,1 ∧ s]×B1), . . . , π([0, t2,n2 ∧ s]×Bn2)) ∈ E3}

× {y(1) ∈ D(R+,Rd) : (y(1)(t3,1 ∧ s), . . . , y(1)(t3,n3 ∧ s)) ∈ E4}

× {y(2) ∈ D(R+,Rd) : (y(2)(t4,1 ∧ s), . . . , y(2)(t4,n4 ∧ s)) ∈ E5}

for s ∈ [0, t], ti,j ∈ R+, i ∈ {1, 2, 3, 4}, j ∈ {1, . . . , ni}, B1, . . . , Bn2 ∈ B(U), E1 ∈ B(Rd), E2 ∈ B(Rrn1),
E3 ∈ B([0,∞]n2), E4 ∈ B(Rdn3) and E5 ∈ B(Rdn4). Since for any stochastic process (ξt)t∈R+ ,

σ(ξt : t ∈ [0, s]) = σ((ξt1 , . . . , ξtn) : ti ∈ [0, s], i ∈ {1, . . . , n}, n ∈ N), s ∈ R+,(4.6)

we get Ĝt = Gt, t ∈ R+.

The π-coordinate process on Ω induces a point process pπ on U with characteristic measure m in a
natural way, since, as it was recalled, there is a bijection between the set of point functions on U and the set
of point measures π on R+ × U with π({0} × U) = 0 and π({t} × U) 6 1, t ∈ R++, and

P1,2

({
(x, w, π, y(1), y(2)) ∈ Ω : π({0} × U) = 0, π({t} × U) 6 1, t ∈ R++

})
= 1,

which follows from (4.5) using that PU,m is the distribution on (M(R+ × U),M(R+ × U)) of a stationary
Poisson point process on U with characteristic measure m implying that

PU,m
({
π ∈M(R+ × U) : π({0} × U) = 0, π({t} × U) 6 1, t ∈ R++

})
= 1.

Next we check that
(
Ω,F , (Ft)t∈R+ ,P1,2, w, pπ, (x+ y

(i)
t )t∈R+

)
, i ∈ {1, 2}, are weak solutions of the SDE

(1.1) with the same initial distribution n. Using the definitions of Pi, i ∈ {1, 2}, P1,2, (R1) and (R3) we get

(4.7) P1,2[ω = (x, w, π, y(1), y(2)) ∈ Ω : (x, w, π, y(i)) ∈ A] = P(i)[(X
(i)
0 ,W (i), p(i),Y (i)) ∈ A]

for all A ∈ B(Θ) and i ∈ {1, 2}. Indeed, with i = 1, G ∈ B(Rd) ⊗ C(R+,Rr) ⊗ M(R+ × U) and
F ∈ D(R+,Rd), by Fubini theorem,

P1,2[ω = (x, w, π, y(1), y(2)) ∈ Ω : (x, w, π, y(1)) ∈ G× F ]

=

∫
{ω∈Ω:(x,w,π,y(1))∈G×F}

Q1(x, w, π,dy
(1))Q2(x, w, π,dy

(2))n(dx)PW ,r(dw)PU,m(dπ)

=

∫
G

Q1(x, w, π, F )Q2(x, w, π,D(R+,Rd))n(dx)PW ,r(dw)PU,m(dπ)

=

∫
G

Q1(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ) = P1(G× F )

= P(1)[(X
(1)
0 ,W (1), p(1),Y (1)) ∈ G× F ].

So the distribution of (x+y(i), w, pπ) under P1,2 is the same as the distribution of (X
(i)
0 +Y (i),W (i), p(i)) =

(X(i),W (i), p(i)) under P(i). Due to the definition of a weak solution, under P(i), W (i) is an r-dimensional

standard (F (i)
t )t∈R+ -Brownian motion, and p(i) is a stationary (F (i)

t )t∈R+-Poisson point process on U with
characteristic measure m. Consequently, by the definition of (Gt)t∈R+ (which is nothing else but the natural
filtration corresponding to the coordinate processes), under P1,2, the w-coordinate process is an r-dimensional
standard (Gt)t∈R+-Brownian motion, the process pπ is a stationary (Gt)t∈R+-Poisson point process on U with

characteristic measure m, and (x+y
(i)
t )t∈R+ is (Gt)t∈R+-adapted, i ∈ {1, 2}. Further, the same is true if we

replace the filtration (Gt)t∈R+ by (Ft)t∈R+ , see, Lemma A.5. Note also that the filtration (Ft)t∈R+ satisfies

the usual conditions. All in all, for each i ∈ {1, 2}, the tuple
(
Ω,F , (Ft)t∈R+ ,P1,2, w, pπ, (x + y

(i)
t )t∈R+

)
satisfies (D1)–(D3).

Hence it remains to check that, for each i ∈ {1, 2}, the tuple
(
Ω,F , (Ft)t∈R+ ,P1,2, w, pπ, (x + y

(i)
t )t∈R+

)
satisfies (D4). For each i ∈ {1, 2}, let us apply Lemma A.4 with the following choices(

Ω(i),F (i), (F (i)
t )t∈R+ ,P

(i),W (i), p(i),X(i)
)
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and (
Ω,F , (Ft)t∈R+ ,P1,2, w, pπ, (x+ y

(i)
t )t∈R+

)
.

Since
(
Ω(i),F (i), (F (i)

t )t∈R+ ,P
(i),W (i), p(i),X(i)

)
is a weak solution of the SDE (1.1) with initial distribution n,

the tuple
(
Ω(i),F (i), (F (i)

t )t∈R+ ,P
(i),W (i), p(i),X(i)

)
satisfies (D1)–(D4). Further, as it was explained before,

the tuple
(
Ω,F , (Ft)t∈R+ ,P1,2, w, pπ, (x+y

(i)
t )t∈R+

)
satisfies (D1)–(D3), the process (x+y

(i)
t )t∈R+ is adapted

to the filtration (Ft)t∈R+
, and the distribution of (X(i),W (i), p(i)) under P(i) is the same as the distribution of

(x+y(i), w, pπ) under P1,2. Then Lemma A.4 yields that the tuple
(
Ω,F , (Ft)t∈R+ ,P1,2, w, pπ, (x+y

(i)
t )t∈R+

)
satisfies (D4)(a)–(d) and the distribution of(

X
(i)
t −X

(i)
0 −

∫ t

0

b(s,X(i)
s ) ds−

∫ t

0

σ(s,X(i)
s ) dW (i)

s

−
∫ t

0

∫
U0

f(s,X
(i)
s−, u) Ñ

(i)(ds,du)−
∫ t

0

∫
U1

g(s,X
(i)
s−, u)N

(i)(ds,du)

)
t∈R+

on (D(R+,Rd),D(R+,Rd)) under P(i) is the same as the distribution of(
y
(i)
t − y

(i)
0 −

∫ t

0

b(s,x+ y(i)s ) ds−
∫ t

0

σ(s,x+ y(i)s ) dws

−
∫ t

0

∫
U0

f(s,x+ y
(i)
s−, u) Ñπ(ds,du)−

∫ t

0

∫
U1

g(s,x+ y
(i)
s−, u)Nπ(ds,du)

)
t∈R+

on (D(R+,Rd),D(R+,Rd)) under P1,2, where Nπ(ds,du) is the counting measure of pπ on R+ × U ,

and Ñπ(ds,du) := Nπ(ds,du) − dsm(du). Using also that for each i ∈ {1, 2}, the first process and the

identically 0 process are indistinguishable (since the SDE (1.1) holds P(i)-a.s. for (X
(i)
t )t∈R+), we obtain that

the tuple
(
Ω,F , (Ft)t∈R+

,P1,2, w, pπ, (x+y
(i)
t )t∈R+

)
satisfies (D4), as desired. It is worth mentioning that this

is the place where we use that the filtration (Ft)t∈R+ satisfies the usual conditions in order to ensure that the

second process above has a càdlàg modification, see Remark 3.2. The filtrations (Gt)t∈R+ and (G̃t)t∈R+ do
not necessarily satisfy the usual conditions, this is the reason for introducing the filtration (Ft)t∈R+ .

We have P1,2(x + y
(1)
0 = x + y

(2)
0 ) = 1, because, by (4.7), P1,2(y

(i)
0 = 0) = P(i)(Y

(i)
0 = 0) = 1,

i ∈ {1, 2}. Since
(
Ω,F , (Ft)t∈R+ ,P1,2, w, pπ, (x + y

(i)
t )t∈R+

)
, i ∈ {1, 2}, are weak solutions of the SDE

(1.1) with the same initial distribution n, and P1,2(x + y
(1)
0 = x + y

(2)
0 ) = 1, pathwise uniqueness implies

P1,2(x+ y
(1)
t = x+ y

(2)
t for all t ∈ R+) = 1, or equivalently,

(4.8) P1,2[ω = (x, w, π, y(1), y(2)) ∈ Ω : y(1) = y(2)] = 1,

hence, applying (4.7),

P(1)[(X
(1)
0 ,W (1), p(1),Y (1)) ∈ A] = P1,2[ω = (x, w, π, y(1), y(2)) ∈ Ω : (x, w, π, y(1)) ∈ A]

= P1,2[ω = (x, w, π, y(1), y(2)) ∈ Ω : (x, w, π, y(2)) ∈ A]

= P(2)[(X
(2)
0 ,W (2), p(2),Y (2)) ∈ A]

for all A ∈ B(Θ). Since X(i) = X
(i)
0 + Y (i), i ∈ {1, 2}, and the mapping Rd × D(R+,Rd) ∋ (x0,y) 7→

x0 + y ∈ D(R+,Rd) is continuous (see, e.g., Jacod and Shiryaev [12, Proposition VI.1.23]), we have

P(1)[X(1) ∈ Ã] = P(2)[X(2) ∈ Ã], Ã ∈ D(R+,Rd),

and then we obtain uniqueness in the sense of probability law. 2

5 Precise formulation and proof of Theorem 1.2

Our first result is a counterpart of Lemma 1.1 in Chapter IV in Ikeda andWatanabe [10] for stochastic differential
equations with jumps, compare also with Situ [24, page 106, Fact A].
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5.1 Lemma. If
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
is a weak solution of the SDE (1.1) with initial distribution n

on (Rd,B(Rd)), then for every fixed t ∈ R+ and F ∈ Dt(R+,Rd), the mapping

Rd × C(R+,Rr)×M(R+ × U) ∋ (x, w, π) 7→ Q(x, w, π, F )

is B̂t/B([0, 1])-measurable, where B̂t denotes the completion of B(Rd)⊗Ct(R+,Rr)⊗Mt(R+×U) by the null
sets of n× PW ,r × PU,m from B(Rd)⊗ C(R+,Rr)⊗M(R+ × U).

Proof. Consider the regular conditional probability

Qt : Rd × C(R+,Rr)×M(R+ × U)×Dt(R+,Rd) → [0, 1]

for Dt(R+,Rd) given (x, φt(w), ψt(π)), where, for each t ∈ R+, the stopped mapping φt : C(R+,Rr) →
C(R+,Rr) is defined in (2.1), and ψt : M(R+ × U) → M(R+ × U), ψt(π) := π

∣∣
[0,t]×U , π ∈ M(R+ × U),

i.e., ψt(π) denotes the restriction of π onto [0, t] × U . The mapping Qt enjoy properties analogous to
(R1)–(R3). Namely,

(R̃1) for each x ∈ Rd, w ∈ C(R+,Rr) and π ∈M(R+×U), the set function Dt(R+,Rd) ∋ F 7→ Qt(x, w, π, F )
is a probability measure on (D(R+,Rd),Dt(R+,Rd));

(R̃2) for each F ∈ Dt(R+,Rd), the mapping Rd × C(R+,Rr) ×M(R+ × U) ∋ (x, w, π) 7→ Qt(x, w, π, F ) is
B(Rd)⊗ Ct(R+,Rr)⊗Mt(R+ × U)/B([0, 1])-measurable;

(R̃3) for every G ∈ B(Rd)⊗ Ct(R+,Rr)⊗Mt(R+ × U) and F ∈ Dt(R+,Rd),

P (G× F ) =

∫
G

Qt(x, w, π, F )n(dx)PW, r(dw)PU,m(dπ),

where the probability measure P is defined in (4.2).

In order to prove the statement, it suffices to check that

(5.1) Q(x, w, π, F ) = Qt(x, w, π, F ) for n× PW, r × PU,m-a.e. (x, w, π).

Indeed, then (n× PW, r × PU,m)(N) = 0 for

N :=
{
(x, w, π) ∈ Rd × C(R+,Rr)×M(R+ × U) : Q(x, w, π, F ) ̸= Qt(x, w, π, F )

}
∈ B(Rd)⊗ C(R+,Rr)⊗M(R+ × U),

and what is more, N ∈ B̂t, since

B̂t = σ
(
B(Rd)⊗ Ct(R+,Rr)⊗Mt(R+ × U) ∪N

)
,

where

N :=
{
A ⊂ Rd × C(R+,Rr)×M(R+ × U) : ∃B ∈ B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)

with A ⊂ B, (n× PW ,r × PU,m)(B) = 0
}
,

and N ∈ N . Hence for all E ∈ B([0, 1]),{
(x, w, π) ∈ Rd × C(R+,Rr)×M(R+ × U) : Q(x, w, π, F ) ∈ E

}
= A1 ∪A2,

where

A1 :=
{
(x, w, π) ∈ Rd × C(R+,Rr)×M(R+ × U) : Q(x, w, π, F ) ∈ E,

Q(x, w, π, F ) = Qt(x, w, π, F )
}

=
{
(x, w, π) ∈ Rd × C(R+,Rr)×M(R+ × U) : Qt(x, w, π, F ) ∈ E

}
∩
{
(x, w, π) ∈ Rd × C(R+,Rr)×M(R+ × U) : Q(x, w, π, F ) = Qt(x, w, π, F )

}
,
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and

A2 :=
{
(x, w, π) ∈ Rd × C(R+,Rr)×M(R+ × U) : Q(x, w, π, F ) ∈ E,

Q(x, w, π, F ) ̸= Qt(x, w, π, F )
}
.

Here A1 ∈ B̂t, since, by (R̃2), the set{
(x, w, π) ∈ Rd × C(R+,Rr)×M(R+ × U) : Qt(x, w, π, F ) ∈ E

}
is in B(Rd)⊗ Ct(R+,Rr)⊗Mt(R+ × U) ⊂ B̂t, and{

(x, w, π) ∈ Rd × C(R+,Rr)×M(R+ × U) : Q(x, w, π, F ) = Qt(x, w, π, F )
}

= Rd × C(R+,Rr)×M(R+ × U) \N ∈ B̂t.

Further, A2 ⊂ N ∈ B(Rd)⊗ C(R+,Rr)⊗M(R+ × U) and (n× PW ,r × PU,m)(N) = 0 imply A2 ∈ N ⊂ B̂t.

Unfortunately, (5.1) does not follow from the comparison of (R3) with (R̃3), since still we do not know
weather the function (x, w, π) 7→ Q(x, w, π, F ) is B(Rd) ⊗ Ct(R+,Rr) ⊗ Mt(R+ × U)/B([0, 1])-measurable.

In order to show (5.1), it suffices to check that (R̃3) is valid for every G ∈ B(Rd)⊗ C(R+,Rr)⊗M(R+ × U).
Indeed, then, by (R3),∫

G

Q(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ) =

∫
G

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ)

for all G ∈ B(Rd)⊗ C(R+,Rr)⊗M(R+ × U) and F ∈ Dt(R+,Rd), and hence, using also that the function
(x, w, π) 7→ Qt(x, w, π, F ) is B(Rd) ⊗ C(R+,Rr) ⊗M(R+ × U)/B([0, 1])-measurable, by the uniqueness part
of the Radon-Nikodým theorem, we have (5.1).

The class G of sets G satisfying (R̃3) is a Dynkin system, i.e.,

• Rd×C(R+,Rr)×M(R+×U) ∈ G, since Rd×C(R+,Rr)×M(R+×U) ∈ B(Rd)⊗Ct(R+,Rr)⊗Mt(R+×U)

and one can apply (R̃3),

• if G1, G2 ∈ G and G1 ⊂ G2, then G2 \G1 ∈ G. Indeed,

P ((G2 \G1)× F ) = P (G2 × F )− P (G1 × F )

=

∫
G2

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ)

−
∫
G1

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ)

=

∫
G2\G1

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ).

• if (Gn)n∈N ⊂ G and G1 ⊂ G2 ⊂ · · · , then
∪∞
n=1Gn ∈ G. Indeed, by the continuity of probability and

dominated convergence theorem,

P

(( ∞∪
n=1

Gn

)
× F

)
= lim
n→∞

P (Gn × F )

= lim
n→∞

∫
Gn

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ)

= lim
n→∞

∫
Rd×C(R+,Rr)×M(R+×U)

Qt(x, w, π, F )1Gn(x, w, π)n(dx)PW ,r(dw)PU,m(dπ)

=

∫
∪∞

n=1Gn

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ).
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Consider the collection of sets of the form

(5.2) G = G1 × (φ−1
t (G2) ∩ φ̃−1

t (G3))× (ψ−1
t (G4) ∩ ψ̃−1

t (G5))

for G1 ∈ B(Rd), G2, G3 ∈ C(R+,Rr), G4, G5 ∈ M(R+ × U), where, for each t ∈ R+, φt and ψt are
defined earlier, φ̃t : C(R+,Rr) → C(R+,Rr) denotes the increment mapping (φ̃t(w))(s) := w(t + s) − w(t),

w ∈ C(R+,Rr), s ∈ R+, and ψ̃t : M(R+ × U) → M(R+ × U) denotes the increment mapping given by

ψ̃t(π)([0, s]×B) := π([0, t+ s]×B)− π([0, t]×B), s ∈ R+, B ∈ B(U). This collection of sets is closed under
pairwise intersection and generates the σ-algebra B(Rd)⊗C(R+,Rr)⊗M(R+×U), since the collection of sets
of the form (φ−1

t (G2) ∩ φ̃−1
t (G3)) with G2 = {w ∈ C(R+,Rr) : (w(t1), . . . , w(tn)) ∈ A} for n ∈ N, t ∈ R+,

t1, . . . , tn ∈ [0, t], A ∈ B(Rrn), and G3 = C(R+,Rr) generates C(R+,Rr) by (2.2), and the collection of sets

of the form (ψ−1
t (G4) ∩ ψ̃−1

t (G5)) with

G4 = {π ∈M(R+ × U) : π([0, t]×B) ∈ A}

for t ∈ R+, B ∈ B(U), A ∈ B([0,∞]), and G5 =M(R+×U) generates M(R+×U) by (2.3). By the Dynkin
system theorem (see, e.g., Karatzas and Shreve [13, Theorem 2.1.3]), B(Rd) ⊗ C(R+,Rr) ⊗M(R+ × U) ⊂ G
provided that we prove (R̃3) for G of the form (5.2). For such a G, by Fubini theorem, we have∫

G

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ)

=

∫
ψ−1

t (G4)∩ψ̃−1
t (G5)

(∫
φ−1

t (G2)∩φ̃−1
t (G3)

(∫
G1

Qt(x, w, π, F )n(dx)

)
PW ,r(dw)

)
PU,m(dπ)

= EPW ,r×PU,m

[∫
G1

Qt(x, w, π, F )n(dx)1φ−1
t (G2)∩φ̃−1

t (G3)
(w)1ψ−1

t (G4)∩ψ̃−1
t (G5)

(π)

]

= EPW ,r×PU,m

[
EPW ,r×PU,m

[ ∫
G1

Qt(x, w, π, F )n(dx)

× 1φ−1
t (G2)

(w)1φ̃−1
t (G3)

(w)1ψ−1
t (G4)

(π)1ψ̃−1
t (G5)

(π)
∣∣∣ Ct(R+,Rr)⊗Mt(R+ × U)

]]
= EPW ,r×PU,m

[∫
G1

Qt(x, w, π, F )n(dx)1φ−1
t (G2)

(w)1ψ−1
t (G4)

(π)

(PW ,r × PU,m)
(
φ̃−1
t (G3)× ψ̃−1

t (G5)
∣∣∣ Ct(R+,Rr)⊗Mt(R+ × U)

)]

= EPW ,r×PU,m

[∫
G1

Qt(x, w, π, F )n(dx)1φ−1
t (G2)

(w)1ψ−1
t (G4)

(π)

× (PW ,r × PU,m)
(
φ̃−1
t (G3)× ψ̃−1

t (G5)
)]

=

∫
G1×φ−1

t (G2)×ψ−1
t (G4)

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ)

× (PW ,r × PU,m)
(
φ̃−1
t (G3)× ψ̃−1

t (G5)
)

= P [G1 × φ−1
t (G2)× ψ−1

t (G4)× F ] (PW ,r × PU,m)
(
φ̃−1
t (G3)× ψ̃−1

t (G5)
)
.

The fourth equality above follows from the Ct(R+,Rr)⊗Mt(R+ × U)/B([0, 1])-measurability of the function

C(R+,Rr)×M(R+ × U) ∋ (w, π) 7→
∫
G1

Qt(x, w, π, F )n(dx),

which is a consequence of (R̃2) and Fubini theorem. The fifth equality above follows from the independence of

φ̃−1
t (G3) × ψ̃−1

t (G5) and Ct(R+,Rr) ⊗Mt(R+ × U) under the measure PW ,r × PU,m, see, e.g., Ikeda and

Watanabe [10, Chapter 2, Theorems 6.4 and 6.5]. For the last equality above we used (R̃3) and

G1 × φ−1
t (G2)× ψ−1

t (G4)× F ∈ B(Rd)⊗ Ct(R+,Rr)⊗Mt(R+ × U)⊗Dt(R+,Rd).
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By (4.2),

(PW ,r × PU,m)
(
φ̃−1
t (G3)× ψ̃−1

t (G5)
)
= P [(x, w, π, y) ∈ Θ : φ̃t(w) ∈ G3, ψ̃t(π) ∈ G5]

= P[φ̃t(W ) ∈ G3, ψ̃t(p) ∈ G5],

P [G1 × φ−1
t (G2)× ψ−1

t (G4)× F ] = P[X0 ∈ G1, φt(W ) ∈ G2, ψt(p) ∈ G4, Y ∈ F ].

Therefore, if G is of the form (5.2), then∫
G

Qt(x, w, π, F )n(dx)PW ,r(dw)PU,m(dπ)

= P[X0 ∈ G1, φt(W ) ∈ G2, ψt(p) ∈ G4, Y ∈ F ] P[φ̃t(W ) ∈ G3, ψ̃t(p) ∈ G5]

= P[X0 ∈ G1, φt(W ) ∈ G2, φ̃t(W ) ∈ G3, ψt(p) ∈ G4, ψ̃t(p) ∈ G5, Y ∈ F ]

= P[(X0,W , p) ∈ G, Y ∈ F ]

= P [G× F ].

The second equality above follows from the independence of {X0 ∈ G1, φt(W ) ∈ G2, ψt(p) ∈ G4, Y ∈ F}
and {φ̃t(W ) ∈ G3, ψ̃t(p) ∈ G5} under the probability measure P. This independence holds because

{X0 ∈ G1, φt(W ) ∈ G2, ψt(p) ∈ G4, Y ∈ F}

= {X0 ∈ G1, φt(φt(W )) ∈ G2, ψt(ψt(p)) ∈ G4, Y ∈ F}

= {X0 ∈ G1, φt(W ) ∈ φ−1
t (G2), ψt(p) ∈ ψ−1

t (G4), Y ∈ F} ∈ Ft

(5.3)

and {φ̃t(W ) ∈ G3, ψ̃t(p) ∈ G5} is independent of Ft under the probability measure P, see, e.g., Ikeda and
Watanabe [10, Chapter II, Theorems 6.4 and 6.5]. The relationship (5.3) is valid since φ−1

t (G2) ∈ Ct(R+,Rr),
ψ−1
t (G4) ∈ Mt(R+ × U) and F ∈ Dt(R+,Rd), the mapping Ω ∋ ω 7→ φt(W (ω)) is Ft/Ct(R+,Rr)-

measurable, and the mapping Ω ∋ ω 7→ ψt(p(ω)) is Ft/Mt(R+ × U)-measurable, because the processes W
and p are (Ft)t∈R+-adapted. 2

5.2 Remark. The filtration (B̂t)t∈R+ defined in Lemma 5.1 is the augmentated filtration generated by the
coordinate processes on the canonical probability space (Rd × C(R+,Rr)×M(R+ × U),B(Rd)⊗ C(R+,Rr)⊗
M(R+ × U), n× PW ,r × PU,m). This is the counterpart of the augmentated filtration (Fξ,W ,p

t )t∈R+ . 2

The next lemma is a generalization of Corollary 1 in Yamada and Watanabe [28] (see also Problem 5.3.22
in Karatzas and Shreve [13]) for stochastic differential equations with jumps.

5.3 Lemma. Let us suppose that pathwise uniqueness holds for the SDE (1.1). If
(
Ω(i),F (i), (F (i)

t )t∈R+ ,P
(i),W (i), p(i),X(i)

)
,

i ∈ {1, 2}, are two weak solutions of the SDE (1.1) with the same initial distribution n on (Rd,B(Rd)), then
there exists a function k : Rd × C(R+,Rr)×M(R+ × U) → D(R+,Rd) such that

(5.4) Qi(x, w, π, {k(x, w, π)}) = 1, i ∈ {1, 2}

holds for n× PW ,r × PU,m-almost every (x, w, π) ∈ Rd ×C(R+,Rr)×M(R+ ×U), where Qi, i ∈ {1, 2}, is

given in (4.4). This function k is B(Rd)⊗C(R+,Rr)⊗M(R+ ×U)/D(R+,Rd)-measurable, B̂t/Dt(R+,Rd)-
measurable for every fixed t ∈ R+, and

P(i)(k(X
(i)
0 ,W (i), p(i)) = Y (i)) = 1, i ∈ {1, 2}.(5.5)

Proof. Fix (x, w, π) ∈ Rd × C(R+,Rr) ×M(R+ × U) and define the measure Q1,2(x, w, π, dy
(1),dy(2)) :=

Q1(x, w, π,dy
(1))Q2(x, w, π, dy

(2)) on the space S := D(R+,Rd) × D(R+,Rd) equipped with the σ-algebra
S := D(R+,Rd)⊗D(R+,Rd). By (4.5) and Fubini theorem,

(5.6) P1,2[G×B] =

∫
G

Q1,2(x, w, π,B)n(dx)PW ,r(dw)PU,m(dπ)
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for all G ∈ B(Rd)⊗C(R+,Rr)⊗M(R+×U) and B ∈ S. With the choice G = Rd×C(R+,Rr)×M(R+×U)
and B = {(y(1), y(2)) ∈ S : y(1) = y(2)}, using that pathwise uniqueness holds for the SDE (1.1), relation (4.8)
yields P1,2[G× B] = 1. Since Q1,2(x, w, π,B) 6 1 for all (x, w, π) ∈ Rd × C(R+,Rr)×M(R+ × U), (5.6)
yields the existence of a set N ∈ B(Rd)⊗C(R+,Rr)⊗M(R+×U) with (n×PW ,r×PU,m)(N) = 0 such that

Q1,2

(
x, w, π, {(y(1), y(2)) ∈ S : y(1) = y(2)}

)
= 1, (x, w, π) /∈ N.

Again, by Fubini theorem,

1 = Q1,2(x, w, π, {(y(1), y(2)) ∈ S : y(1) = y(2)})

=

∫
D(R+,Rd)

Q1(x, w, π, {y})Q2(x, w, π, dy), (x, w, π) /∈ N,
(5.7)

which can occur only if for some y0 ∈ D(R+,Rd), call it k̃(x, w, π), we have

Qi(x, w, π, {k̃(x, w, π)}) = 1, i ∈ {1, 2}, (x, w, π) /∈ N.(5.8)

Indeed, since for all (x, w, π, y) ∈ Rd × C(R+,Rr) ×M(R+ × U) ×D(R+,Rd), Q1(x, w, π, {y}) ∈ [0, 1], we
have

Q2(x, w, π, {y ∈ D(R+,Rd) : Q1(x, w, π, {y}) = 1}) = 1, (x, w, π) /∈ N.

Since for all (x, w, π) ∈ Rd×C(R+,Rr)×M(R+×U), by (R1), the set function D(R+,Rd) ∋ F 7→ Qi(x, w, π, F )

is a probability measure on (D(R+,Rd),D(R+,Rd)), i ∈ {1, 2}, we get the unique existence of k̃(x, w, π) for

all (x, w, π) /∈ N satisfying (5.8). Then we have (5.4) for k̃.

For (x, w, π) /∈ N and any B ∈ D(R+,Rd), we have k̃(x, w, π) ∈ B if and only if Qi(x, w, π,B) = 1,
i ∈ {1, 2}.

The aim of the following discussion is to show the B̂t/Dt(R+,Rd)-measurability of k̃ for all t ∈ R+. For
all t ∈ R+ and B ∈ Dt(R+,Rd), we have

k̃−1(B) = {(x, w, π) ∈ Rd × C(R+,Rr)×M(R+ × U) : k̃(x, w, π) ∈ B} =: A1 ∪A2,

where

A1 := {(x, w, π) ∈ Rd × C(R+,Rr)×M(R+ × U) : k̃(x, w, π) ∈ B, (x, w, π) ∈ N}(5.9)

and

A2 := {(x, w, π) ∈ Rd × C(R+,Rr)×M(R+ × U) : k̃(x, w, π) ∈ B, (x, w, π) /∈ N}

= {(x, w, π) ∈ Rd × C(R+,Rr)×M(R+ × U) : (x, w, π) /∈ N} ∩Qi(·, ·, ·, B)−1({1})
(5.10)

for i ∈ {1, 2}. Lemma 5.1 implies Qi(·, ·, ·, B)−1({1}) ∈ B̂t, i ∈ {1, 2}. Moreover, N ∈ B̂t (due to the

definition of B̂t, for more details, see the proof of Lemma 5.1), hence A2 ∈ B̂t. Using that A1 ⊂ N ,

(n × PW ,r × PU,m)(N) = 0 and the definition of the augmented σ-algebra B̂t (see Lemma 5.1), we obtain

A1 ∈ B̂t. Hence k̃−1(B) = A1 ∪A2 ∈ B̂t, as desired.

The aim of the following discussion is to show that k̃ is

B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)
n×PW ,r×PU,m

/D(R+,Rd)-measurable,

where B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)
n×PW ,r×PU,m

denotes the completion of B(Rd)⊗C(R+,Rr)⊗M(R+×
U) with respect to the measure n×PW ,r×PU,m. For all B ∈ D(R+,Rd), we have k̃−1(B) = A1∪A2, where
A1 and A2 are defined in (5.9) and (5.10). Property (R2) implies Qi(·, ·, ·, B)−1({1}) ∈ B(Rd)⊗C(R+,Rr)⊗
M(R+ × U), i ∈ {1, 2}. Moreover, by definition of completion (see, e.g., Definition 2.7.2 in Karatzas and
Shreve [13]),

N ∈ B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)
n×PW ,r×PU,m

,

hence

A2 ∈ B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)
n×PW ,r×PU,m

.
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Using that A1 ⊂ N , (n× PW ,r × PU,m)(N) = 0, by definition of completion, we obtain

A1 ∈ B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)
n×PW ,r×PU,m

.

Hence k̃−1(B) = A1 ∪A2 ∈ B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)
n×PW ,r×PU,m

, as desired.

Next we check (5.5) for k̃. For i ∈ {1, 2}, by (4.7), (4.5), (R1) and (5.8),

P(i)(k̃(X
(i)
0 ,W (i), p(i)) = Y (i)) = P1,2

(
ω = (x, w, π, y(1), y(2)) ∈ Ω : k̃(x, w, π) = y(i)

)
=

∫
Rd×C(R+,Rr)×M(R+×U)

Qi(x, w, π, {k̃(x, w, π)})n(dx)PW, r(dw)PU,m(dπ) = 1,

as desired.

It remains to check that one can choose a version of k̃ which is B(Rd)⊗C(R+,Rr)⊗M(R+×U)/D(R+,Rd)-
measurable, B̂t/Dt(R+,Rd)-measurable for every fixed t ∈ R+, and (5.4) and (5.5) remain hold for k. Since

k̃ is

B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)
n×PW ,r×PU,m

/D(R+,Rd)-measurable,

there exists a function k : Rd×C(R+,Rr)×M(R+×U) → D(R+,Rd) which is B(Rd)⊗C(R+,Rr)⊗M(R+×
U)/D(R+,Rd)-measurable and

(n× PW ,r × PU,m)
(
{(x, w, π) ∈ Rd × C(R+,Rr)×M(R+ × U) : k̃(x, w, π) ̸= k(x, w, π)}

)
= 0

see, e.g., Cohn [4, Proposition 2.2.5]. First we check that k is B̂t/Dt(R+,Rd)-measurable for every fixed
t ∈ R+. For all t ∈ R+ and B ∈ Dt(R+,Rd), we have

k−1(B) = (k−1(B) ∩ {k̃ = k}) ∪ (k−1(B) ∩ {k̃ ̸= k})

= (k̃−1(B) ∩ {k̃ = k}) ∪ (k−1(B) ∩ {k̃ ̸= k}),

where k̃−1(B) ∈ B̂t (since k̃ is B̂t/Dt(R+,Rd)-measurable), {k̃ ̸= k} ∈ B̂t (due to the definition of completion,

since (n× PW ,r × PU,m)(k̃ ̸= k) = 0), {k̃ = k} ∈ B̂t (since B̂t is a σ-algebra), and k−1(B) ∩ {k̃ ̸= k} ∈ B̂t
(due to the definition of completion, since k−1(B) ∩ {k̃ ̸= k} ⊂ {k̃ ̸= k}). Hence k−1(B) ∈ B̂t.

Next we check (5.4) for k. Using that (5.4) holds for k̃ and (n× PW ,r × PU,m)(k̃ ̸= k) = 0, we have

(n× PW ,r × PU,m)(H1 ∪H2)

= (n× PW ,r × PU,m)
(
(H1 ∪H2) ∩ {k = k̃}

)
+ (n× PW ,r × PU,m)

(
(H1 ∪H2) ∩ {k ̸= k̃}

)
6 (n× PW ,r × PU,m)(H̃1 ∪ H̃2) + (n× PW ,r × PU,m)(k ̸= k̃) = 0 + 0 = 0,

where

H̃i := {(x, w, π) ∈ Rd × C(R+,Rr)×M(R+ × U) : Qi(x, w, π, {k̃(x, w, π)}) ̸= 1},

Hi := {(x, w, π) ∈ Rd × C(R+,Rr)×M(R+ × U) : Qi(x, w, π, {k(x, w, π)}) ̸= 1}

for i ∈ {1, 2}. This implies (5.4) for k.

Finally, we check (5.5) for k. First observe that P1,2(k̃ = k) = 1, since, by (5.6),

P1,2(k̃ = k) = 1− P1,2(k̃ ̸= k)

= 1−
∫
{k̃ ̸=k}

Q1,2(x, w, π,D(R+,Rd), D(R+,Rd))n(dx)PW, r(dw)PU,m(dπ)

= 1−
∫
{k̃ ̸=k}

Q1(x, w, π,D(R+,Rd))Q2(x, w, π,D(R+,Rd))n(dx)PW, r(dw)PU,m(dπ)

= 1− (n× PW, r × PU,m)(k̃ ̸= k) = 1− 0 = 1,
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where we used (R1) as well. Then, by (4.7) and (4.5), for i ∈ {1, 2}, we obtain

P(i)(k(X
(i)
0 ,W (i), p(i)) = Y (i)) = P1,2

(
ω = (x, w, π, y(1), y(2)) ∈ Ω : k(x, w, π) = y(i)

)
= P1,2

(
{ω = (x, w, π, y(1), y(2)) ∈ Ω : k(x, w, π) = y(i)} ∩ {k̃ = k}

)
= P1,2

(
{ω = (x, w, π, y(1), y(2)) ∈ Ω : k̃(x, w, π) = y(i)} ∩ {k̃ = k}

)
= P1,2

(
ω = (x, w, π, y(1), y(2)) ∈ Ω : k̃(x, w, π) = y(i)

)
= P(i)(k̃(X

(i)
0 ,W (i), p(i)) = Y (i)) = 1,

where, for the last equality, we applied that (5.5) holds for k̃. 2

5.4 Remark. Note that the function k in Lemma 5.3 and the n× PW ,r × PU,m-null set on which (5.4) does
not hold depend on the two weak solutions in question. 2

Applying Lemma 5.3 for weak solutions
(
Ω(i),F (i), (F (i)

t )t∈R+ ,P
(i),W (i), p(i),X(i)

)
=
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
,

i ∈ {1, 2}, of the SDE (1.1) with the same initial distribution n on (Rd,B(Rd)), we obtain the following
corollary.

5.5 Corollary. If pathwise uniqueness holds for the SDE (1.1) and
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
is a weak

solution of the SDE (1.1) with initial distribution n on (Rd,B(Rd)), then there exists a function k :
Rd×C(R+,Rr)×M(R+×U) → D(R+,Rd) such that Q(x, w, π, {k(x, w, π)}) = 1 holds for n×PW ,r×PU,m-
almost every (x, w, π) ∈ Rd × C(R+,Rr) ×M(R+ × U), where Q is given in (4.3). This function k is

B(Rd) ⊗ C(R+,Rr) ⊗M(R+ × U)/D(R+,Rd)-measurable, B̂t/Dt(R+,Rd)-measurable for every fixed t ∈ R+,
and P(k(X0,W , p) = Y ) = 1.

Next we give the precise formulation of Theorem 1.2.

5.6 Theorem. Let us suppose that pathwise uniqueness holds for the SDE (1.1) and there exists a weak solution(
Ω′,F ′, (F ′

t)t∈R+ ,P
′,W ′, p′,X ′) of the SDE (1.1) with initial distribution n′. Then there exists a function

h′ : Rd × C(R+,Rr) ×M(R+ × U) → D(R+,Rd) which is B(Rd) ⊗ C(R+,Rr) ⊗ M(R+ × U)/D(R+,Rd)-
measurable, B̂t/Dt(R+,Rd)-measurable for every fixed t ∈ R+, and

(5.11) X ′ = h′(X ′
0,W

′, p′) P′-almost surely.

Moreover, if objects (E1)–(E4) are given such that the distribution of ξ is n′, then the process

X := h′(ξ,W , p)

is a strong solution of the SDE (1.1) with initial value ξ.

Proof. Let h′(x, w, π) := x+ k′(x, w, π) for x ∈ Rd, w ∈ C(R+,Rr), π ∈ M(R+ × U), where k′ is as in
Corollary 5.5. By Corollary 5.5, for the function h′, the desired measurability properties hold. Using Corollary
5.5 and X ′ = X ′

0 + Y ′, we have

P′ (X ′ = h′(X ′
0,W

′, p′)
)
= P′ (X ′

0 + Y ′ = X ′
0 + k′(X ′

0,W
′, p′)

)
= P′ (Y ′ = k′(X ′

0,W
′, p′)

)
= 1,

implying (5.11).

Note that, for ξ, W and p as described in (E1)–(E4), the triplets (X ′
0,W

′, p′) and (ξ,W , p) induce
the same probability measure n′ × PW ,r × PU,m on the measurable space(

Rd × C(R+,Rr)×M(R+ × U),B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)
)

with respect to the probability measure P′ and P, respectively, where P denotes the probability measure
appears in (E1), since X ′

0, W
′, p′ are P′-independent and ξ, W , p are P-independent, see Remarks 3.4 and

3.8.
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Observe also that the mappings

Ω′ ∋ ω′ 7→ (X ′
0(ω

′), (W ′
t(ω

′))t∈R+ , Np′(ω′)) ∈ Rd × C(R+,Rr)×M(R+ × U)(5.12)

and

Ω ∋ ω 7→ (ξ(ω), (W t(ω))t∈R+ , Np(ω)) ∈ Rd × C(R+,Rr)×M(R+ × U)(5.13)

are F ′/B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)-measurable and

σ(ξ,W s, s ∈ R+, p(s), s ∈ R++ ∩D(p))/B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)-measurable,

respectively. Further, they are F ′
t/B(Rd)⊗ Ct(R+,Rr)⊗Mt(R+ × U)-measurable and

σ(ξ,W s, s ∈ [0, t], p(s), s ∈ (0, t] ∩D(p))/B(Rd)⊗ Ct(R+,Rr)⊗Mt(R+ × U)-measurable

for all t ∈ R+, respectively. Indeed, since X ′
0 and ξ are F ′/B(Rd)-measurable and σ(ξ)/B(Rd)-measurable,

respectively, by (2.2) and (2.3), it is enough to check that for all t ∈ R+, n ∈ N, A1 ∈ B(Rnr), t1, . . . , tn ∈ [0, t],
s ∈ [0, t], B ∈ B(U), A2 ∈ B([0,∞]),{

ω′ ∈ Ω′ : (W ′
t1(ω

′), . . . ,W ′
tn(ω

′)) ∈ A1

}
∈ F ′,{

ω ∈ Ω : (W t1(ω), . . . ,W tn(ω)) ∈ A1

}
∈ σ(W s, s ∈ R+),{

ω′ ∈ Ω′ : Np′(ω′)([0, s]×B) ∈ A2

}
∈ F ′,{

ω ∈ Ω : Np(ω)([0, s]×B) ∈ A2

}
∈ σ(p(s), s ∈ R++ ∩D(p)).

These relations hold since W ′
ti , i ∈ {1, . . . , n}, and W ti , i ∈ {1, . . . , n}, are F ′/B(Rr)-measurable

and σ(W s, s ∈ R+)/B(Rr)-measurable, and p′ and p are F ′/M(R+ × U)-measurable and σ(p(s), s ∈
R++ ∩ D(p))/M(R+ × U)-measurable, respectively. Similarly, one can argue that the functions in question
are F ′

t/B(Rd)⊗ Ct(R+,Rr)⊗Mt(R+ ×U)-measurable and σ(ξ,W s, s ∈ [0, t], p(s), s ∈ (0, t]∩D(p))/B(Rd)⊗
Ct(R+,Rr)⊗Mt(R+ × U)-measurable for all t ∈ R+, respectively.

Next, we check that the process X is adapted to the augmented filtration (Fξ,W ,p
t )t∈R+ . First, note that

the process X is adapted to (Fξ,W ,p
t )t∈R+ if and only if φt(X) is Fξ,W ,p

t /Dt(R+,Rd)-measurable for all
t ∈ R+, where φt is given in (2.1). Indeed,

(Xt)t∈R+ is (Fξ,W ,p
t )t∈R+-adapted ⇐⇒ σ(Xt) ⊂ Fξ,W ,p

t for all t ∈ R+

⇐⇒ σ(Xs : s ∈ [0, t]) ⊂ Fξ,W ,p
t for all t ∈ R+

⇐⇒ φt(X) is Fξ,W ,p
t /Dt(R+,Rd)-measurable for all t ∈ R+,

where the last equivalence can be checked as follows. Since Dt(R+,Rd) coincides with the smallest σ-algebra
containing the finite-dimensional cylinder sets of the form{

y ∈ D(R+,Rd) : (y(t1), . . . , y(tn)) ∈ A
}
, n ∈ N, A ∈ B(Rnd), t1, . . . , tn ∈ [0, t],

it is enough to check that σ(Xs : s ∈ [0, t]) ⊂ Fξ,W ,p
t for all t ∈ R+ is equivalent with

{ω ∈ Ω :
(
(φt(X))t1(ω), · · · , (φt(X))tn(ω)

)
∈ A} ∈ Fξ,W ,p

t

for all n ∈ N, A ∈ B(Rnd), t1, . . . , tn ∈ [0, t], t ∈ R+, which readily follows from

{ω ∈ Ω :
(
(φt(X))t1(ω), · · · , (φt(X))tn(ω)

)
∈ A} = {ω ∈ Ω :

(
Xt1(ω), · · · ,Xtn(ω)

)
∈ A}.

Since φt(X) = φt ◦ h′ ◦ (ξ,W , p), t ∈ R+, the mapping φt is Dt(R+,Rd)/Dt(R+,Rd)-measurable for all

t ∈ R+, h′ is B̂t/Dt(R+,Rd)-measurable for all t ∈ R+, it remains to check that the mapping (5.13) is

Fξ,W ,p
t /B̂t-measurable for all t ∈ R+. Recall that

B̂t = σ
(
B(Rd)⊗ Ct(R+,Rr)⊗Mt(R+ × U) ∪N

)
, t ∈ R+,

Fξ,W ,p
t = σ

(
σ(ξ,W s, s ∈ [0, t], p(s), s ∈ (0, t] ∩D(p)) ∪N ξ,W ,p

)
, t ∈ R+,
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where

N =
{
A ⊂ Rd × C(R+,Rr)×M(R+ × U) : ∃B ∈ B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)

with A ⊂ B, (n′ × PW ,r × PU,m)(B) = 0
}
,

and

N ξ,W ,p :=
{
A ⊂ Ω : ∃B ∈ σ(ξ,W s, s ∈ R+, p(s), s ∈ R++ ∩D(p))

with A ⊂ B, P(B) = 0
}
.

Since a generator system of B(Rd) ⊗ Ct(R+,Rr) ⊗ Mt(R+ × U) together with N is a generator system of

B̂t, and we have already checked that the mapping (5.13) is

σ(ξ,W s, s ∈ R+, p(s), s ∈ R++ ∩D(p))/B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)-measurable,

it remains to verify that (ξ,W , p)−1(A) ∈ Fξ,W ,p
t for all A ∈ N and t ∈ R+. We show that (ξ,W , p)−1(A) ∈

N ξ,W ,p for all A ∈ N , implying (ξ,W , p)−1(A) ∈ Fξ,W ,p
t for all t ∈ R+, as desired. If A ∈ N , then there

exists B ∈ B(Rd)⊗ C(R+,Rr)⊗M(R+ × U) such that A ⊂ B and (n′ × PW ,r × PU,m)(B) = 0. Hence

(ξ,W , p)−1(A) ⊆ (ξ,W , p)−1(B) ∈ σ(ξ,W s, s ∈ R+, p(s), s ∈ R++ ∩D(p))

and

P((ξ,W , p)−1(B)) = P((ξ,W , p) ∈ B) = (n′ × PW ,r × PU,m)(B) = 0,

where, for the last but one equality, we used that the distribution of (ξ,W , p) under P is n′ × PW ,r × PU,m
(as it was explained at the beginning of the proof). By definition, this means that (ξ,W , p)−1(A) ∈ N ξ,W ,p.

Next we check that (Xt)t∈R+ satisfies the SDE (1.1) P-almost surely. Since h′ is B(Rd)⊗ C(R+,Rr)⊗
M(R+×U)/D(R+,Rd)-measurable, and the triplets (X ′

0,W
′, p′) and (ξ,W , p) induce the same probability

measure n′ × PW ,r × PU,m on the measurable space(
Rd × C(R+,Rr)×M(R+ × U),B(Rd)⊗ C(R+,Rr)⊗M(R+ × U)

)
with respect to the probability measure P′ and P, respectively, the triplets (X ′,W ′, p′) and (X,W , p)
induce the same probability measure on the measurable space(

D(R+,Rd)× C(R+,Rr)×M(R+ × U),D(R+,Rd)⊗ C(R+,Rr)⊗M(R+ × U)
)

with respect to the probability measure P′ and P, respectively. Let us apply Lemma A.4 with the following
choices (

Ω(1),F (1), (F (1)
t )t∈R+ ,P

(1),W (1), p(1),X(1)
)
:=
(
Ω′,F ′, (F ′

t)t∈R+ ,P
′,W ′, p′,X ′)

and (
Ω(2),F (2), (F (2)

t )t∈R+ ,P
(2),W (2), p(2),X(2)

)
:=
(
Ω,F , (Fξ,W ,p

t )t∈R+ ,P,W , p,X
)
.

Since
(
Ω′,F ′, (F ′

t)t∈R+ ,P
′,W ′, p′,X ′) is a weak solution of the SDE (1.1) with initial distribution n′, the

tuple
(
Ω(1),F (1), (F (1)

t )t∈R+ ,P
(1),W (1), p(1),X(1)

)
satisfies (D1), (D2), (D3) and (D4)(b)–(e). Further, as

it was explained before Definition 3.9, the tuple
(
Ω(2),F (2), (F (2)

t )t∈R+ ,P
(2),W (2), p(2),X(2)

)
satisfies (D1),

(D2) and (D3), and we have already checked that X is adapted to the augmented filtration (Fξ,W ,p
t )t∈R+ .

Then Lemma A.4 yields that the tuple
(
Ω(2),F (2), (F (2)

t )t∈R+ ,P
(2),W (2), p(2),X(2)

)
satisfies (D4)(b)–(d) and

the distribution of(
X ′
t −X ′

0 −
∫ t

0

b(s,X ′
s) ds−

∫ t

0

σ(s,X ′
s) dW

′
s

−
∫ t

0

∫
U0

f(s,X ′
s−, u) Ñ

′(ds,du)−
∫ t

0

∫
U1

g(s,X ′
s−, u)N

′(ds,du)

)
t∈R+
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on (D(R+,Rd),D(R+,Rd)) under P′ is the same as the distribution of(
Xt −X0 −

∫ t

0

b(s,Xs) ds−
∫ t

0

σ(s,Xs) dW s

−
∫ t

0

∫
U0

f(s,Xs−, u) Ñ(ds,du)−
∫ t

0

∫
U1

g(s,Xs−, u)N(ds,du)

)
t∈R+

on (D(R+,Rd),D(R+,Rd)) under P, where N ′(ds,du) and N(ds,du) is the counting measure of p′ and p

on R+ × U , respectively, and Ñ ′(ds,du) := N ′(ds,du)− dsm(du) and Ñ(ds,du) := N(ds,du)− dsm(du).
Using that the first process and the identically 0 process are indistinguishable (since the SDE (1.1) holds P′-a.s.
for (X ′

t)t∈R+), we obtain that the SDE (1.1) holds P-a.s. for (Xt)t∈R+ as well, i.e., (D4)(e) holds.

Finally, we show that P(X0 = ξ) = 1. Since, as it was checked that the distribution of X ′ and X
coincide, especially, the distribution of X ′

0 and X0 coincide, and consequently, the distribution of X0 and ξ

coincide (both are equal to n′). Using Corollary 5.5 for
(
Ω,F , (Fξ,W ,p

t )t∈R+ ,P,W , p,X
)

(which is especially
a weak solution of the SDE (1.1) with initial distribution n′) we get

P(X0 = ξ) = P(ξ + k′(ξ,W , p)0 = ξ) = P(k′(ξ,W , p)0 = 0) = P(k′(ξ,W , p)0 = Y 0) = 1,

as desired.

Summarizing, (Xt)t∈R+ is a strong solution of the SDE (1.1) with initial value ξ. 2

A Appendix

Let (Ω,F , (Ft)t∈R+ ,P) be a filtered probability space. First we recall the notion of (Ft)t∈R+ -predictability,
see, e.g., Ikeda and Watanabe [10, Chapter II, Definition 3.3]. The predictable σ-algebra P on R+ × Ω× U
is given by

P := σ(h : R+ × Ω× U → R |h(t, ·, ·) is Ft ⊗ B(U)/B(R)-measurable for all t ∈ R++,

h(·, ω, u) is left continuous for all (ω, u) ∈ Ω× U).

A function H : R+ × Ω× U → Rd is called (Ft)t∈R+-predictable if it is P/B(Rd)-measurable.

A.1 Lemma. Let (Ω,F , (Ft)t∈R+ ,P) be a filtered probability space. Let (Xt)t∈R+ be an (Ft)t∈R+-adapted
càdlàg process with values in Rd.

(i) If w : Rd → R is a continuous function, then for each T ∈ R+ and B ∈ B(U), the function
h(t, ω, u) := w(Xt−(ω))1[0,T ](t)1B(u), (t, ω, u) ∈ R+ × Ω× U , is (Ft)t∈R+-predictable.

(ii) If T ∈ R+, A ∈ B(Rd) is an open set and B ∈ B(U), then

{(t, ω, u) ∈ R+ × Ω× U : t ∈ [0, T ], Xt−(ω) ∈ A, u ∈ B} ∈ P.

(iii) If f : R+ ×Rd ×U → Rd is B(R+)⊗B(Rd)⊗B(U)/B(Rd)-measurable, then the function H(t, ω, u) :=
f(t,Xt−(ω), u), (t, ω, u) ∈ R+ × Ω× U , is (Ft)t∈R+-predictable.

Proof. (i) The function h is (Ft)t∈R+-predictable, since it belongs to the generator system of P. Indeed,
for each t ∈ R+, the mapping Ω× U ∋ (ω, u) 7→ h(t, ω, u) is Ft ⊗ B(U)/B(R)-measurable, because Xs is
Fs/B(Rd)-measurable and Fs ⊂ Ft for all s < t, and hence Xt− := lims↑tXs is Ft/B(Rd)-measurable,
and w is B(Rd)/B(R)-measurable. Moreover, for each (ω, u) ∈ Ω× U , the function R+ ∋ t 7→ h(t, ω, u) is
left continuous, because the functions R+ ∋ t 7→ 1[0,T ](t) and R+ ∋ t 7→ Xt−(ω) are left continuous and w
is continuous.

(ii) Consider the function wA : Rd → R+ given by wA(x) := ϱ(x,Rd \ A), x ∈ Rd, where ϱ
denotes the Euclidean distance of x and Rd \ A. Then wA is continuous and A = w−1

A (R++). Put
hA(t, ω, u) := wA(Xt−(ω))1[0,T ](t)1B(u), (t, ω, u) ∈ R+ × Ω× U . Then, by (i), we obtain

{(t, ω, u) ∈ R+ × Ω× U : t ∈ [0, T ], Xt−(ω) ∈ A, u ∈ B}

= {(t, ω, u) ∈ R+ × Ω× U : t ∈ [0, T ], wA(Xt−(ω)) ∈ R++, u ∈ B}

= {(t, ω, u) ∈ R+ × Ω× U : hA(t, ω, u) ∈ R++} ∈ P.
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(iii) We have H = f ◦G, where G(t, ω, u) := (t,Xt−(ω), u), (t, ω, u) ∈ R+ ×Ω×U , thus it suffices to show
that G is P/B(R+)⊗B(Rd)⊗B(U)-measurable. The σ-algebra B(R+)⊗B(Rd)⊗B(U) is generated by the
sets [0, T ]×A×B with T ∈ R+, open sets A ∈ B(Rd) and B ∈ B(U), hence it suffices to show that

{(t, ω, u) ∈ R+ × Ω× U : t ∈ [0, T ], Xt−(ω) ∈ A, u ∈ B} ∈ P.

This holds by (ii). 2

Note that using Lemma A.1, one can relax Assumption 6.2.8 in Applebaum [1].

The next lemma plays a similar role as Lemma 139 in Situ [24].

A.2 Lemma. Let
(
Ω(i),F (i), (F (i)

t )t∈R+ ,P
(i),W (i), p(i),X(i)

)
, i ∈ {1, 2}, be tuples satisfying (D1), (D2),

(D3) and (D4)(b)–(d). Suppose that (W (1), p(1),X(1)) and (W (2), p(2),X(2)) have the same distribution on
C(R+,Rr)×M(R+ × U)×D(R+,Rd). Then(

X
(1)
t ,

∫ t

0

b(s,X(1)
s ) ds,

∫ t

0

σ(s,X(1)
s ) dW (1)

s ,

∫ t

0

∫
U0

f(s,X
(1)
s−, u) Ñ

(1)(ds,du),

∫ t

0

∫
U1

g(s,X
(1)
s−, u)N

(1)(ds,du)

)
t∈R+

(A.1)

and (
X

(2)
t ,

∫ t

0

b(s,X(2)
s ) ds,

∫ t

0

σ(s,X(2)
s ) dW (2)

s ,

∫ t

0

∫
U0

f(s,X
(2)
s−, u) Ñ

(2)(ds,du),

∫ t

0

∫
U1

g(s,X
(2)
s−, u)N

(2)(ds,du)

)
t∈R+

(A.2)

have the same distribution on (D(R+,Rd))5, where, for each i ∈ {1, 2}, N (i)(ds,du) is the counting measure

of p(i) on R++ × U , and Ñ (i)(ds,du) := N (i)(ds,du)− dsm(du).

Proof. By Remark 3.2, the above processes have càdlàg modifications. According to Lemma VI.3.19 in Jacod
and Shiryaev [12], it suffices to show that the finite dimensional distributions of the above processes coincide.

By Proposition I.4.44 in Jacod and Shiryaev [12], for each i ∈ {1, 2} and t ∈ R+, I
(i)
1,n(t)

P(i)

−→
∫ t
0
b(s,X(i)

s ) ds

and I
(i)
2,n(t)

P(i)

−→
∫ t
0
σ(s,X(i)

s ) dW (i)
s as n→ ∞, where

I
(i)
1,n(t) :=

1

n

⌊nt⌋∑
k=1

b

(
k − 1

n
,X

(i)
k−1
n

)
, I

(i)
2,n(t) :=

⌊nt⌋∑
k=1

σ

(
k − 1

n
,X

(i)
k−1
n

)(
W

(i)
k
n

−W
(i)
k−1
n

)
.

Let U1,j ∈ B(U), j ∈ N, be such that they are disjoint, m(U1,j) < ∞, j ∈ N, and U1 =
∪∞
j=1 U1,j (such

a sequence exists since m is σ-finite, see, e.g., Cohn [4, page 9]). Then for each i ∈ {1, 2} and t ∈ R+,

I
(i)
3,n(t) →

∫ t
0

∫
U1
g(s,X

(i)
s−, u)N

(i)(ds,du) as n→ ∞ P(i)-almost surely, where

I
(i)
3,n(t) :=

n∑
j=1

∫ t

0

∫
U1,j

g(s,X
(i)
s−, u)N

(i)(ds,du) =
n∑
j=1

∑
s∈(0,t]∩D(p

(i)
1,j)

g(s,X
(i)
s−, p

(i)
1,j(s)),

where p
(i)
1,j denotes the thinning of p(i) onto U1,j , see, e.g., Ikeda and Watanabe [10, page 62]. Since

m(U1,j) <∞, by Remark 3.3, the set (0, t]∩D(p
(i)
1,j) is finite P(i)-almost surely for all t ∈ R+ and i ∈ {1, 2},

j ∈ N, and hence one can order the set D(p
(i)
1,j) according to magnitude, say 0 < ζ

(i)
1,j,1 < ζ

(i)
1,j,2 < · · · , j ∈ N,

i ∈ {1, 2}. Namely,

ζ
(i)
1,j,ℓ = inf{t ∈ R+ : N (i)((0, t]× U1,j) > ℓ}, ℓ ∈ N, j ∈ N, i ∈ {1, 2}(A.3)

on the event

Ω
(i)
1,j :=

∞∩
k=1

{
ω ∈ Ω(i) : N

p
(i)
1,j(ω)

((0, k]× U1,j) <∞
}
, j ∈ N, i ∈ {1, 2},
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having P(i)-probability 1, where we used that the point measure corresponding to the point function p
(i)
1,j(ω)

is its counting measure N
p
(i)
1,j(ω)

, see Section 2. Then we can write I
(i)
3,n(t) in the form

I
(i)
3,n(t) =

n∑
j=1

∞∑
ℓ=1

g
(
ζ
(i)
1,j,ℓ,X

(i)

ζ
(i)
1,j,ℓ−

, p
(i)
1,j(ζ

(i)
1,j,ℓ)

)
1(0,t](ζ

(i)
1,j,ℓ), t ∈ R+, n ∈ N, i ∈ {1, 2},

where
∑∞
ℓ=1 g

(
ζ
(i)
1,j,ℓ,X

(i)

ζ
(i)
1,j,ℓ−

, p
(i)
1,j(ζ

(i)
1,j,ℓ)

)
1(0,t](ζ

(i)
1,j,ℓ) is a finite sum P(i)-almost surely. Furthermore, by

Remark 3.2, for i ∈ {1, 2} and t ∈ R+, I
(i)
4,n(t) →

∫ t
0

∫
U0
f(s,X

(i)
s−, u) Ñ

(i)(ds,du) as n → ∞ P(i)-almost
surely, where

I
(i)
4,n(t) :=

∫ t

0

∫
U0

1
[0,τ

(i)
n ]

(s)f(s,X
(i)
s−, u) Ñ

(i)(ds,du)

with

τ (i)n := inf

{
t ∈ R+ :

∫ t

0

∫
U0

∥f(s,X(i)
s , u)∥2 dsm(du) > n

}
∧ n, n ∈ N, i ∈ {1, 2},

satisfying τ
(i)
n ↑ ∞ P(i)-almost surely as n → ∞. Let U0,j ∈ B(U), j ∈ N, be such that they are disjoint,

m(U0,j) < ∞, j ∈ N, and U0 =
∪∞
j=1 U0,j (such a sequence exists since m is σ-finite, see, e.g., Cohn

[4, page 9]). Then, by pages 47 and 63 in Ikeda and Watanabe [10], for all t ∈ R+, i ∈ {1, 2} and n ∈ N,

I
(i)
4,n,j(t)

P(i)

−→ I
(i)
4,n(t) as j → ∞, where

I
(i)
4,n,j(t) :=

∫ t

0

∫
U0

1(−j,j)

(
1
[0,τ

(i)
n ]

(s)f(s,X
(i)
s−, u)

)
1U0,j (u)1[0,τ

(i)
n ]

(s)f(s,X
(i)
s−, u) Ñ

(i)(ds,du)

=

∫ t

0

∫
U0,j

1(−j,j)

(
f(s,X

(i)
s−, u)

)
1
[0,τ

(i)
n ]

(s)f(s,X
(i)
s−, u) Ñ

(i)(ds,du).

By page 62 in Ikeda and Watanabe [10], for all t ∈ R+, i ∈ {1, 2}, n ∈ N, and j ∈ N, I
(i)
4,n,j(t) =

I
(i),a
4,n,j(t)− I

(i),b
4,n,j(t), where

I
(i),a
4,n,j(t) :=

∫ t

0

∫
U0,j

1(−j,j)

(
f(s,X

(i)
s−, u)

)
1
[0,τ

(i)
n ]

(s)f(s,X
(i)
s−, u)N

(i)(ds,du),

I
(i),b
4,n,j(t) :=

∫ t

0

(∫
U0,j

1(−j,j)

(
f(s,X

(i)
s−, u)

)
1
[0,τ

(i)
n ]

(s)f(s,X
(i)
s−, u)m(du)

)
ds.

Similarly as for the integrals
∫ t
0

∫
U1
g(s,X

(i)
s−, u)N

(i)(ds,du) and
∫ t
0
b(s,X(i)

s ) ds, there exist sequences of

random variables (I
(i),a
4,n,j,ℓ(t))ℓ∈N and (I

(i),b
4,n,j,ℓ(t))ℓ∈N such that I

(i),a
4,n,j,ℓ(t)

P(i)

−→ I
(i),a
4,n,j(t) and I

(i),b
4,n,j,ℓ(t)

P(i)

−→

I
(i),b
4,n,j(t) as ℓ → ∞, respectively. Then, for all t ∈ R+ and i ∈ {1, 2}, I

(i),a
4,n,j,ℓ(t) − I

(i),b
4,n,j,ℓ(t)

P(i)

−→∫ t
0

∫
U0
f(s,X

(i)
s−, u) Ñ

(i)(ds,du) as ℓ→ ∞, then j → ∞, and, finally, n→ ∞. Using part (vi) of Theorem

2.7 in van der Vaart [26], we get for all K ∈ N, t1, . . . , tK ∈ R+ and i ∈ {1, 2},(
X

(i)
tk
, I

(i)
1,n(tk), I

(i)
2,n(tk), I

(i)
3,n(tk), I

(i),a
4,n,j,ℓ(tk)− I

(i),b
4,n,j,ℓ(tk)

)
k∈{1,...,K}

P(i)

−→
(
X

(i)
tk
,

∫ tk

0

b(s,X(i)
s ) ds,

∫ tk

0

σ(s,X(i)
s ) dW (i)

s ,

∫ tk

0

∫
U1

g(s,X
(i)
s−, u)N

(i)(ds,du),

∫ tk

0

∫
U0

f(s,X
(i)
s−, u) Ñ

(i)(ds,du)
)
k∈{1,...,K}

as ℓ, j, n → ∞. Since (W (1), p(1),X(1)) and (W (2), p(2),X(2)) have the same distribution, the random
vectors (

X
(1)
tk
, I

(1)
1,n(tk), I

(1)
2,n(tk), I

(1)
3,n(tk), I

(1),a
4,n,j,ℓ(tk)− I

(1),b
4,n,j,ℓ(tk)

)
k∈{1,...,K}
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and (
X

(2)
tk
, I

(2)
1,n(tk), I

(2)
2,n(tk), I

(2)
3,n(tk), I

(2),a
4,n,j,ℓ(tk)− I

(2),b
4,n,j,ℓ(tk)

)
k∈{1,...,K}

have the same distribution for all ℓ, j, n ∈ N, as well. Indeed, the random vectors above can be considered as
some appropriate measurable function of (W (1), p(1),X(1)) and (W (2), p(2),X(2)), respectively. For this, it
is enough to verify that each coordinate of the above random vectors can be considered as some appropriate
measurable function of (W (1), p(1),X(1)) and (W (2), p(2),X(2)), respectively, hence we fix k ∈ {1, . . . ,K}.

• First observe, that X
(i)
tk

is a D(R+,Rd)/B(Rd)-measurable function of X(i), namely, X
(i)
tk

= Ψ0(X
(i)),

where Ψ0 : D(R+,Rd) → Rd is given by Ψ0(y) := y(tk), y ∈ D(R+,Rd).

• Next, I
(i)
1,n(tk) is a D(R+,Rd)/B(Rd)-measurable function of X(i) as well, namely, I

(i)
1,n(tk) = Ψ1(X

(i)),

where Ψ1 : D(R+,Rd) → Rd is given by Ψ1(y) :=
1
n

∑⌊ntk⌋
k=1 b

(
k−1
n , y

(
k−1
n

))
, y ∈ D(R+,Rd).

• In a similar way, I
(i)
2,n(tk) is a D(R+,Rd) × C(R+,Rr)/B(Rd)-measurable function of (X(i),W (i)),

namely, I
(i)
2,n(tk) = Ψ2(X

(i),W (i)), where Ψ2 : D(R+,Rd)× C(R+,Rr) → Rd is given by Ψ2(y, w) :=∑⌊ntk⌋
k=1 σ

(
k−1
n , y

(
k−1
n

)) (
w
(
k
n

)
− w

(
k−1
n

))
, y ∈ D(R+,Rd), w ∈ C(R+,Rr).

• Now we show that I
(i)
3,n(tk) is a D(R+,Rd) ⊗ M(R+ × U)/B(Rd)-measurable function of (X(i), p(i)).

As a first step, we show that for each j, ℓ ∈ N there exist functions Φj,ℓ : M(R+ × U) → R+ and
Ξj,ℓ :M(R+ ×U) → U such that Φj,ℓ is M(R+ ×U)/B(R+)-measurable, Ξj,ℓ is M(R+ ×U)/B(U)-

measurable, and (ζ
(i)
1,j,ℓ, p

(i)
1,j(ζ

(i)
1,j,ℓ)) = (Φj,ℓ(Np(i)1,j

),Ξj,ℓ(Np(i)1,j

)) holds P(i)-almost surely. Then it will

follow that I
(i)
3,n(tk) = Ψ3(X

(i), p(i)), where Ψ3 : D(R+,Rd)×M(R+ × U) → Rd given by

Ψ3(y, π) :=
n∑
j=1

∞∑
ℓ=1

g
(
Φj,ℓ(π), y(Φj,ℓ(π)−),Ξj,ℓ(π)

)
1(0,tk](Φj,ℓ(π))

for (y, π) ∈ D(R+,Rd) ×M(R+ × U) is D(R+,Rd) ⊗ M(R+ × U)/B(Rd)-measurable. To prove the

existence of Φj,ℓ and Ξj,ℓ, first we verify that (ζ
(i)
1,j,ℓ, p

(i)
1,j(ζ

(i)
1,j,ℓ)) is measurable with respect to the

σ-algebra σ
(
N
p
(i)
1,j

)
∩ Ω

(i)
1,j having the form

σ
({
ω ∈ Ω

(i)
1,j : Np(i)1,j(ω)

((0, t]×B) = k
} ∣∣∣ t ∈ R+, B ∈ B(U1,j), k ∈ N

)
.(A.4)

We have {
ω ∈ Ω

(i)
1,j :

(
ζ
(i)
1,j,ℓ(ω), p

(i)
1,j(ω)(ζ

(i)
1,j,ℓ(ω))

)
∈ (0, t]×B

}
=

∞∩
n=1

n∪
k=1

{
ω ∈ Ω

(i)
1,j : Np(i)1,j(ω)

((0, (k − 1)t/n]× U1,j) 6 ℓ− 1,

N
p
(i)
1,j(ω)

(((k − 1)t/n, kt/n]×B) > 1,

N
p
(i)
1,j(ω)

((0, kt/n]× U1,j) > ℓ
}

(A.5)

for t ∈ R++, j, ℓ ∈ N, B ∈ B(U1,j), i ∈ {1, 2}. Indeed, on the one hand, if ω ∈ Ω
(i)
1,j is such

that ζ
(i)
1,j,ℓ(ω) ∈ (0, t] and p

(i)
1,j(ω)(ζ

(i)
1,j,ℓ(ω)) ∈ B, then for each n ∈ N, there exists a unique k ∈

{1, . . . , n} with ζ
(i)
1,j,ℓ(ω) ∈ ((k − 1)t/n, kt/n], and hence N

p
(i)
1,j(ω)

((0, (k − 1)t/n] × U1,j) 6 ℓ − 1,

N
p
(i)
1,j(ω)

(((k − 1)t/n, kt/n]×B) > 1 and N
p
(i)
1,j(ω)

((0, kt/n]× U1,j) > ℓ. On the other hand,

{ω ∈ Ω
(i)
1,j : ζ

(i)
1,j,ℓ(ω) /∈ (0, t]} = {ω ∈ Ω

(i)
1,j : N

p
(i)
1,j(ω)

((0, t]× U1,j) 6 ℓ− 1}

⊂
∞∪
n=1

n∩
k=1

{
ω ∈ Ω

(i)
1,j : N

p
(i)
1,j(ω)

((0, kt/n]× U1,j) 6 ℓ− 1
}
,
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and {
ω ∈ Ω

(i)
1,j : ζ

(i)
1,j,ℓ(ω) ∈ (0, t], p

(i)
1,j(ω)(ζ

(i)
1,j,ℓ(ω)) /∈ B

}
⊂

∞∪
n=1

n∩
k=1

({
ω ∈ Ω

(i)
1,j : N

p
(i)
1,j(ω)

((0, (k − 1)t/n]× U1,j) > ℓ
}

∪
{
ω ∈ Ω

(i)
1,j : N

p
(i)
1,j(ω)

(((k − 1)t/n, kt/n]×B) = 0
}

∪
{
ω ∈ Ω

(i)
1,j : N

p
(i)
1,j(ω)

((0, kt/n]× U1,j) 6 ℓ− 1
})

.

For the second inclusion, for each ω ∈ Ω
(i)
1,j , let us choose n(ω) ∈ N such that

n(ω) > max

(
1

ζ
(i)
1,j,ℓ(ω)− ζ

(i)
1,j,ℓ−1(ω)

,
1

ζ
(i)
1,j,ℓ+1(ω)− ζ

(i)
1,j,ℓ(ω)

)
.

If ω ∈ Ω
(i)
1,j is such that ζ

(i)
1,j,ℓ(ω) ∈ (0, t] and p

(i)
1,j(ω)(ζ

(i)
1,j,ℓ(ω)) /∈ B, then there exists a unique

k∗ ∈ {1, . . . , n} with ζ
(i)
1,j,ℓ(ω) ∈ ((k∗−1)t/n, k∗t/n], and hence we have N

p
(i)
1,j(ω)

((0, kt/n]×U1,j) 6 ℓ−1

for k ∈ {1, . . . , k∗ − 1}, N
p
(i)
1,j(ω)

(((k∗ − 1)t/n, k∗t/n]×B) = 0, and N
p
(i)
1,j(ω)

((0, (k − 1)t/n]× U1,j) > ℓ

for k ∈ {k∗ + 1, . . . , n}.
Since the set on right hand side of (A.5) is in the σ-algebra given in (A.4) and {(0, t] × B : t ∈
R+, B ∈ B(U1,j)} is a generator system of B(R+) ⊗ B(U1,j), we readily get that the random variable

(ζ
(i)
1,j,ℓ, p

(i)
1,j(ζ

(i)
1,j,ℓ)) is measurable with respect to the σ-algebra given in (A.4). Let us apply Theorem

4.2.8 in Dudley [7] with the following choices:

◦ X := Ω
(i)
1,j , Y :=M(R+ × U),

◦ T : Ω
(i)
1,j →M(R+ × U), T (ω) := N

p
(i)
1,j(ω)

, ω ∈ Ω
(i)
1,j ,

◦ f : Ω
(i)
1,j → R+ × U , f(ω) := (ζ

(i)
1,j,ℓ(ω), p

(i)
1,j(ω)(ζ

(i)
1,j,ℓ(ω))), ω ∈ Ω

(i)
1,j .

Then there exist functions Φj,ℓ : M(R+ × U) → R+ and Ξj,ℓ : M(R+ × U) → U such that Φj,ℓ

is M(R+ × U)/B(R+)-measurable, Ξj,ℓ is M(R+ × U)/B(U)-measurable, and (ζ
(i)
1,j,ℓ, p

(i)
1,j(ζ

(i)
1,j,ℓ)) =

(Φj,ℓ(Np(i)1,j

),Ξj,ℓ(Np(i)1,j

)) holds on Ω
(i)
1,j . Since P(i)(Ω

(i)
1,j) = 1, we have (ζ

(i)
1,j,ℓ, p

(i)
1,j(ζ

(i)
1,j,ℓ)) =

(Φj,ℓ(Np(i)1,j

),Ξj,ℓ(Np(i)1,j

)) P(i)-almost surely, as desired.

In what follows we provide an alternative argument for verifying that ζ
(i)
1,j,ℓ is an M(R+ × U)/B(R)-

measurable function of p(i) with the advantage that the measurable function in question shows up

explicitly. We have ζ
(i)
1,j,1 = inf{t ∈ R++ : |∆yi,j(t)| > 1/2}, where yi,j(t) := N (i)((0, t] × U1,j) and

∆yi,j(t) := yi,j(t) − yi,j(t−) = N (i)({t} × U1,j) for t ∈ R++. Further, ζ
(i)
1,j,ℓ+1 = inf{t ∈ (ζ

(i)
1,j,ℓ,∞) :

|∆yi,j(t)| > 1/2} for all ℓ ∈ N. Consider the mappings Ψ3,ℓ : D(R+,R) → R+, ℓ ∈ N, defined
by Ψ3,1(y) := inf{t ∈ R++ : |∆y(t)| > 1/2} and Ψ3,ℓ+1(y) := inf{t ∈ (Ψ3,ℓ(y),∞) : |∆y(t)| > 1/2},
y ∈ D(R+,R), ℓ ∈ N. By Proposition VI.2.7 in Jacod and Shiryaev [12], the mappings Ψ3,ℓ, ℓ ∈ N,
are continuous at each point y ∈ D(R+,R) such that |∆y(t)| ̸= 1/2 for all t ∈ R+. Moreover, we

have ζ
(i)
1,j,ℓ = Ψ3,ℓ(Ψ4,j(p

(i))), where the mappings Ψ4,j : M(R+ × U) → D(R+,R), j ∈ N, are given
by Ψ4,j(π) := (π((0, t] × U1,j))t∈R+ , π ∈ M(R+ × U). Observe, that for each π ∈ M(R+ × U), we
have |∆Ψ4,j(π)(t)| ̸= 1/2 for all t ∈ R+ (since |∆Ψ4,j(π)(t)| ∈ Z+ for all t ∈ R+), hence, it remains
to check that the mappings Ψ4,j , j ∈ N, are M(R+ × U)/D(R+,R)-measurable. This follows from
{π ∈ M(R+ × U) : (π((0, t]× U1,j))t∈{t1,...,tL} ∈ B} ∈ M(R+ × U) for all L ∈ N, t1, . . . , tL ∈ R+ and
B ∈ RL, which is a consequence of the definition of M(R+ × U).

• Finally, we verify that I
(i),a
4,n,j,ℓ(tk)− I

(i),b
4,n,j,ℓ(tk) is a D(R+,Rd)⊗M(R+×U)/B(Rd)-measurable function

of (X(i), p(i)). Based on the findings for I
(i)
1,n(tk) and I

(i)
3,n(tk), it is enough to check that

σ
(
ζ
(i)
0,j,ℓ, p

(i)
0,j(ζ

(i)
0,jℓ), τ

(i)
n

)
∩ Ω

(i)
0,j ⊂ σ

(
X(i), p

(i)
0,j

)
∩ Ω

(i)
0,j ⊂ σ

(
X(i), p(i)

)
∩ Ω

(i)
0,j ,(A.6)
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where ζ
(i)
0,j,ℓ and Ω

(i)
0,j can be defined similarly as ζ

(i)
1,j,ℓ and Ω

(i)
0,j for all i ∈ {1, 2} and j, ℓ ∈ N,

respectively (replacing in the definitions U1,j and p
(i)
1,j by U0,j and p

(i)
0,j , respectively). Note that{

ω ∈ Ω
(i)
0,j : ζ

(i)
0,j,ℓ(ω) ∈ (0, t], p

(i)
0,j(ω)(ζ

(i)
0,j,ℓ(ω)) ∈ B, τ (i)n (ω) ∈ [0, T ]

}
=

∞∩
n=1

n∪
k=1

{
ω ∈ Ω

(i)
0,j : Np(i)0,j(ω)

((0, (k − 1)t/n]× U0,j) 6 ℓ− 1,{
ω ∈ Ω

(i)
0,j : N

p
(i)
0,j(ω)

(((k − 1)t/n, kt/n]×B) > 1,{
ω ∈ Ω

(i)
0,j : N

p
(i)
0,j(ω)

((0, kt/n]× U0,j) > ℓ
}

∩{
ω ∈ Ω

(i)
0,j :

∫ T

0

∫
U0

∥f(s,X(i)
s (ω), u)∥2 dsm(du) > n

}
for t ∈ R++, T ∈ R+, j, ℓ ∈ N, B ∈ B(U0,j), i ∈ {1, 2}. Similarly, as it was explained in case of I

(i)
n,1(t),

one can approximate
∫ T
0

∫
U0

∥f(s,X(i)
s , u)∥2 dsm(du) by D(R+,Rd)/B(R+)-measurable functions of

X(i), which yields (A.6).

Hence we obtain the statement. 2

A.3 Remark. In case of f = 0 and g = 0, the statement of Lemma A.2 basically follows by Exercise (5.16)
in Chapter IV in Revuz and Yor [22], see also Lemma 12.4.5 in Weizsäcker and Winkler [27]. 2

Next we formulate a corollary of Lemma A.2.

A.4 Lemma. Let
(
Ω(1),F (1), (F (1)

t )t∈R+ ,P
(1),W (1), p(1),X(1)

)
be a tuple satisfying (D1), (D2), (D3) and

(D4)(b)–(d) and let
(
Ω(2),F (2), (F (2)

t )t∈R+ ,P
(2),W (2), p(2),X(2)

)
be another tuple satisfying (D1), (D2), (D3)

such that (X
(2)
t )t∈R+ is an Rd-valued (F (2)

t )t∈R+-adapted càdlàg process. Suppose that (W (1), p(1),X(1))

and (W (2), p(2),X(2)) have the same distribution on C(R+,Rr)×M(R+ ×U)×D(R+,Rd). Then (D4)(b)–

(d) hold for the tuple
(
Ω(2),F (2), (F (2)

t )t∈R+ ,P
(2),W (2), p(2),X(2)

)
as well, and the processes (A.1) and (A.2)

have the same distribution on (D(R+,Rd))5.

Proof. First we check that P(2)
(∫ t

0
∥b(s,X(2)

s )∥ds <∞
)

= 1 for all t ∈ R+. Since b is B(R+) ⊗

B(Rd)⊗B(U)/B(Rd)-measurable and X(1) and X(2) have the same law, the processes (b(s,X(1)
s ))s∈R+ and

(b(s,X(2)
s ))s∈R+ have the same law as well. Since the mapping D(R+,Rd) ∋ f 7→

( ∫ t
0
f(s) ds

)
t∈R+

∈ D(R+,Rd)
is continuous (see, e.g., Ethier and Kurtz [9, Chapter III, Section 11, Exercise 26], or Barczy et al. [2, Proof

of Lemma B.3]), and consequently D(R+,Rd)/D(R+,Rd)-measurable, the processes
( ∫ t

0
∥b(s,X(1)

s )∥ds
)
t∈R+

and
( ∫ t

0
∥b(s,X(2)

s )∥ds
)
t∈R+

have the same distribution with respect to P(1) and P(2), respectively. Since

P(1)
(∫ t

0
∥b(s,X(1)

s )∥ds <∞
)

= 1 for all t ∈ R+, this yields P(2)
(∫ t

0
∥b(s,X(2)

s )∥ds <∞
)

= 1 for all

t ∈ R+, as desired.

Similarly, one can check that P(2)
(∫ t

0
∥σ(s,X(2)

s )∥2 ds <∞
)
= 1 for all t ∈ R+, and

P(2)

(∫ t

0

∫
U0

∥f(s,X(2)
s , u)∥2 dsm(du) <∞

)
= 1, t ∈ R+.

It remains to check that

(A.7) P(2)

(∫ t

0

∫
U1

∥g(s,X(2)
s−, u)∥N (2)(ds,du) <∞

)
= 1, t ∈ R+,

where N (2)(ds,du) is the counting measure of p(2) on R++ × U . Recall that, in the proof of Lemma A.2,
U1,j ∈ B(U), j ∈ N, have been chosen such that they are disjoint, m(U1,j) <∞, j ∈ N, and U1 =

∪∞
j=1 U1,j .
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Further, the set D(p
(i)
1,j) is ordered according to magnitude as 0 < ζ

(i)
1,j,1 < ζ

(i)
1,j,2 < · · · , j ∈ N, i ∈ {1, 2},

see (A.3). Then for each i ∈ {1, 2} and t ∈ R+, K
(i)
n (t) →

∫ t
0

∫
U1

∥g(s,X(i)
s−, u)∥N (i)(ds,du) as n → ∞

P(i)-almost surely, where

K(i)
n (t) :=

n∑
j=1

∫ t

0

∫
U1,j

∥g(s,X(i)
s−, u)∥N (i)(ds,du) =

n∑
j=1

∑
s∈(0,t]∩D(p

(i)
1,j)

∥g(s,X(i)
s−, p

(i)
1,j(s))∥,

where p
(i)
1,j denotes the thinning of p(i) onto U1,j . Since (p(1),X(1)) and (p(2),X(2)) have the same

distribution with respect to P(1) and P(2), respectively, K
(1)
n (t) and K

(2)
n (t) have the same distribution

with respect to P(1) and P(2), respectively for all n ∈ N and t ∈ R+ (which can be checked in the same way

as in the proof of Lemma A.2 by replacing g with ∥g∥). Consequently,
∫ t
0

∫
U1

∥g(s,X(1)
s−, u)∥N (1)(ds,du)

and
∫ t
0

∫
U1

∥g(s,X(2)
s−, u)∥N (2)(ds,du) have the same distribution with respect to P(1) and P(2), respectively

for all t ∈ R+. Since

P(1)

(∫ t

0

∫
U1

∥g(s,X(1)
s−, u)∥N (1)(ds,du) <∞

)
= 1, t ∈ R+,

we have (A.7). All in all, the tuple
(
Ω(2),F (2), (F (2)

t )t∈R+
,P(2),W (2), p(2),X(2)

)
satisfies (D4)(b)–(d), and

then Lemma A.2 yields that the processes (A.1) and (A.2) have the same distribution on (D(R+,Rd))5. 2

The next lemma corresponds to Fact B on page 107 in Situ [24].

A.5 Lemma. Let us consider the filtered probability space
(
Ω,F , (Ft)t∈R+ ,P1,2

)
given in the proof of Theorem

1.1. The process Ω ∋ (x, w, π, y(1), y(2)) 7→ wt ∈ Rr, t ∈ R+, is an r-dimensional standard (Ft)t∈R+-Brownian

motion, and the process Ω ∋ (x, w, π, y(1), y(2)) 7→ Npπ |(0,t]×U ∈M(R+×U), t ∈ R+, is a stationary (Ft)t∈R+-
Poisson point process on U with characteristic measure m under the measure P1,2.

Proof. Using that the w-coordinate process is an r-dimensional standard (Gt)t∈R+ -Brownian motion under
P1,2, for the first statement, it is enough to prove the independence of wt − ws and Fs for every s, t ∈ R+

with s < t. For this, it is sufficient to show

EP1,2(e
i⟨y,wt−ws⟩1G) = e−(t−s)∥y∥2/2 P1,2(G), y ∈ Rr, G ∈ Gs, 0 6 s < t.(A.8)

Indeed, if A ∈ G̃s, then there exists some G ∈ Gs such that A∆G = (A\G)∪ (G\A) ∈ N , and consequently
P1,2(A∆G) = 0. Then,

EP1,2(e
i⟨y,wt−ws⟩1A) = EP1,2(e

i⟨y,wt−ws⟩1A∩G) = EP1,2(e
i⟨y,wt−ws⟩1G)

= e−(t−s)∥y∥2/2 P1,2(G) = e−(t−s)∥y∥2/2 P1,2(A), A ∈ G̃s, 0 6 s < t.

Moreover, if A ∈ Fs, then A ∈ G̃s+ε for all ε > 0, and hence

EP1,2(e
i⟨y,wt−ws+ε⟩1A) = e−(t−s−ε)∥y∥2/2 P1,2(A), A ∈ Fs, 0 6 s < t, ε > 0.

By dominated convergence theorem, using that w has continuous sample paths P1,2-almost surely, we get

EP1,2(e
i⟨y,wt−ws⟩1A) = e−(t−s)∥y∥2/2 P1,2(A), A ∈ Fs, 0 6 s < t,

i.e.,

EP1,2

[
ei⟨y,wt−ws⟩ | Fs

]
= e−(t−s)∥y∥2/2, 0 6 s < t.

Thus, in the light of Lemma 2.6.13 of Karatzas and Shreve [13], we get the independence of wt − ws and Fs
for every s, t ∈ R+ with s < t.

Using that wt − ws is independent of Gs under P1,2, we obtain

EP1,2

[
ei⟨y,wt−ws⟩1G

]
= EP1,2

[
EP1,2

[
ei⟨y,wt−ws⟩1G

∣∣ Gs]] = EP1,2

[
1G EP1,2

[
ei⟨y,wt−ws⟩

∣∣ Gs]]
= EP1,2

[
1G EP1,2

[
ei⟨y,wt−ws⟩

]]
= EP1,2

[
1Ge

−(t−s)∥y∥2/2
]
= e−(t−s)∥y∥2/2 P1,2(G)
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for all y ∈ Rr and G ∈ Gs, hence we conclude (A.8) and then the first statement.

Using that the process pπ is a stationary (Gt)t∈R+ -Poisson point process on U with characteristic measure
m, as it was explained in the proof of the first statement, for the second statement, it is enough to show that for
every s, t ∈ R+ with s < t, every n ∈ N, every disjoint subsets B1, . . . , Bn ∈ B(U) and λ1, . . . , λn ∈ R+,

EP1,2

[
e−

∑n
j=1 λjNpπ ((s,t]×Bj)1G

]
= e(t−s)

∑n
j=1(e

−λj−1)m(Bj) P1,2(G), G ∈ Gs.

Using that Npπ ((s, t]×Bj), j ∈ {1, . . . , n}, are independent of each other and from Gs under P1,2, we get

EP1,2

[
e−

∑n
j=1 λjNpπ ((s,t]×Bj)1G

]
= EP1,2

[
EP1,2

[
e−

∑n
j=1 λjNpπ ((s,t]×Bj)1G

∣∣∣ Gs]]
= EP1,2

[
1G EP1,2

[
e−

∑n
j=1 λjNpπ ((s,t]×Bj)

∣∣∣ Gs]] = EP1,2

[
1G EP1,2

[
e−

∑n
j=1 λjNpπ ((s,t]×Bj)

]]
= EP1,2

[
1G e(t−s)

∑n
j=1(e

−λj−1)m(Bj)
]
= e(t−s)

∑n
j=1(e

−λj−1)m(Bj) P1,2(G)

for all G ∈ Gs. The last but one equality above is a consequence that Npπ ((s, t]×Bj) is a Poisson distributed
random variable with parameter (t − s)m(Bj), j ∈ {1, . . . , n}, under P1,2. Hence we conclude the second
statement as well. 2
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