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Abstract

A multi-type continuous state and continuous time branching process with immigration satisfy-

ing some moment conditions is identified as a pathwise unique strong solution of certain stochastic

differential equation with jumps.

1 Introduction

Continuous state and continuous time branching processes with immigration (CBI processes) arise as

high density limits of Galton–Watson branching processes with immigration, see, e.g., Li [13, Theorem

3.43] without immigration and Li [12] with immigration. A single-type continuous state and continuous

time branching process (CB process) is a non-negative Markov process with a branching property. This

class of processes has been first introduced by Jǐrina [9] both in discrete and continuous times. As

a generalization of CB processes, Kawazu and Watanabe [11] introduced the more general class of

CBI processes, where immigrants may come from outer sources. They defined a single-type CBI

process as an [0,∞]-valued Markov process with ∞ as a trap in terms of Laplace transforms, see [11,

Definition 1.1]. An analytic characterization of CBI processes was also presented by giving the explicit

form of the corresponding non-negative strongly continuous contraction semigroup, see [11, Theorem
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1.1’]. Further, limit theorems for Galton-Watson branching processes with immigration towards CBI

processes were also investigated, see [11, Section 2]. Dawson and Li [2, Theorems 5.1 and 5.2] proved

that a general single-type CBI process is the pathwise unique strong solution of a stochastic differential

equation (SDE) with jumps driven by Wiener processes and Poisson random measures. Watanabe

[16, Definition 1.1] introduced two-type CB processes as [0,∞)2-valued Markov processes satisfying

a branching property. He characterized them in an analytic way by giving the explicit form of the

infinitesimal generator of the corresponding non-negative strongly continuous contraction semigroup,

see Watanabe [16, Theorem 1]. Fittipaldi and Fontbona [5, Theorem 2.1] represented a (sub)-critical

continuous time and continuous state branching process conditioned to never be extinct as a pathwise

unique strong solution of an appropriate SDE with jumps. It was also shown that a two-type diffusion

CB process can be obtained as a pathwise unique strong solution of an SDE (without jumps), see

Watanabe [16, Theorem 3]. Recently, for a special two-type (not necessarily diffusion) CBI process

(with a special immigration mechanism), an SDE with jumps (a special case of the SDE (3.2) given

later on) has already been presented by Ma [14, Theorem 2.1] together with the existence of a pathwise

unique [0,∞)2-valued strong solution of this SDE. For a comparison of our results with those of Ma

[14], see Section 5.

The aim of the present paper is to derive and study an SDE with jumps for a general multi-type

CBI process. Next, we give an overview of the structure of the paper by explaining some of its technical

merits and including some sort of preview of the types of results which are proved.

In Section 2 we recall some facts about CBI processes (e.g., set of admissible parameters, in-

finitesimal generator) with special emphasis on their identification (under some moment conditions)

as special immigration superprocesses. This identification turns out to be very important since it is

the starting point for deriving a formula for the expectation and an SDE with jumps for a general

multi-type CBI process (see the proofs of Lemma 3.4 and Theorem 3.7).

In Section 3 we formulate an SDE with jumps and, under the same moment conditions, we prove

that this SDE admits an [0,∞)d-valued weak solution which is unique in the sense of probability

law among [0,∞)d-valued weak solutions. The idea behind of deriving such an SDE goes back to

a result of Li [13, Theorem 9.18] that an immigration superprocess can be represented as a sum

of a continuous local martingale, a purely discontinuous local martingale and a drift term. In our

special case, this purely discontinuous local martingale takes the form
∫ t

0

∫
[0,∞)d\{0} zÑ0(ds, dz),

t > 0, with some (not necessarily Poisson) random measure N0(ds, dz) on (0,∞)× ([0,∞)d \ {0}),
where Ñ0(ds, dz) denotes the compensation of N0(ds, dz). The next key step is that the integral∫ t

0

∫
[0,∞)d\{0} zÑ0(ds, dz) can be rewritten as an appropriate sum of integrals with respect to a Possion

and compensated Poisson random measures, and some additional drift term, due to a representation

theorem of right continuous martingales, see, e.g., Ikeda and Watanabe [7, Chapter II, Definition 1.3

and Lemma 1.2]. We also prove that any [0,∞)d-valued weak solution of this SDE is a CBI process,

see Theorem 3.7. For the proof of Theorem 3.7, we need a formula for the first moment of a CBI

process, see Lemma 3.4. The proof of Lemma 3.4 is based on a formula for expectation of immigration

superprocesses, see Li [13, Proposition 9.11].

In Section 4 we prove that, under the same moment conditions, there is a pathwise unique [0,∞)d-

valued strong solution to the SDE (3.2) and the solution is a CBI process, see Theorem 4.6. For the

proof, we need a comparison theorem for the SDE (3.2) (see, Lemma 4.2), which, in particular,

2



yields that pathwise uniqueness holds for the SDE (3.2) among [0,∞)d-valued weak solutions. The

ideas of the proof of Lemma 4.2 follow those of Theorem 3.1 of Ma [14], which are adaptations of

those of Theorem 5.5 of Fu and Li [6]. More precisely, we derive an upper bound for an appropriate

deterministic function of the difference of two [0,∞)d-valued weak solutions of the SDE (3.2) and

then apply Gronwall’s inequality.

In Section 5 we specialize our SDE (3.2) to dimension 1 and 2, respectively, which enables us to

compare our results with those of Dawson and Li [2, Theorems 5.1 and 5.2] (single-type) and Ma

[14, Theorem 2.1] (two-type), respectively. Moreover, we discuss a special case of the SDE (3.2) with

ν = 0, µi = 0, i ∈ {1, . . . , d}, i.e., without integrals with respect to (compensated) Poisson random

measures (corresponding to the so-called multi-factor Cox-Ingersoll-Ross process if B is diagonal,

see, e.g., Jagannathan et al. [8]), and another special case with c = 0, i.e., without integral with

respect to a Wiener process.

In Appendix A we present some facts about extensions of probability spaces.

Finally, we mention that our work goes beyond that of Ma [14] in the sense that we consider general

multi-type CBI processes with arbitrary branching and immigration mechanisms instead of two-type

CBI processes with a special immigration mechanism, and we carefully present some missing details

in the proofs of Ma [14] for the general multi-type case such as the application of Theorem 9.18 in

Li [13] and of Theorem 7.4 in Chapter II in Ikeda and Watanabe [7]. Further, in a companion paper

we established Yamada-Watanabe type results for SDEs with jumps that are needed in the proof of

Theorem 4.6 (existence of pathwise unique strong solution of the SDE (3.2)). We point out that Ma

[14] implicitly used these results without proving or referring to them.

2 Multi-type CBI processes

Let Z+, N, R, R+ and R++ denote the set of non-negative integers, positive integers, real numbers,

non-negative real numbers and positive real numbers, respectively. For x, y ∈ R, we will use the

notations x ∧ y := min{x, y} and x+ := max{0, x}. By ‖x‖ and ‖A‖, we denote the Euclidean

norm of a vector x ∈ Rd and the induced matrix norm of a matrix A ∈ Rd×d, respectively. The

natural basis in Rd and the Borel σ-algebras on Rd and on Rd+ will be denoted by e1, . . . , ed,

and by B(Rd) and B(Rd+), respectively. The d-dimensional unit matrix is denoted by Id. For

x = (xi)i∈{1,...,d} ∈ Rd and y = (yi)i∈{1,...,d} ∈ Rd, we will use the notation x 6 y indicating that

xi 6 yi for all i ∈ {1, . . . , d}. By C2
c (Rd+,R) we denote the set of twice continuously differentiable

real-valued functions on Rd+ with compact support. Throughout this paper, we make the conventions∫ b
a :=

∫
(a,b] and

∫∞
a :=

∫
(a,∞) for any a, b ∈ R with a < b.

2.1 Definition. A matrix A = (ai,j)i,j∈{1,...,d} ∈ Rd×d is called essentially non-negative if ai,j ∈ R+

whenever i, j ∈ {1, . . . , d} with i 6= j, i.e., if A has non-negative off-diagonal entries. The set of

essentially non-negative d× d matrices will be denoted by Rd×d(+) .

2.2 Definition. A tuple (d, c,β,B, ν,µ) is called a set of admissible parameters if

(i) d ∈ N,
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(ii) c = (ci)i∈{1,...,d} ∈ Rd+,

(iii) β = (βi)i∈{1,...,d} ∈ Rd+,

(iv) B = (bi,j)i,j∈{1,...,d} ∈ Rd×d(+) ,

(v) ν is a Borel measure on Ud := Rd+ \ {0} satisfying
∫
Ud

(1 ∧ ‖z‖) ν(dz) <∞,

(vi) µ = (µ1, . . . , µd), where, for each i ∈ {1, . . . , d}, µi is a Borel measure on Ud satisfying∫
Ud

‖z‖ ∧ ‖z‖2 +
∑

j∈{1,...,d}\{i}

zj

µi(dz) <∞.(2.1)

2.3 Remark. Our Definition 2.2 of the set of admissible parameters is a special case of Definition 2.6

in Duffie et al. [4], which is suitable for all affine processes. Namely, one should take m = d, n = 0

and zero killing rate in Definition 2.6 in Duffie et al. [4] noting also that part (v) of our Definition

2.2 is equivalent to the corresponding one
∫
Ud

∑d
i=1(1 ∧ zi) ν(dz) <∞ in Definition 2.6 in Duffie et

al. [4]. Indeed,

1 ∧ ‖z‖ 6 1 ∧

(
d∑
i=1

zi

)
6

d∑
i=1

(1 ∧ zi) 6 d(1 ∧ ‖z‖)

for all z = (z1, . . . , zd) ∈ Rd+. Further, for all i ∈ {1, . . . , d}, the condition (2.1) is equivalent to∫
Ud

(1 ∧ zi)2 +
∑

j∈{1,...,d}\{i}

(1 ∧ zj)

µi(dz) <∞ and

∫
Ud

‖z‖1{‖z‖>1} µi(dz) <∞.(2.2)

Indeed, if (2.1) holds, then
∫
Ud
‖z‖1{‖z‖>1} µi(dz) =

∫
Ud

(‖z‖∧‖z‖2)1{‖z‖>1} µi(dz) <∞, and using

that zi 6 ‖z‖ and (1 ∧ zi)2 = (1 ∧ zi)2
1{‖z‖61} + (1 ∧ zi)2

1{‖z‖>1} 6 ‖z‖21{‖z‖61} + ‖z‖1{‖z‖>1} =

‖z‖ ∧ ‖z‖2, i ∈ {1, . . . , d}, we have (2.2). If (2.2) holds, then, using again zj 6 ‖z‖, j ∈ {1, . . . , d},
we have∫

Ud

‖z‖ ∧ ‖z‖2 +
∑

j∈{1,...,d}\{i}

zj

µi(dz)

=

∫
Ud

‖z‖2 +
∑

j∈{1,...,d}\{i}

zj

1{‖z‖<1}µi(dz) +

∫
Ud

‖z‖+
∑

j∈{1,...,d}\{i}

zj

1{‖z‖>1}µi(dz)

6
∫
Ud

z2
i + 2

∑
j∈{1,...,d}\{i}

zj

1{‖z‖<1}µi(dz) +

∫
Ud

‖z‖1{‖z‖>1} µi(dz)

+
∑

j∈{1,...,d}\{i}

∫
Ud

‖z‖1{‖z‖>1}µi(dz) <∞, i ∈ {1, . . . , d},

yielding (2.1). Note that, here the finiteness of the first integral in (2.2) is nothing else but condition

(2.11) in Definition 2.6 in Duffie et al. [4], and the finiteness of the second integral in (2.2) is an

additional condition that we assume compared to Duffie et al. [4], its role is explained in Remark 2.5.

2
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2.4 Theorem. Let (d, c,β,B, ν,µ) be a set of admissible parameters in the sense of Definition 2.2.

Then there exists a unique conservative transition semigroup (Pt)t∈R+ acting on the Banach space

(endowed with the supremum norm) of real-valued bounded Borel-measurable functions on the state

space Rd+ such that its infinitesimal generator is

(Af)(x) =
d∑
i=1

cixif
′′
i,i(x) + 〈β +Bx,f ′(x)〉+

∫
Ud

(
f(x+ z)− f(x)

)
ν(dz)

+

d∑
i=1

xi

∫
Ud

(
f(x+ z)− f(x)− f ′i(x)(1 ∧ zi)

)
µi(dz)

(2.3)

for f ∈ C2
c (Rd+,R) and x ∈ Rd+, where f ′i and f ′′i,i, i ∈ {1, . . . , d}, denote the first and

second order partial derivatives of f with respect to its i-th variable, respectively, and f ′(x) :=

(f ′1(x), . . . , f ′d(x))>. Moreover, the Laplace transform of the transition semigroup (Pt)t∈R+ has a

representation∫
Rd
+

e−〈λ,y〉Pt(x,dy) = e−〈x,v(t,λ)〉−
∫ t
0 ψ(v(s,λ)) ds, x ∈ Rd+, λ ∈ Rd+, t ∈ R+,

where, for any λ ∈ Rd+, the continuously differentiable function R+ 3 t 7→ v(t,λ) =

(v1(t,λ), . . . , vd(t,λ))> ∈ Rd+ is the unique locally bounded solution to the system of differential

equations

(2.4) ∂tvi(t,λ) = −ϕi(v(t,λ)), vi(0,λ) = λi, i ∈ {1, . . . , d},

with

ϕi(λ) := ciλ
2
i − 〈Bei,λ〉+

∫
Ud

(
e−〈λ,z〉 − 1 + λi(1 ∧ zi)

)
µi(dz)

for λ ∈ Rd+ and i ∈ {1, . . . , d}, and

ψ(λ) := 〈β,λ〉 −
∫
Ud

(
e−〈λ,z〉 − 1

)
ν(dz), λ ∈ Rd+.

Further, the function R+ × Rd+ 3 (t,λ) 7→ v(t,λ) is continuous.

2.5 Remark. This theorem is a special case of Theorem 2.7 of Duffie et al. [4] with m = d, n = 0

and zero killing rate. The unique existence of a locally bounded solution to the system of differential

equations (2.4) is proved by Li [13, page 45]. Here, we point out that the moment condition given in

part (vi) in Definition 2.2 (which is stronger than the one (2.11) in Definition 2.6 in Duffie et al. [4])

ensures that the semigroup (Pt)t∈R+ is conservative (we do not need the one-point compactification

of Rd+), see Duffie et al. [4, Lemma 9.2] and Li [13, page 45]. For the continuity of the function

R+×Rd+ 3 (t,λ) 7→ v(t,λ), see Duffie et al. [4, Proposition 6.4]. Finally, we note that the infinitesimal

generator (2.3) can be rewritten in another equivalent form, see formula (2.14) in Lemma 2.11. 2

2.6 Definition. A conservative Markov process with state space Rd+ and with transition semigroup

(Pt)t∈R+ given in Theorem 2.4 is called a multi-type CBI process with parameters (d, c,β,B, ν,µ).
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In what follows, we will identify a multi-type CBI process (Xt)t∈R+ with parameter-

s (d, c,β,B, ν,µ) under a moment condition as a special immigration superprocess. First we

parametrize the family of immigration superprocesses for which Theorem 9.18 in Li [13] is valid.

We will use some notations of the book of Li [13]. For a locally compact separable metric space E,

let us introduce the following function spaces:

• B(E) is the space of bounded real-valued Borel functions on E,

• B(E)+ is the space of bounded non-negative real-valued Borel functions on E,

• C(E) is the space of bounded continuous real-valued functions on E,

• C(E)+ is the space of bounded continuous non-negative real-valued functions on E,

• C0(E) is the space of continuous real-valued functions on E vanishing at infinity.

Let M(E) denote the space of finite Borel measures on E. We write µ(f) :=
∫
E f(x)µ(dx) for

the integral of a function f : E → R with respect to a measure µ ∈M(E) if the integral exists.

2.7 Definition. A tuple
(
E, (Rt)t∈R+ , c, β, b, B,H1, H2

)
is called a set of admissible parameters if

(i) E is a locally compact separable metric space,

(ii) (Rt)t∈R+ is the transition semigroup of a Hunt process

ξ =
(
Ω,G, (Gt)t∈R+ , (ξt)t∈R+ , (θt)t∈R+ , (Px)x∈E

)
with values in E (see, e.g., Li [13, page 314]) such that (Rt)t∈R+ preserves C0(E), and

R+ 3 t 7→ Rtf ∈ C0(E) is continuous in the supremum norm for every f ∈ C0(E),

(iii) c ∈ C(E)+,

(iv) β ∈M(E),

(v) b ∈ C(E),

(vi) H1 is a finite measure on M(E)◦ := M(E)\{0} (where 0 denotes the null measure) satisfying∫
M(E)◦ κ(1)H1(dκ) <∞,

(vii) B(x,dy) is a bounded kernel on E (i.e., from E to E) and H2(x,dκ) is a σ-finite kernel

from E to M(E)◦ such that E 3 x 7→
(
κ(1) ∧ κ(1)2

)
H2(x, dκ) is continuous with respect to

the topology of weak convergence in M(E)◦, and the operators

f 7→
∫
M(E)◦

(
κ(f) ∧ κ(f)2

)
H2(·, dκ) and f 7→ γ(·, f)

preserve C0(E)+, where the kernel γ(x,dy) on E is defined by

γ(x, dy) := B(x,dy) +

∫
M(E)◦

κx(dy)H2(x,dκ),

where κx(dy) denotes the restriction of κ(dy) to E \ {x}, and by γ(·, f) we mean the

function E 3 x 7→ γ(x, f) :=
∫
E f(y) γ(x, dy).
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2.8 Remark. Note that Condition (2.25) in Li [13] readily follows from (vii) of Definition 2.7, since

a function in C0(E) is bounded, hence

sup
x∈E

∫
M(E)◦

[
κ(1) ∧ κ(1)2

]
H2(x,dκ) <∞, sup

x∈E

∫
M(E)◦

κx(1)H2(x,dκ) 6 sup
x∈E

γ(x, 1) <∞,

where we used that B(x, 1) ∈ R+ for all x ∈ E. 2

2.9 Theorem. Let
(
E, (Rt)t∈R+ , c, β, b, B,H1, H2

)
be a set of admissible parameters in the sense

of Definition 2.7. Then there exists a unique transition semigroup (Qt)t∈R+ acting on the Banach

space (endowed with the supremum norm) of real-valued bounded Borel-measurable functions on the

state space M(E) such that its infinitesimal generator is

(AF )(µ) =

∫
E
c(x)F ′′(µ;x)µ(dx) +

∫
E

(
AF ′(µ;x) + γ(x, F ′(µ; ·))− b(x)F ′(µ;x)

)
µ(dx)

+

∫
E
F ′(µ;x)β(dx) +

∫
M(E)◦

(
F (µ+ κ)− F (µ)

)
H1(dκ)

+

∫
E

(∫
M(E)◦

(
F (µ+ κ)− F (µ)− κ(F ′(µ; ·))

)
H2(x,dκ)

)
µ(dx),

(2.5)

for µ ∈ M(E) and functions F : M(E) → R of the form F (µ) = G(µ(f1), . . . , µ(fn)), where

n ∈ N, G ∈ C2(Rn,R), and f1, . . . , fn ∈ D0(A), where A denotes the strong generator of (Rt)t∈R+

defined by

Af(x) := lim
t↓0

Rtf(x)− f(x)

t
, x ∈ E,

where the limit is taken in the supremum norm, and the domain D0(A) of A is the totality of

functions f ∈ C0(E) for which the above limit exists,

F ′(µ;x) := lim
ε↓0

F (µ+ εδx)− F (µ)

ε
, µ ∈M(E), x ∈ E,

and F ′′(µ;x) is defined by the limit with F (·) replaced by F ′(·;x).

Moreover, the Laplace transform of the transition semigroup (Qt)t∈R+ has a representation∫
M(E)

e−κ(f)Qt(µ, dκ) = e−µ(Vtf)−
∫ t
0 I(Vsf) ds, µ ∈M(E), f ∈ B(E)+, t ∈ R+,(2.6)

where, for any x ∈ E and f ∈ B(E)+, the continuously differentiable function R+ 3 t 7→ Vtf(x) ∈
R+ is the unique locally bounded solution to the integral evolution equation

Vtf(x) = Rtf(x)−
∫ t

0

(∫
E
φ(y, Vsf)Rt−s(x,dy)

)
ds, t ∈ R+,

with

φ(x, f) := c(x)f(x)2 + b(x)f(x)−
∫
E
f(y)B(x,dy) +

∫
M(E)◦

(
e−κ(f) − 1 + κ({x})f(x)

)
H2(x,dκ)

for x ∈ E and f ∈ B(E)+, and

I(f) := β(f) +

∫
M(E)◦

(
1− e−κ(f)

)
H1(dκ), f ∈ B(E)+.
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Proof. Formula (2.6), which is, in fact, formula (9.18) in Li [13], defines a transition semigroup of

an immigration superprocess corresponding to the skew convolution semigroup given by (9.7) in Li

[13]. Theorem 9.18 in Li [13] yields that the infinitesimal generator of the immigration superprocess

in question has the form given in (2.5), and the unicity of the transition semigroup. 2

2.10 Definition. A Markov process with state space M(E) and with transition semigroup (Qt)t∈R+

given in Theorem 2.9 is called an immigration superprocess with state space M(E) with parameters(
E, (Rt)t∈R+ , c, β, b, B,H1, H2

)
.

In what follows, we identify a multi-type CBI process (Xt)t∈R+ with parameters (d, c,β,B, ν,µ)

under the moment condition

(2.7)

∫
Ud

‖z‖1{‖z‖>1} ν(dz) <∞,

as a special immigration superprocess.

First we introduce the modified parameters β̃ := (β̃i)i∈{1,...,d}, B̃ := (̃bi,j)i,j∈{1,...,d} and D :=

(di,j)i,j∈{1,...,d} given by

β̃ := β +

∫
Ud

z ν(dz), b̃i,j := bi,j +

∫
Ud

(zi − δi,j)+ µj(dz),(2.8)

di,j := b̃i,j −
∫
Ud

zi1{‖z‖>1} µj(dz),(2.9)

with δi,j := 1 if i = j, and δi,j := 0 if i 6= j. The moment condition (2.7) together with the fact

that ν and µ satisfy Definition 2.2 imply β̃ ∈ Rd+, B̃ ∈ Rd×d(+) and D ∈ Rd×d(+) . Indeed,∫
Ud

‖z‖ ν(dz) =

∫
Ud

(1 ∧ ‖z‖)1{‖z‖<1} ν(dz) +

∫
Ud

‖z‖1{‖z‖>1} ν(dz) <∞(2.10)

by part (v) of Definition 2.2 and (2.7). Moreover, for all i ∈ {1, . . . , d},∫
Ud

(zi − 1)+ µi(dz) 6
∫
Ud

zi1{zi>1} µi(dz) 6
∫
Ud

‖z‖1{‖z‖>1} µi(dz) <∞(2.11)

by zi 6 ‖z‖, z ∈ Rd+, and (2.2). Further, for all i, j ∈ {1, . . . , d}, i 6= j,∫
Ud

zi µj(dz) =

∫
Ud

zi1{zi<1} µj(dz) +

∫
Ud

zi1{zi>1} µj(dz)

6
∫
Ud

(1 ∧ zi)µj(dz) +

∫
Ud

‖z‖1{‖z‖>1} µj(dz) <∞
(2.12)

by zi 6 ‖z‖, z ∈ Rd+, part (vi) of Definition 2.2 and (2.2). Finally, di,j is well-defined for all

i, j ∈ {1, . . . , d} because of (2.2), and, for all i, j ∈ {1, . . . , d}, i 6= j,

di,j = bi,j +

∫
Ud

zi µj(dz)−
∫
Ud

zi1{‖z‖>1} µj(dz) = bi,j +

∫
Ud

zi1{‖z‖<1} µj(dz) ∈ R+.
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Note also that for all j ∈ {1, . . . , d},

(2.13)

∫
Ud

‖z‖21{‖z‖<1} µj(dz) 6
∫
Ud

(
z2
j +

∑
k∈{1,...,d}\{j}

zk

)
1{‖z‖<1} µj(dz) <∞

by zi 6 ‖z‖, z ∈ Rd+, part (vi) of Definition 2.2 and (2.2).

For the discrete metric space E := {1, . . . , d}, we have the following identifications:

• B(E), C(E) and C0(E) can be identified with Rd, since a function f : E → R can be

identified with the vector (f(1), . . . , f(d))> ∈ Rd,

• B(E)+ and C(E)+ can be identified with Rd+,

• M(E) can be identified with Rd+, since a finite Borel measure µ on E can be identified with

the vector (µ({1}), . . . , µ({d}))> ∈ Rd+,

• for µ ∈ M(E) and f ∈ B(E), the integral µ(f) =
∫
E f(x)µ(dx) =

∑d
i=1 f(i)µ({i}) can be

identified with the usual Euclidean inner product 〈µ, f〉 in Rd,

• M(E)◦ can be identified with Ud.

If (Ω,F ,P) is a probability space, then, by P-null sets from a sub σ-algebra H ⊂ F , we mean the

elements of the set

{A ⊂ Ω : ∃B ∈ H such that A ⊂ B and P(B) = 0}.

A filtered probability space (Ω,F , (Ft)t∈R+ ,P) is said to satisfy the usual hypotheses if (Ft)t∈R+ is

right continuous and F0 contains all the P-null sets in F .

2.11 Lemma. Let (d, c,β,B, ν,µ) be a set of admissible parameters in the sense of Definition 2.2

satisfying the moment condition (2.7). Then
(
E, (Rt)t∈R+ , c, β, b, B,H1, H2

)
is a set of admissible

parameters in the sense of Definition 2.7, where

(i) E := {1, . . . , d} with the discrete metric,

(ii) (Rt)t∈R+ is the transition semigroup given by Rtf := f , f ∈ B(E), t ∈ R+,

(iii) c ∈ B(E)+ is given by c(i) := ci, i ∈ E,

(iv) β ∈M(E) is given by β({i}) := βi, i ∈ E,

(v) b ∈ B(E), is given by b(i) := −b̃i,i, i ∈ E,

(vi) B(x,dy) is the kernel on E given by B(i, {i}) := 0 for i ∈ {1, . . . , d} and B(i, {j}) := bj,i
for i, j ∈ {1, . . . , d} with i 6= j,

(vii) H1 is the measure on M(E)◦ identified with the measure ν on Ud,

(viii) H2(x,dκ) is the kernel from E to M(E)◦ such that the measure H2(i, ·) on M(E)◦ is

identified with the measure µi on Ud for each i ∈ {1, . . . , d}.
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If (Ω,F , (Ft)t∈R+ ,P) is a filtered probability space satisfying the usual hypotheses and (Yt)t∈R+

is a càdlàg immigration superprocess with parameters
(
E, (Rt)t∈R+ , c, β, b, B,H1, H2

)
satisfying

E(Y0(1)) < ∞ and adapted to (Ft)t∈R+, then Xt := (Yt({1}), . . . , Yt({d}))>, t ∈ R+, is a

multi-type CBI process with parameters (d, c,β,B, ν,µ) satisfying E(‖X0‖) < ∞. The infinitesi-

mal generator (2.3) of (Xt)t∈R+ can also be written in the form

(AXf)(x) =
d∑
i=1

cixif
′′
i,i(x) +

d∑
i=1

xi

∫
Ud

(
f(x+ z)− f(x)− 〈z,f ′(x)〉

)
µi(dz)

+ 〈β + B̃x,f ′(x)〉+

∫
Ud

(
f(x+ z)− f(x)

)
ν(dz)

(2.14)

for f ∈ C2
c (Rd+,R) and x ∈ Rd+.

Proof. The discrete metric space {1, . . . , d} is trivially a locally compact separable metric space.

Clearly, Rtf := f , f ∈ B(E), t ∈ R+, is the transition semigroup of the Hunt process

ξ =
(
Ω,G, (Gt)t∈R+ , (ξt)t∈R+ , (θt)t∈R+ , (Px)x∈E

)
with Ω = {1, . . . , d}, G = Gt = 2Ω, t ∈ R+, ξt(ω) = θt(ω) = ω, ω ∈ Ω, t ∈ R+, Px = δx,

x ∈ {1, . . . , d}. Moreover, (Rt)t∈R+ trivially satisfies (ii) of Definition 2.7, and (iii), (iv) and (v) of

Definition 2.7 trivially hold. Further (vi) of Definition 2.7 also holds, since
∫
Ud

(∑d
i=1 zi

)
ν(dz) <∞

follows from (2.10) by zi 6 ‖z‖, z ∈ Rd+, i ∈ {1, . . . , d}. The kernel B(x,dy) on E is bounded,

since supx∈E B(x,E) = maxi∈{1,...,d}
∑

j∈{1,...,d}\{i} bj,i <∞. On the dicrete metric space {1, . . . , d}
every function is continuous, hence E 3 x 7→

(
κ(1) ∧ κ(1)2

)
H2(x,dκ) is continuous with respect to

the topology of weak convergence in M(E)◦. In order to show that the operator

f 7→
∫
M(E)◦

(
κ(f) ∧ κ(f)2

)
H2(·,dκ)

preserve C0(E)+, it suffices to observe that for each λ ∈ Rd+ and i ∈ {1, . . . , d}, we have∫
Ud

(
〈λ, z〉 ∧ 〈λ, z〉2

)
µi(dz) ∈ R+,

which follows from the estimate∫
Ud

(
〈λ, z〉 ∧ 〈λ, z〉2

)
µi(dz) 6

∫
Ud

[
(‖λ‖‖z‖) ∧ (‖λ‖‖z‖)2

]
µi(dz) 6 cλ

∫
Ud

(‖z‖ ∧ ‖z‖2)µi(dz)

= cλ

∫
Ud

(‖z‖ ∧ ‖z‖2)1{‖z‖61} µi(dz) + cλ

∫
Ud

(‖z‖ ∧ ‖z‖2)1{‖z‖>1} µi(dz)

= cλ

∫
Ud

‖z‖21{‖z‖61} µi(dz) + cλ

∫
Ud

‖z‖1{‖z‖>1} µi(dz) <∞

with cλ := max{‖λ‖, ‖λ‖2} by (2.13) and (2.2). In order to show that the operator f 7→ γ(·, f)

preserves C0(E)+, it suffices to observe that for each λ = (λ1, . . . , λd)
> ∈ Rd+ and i ∈ {1, . . . , d},

we have

d∑
j=1

λjB(i, {j}) +
∑

j∈{1,...,d}\{i}

λj

∫
Ud

zj µj(dz) ∈ R+,
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which follows from (2.12). Consequently,
(
E, (Rt)t∈R+ , c, β, b, B,H1, H2

)
is a set of admissible pa-

rameters in the sense of Definition 2.7.

By Theorem 2.9, we have

E(e−Yt(f) |Y0 = µ) =

∫
M(E)◦

e−κ(f)Qt(µ, dκ) = e−µ(Vtf)−
∫ t
0 I(Vsf) ds

for µ ∈M(E), f ∈ B(E)+ and t ∈ R+, hence we obtain

E(e−〈λ,Xt〉 |X0 = x) = e−〈x,v(t,λ)〉−
∫ t
0 ψ(v(s,λ)) ds, x,λ ∈ Rd+, t ∈ R+,

where, for any i ∈ {1, . . . , d} and λ ∈ Rd+, the function R+ 3 t 7→ v(t,λ) = (v1(t,λ), . . . , vd(t,λ))

is the unique locally bounded solution to the integral evolution equation

vi(t,λ) = λi −
∫ t

0
ϕi(v(s,λ)) ds, t ∈ R+, i ∈ {1, . . . , d},

with

ϕi(λ) := ciλ
2
i − b̃i,iλi −

∑
j∈{1,...,d}\{i}

λjbj,i +

∫
Ud

(e−〈λ,z〉 − 1 + λizi)µi(dz)

for λ ∈ Rd+ and i ∈ {1, . . . , d}, and

ψ(λ) := 〈β,λ〉+

∫
Ud

(1− e−〈λ,z〉) ν(dz), λ ∈ Rd+.

We have

(2.15) ϕi(λ) = ciλ
2
i − 〈B̃ei,λ〉+

∫
Ud

(e−〈λ,z〉 − 1 + 〈λ, z〉)µi(dz),

since, by (2.12),

ϕi(λ)− ciλ2
i + 〈B̃ei,λ〉 −

∫
Ud

(e−〈λ,z〉 − 1 + 〈λ, z〉)µi(dz)

= −b̃i,iλi −
∑

j∈{1,...,d}\{i}

λjbj,i +
d∑
j=1

λj b̃j,i −
∑

j∈{1,...,d}\{i}

λj

∫
Ud

zj µi(dz) = 0.

Moreover, we can write the functions ϕi, i ∈ {1, . . . , d}, in the form

ϕi(λ) = ciλ
2
i − 〈Bei,λ〉+

∫
Ud

(
e−〈λ,z〉 − 1 + λi(1 ∧ zi)

)
µi(dz)

for λ = (λ1, . . . , λd)
> ∈ Rd+ and i ∈ {1, . . . , d}. Indeed, by (2.11) and (2.12),

ϕi(λ)− ciλ2
i + 〈Bei,λ〉 −

∫
Ud

(
e−〈λ,z〉 − 1 + λi(1 ∧ zi)

)
µi(dz)

= 〈(B − B̃)ei,λ〉 −
∫
Ud

(
λi(1 ∧ zi)− 〈λ, z〉

)
µi(dz)

= −λi
∫
Ud

(zi − 1)+ µi(dz)−
∫
Ud

(
λi(1 ∧ zi)− λizi

)
µi(dz) = 0.
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By Theorem 2.4, (Xt)t∈R+ is a multi-type CBI with parameters (d, c,β,B, ν,µ) satisfying

E(‖X0‖) <∞.

Finally, (2.14) follows from

(AXf)(x)−
d∑
i=1

cixif
′′
i,i(x)−

d∑
i=1

xi

∫
Ud

(
f(x+ z)− f(x)− 〈z,f ′(x)〉

)
µi(dz)

− 〈β + B̃x,f ′(x)〉 −
∫
Ud

(
f(x+ z)− f(x)

)
ν(dz)

=

d∑
i=1

xi

∫
Ud

(
〈z,f ′(x)〉 − f ′i(x)(1 ∧ zi)

)
µi(dz)− 〈(B̃ −B)x,f ′(x)〉

=
d∑
i=1

xi

∫
Ud

(
f ′i(x)(zi − (1 ∧ zi)) +

∑
j∈{1,...,d}\{i}

zjf
′
j(x)

)
µi(dz)

−
d∑
i=1

d∑
j=1

xjf
′
i(x)

∫
Ud

(zi − δi,j)+ µj(dz) = 0.

using (2.10), (2.11) and (2.12). 2

3 Multi-type CBI process as a weak solution of an SDE

Let R :=
⋃d
j=0Rj , where Rj , j ∈ {0, 1, . . . , d}, are disjoint sets given by

R0 := Ud × {(0, 0)}d ⊂ Rd+ × (Rd+ × R+)d,

and

Rj := {0} ×Hj,1 × · · · ×Hj,d ⊂ Rd+ × (Rd+ × R+)d, j ∈ {1, . . . , d},

where

Hj,i :=

{
Ud × U1 if i = j,

{(0, 0)} if i 6= j.

(Recall that U1 = R++.) Let m be the uniquely defined measure on V := Rd+ × (Rd+ × R+)d such

that m(V \ R) = 0 and its restrictions on Rj , j ∈ {0, 1, . . . , d}, are

(3.1) m|R0(dr) = ν(dr), m|Rj (dz, du) = µj(dz) du, j ∈ {1, . . . , d},

where we identify R0 with Ud and R1, . . . , Rd with Ud ×U1 in a natural way. Using again this

identification, let h : Rd × V → Rd+ be defined by

h(x, r) :=


r, if x ∈ Rd+, r ∈ R0,

z1{u6xj}, if x = (x1, . . . , xd)
> ∈ Rd+, r = (z, u) ∈ Rj , j ∈ {1, . . . , d},

0, otherwise.
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Consider the decomposition R = V0 ∪V1, where V0 :=
⋃d
j=1Rj,0 and V1 := R0 ∪

(⋃d
j=1Rj,1

)
with

Rj,k := {0} ×Hj,1,k × · · · ×Hj,d,k, j ∈ {1, . . . , d}, k ∈ {0, 1}, and

Hj,i,k :=

{
Ud,k × U1 if i = j,

{(0, 0)} if i 6= j,
Ud,k :=

{
{z ∈ Ud : ‖z‖ < 1} if k = 0,

{z ∈ Ud : ‖z‖ > 1} if k = 1.

Then the sets V0 and V1 are disjoint, and the function h can be decomposed in the form h = f +g

with

f(x, r) := h(x, r)1V0(r), g(x, r) := h(x, r)1V1(r), (x, r) ∈ Rd × V.

Let (d, c,β,B, ν,µ) be a set of admissible parameters in the sense of Definition 2.2 such that the

moment condition (2.7) holds. Let us consider the d-dimensional SDE

(3.2)

Xt = X0 +

∫ t

0
b(Xs) ds+

∫ t

0
σ(Xs) dW s

+

∫ t

0

∫
V0

f(Xs−, r) Ñ(ds, dr) +

∫ t

0

∫
V1

g(Xs−, r)N(ds, dr), t ∈ R+,

where the functions b : Rd → Rd and σ : Rd → Rd×d are defined by

b(x) := β +Dx, σ(x) :=
d∑
i=1

√
2cix

+
i eie

>
i , x ∈ Rd,

D is defined in (2.9), (W t)t∈R+ is a d-dimensional standard Brownian motion, N(ds, dr) is

a Poisson random measure on R++ × V with intensity measure dsm(dr), and Ñ(ds, dr) :=

N(ds, dr) − dsm(dr). For a short review on point measures and point processes needed for this

paper, see, e.g., Barczy et al. [1, Section 2].

3.1 Definition. Let n be a probability measure on (Rd+,B(Rd+)). An Rd+-valued weak solution of

the SDE (3.2) with initial distribution n is a tuple
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
, where

(D1) (Ω,F , (Ft)t∈R+ ,P) is a filtered probability space satisfying the usual hypotheses;

(D2) (W t)t∈R+ is a d-dimensional standard (Ft)t∈R+-Brownian motion;

(D3) p is a stationary (Ft)t∈R+-Poisson point process on V with characteristic measure m given

in (3.1);

(D4) (Xt)t∈R+ is an Rd+-valued (Ft)t∈R+-adapted càdlàg process such that

(a) the distribution of X0 is n,

(b) P
(∫ t

0

(
‖b(Xs)‖+ ‖σ(Xs)‖2

)
ds <∞

)
= 1 for all t ∈ R+,

(c) P
(∫ t

0

∫
V0
‖f(Xs, r)‖2 dsm(dr) <∞

)
= 1 for all t ∈ R+,

(d) P
(∫ t

0

∫
V1
‖g(Xs−, r)‖N(ds, dr) < ∞

)
= 1 for all t ∈ R+, where N(ds, dr) is the

counting measure of p on R++ × V ,

(e) equation (3.2) holds P-a.s., where Ñ(ds, dr) := N(ds, dr)− dsm(dr).
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For the definitions of an (Ft)t∈R+-Brownian motion and an (Ft)t∈R+-Poisson point process, see,

e.g., Ikeda and Watanabe [7, Chapter I, Definition 7.2 and Chapter II, Definition 3.2].

3.2 Remark. If conditions (D1)–(D3) and (D4)(b)–(d) are satisfied, then the mappings R+×V0×Ω 3
(s, r, ω) 7→ f(Xs−(ω), r) ∈ Rd and R+ × V1 × Ω 3 (s, r, ω) 7→ g(Xs−(ω), r) ∈ Rd are in the

(multidimensional versions of the) classes F 2,loc
p and F p, respectively, defined in Ikeda and Watanabe

[7, pages 61, 62], the integrals in (3.2) are well-defined and have càdlàg modifications as functions of

t, see, e.g., Barczy et al. [1, Remark 3.2].

Moreover, if E
(∫ t

0 ‖Xs‖ ds
)
< ∞ for all t ∈ R+, and the moment condition (2.7) holds, then

conditions (D4)(b)–(d) are satisfied, and the mappings R+×V0×Ω 3 (s, r, ω) 7→ f(Xs−(ω), r) ∈ Rd

and R+ × V1 × Ω 3 (s, r, ω) 7→ g(Xs−(ω), r) ∈ Rd are in the (multidimensional versions of the)

smaller classes F 2
p and F 1

p, respectively, defined in Ikeda and Watanabe [7, page 62]. Indeed, with

the notation Xs = (Xs,1, . . . , Xs,d)
>, s ∈ R+,

E
(∫ t

0

∫
V0

‖f(Xs, r)‖2 dsm(dr)

)
=

d∑
j=1

E
(∫ t

0

∫
Ud

∫
U1

‖z‖21{‖z‖<1}1{u6Xs,j} ds µj(dz) du

)

=
d∑
j=1

E
(∫ t

0
Xs,j ds

)∫
Ud

‖z‖21{‖z‖<1} µj(dz) <∞

by (2.13), and

E
(∫ t

0

∫
V1

‖g(Xs, r)‖ dsm(dr)

)

=

∫ t

0

∫
Ud

‖r‖ds ν(dr) +

d∑
j=1

E
(∫ t

0

∫
Ud

∫
U1

‖z‖1{‖z‖>1}1{u6Xs,j} ds µj(dz) du

)

= t

∫
Ud

‖r‖ ν(dr) +

d∑
j=1

E
(∫ t

0
Xs,j ds

)∫
Ud

‖z‖1{‖z‖>1} µj(dz) <∞

by (2.10) and (2.2). Note that if (Xt)t∈R+ is a CBI process with E(‖X0‖) < ∞ satisfying the

moment condition (2.7), then E
(∫ t

0 ‖Xs‖ ds
)
<∞ for all t ∈ R+, see Lemma 3.4. 2

3.3 Remark. Note that if conditions (D1)–(D3) are satisfied, then W and p are automatically

independent according to Theorem 6.3 in Chapter II of Ikeda and Watanabe [7], since the intensity

measure dsm(dr) of p is deterministic. Moreover, if
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
is an Rd+-valued

weak solution of the SDE (3.2), then F0, W and p are mutually independent, and hence X0, W

and p are mutually independent as well, see, e.g., Barczy et al. [1, Remark 3.4]. 2

3.4 Lemma. Let (Xt)t∈R+ be a CBI process with parameters (d, c,β,B, ν,µ) and with initial

distribution n satisfying
∫
Rd
+
‖z‖n(dz) <∞. Suppose that the moment condition (2.7) holds. Then

E(Xt) = etB̃ E(X0) +

(∫ t

0
euB̃ du

)
β̃, t ∈ R+,

14



where B̃ ∈ Rd×d(+) and β̃ ∈ Rd+ are defined in (2.8). In particular,
∫ t

0 E(‖Xs‖) ds < ∞ for all

t ∈ R+.

Proof. By the tower rule for conditional expectations, it suffices to show

(3.3) E(Xt |X0) = etB̃X0 +

(∫ t

0
euB̃ du

)
β̃, t ∈ R+,

where the conditional expectation E(Xt |X0) ∈ [0,∞]d is meant in the generalized sense, see, e.g.,

Stroock [15, Theorem 5.1.6]. In order to show (3.3), it is enough to check that for a CBI process

(Xt)t∈R+ with initial value X0 = x ∈ Rd+, we have

(3.4) E(Xt) = etB̃x+

(∫ t

0
euB̃ du

)
β̃, t ∈ R+, x ∈ Rd+.

Indeed, let φn : Rd+ → Rd+, n ∈ N, be simple functions such that φn(y) ↑ y as n→∞ for all y ∈ Rd+.

Then, by the (multidimensional version of the) monotone convergence theorem for (generalized) con-

ditional expectations, see, e.g., Stroock [15, Theorem 5.1.6], we obtain E(φn(Xt) |X0) ↑ E(Xt |X0)

as n→∞ P-almost surely. For each B ∈ B(Rd), we have

E(1B(Xt) |X0) = P(Xt ∈ B |X0) =

∫
Rd
+

1B(y)Pt(X0,dy),

hence E(φn(Xt) |X0) =
∫
Rd
+
φn(y)Pt(X0,dy). By the (multidimensional version of the) monotone

convergence theorem,
∫
Rd
+
φn(y)Pt(X0,dy) ↑

∫
Rd
+
y Pt(X0, dy) as n→∞. By (3.4), we get

E(Xt |X0) =

∫
Rd
+

y Pt(X0, dy) = etB̃X0 +

(∫ t

0
euB̃ du

)
β̃,

hence we conclude (3.3).

In order to show (3.4), we are going to apply Proposition 9.11 of Li [13] for the immigration

superprocess given in Lemma 2.11. For each f ∈ B(E) and i ∈ E, the function R+ 3 t 7→ πtf(i) is

the unique locally bounded solution to the linear evolution equation (2.35) in Li [13] taking the form

πtf(i) = f(i) +

∫ t

0
γ(i, πsf) ds−

∫ t

0
b(i)πsf(i) ds

= f(i) +

∫ t

0

 d∑
j=1

πsf(j)γ(i, {j})

ds−
∫ t

0
b(i)πsf(i) ds = f(i) +

∫ t

0

 d∑
j=1

πsf(j)̃bj,i

ds,

where we used Rtf = f for f ∈ B(E) and t ∈ R+, b(i) = −b̃i,i and γ(i, {i}) = B(i, {i}) = 0 for

i ∈ {1, . . . , d}, and

γ(i, {j}) = B(i, {j}) +

∫
Ud

zj µi(dz) = bj,i +

∫
Ud

zj µi(dz) = b̃j,i(3.5)

for i, j ∈ {1, . . . , d} with i 6= j. The functions R+ 3 t 7→ πtf(i), f ∈ B(E), i ∈ {1, . . . , d}, can

be identified with the functions R+ 3 t 7→ πi(t,λ), λ ∈ Rd, i ∈ {1, . . . , d}, which are the unique

locally bounded solution to the linear evolution equations

πi(t,λ) = λi +

∫ t

0
〈B̃ei, π(s,λ)〉 ds, t ∈ R+, i ∈ {1, . . . , d}, λ ∈ Rd.
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Consequently, the functions R+ 3 t 7→ π(t,λ) := (π1(t,λ), . . . , πd(t,λ)), λ ∈ Rd, satisfies

π(t,λ) = λ+

∫ t

0
B̃
>
π(s,λ) ds, t ∈ R+, λ ∈ Rd,

and hence

π(t,λ) = etB̃
>
λ, t ∈ R+, λ ∈ Rd.

The functional B(E) 3 f 7→ Γ(f) = η(f)+
∫
M(E)◦ κ(f)H1(dκ) of [13, formula (9.20)] can be identified

with the functional Rd 3 x 7→ x>β+
∫
Ud
x>z ν(dz) = x>β̃. Hence Proposition 9.11 of Li [13] implies

〈λ,E(Xt)〉 = 〈etB̃
>
λ,x〉+

(∫ t

0
(esB̃

>
λ)> ds

)
β̃ =

〈
λ, etB̃x+

(∫ t

0
esB̃ ds

)
β̃

〉
for t ∈ R+ and λ ∈ Rd, which yields (3.4). 2

3.5 Remark. We call the attention that in the proof of the forthcoming Theorem 3.7, which states

existence of an Rd+-valued weak solution of the SDE (3.2), we will extensively use that for a CBI

process (Xt)t∈R+ with parameters (d, c,β,B, ν,µ) satisfying E(‖X0‖) < ∞ and the moment

condition (2.7), we have
∫ t

0 E(‖Xs‖) ds < ∞, t ∈ R+, proved in Lemma 3.4. We point out that in

the proof of Lemma 3.4 we can not use the SDE (3.2), since at that point it has not yet been proved

that a CBI process is a solution of this SDE. This drives us back to Definition 2.6 of CBI processes in

the proof of Lemma 3.4. Having proved that a CBI process is a solution of the SDE (3.2), one could

give another proof of Lemma 3.4 (roughly speaking by taking expectations via localization argument).

2

3.6 Definition. We say that uniqueness in the sense of probability law holds for the SDE (3.2) among

Rd+-valued weak solutions if whenever
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
and

(
Ω̃, F̃ , (F̃t)t∈R+ , P̃, W̃ , p̃, X̃

)
are Rd+-valued weak solutions of the SDE (3.2) such that P(X0 ∈ B) = P̃(X̃0 ∈ B) for all

B ∈ B(Rd), then P(X ∈ C) = P̃(X̃ ∈ C) for all C ∈ D(R+,Rd).

3.7 Theorem. Let (d, c,β,B, ν,µ) be a set of admissible parameters in the sense of Definition 2.2

such that the moment condition (2.7) holds. Then for any probability measure n on (Rd+,B(Rd+))

with
∫
Rd
+
‖z‖n(dz) <∞, the SDE (3.2) admits an Rd+-valued weak solution with initial distribution

n which is unique in the sense of probability law among Rd+-valued weak solutions. Moreover, any

Rd+-valued weak solution is a CBI process with parameters (d, c,β,B, ν,µ).

Proof. Suppose that (Xt)t∈R+ is a càdlàg realization of a CBI process with parameters

(d, c,β,B, ν,µ) on a probability space (Ω,F ,P) having initial distribution n, i.e., (Xt)t∈R+

is a time homogeneous Markov process having càdlàg trajectories and the same finite dimensional

distributions as a CBI process with parameters (d, c,β,B, ν,µ) having initial distribution n (such

a realization exists due to Theorem 9.15 in Li [13]). Let

Ft :=
⋂
ε>0

σ
(
FXt+ε ∪N

)
, t ∈ R+,

where N denotes the collection of null sets under the probability measure P, and (FXt )t∈R+ stands

for the natural filtration generated by the process (Xt)t∈R+ , hence the filtered probability space

(Ω,F , (Ft)t∈R+ ,P) satisfies the usual hypotheses.
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By the equivalence of parts (3) and (4) of Theorem 9.18 of Li [13] applied to the immigration

superprocess given in Lemma 2.11, we conclude that the process (Xt)t∈R+ has no negative jumps,

the (not necessarily Poisson) random measure

N0(ds, dz) :=
∑

u∈R++

1{Xu 6=Xu−}δ(u,Xu−Xu−)(ds, dz)

on R++ × Ud has predictable compensator

N̂0(ds, dz) :=
d∑
j=1

Xs−,j ds µj(dz) + ds ν(dz),

and

Xt −X0 −
∫ t

0

(
β̃ + B̃Xs

)
ds−

∫ t

0

∫
Ud

z Ñ0(ds, dz), t ∈ R+,

is a continuous locally square integrable martingale starting from 0 ∈ Rd with quadratic variation

process (
2δi,jci

∫ t

0
Xs,i ds

)
i,j∈{1,...,d}

, t ∈ R+,

where Ñ0(ds, dz) := N0(ds, dz)− N̂0(ds, dz). Indeed, first, note that Rtf = f , t ∈ R+, f ∈ B(E),

yields that the strong generator of (Rt)t∈R+ is identically 0, i.e., A = 0, see Li [13, (7.1)]. Using

b(i) = −b̃i,i and γ(i, {i}) = B(i, {i}) = 0 for i ∈ {1, . . . , d} and γ(i, {j}) = b̃j,i for i, j ∈ {1, . . . , d}
with i 6= j (see, (3.5)), the function B(E) 3 f 7→ Af +γf −bf of Li [13, page 218] can be identified

with the function

E 3 i 7→
d∑
j=1

f(j)γ(i, {j})− b(i)f(i) =
d∑
j=1

b̃j,if(j).(3.6)

Recalling that the functional B(E) 3 f 7→ Γ(f) = η(f) +
∫
M(E)◦ κ(f)H(dκ) is identified with the

functional Rd 3 x 7→ x>β̃ (see, the end of the proof of Lemma 3.4), Theorem 9.18 of Li [13] yields

that for each w = (w1, . . . , wd)
> ∈ Rd, the process (w>Xt)t∈R+ has no negative jumps, and

w>Xt −w>X0 −
∫ t

0

(
w>β̃ +w>B̃Xs

)
ds−

∫ t

0

∫
Ud

w>z Ñ0(ds, dz), t ∈ R+,

is a continuous locally square integrable martingale strating from 0 ∈ R with quadratic variation

process

〈w>X〉t = 2

d∑
i=1

ciw
2
i

∫ t

0
Xs,i ds, t ∈ R+.
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Further, by polarization identity, for all w, w̃ ∈ Rd, the cross quadratic variation process of

(w>Xt)t∈R+ and (w̃>Xt)t∈R+ takes the form

〈w>X, w̃>X〉t =
1

4

(
〈(w + w̃)>X〉t − 〈(w − w̃)>X〉t

)
=

1

4

(
2

d∑
i=1

ci(wi + w̃i)
2

∫ t

0
Xs,i ds− 2

d∑
i=1

ci(wi − w̃i)2

∫ t

0
Xs,i ds

)

= 2

d∑
i=1

ciwiw̃i

∫ t

0
Xs,i ds, t ∈ R+.

We note that the integral
∫ t

0

∫
Ud
z Ñ0(ds, dz) is well-defined, since z = z1{‖z‖<1}+z1{‖z‖>1}, z ∈ Ud,

and the functions R+×Ud×Ω 3 (s, z, ω) 7→ z1{‖z‖<1} and R+×Ud×Ω 3 (s, z, ω) 7→ z1{‖z‖>1} belong

to the classes F 2
p0 and F 1

p0 , respectively, where p0 denotes the point process on Ud with counting

measure N0(ds, dz), i.e., p0(u) := Xu−Xu− for u ∈ D(p0) with D(p0) := {u ∈ R++ : Xu 6= Xu−}.
Indeed,

E
(∫ t

0

∫
Ud

‖z‖21{‖z‖<1} N̂0(ds, dz)

)

=

∫ t

0

∫
Ud

‖z‖21{‖z‖<1} ds ν(dz) +
d∑
j=1

∫ t

0

∫
Ud

‖z‖21{‖z‖<1} E(Xs,j) ds µj(dz)

6 t

∫
Ud

‖z‖ ν(dz) +
d∑
j=1

∫ t

0
E(Xs,j) ds

∫
Ud

‖z‖21{‖z‖<1} µj(dz) <∞

by Lemma 3.4 and the inequalities (2.10) and (2.13), and

E
(∫ t

0

∫
Ud

‖z‖1{‖z‖>1} N̂0(ds, dz)

)

=

∫ t

0

∫
Ud

‖z‖1{‖z‖>1} ds ν(dz) +
d∑
j=1

∫ t

0

∫
Ud

‖z‖1{‖z‖>1} E(Xs,j) ds µj(dz)

6 t

∫
Ud

‖z‖ ν(dz) +

d∑
j=1

∫ t

0
E(Xs,j) ds

∫
Ud

‖z‖1{‖z‖>1} µj(dz) <∞

by Lemma 3.4 and the inequalities (2.10) and (2.2).

Using that P
( ∫ t

0 Xs,i ds < ∞
)

= 1, i ∈ {1, . . . , d} (since X has càdlàg trajectories almost

surely), by choosing w = ej , j ∈ {1, . . . , d}, a representation theorem for continuous locally square

integrable martingales (see, e.g., Ikeda and Watanabe [7, Chapter II, Theorem 7.1’]) yields

Xt = X0 +

∫ t

0

(
β̃ + B̃Xs

)
ds+

d∑
i=1

ei

∫ t

0

√
2ciXs,i dWs,i +

∫ t

0

∫
Ud

z Ñ0(ds, dz)
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for all t ∈ R+, P̃-almost surely on an extension
(
Ω̃, F̃ , (F̃t)t∈R+ , P̃

)
of the filtered probability space

(Ω,F , (Ft)t∈R+ ,P) (see Definition A.1), and (Wt,1, . . . ,Wt,d)t∈R+ is a d-dimensional (F̃t)t∈R+-

Brownian motion. We note that, with a little abuse of notation, the extended random variables on

the extension
(
Ω̃, F̃ , (F̃t)t∈R+ , P̃

)
are denoted in the same way as the original ones. Let

G̃t :=
⋂
ε>0

σ
(
F̃t+ε ∪ Ñ

)
, t ∈ R+,

where Ñ denotes the collection of null sets under the probability measure P̃. Then the filtered proba-

bility space (Ω̃, F̃ , (G̃t)t∈R+ , P̃) satisfies the usual hypotheses, and by Lemma A.4, (Wt,1, . . . ,Wt,d)t∈R+

is a d-dimensional (G̃t)t∈R+-Brownian motion.

The aim of the following discussion is to show, by the representation theorem of Ikeda and Watan-

abe [7, Chapter II, Theorem 7.4], that the SDE (3.2) holds on an extension of the original probability

space. The predictable compensator of the random measure N0(ds, dz) can be written in the form

N̂0(ds, dz) = ds q(s, dz), where

q(s, dz) :=
d∑
j=1

Xs−,j µj(dz) + ν(dz).

Let Θ : R+ × V × Ω̃→ Ud ∪ {0} = Rd+ be defined by

Θ(s, r, ω̃) := h(Xs−(ω̃), r), (s, r, ω̃) ∈ R+ × V × Ω̃.

(Note, that ∆ = 0 in the notation of Ikeda and Watanabe [7, Chapter II, Theorem 7.4].) Then

condition (7.26) on page 93 in Ikeda and Watanabe [7] holds, since for all s ∈ R+, ω̃ ∈ Ω̃, and

B ∈ B(Ud), we have

m({r ∈ V : Θ(s, r, ω̃) ∈ B}) =
d∑
i=0

m({r ∈ Ri : Θ(s, r, ω̃) ∈ B})

=
d∑
i=1

(µi × `)
(
{(z, u) ∈ Ri : z1{u6Xs−,i(ω̃)} ∈ B}

)
+ ν
(
{r ∈ R0 : r ∈ B}

)

=

d∑
i=1

Xs−,i(ω̃)µi(B) + ν(B) = q(s,B)(ω̃),

where ` denotes the Lebesgue measure on R++, and we used that 0 /∈ B. By Theorem II.7.4

in Ikeda and Watanabe [7], on an extension
(˜̃
Ω,
˜̃F , ( ˜̃F t)t∈R+ ,

˜̃P) of (Ω̃, F̃ , (G̃t)t∈R+ , P̃), there is a

stationary (
˜̃F t)t∈R+-Poisson point process p on V with characteristic measure m such that

N0

(
(0, t]×B

)
=

∫ t

0

∫
V
1B(Θ(s, r))N(ds, dr)

= #{s ∈ D(p) : s ∈ (0, t], Θ(s, p(s)) ∈ B} ˜̃P-a.s.

19



for all B ∈ B(Ud), where N(ds, dr) denotes the counting measure of p, and D(p) is the domain

of p being a countable subset of R++ such that {s ∈ D(p) : s ∈ (0, t], p(s) ∈ B} is finite for

all t ∈ R+ and compact subsets B ∈ B(Ud). Then, by Lemma A.3, (Wt,1, . . . ,Wt,d)t∈R+ is a

d-dimensional (
˜̃F t)t∈R+-Brownian motion. Let

˜̃Gt :=
⋂
ε>0

σ

(˜̃F t+ε ∪ ˜̃N) , t ∈ R+,

where
˜̃N denotes the collection of null sets under the probability measure

˜̃P. Then the filtered prob-

ability space (
˜̃
Ω,
˜̃F , (˜̃Gt)t∈R+ ,

˜̃P) satisfies the usual hypotheses. By Lemma A.4, (Wt,1, . . . ,Wt,d)t∈R+

is a d-dimensional (
˜̃Gt)t∈R+-Brownian motion, and p is a stationary (

˜̃Gt)t∈R+-Poisson point process

on V with characteristic measure m. Consequently,

(3.7) #{s ∈ D(p0) : s ∈ (0, t], p0(s) ∈ B} = #{s ∈ D(p) : s ∈ (0, t], h(Xs−, p(s)) ∈ B}

for all B ∈ B(Ud). Using this representation, we will calculate
∫ t

0

∫
Ud
z Ñ0(ds, dz), t ∈ R+. First

observe that∫ t

0

∫
Ud

z Ñ0(ds, dz) =

∫ t

0

∫
Ud

z1{‖z‖>1} Ñ0(ds, dz) +

∫ t

0

∫
Ud

z1{‖z‖<1} Ñ0(ds, dz).

Since the function R+ × Ud × Ω 3 (s, z, ω) 7→ z1{‖z‖>1} belongs to the class F 1
p0 , by Ikeda and

Watanabe [7, Chapter II, (3.8)], we obtain∫ t

0

∫
Ud

z1{‖z‖>1} Ñ0(ds, dz) =

∫ t

0

∫
Ud

z1{‖z‖>1}N0(ds, dz)−
∫ t

0

∫
Ud

z1{‖z‖>1} N̂0(ds, dz).

Applying (3.7), we obtain∫ t

0

∫
Ud

z1{‖z‖>1}N0(ds, dz) =
∑

s∈D(p0)∩(0,t]

p0(s)1{‖p0(s)‖>1}

=
∑

s∈D(p)∩(0,t]

h(Xs−, p(s))1{‖h(Xs−,p(s))‖>1} =

∫ t

0

∫
V
h(Xs−, r)1{‖h(Xs−,r)‖>1}N(ds, dr)

=

∫ t

0

∫
R0

r1{‖r‖>1}N(ds, dr) +

d∑
j=1

∫ t

0

∫
Rj

z1{‖z‖>1}1{u6Xs−,j}N(ds, dr)

=

∫ t

0

∫
V1

g(Xs−, r)N(ds, dr)−
∫ t

0

∫
R0

r1{‖r‖<1}N(ds, dr).

Here we used that the function R+×Ud×
˜̃
Ω 3 (s, z, ˜̃ω) 7→ z1{‖z‖>1} belongs to the class F 1

p0 , hence

the function R+×V ×
˜̃
Ω 3 (s, r, ˜̃ω) 7→ h(Xs−(˜̃ω), r)1{‖h(Xs−(˜̃ω),r)‖>1} belongs to the class F 1

p, and

function R+ × V ×
˜̃
Ω 3 (s, r, ˜̃ω) 7→ r1{‖r‖<1}1R0(r) also belongs to the class F 1

p (due to (2.10)),
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thus the function R+×V ×
˜̃
Ω 3 (s, r, ˜̃ω) 7→ g(Xs−(˜̃ω), r) belongs to the class F 1

p as well. Moreover,

∫ t

0

∫
Ud

z1{‖z‖>1} N̂0(ds, dz) =

∫ t

0

∫
Ud

z1{‖z‖>1} ds ν(dz) +

d∑
j=1

∫ t

0

∫
Ud

z1{‖z‖>1}Xs,j ds µj(dz)

=

∫ t

0

∫
Ud

r1{‖r‖>1} ds ν(dr) +

d∑
j=1

∫ t

0
Xs,j ds

∫
Ud

z1{‖z‖>1} µj(dz).

Let M2 denote the complete metric space of square integrable right continuous d-dimensional mar-

tingales on (
˜̃
Ω,
˜̃F , ˜̃P) with respect to (

˜̃F t)t∈R+ starting from 0, see, e.g., Ikeda and Watanabe [7,

Chapter II, Definition 1.3 and Lemma 1.2]. The function R+ × Ud ×
˜̃
Ω 3 (s, z, ˜̃ω) 7→ z1{‖z‖<1}

belongs to the class F 2
p0 , hence, by Ikeda and Watanabe [7, Chapter II, (3.9)], the process(∫ t

0

∫
Ud
z1{‖z‖<1} Ñ0(ds, dz)

)
t∈R+

belongs to the space M2. Moreover, by Ikeda and Watanabe

[7, page 63],
∫ t

0

∫
Ud
z1{‖z‖<1} Ñ0(ds, dz) is the limit of the sequence

∫ t
0

∫
Ud
z1{ 1

n
6‖z‖<1} Ñ0(ds, dz),

n ∈ N, in M2 as n → ∞. For all n ∈ N, the mapping R+ × Ud ×
˜̃
Ω 3 (s, z, ˜̃ω) 7→ z1{ 1

n
6‖z‖<1}

belongs to the class F 1
p0 ∩ F

2
p0 , hence we obtain∫ t

0

∫
Ud

z1{ 1
n
6‖z‖<1} Ñ0(ds, dz) =

∫ t

0

∫
Ud

z1{ 1
n
6‖z‖<1}N0(ds, dz)−

∫ t

0

∫
Ud

z1{ 1
n
6‖z‖<1} N̂0(ds,dz).

Similarly as above,∫ t

0

∫
Ud

z1{ 1
n
6‖z‖<1}N0(ds, dz)

=

∫ t

0

∫
R0

r1{ 1
n
6‖r‖<1}N(ds, dr) +

d∑
j=1

∫ t

0

∫
Rj

z1{ 1
n
6‖z‖<1}1{u6Xs−,j}N(ds, dr)

and ∫ t

0

∫
Ud

z1{ 1
n
6‖z‖<1} N̂0(ds, dz)

=

∫ t

0

∫
Ud

r1{ 1
n
6‖r‖<1} ds ν(dr) +

d∑
j=1

∫ t

0

∫
Ud

∫
U1

z1{ 1
n
6‖z‖<1}1{u6Xs,j} ds µj(dz) du.

Consequently,∫ t

0

∫
Ud

z1{ 1
n
6‖z‖<1} Ñ0(ds, dz)

=

∫ t

0

∫
R0

r1{ 1
n
6‖r‖<1} Ñ(ds, dr) +

d∑
j=1

∫ t

0

∫
Rj

z1{ 1
n
6‖z‖<1}1{u6Xs−,j} Ñ(ds, dr).
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Taking the limit in M2 as n→∞, we conclude∫ t

0

∫
Ud

z1{‖z‖<1} Ñ0(ds, dz)

=

∫ t

0

∫
R0

r1{‖r‖<1} Ñ(ds, dr) +
d∑
j=1

∫ t

0

∫
Rj

z1{‖z‖<1}1{u6Xs−,j} Ñ(ds, dr)

=

∫ t

0

∫
R0

r1{‖r‖<1} Ñ(ds, dr) +

∫ t

0

∫
V0

f(Xs−, r) Ñ(ds, dr).

Summarizing, we conclude∫ t

0

∫
Ud

z Ñ0(ds, dz) =

∫ t

0

∫
V1

g(Xs−, r)N(ds, dr)−
∫ t

0

∫
R0

r1{‖r‖<1}N(ds, dr)

−
∫ t

0

∫
Ud

r1{‖r‖>1} ds ν(dr)−
d∑
j=1

∫ t

0
Xs,j ds

∫
Ud

z1{‖z‖>1} µj(dz)

+

∫ t

0

∫
R0

r1{‖r‖<1} Ñ(ds, dr) +

∫ t

0

∫
V0

f(Xs−, r) Ñ(ds, dr)

=

∫ t

0

∫
V0

f(Xs−, r) Ñ(ds, dr) +

∫ t

0

∫
V1

g(Xs−, r)N(ds, dr)

−
∫ t

0

∫
Ud

r ds ν(dr)−
d∑
j=1

∫ t

0
Xs,j ds

∫
Ud

z1{‖z‖>1} µj(dz).

This proves that the SDE (3.2) holds
˜̃P-almost surely, since∫ t

0

(
β̃ + B̃Xs

)
ds−

∫ t

0

∫
Ud

r ds ν(dr)−
d∑
j=1

∫ t

0
Xs,j ds

∫
Ud

z1{‖z‖>1} µj(dz)

= β̃t+ B̃

∫ t

0
Xs ds− t

∫
Ud

r ν(dr)−
d∑
j=1

∫ t

0
Xs,j ds

∫
Ud

z1{‖z‖>1} µj(dz)

=

(
β +

∫
Ud

r ν(dr)

)
t+D

∫ t

0
Xs ds+

d∑
j=1

∫
Ud

z1{‖z‖>1} µj(dz)

∫ t

0
Xs,j ds

− t
∫
Ud

r ν(dr)−
d∑
j=1

∫ t

0
Xs,j ds

∫
Ud

z1{‖z‖>1} µj(dz) =

∫ t

0

(
β +DXs

)
ds.

The aim of the following discussion is to show that
(˜̃
Ω,
˜̃F , (˜̃Gt)t∈R+ ,

˜̃P,W , p,X
)

is an Rd+-valued

weak solution to the SDE (3.2). Recall that the filtered probability space (
˜̃
Ω,
˜̃F , (˜̃Gt)t∈R+ ,

˜̃P) satisfies

the usual hypotheses, and by Lemma A.4, (Wt,1, . . . ,Wt,d)t∈R+ is a d-dimensional (
˜̃Gt)t∈R+-Brownian

motion, and p is a stationary (
˜̃Gt)t∈R+-Poisson point process on V with characteristic measure m.
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Since (Xt)t∈R+ is Rd+-valued and has càdlàg trajectories on the original probability space (Ω,F ,P),

by the definition of an extension of a probability space (see Definition A.1), the extended process

(which is denoted by X as well) on the extended probability space is Rd+-valued and admits càdlàg

trajectories as well. By Remark A.2, the process (Xt)t∈R+ is (
˜̃Gt)t∈R+-adapted, and clearly, the

distribution of X0 is n. Since (Xt)t∈R+ has càdlàg trajectories, (D4)(b) holds. Since the process(∫ t
0

∫
V0
f(Xs−, r) Ñ(ds, dr)

)
t∈R+

belongs to the space M2, we have

˜̃E(∥∥∥∥∫ t

0

∫
V0

f(Xs−, r) Ñ(ds, dr)

∥∥∥∥2
)

=
d∑
j=1

˜̃E(∫ t

0

∫
Ud

∫
U1

‖z‖21{‖z‖<1}1{u6Xs,j} ds µj(dz) du

)
<∞

by Ikeda and Watanabe [7, Chapter II, (3.9)], which yields (D4)(c). We have already checked that

(D4)(d) and (D4)(e) are satisfied.

Now we turn to prove the uniqueness in the sense of probability law for the SDE (3.2) among

Rd+-valued weak solutions. If
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
is an Rd+-valued weak solution to the

SDE (3.2), then for each G ∈ C2
c (R,R) and w = (w1, . . . , wd)

> ∈ Rd, by Itô’s formula for F (x) :=

G(w>x), x = (x1, . . . , xd)
> ∈ Rd, with ∂xkF (x) = G′(w>x)wk, ∂xk∂x`F (x) = G′′(w>x)wkw`,

k, ` ∈ {1, . . . , d}, we have

G(w>Xt) = G(w>X0) +

6∑
`=1

I`(t), t ∈ R+,

where

I1(t) :=

∫ t

0
G′(w>Xs)w

>(β +DXs) ds,

I2(t) :=
d∑
j=1

∫ t

0
wjG

′(w>Xs)
√

2cjXs,j dWs,j ,

I3(t) :=
d∑
j=1

∫ t

0
w2
jG
′′(w>Xs)cjXs,j ds,

I4(t) :=

∫ t

0

∫
V0

[
G(w>Xs− +w>f(Xs−, r))−G(w>Xs−)

]
Ñ(ds, dr),

I5(t) :=

∫ t

0

∫
V0

[
G(w>Xs +w>f(Xs−, r))−G(w>Xs)

−G′(w>Xs)w
>f(Xs−, r)

]
dsm(dr),

I6(t) :=

∫ t

0

∫
V1

[
G(w>Xs− +w>g(Xs−, r))−G(w>Xs−)

]
N(ds, dr).
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The last integral can be written as I6(t) = I6,1(t) + I6,2(t), where

I6,1(t) :=

∫ t

0

∫
V1

[
G(w>Xs− +w>g(Xs−, r))−G(w>Xs−)

]
Ñ(ds, dr),

I6,2(t) :=

∫ t

0

∫
V1

[
G(w>Xs +w>g(Xs, r))−G(w>Xs)

]
dsm(dr),

since

E
(∫ t

0

∫
V1

∣∣G(w>Xs− +w>g(Xs−, r))−G(w>Xs−)
∣∣dsm(dr)

)

= E
(∫ t

0

∫
Ud

∣∣G(w>Xs +w>r)−G(w>Xs)
∣∣ds ν(dr)

)

+

d∑
j=1

E
(∫ t

0

∫
Ud

∫
U1

∣∣G(w>Xs +w>z1{u6Xs,j})−G(w>Xs)
∣∣1{‖z‖>1} ds µj(dz) du

)

<∞,

(3.8)

i.e., for all w ∈ Rd, the function R+ × V1 × Ω 3 (s, r, ω) 7→ G(w>Xs−(ω) + w>g(Xs−(ω), r)) −
G(w>Xs−(ω)) belongs to the class F 1

p. Indeed, by mean value theorem and (2.10), there exists

some θ0 = θ0(w,Xs, r) ∈ [0, 1] such that

E
(∫ t

0

∫
Ud

∣∣G(w>Xs +w>r)−G(w>Xs)
∣∣ds ν(dr)

)

= E
(∫ t

0

∫
Ud

∣∣G′(w>Xs + θ0w
>r)

∣∣|w>r| ds ν(dr)

)
6 ‖w‖ sup

x∈R
|G′(x)|

∫
Ud

‖r‖ ν(dr) <∞

due to that G′ is bounded. In a similar way, there exists some θ = θ(w,Xs, z) ∈ [0, 1] such that

for each j ∈ {1, . . . , d},

E
(∫ t

0

∫
Ud

∫
U1

∣∣G(w>Xs +w>z1{u6Xs,j})−G(w>Xs)
∣∣1{‖z‖>1} ds µj(dz) du

)

= E
(∫ t

0

∫
Ud

∫
U1

∣∣G(w>Xs +w>z)−G(w>Xs)
∣∣1{u6Xs,j}1{‖z‖>1} ds µj(dz) du

)

= E
(∫ t

0

∫
Ud

∫
U1

∣∣G′(w>Xs + θw>z)
∣∣|w>z|1{u6Xs,j}1{‖z‖>1} ds µj(dr) du

)

6 ‖w‖ sup
x∈R
|G′(x)|

∫ t

0
E(Xs,j) ds

∫
Ud

‖z‖1{‖z‖>1} µj(dz) <∞

due to that G′ is bounded, Lemma 3.4 (which can be applied since
∫
Rd
+
‖z‖n(dz) < ∞) and the

moment condition (2.2).
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In what follows, we identify some of these integrals with some terms in part (5) of Theorem 9.18

of Li [13]. We have

I1(t) =

∫ t

0
G′(w>Xs)w

>β ds+

∫ t

0
G′(w>Xs)w

>B̃Xs ds

−
d∑
i=1

d∑
j=1

∫ t

0
G′(w>Xs)wiXs,j ds

∫
Ud

zi1{‖z‖>1} µj(dz),

where the first two terms on the right hand side can be identified with
∫ t

0 G
′(Ys(f))η(f) ds and∫ t

0 G
′(Ys(f))Ys(Af + γf − bf) ds (see, (3.6)). The sum of the third term on the right hand side and

I6,2(t) + I5(t) can be written in the form

−
d∑
j=1

∫ t

0

∫
Ud

∫
U1

G′(w>Xs)w
>z1{‖z‖>1}1{u6Xs,j} ds µj(dz) du

+

∫ t

0

∫
Ud

[
G(w>Xs +w>r)−G(w>Xs)

]
ds ν(dr)

+
d∑
j=1

∫ t

0

∫
Ud

∫
U1

[
G(w>Xs +w>z1{u6Xs,j})−G(w>Xs)

]
1{‖z‖>1} ds µj(dz) du

+
d∑
j=1

∫ t

0

∫
Ud

∫
U1

[
G(w>Xs +w>z1{u6Xs,j})−G(w>Xs)

−G′(w>Xs)w
>z1{u6Xs,j}

]
1{‖z‖<1} ds µj(dz) du

=

∫ t

0

∫
Ud

[
G(w>Xs +w>r)−G(w>Xs)

]
ds ν(dr)

+
d∑
j=1

∫ t

0

∫
Ud

∫
U1

[
G(w>Xs +w>z1{u6Xs,j})−G(w>Xs)

−G′(w>Xs)w
>z1{u6Xs,j}

]
ds µj(dz) du,

which can be identified with∫ t

0

∫
M(E)◦

[G(Ys(f) + κ(f))−G(Ys(f))]H(dκ) ds

+

∫ t

0

∫
E
Ys(dx)

∫
M(E)◦

[G(Ys(f) + κ(f))−G(Ys(f))− κ(f)G′(Ys(f))]H(x,dκ) ds.

The integral I3(t) can be identified with
∫ t

0 G
′′(Ys(f))Ys(cf

2) ds.

Next we show that the process (I2(t) + I4(t) + I6,1(t))t∈R+ is a continuous local martingale. Since

G′ is bounded and X has càdlàg trajectories, we have P(
∫ t

0 w
2
jG
′(w>Xs)

2 2cjXs,j ds < ∞) = 1
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for all t ∈ R+ and j ∈ {1, . . . , d}, hence (I2(t))t∈R+ is a continuous local martingale (see, e.g.,

Karatzas and Shreve [10, Definition 3.2.23]). In order to prove that (I4(t))t∈R+ is a martingale, by

page 62 in Ikeda and Watanabe [7], it is enough to check that

E
(∫ t

0

∫
V0

∣∣G(w>Xs +w>f(Xs, r))−G(w>Xs)
∣∣2 dsm(dr)

)
<∞.

By mean value theorem, there exists some ϑ0 = ϑ0(w,Xs, z) ∈ [0, 1] such that for each j ∈ {1, . . . , d},

E
(∫ t

0

∫
Ud

∫
U1

∣∣G(w>Xs +w>z1{u6Xs,j})−G(w>Xs)
∣∣21{‖z‖<1} ds µj(dz) du

)

= E
(∫ t

0

∫
Ud

∫
U1

∣∣G′(w>Xs + ϑ0w
>z)

∣∣2(w>z)2
1{u6Xs,j}1{‖z‖<1} ds µj(dz) du

)

6 ‖w‖2 sup
x∈R
|G′(x)|2

∫ t

0
E(Xs,j) ds

∫
Ud

‖z‖21{‖z‖<1} µj(dz) <∞

due to that G′ is bounded, Lemma 3.4 and (2.13). Hence (I4(t))t∈R+ is a martingale. Further, by

(3.8) and page 62 in Ikeda and Watanabe [7], we get (I6,1(t))t∈R+ is a martingale. Consequently, by

Theorem 9.18 of Li [13], (Xt)t∈R+ is a CBI process with parameters (d, c,β,B, ν,µ). This yields

the uniqueness in the sense of probability law for the SDE (3.2) among Rd+-valued weak solutions,

and that any Rd+-valued weak solution is a CBI process with parameters (d, c,β,B, ν,µ) as well. 2

4 Multi-type CBI process as a strong solution of an SDE

4.1 Definition. We say that pathwise uniqueness holds for the SDE (3.2) among Rd+-valued weak

solutions if whenever
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
and

(
Ω,F , (Ft)t∈R+ ,P,W , p, X̃

)
are Rd+-valued

weak solutions of the SDE (3.2) such that P(X0 = X̃0) = 1, then P(Xt = X̃t for all t ∈ R+) = 1.

Next we prove a comparison theorem for the SDE (3.2) in β.

4.2 Lemma. Let (d, c,β,B, ν,µ) be a set of admissible parameters in the sense of Defini-

tion 2.2 such that the moment condition (2.7) holds. Suppose that β′ ∈ Rd+ with β 6 β′.

Let
(
Ω,F , (Ft)t∈R+ ,P,W , p,X

)
and

(
Ω,F , (Ft)t∈R+ ,P,W , p,X ′

)
be Rd+-valued weak solu-

tions of the SDE (3.2) with β and β′, respectively. Then P(X0 6 X ′0) = 1 implies

P(Xt 6X ′t for all t ∈ R+) = 1. Particularly, pathwise uniqueness holds for the SDE (3.2) among

Rd+-valued weak solutions.

Proof. We follow the ideas of the proof of Theorem 3.1 of Ma [14], which is an adaptation of that

of Theorem 5.5 of Fu and Li [6]. There is a sequence φk : R → R+, k ∈ N, of twice continuously

differentiable functions such that

(i) φk(z) ↑ z+ as k →∞;

(ii) φ′k(z) ∈ [0, 1] for all z ∈ R+ and k ∈ N;
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(iii) φ′k(z) = φk(z) = 0 whenever −z ∈ R+ and k ∈ N;

(iv) φ′′k(x− y)(
√
x−√y)2 6 2/k for all x, y ∈ R+ and k ∈ N.

For a construction of such functions, see, e.g., the proof of Theorem 3.1 of Ma [14]. Let Y t := Xt−X ′t
for all t ∈ R+. By (3.2), and using that∫ t

0

∫
R0

g(Xs−, r)N(ds, dr) =

∫ t

0

∫
R0

rN(ds, dr) =

∫ t

0

∫
R0

g(X ′s−, r)N(ds, dr),

we have

Yt,i = Y0,i +

∫ t

0

(
βi − β′i + e>i DY s

)
ds+

∫ t

0

√
2ci

(√
Xs,i −

√
X ′s,i

)
dWs,i

+
d∑
j=1

∫ t

0

∫
Rj,0

(
1{u6Xs−,j} − 1{u6X′s−,j}

)
zi1{‖z‖<1} Ñ(ds, dr)

+

d∑
j=1

∫ t

0

∫
Rj,1

(
1{u6Xs−,j} − 1{u6X′s−,j}

)
zi1{‖z‖>1}N(ds, dr)

for all t ∈ R+ and i ∈ {1, . . . , d}. For each m ∈ N, put

τm := inf
{
t ∈ R+ : max

i∈{1,...,d}
max{Xt,i, X

′
t,i} > m

}
.

By Itô’s formula (which can be used since X and X ′ are adapted to the same filtration (Ft)t∈R+),

we obtain

φk(Yt∧τm,i) = φk(Y0,i) +

6∑
`=1

Ii,m,k,`(t)

for all t ∈ R+, i ∈ {1, . . . , d} and k,m ∈ N, where

Ii,m,k,1(t) :=

∫ t∧τm

0
φ′k(Ys,i)

(
βi − β′i + e>i DY s

)
ds,

Ii,m,k,2(t) :=

∫ t∧τm

0
φ′k(Ys,i)

√
2ci

(√
Xs,i −

√
X ′s,i

)
dWs,i,

Ii,m,k,3(t) :=
1

2

∫ t∧τm

0
φ′′k(Ys,i)2ci

(√
Xs,i −

√
X ′s,i

)2
ds,

Ii,m,k,4(t) :=

d∑
j=1

∫ t∧τm

0

∫
Rj,0

[
φk
(
Ys−,i + (1{u6Xs−,j} − 1{u6X′s−,j})zi

)
− φk(Ys−,i)

]
1{‖z‖<1}Ñ(ds, dr)

=

d∑
j=1

∫ t∧τm

0

∫
Rj,0

[
φk(Ys−,i + zi)− φk(Ys−,i)

]
1{‖z‖<1}1{X′s−,j<u6Xs−,j}1{Ys−,j>0} Ñ(ds, dr)

+
d∑
j=1

∫ t∧τm

0

∫
Rj,0

[
φk(Ys−,i − zi)− φk(Ys−,i)

]
1{‖z‖<1}1{Xs−,j<u6X′s−,j}1{Ys−,j<0} Ñ(ds, dr),
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Ii,m,k,5(t) :=
d∑
j=1

∫ t∧τm

0

∫
Ud

∫
U1

[
φk
(
Ys−,i + (1{u6Xs−,j} − 1{u6X′s−,j})zi

)
− φk(Ys−,i)

− φ′k(Ys−,i)(1{u6Xs−,j} − 1{u6X′s−,j})zi

]
1{‖z‖<1} ds µj(dz) du

=
d∑
j=1

∫ t∧τm

0

∫
Ud

∫
U1

[
φk(Ys−,i + zi)− φk(Ys−,i)− φ′k(Ys−,i)zi

]

× 1{‖z‖<1}1{X′s−,j<u6Xs−,j}1{Ys−,j>0} ds µj(dz) du

+
d∑
j=1

∫ t∧τm

0

∫
Ud

∫
U1

[
φk(Ys−,i − zi)− φk(Ys−,i) + φ′k(Ys−,i)zi

]

× 1{‖z‖<1}1{Xs−,j<u6X′s−,j}1{Ys−,j<0} ds µj(dz) du,

Ii,m,k,6(t) :=
d∑
j=1

∫ t∧τm

0

∫
Rj,1

[
φk
(
Ys−,i + (1{u6Xs−,j} − 1{u6X′s−,j})zi

)
− φk(Ys−,i)

]
1{‖z‖>1}N(ds,dr),

where we used that

1{u6Xs−,j} − 1{u6X′s−,j} =


1 if Ys−,j > 0 and X ′s−,j < u 6 Xs−,j ,

−1 if Ys−,j < 0 and Xs−,j < u 6 X ′s−,j ,

0 otherwise.

(4.1)

Using formula (3.8) in Chapter II in Ikeda and Watanabe [7], the last integral can be written as

Ii,m,k,6(t) = Ii,m,k,6,1(t) + Ii,m,k,6,2(t), where

Ii,m,k,6,1(t) :=
d∑
j=1

∫ t∧τm

0

∫
Rj,1

[
φk
(
Ys−,i + (1{u6Xs−,j} − 1{u6X′s−,j})zi

)
− φk(Ys−,i)

]
1{‖z‖>1}Ñ(ds,dr)

Ii,m,k,6,2(t) :=

d∑
j=1

∫ t∧τm

0

∫
Ud

∫
U1

[
φk
(
Ys−,i+(1{u6Xs−,j}−1{u6X′s−,j})zi

)
−φk(Ys−,i)

]
1{‖z‖>1} ds µj(dz) du,

since, for each j ∈ {1, . . . , d},

E
(∫ t∧τm

0

∫
Ud

∫
U1

∣∣∣φk(Ys−,i + (1{u6Xs−,j} − 1{u6X′s−,j})zi
)
− φk(Ys−,i)

∣∣∣1{‖z‖>1} ds µj(dz) du

)

= E
(∫ t∧τm

0

∫
Ud

∫
U1

∣∣∣φk(Ys−,i + zi)− φk(Ys−,i)
∣∣∣1{‖z‖>1}1{X′s−,j<u6Xs−,j}1{Ys−,j>0} ds µj(dz) du

)

+ E
(∫ t∧τm

0

∫
Ud

∫
U1

∣∣∣φk(Ys−,i − zi)− φk(Ys−,i)∣∣∣1{‖z‖>1}1{Xs−,j<u6X′s−,j}1{Ys−,j<0} ds µj(dz) du

)
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6 E
(∫ t∧τm

0

∫
Ud

zi1{‖z‖>1}|Ys−,j |ds µj(dz)

)
6 2mt

∫
Ud

zi1{‖z‖>1} µj(dz) <∞,

where we used that, by properties (ii) and (iii) of the function φk, we have φ′k(u) ∈ [0, 1] for all

u ∈ R, and hence, by mean value theorem,

(4.2) −z 6 φk(y − z)− φk(y) 6 0 6 φk(y + z)− φk(y) 6 z, y ∈ R, z ∈ R+, k ∈ N.

One can check that the process (Ii,m,k,2(t) + Ii,m,k,4(t) + Ii,m,k,6,1(t))t∈R+
is a martingale. Indeed,

by properties (ii) and (iii) of the function φk and the definition of τm,

E
(∫ t∧τm

0

(
φ′k(Ys,i)

√
2ci

(√
Xs,i −

√
X ′s,i

))2
ds

)
6 2ci E

(∫ t∧τm

0
(Xs,i +X ′s,i) ds

)
6 4cimt <∞,

hence, by Ikeda and Watanabe [7, page 55], (Ii,m,k,2(t))t∈R+
is a martingale. Next we show

E
(∫ t∧τm

0

∫
Ud

∫
U1

|φk(Ys−,i + zi)− φk(Ys−,i)|2 1{‖z‖<1}1{X′s−,j<u6Xs−,j}1{Ys−,j>0} ds µj(dz) du

)
<∞,

and

E
(∫ t∧τm

0

∫
Ud

∫
U1

|φk(Ys−,i − zi)− φk(Ys−,i)|2 1{‖z‖<1}1{Xs−,j<u6X′s−,j}1{Ys−,j<0} ds µj(dz) du

)
<∞

for all j ∈ {1, . . . , d}, which yield that the functions

R+ × Ud × U1 × Ω 3 (s, z, u, ω) 7→(φk(Ys−,i(ω) + zi)− φk(Ys−,i(ω)))1{‖z‖<1}

× 1{X′s−,j(ω)<u6Xs−,j(ω)}1{Ys−,j(ω)>0}1{s6τm(ω)}

and

R+ × Ud × U1 × Ω 3 (s, z, u, ω) 7→(φk(Ys−,i(ω)− zi)− φk(Ys−,i(ω)))1{‖z‖<1}

× 1{Xs−,j(ω)<u6X′s−,j(ω)}1{Ys−,j(ω)<0}1{s6τm(ω)}

belong to the class F 2
p, and then (Ii,m,k,4(t))t∈R+

is a martingale, again by page 62 in Ikeda and

Watanabe [7]. By (2.13) and (4.2),

E
(∫ t∧τm

0

∫
Ud

∫
U1

|φk(Ys−,i + zi)− φk(Ys−,i)|2 1{‖z‖<1}1{X′s−,j<u6Xs−,j}1{Ys−,j>0} ds µj(dz) du

)

6 E
(∫ t∧τm

0

∫
Ud

∫
U1

z2
i 1{‖z‖<1}1{X′s−,j<u6Xs−,j}1{Ys−,j>0} ds µj(dz) du

)

= E
(∫ t∧τm

0

∫
Ud

z2
i 1{‖z‖<1}Ys−,j1{Ys−,j>0} ds µj(dz)

)
6 2mt

∫
Ud

z2
i 1{‖z‖<1} µj(dz) <∞.
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In the same way one can get the finiteness of the other expectation. Finally, we show

E
(∫ t∧τm

0

∫
Ud

∫
U1

|φk(Ys−,i + zi)− φk(Ys−,i)|1{‖z‖>1}1{X′s−,j<u6Xs−,j}1{Ys−,j>0} ds µj(dz) du

)
<∞,

and

E
(∫ t∧τm

0

∫
Ud

∫
U1

|φk(Ys−,i − zi)− φk(Ys−,i)|1{‖z‖>1}1{Xs−,j<u6X′s−,j}1{Ys−,j<0} ds µj(dz) du

)
<∞

for all j ∈ {1, . . . , d}, which yield that the functions

R+ × Ud × U1 × Ω 3 (s, z, u, ω) 7→(φk(Ys−,i(ω) + zi)− φk(Ys−,i(ω)))1{‖z‖>1}

× 1{X′s−,j(ω)<u6Xs−,j(ω)}1{Ys−,j(ω)>0}1{s6τm(ω)}

and

R+ × Ud × U1 × Ω 3 (s, z, u, ω) 7→ (φk(Ys−,i(ω)− zi)− φk(Ys−,i(ω)))1{‖z‖>1}

× 1{Xs−,j(ω)<u6X′s−,j(ω)}1{Ys−,j(ω)<0}1{s6τm(ω)}

belong to the class F 1
p, and then (Ii,m,k,6,1(t))t∈R+

is a martingale, again by Ikeda and Watanabe

[7, page 62]. By (2.2) and (4.2),

E
(∫ t∧τm

0

∫
Ud

∫
U1

|φk(Ys−,i + zi)− φk(Ys−,i)|1{‖z‖>1}1{X′s−,j<u6Xs−,j}1{Ys−,j>0} ds µj(dz) du

)

6 E
(∫ t∧τm

0

∫
Ud

∫
U1

zi1{‖z‖>1}1{X′s−,j<u6Xs−,j}1{Ys−,j>0} ds µj(dz) du

)

= E
(∫ t∧τm

0

∫
Ud

zi1{‖z‖>1}Ys−,j1{Ys−,j>0} ds µj(dz)

)
6 2mt

∫
Ud

zi1{‖z‖>1} µj(dz) <∞,

and the finiteness of the other expectation can be shown in the same way.

Using the assumption β 6 β′, the property that the matrix D has non-negative off-diagonal

entries and the properties (ii) and (iii), we obtain

Ii,m,k,1(t) =

∫ t∧τm

0
φ′k(Ys,i)

(
βi − β′i +

d∑
j=1

di,jYs,j

)
ds

6
∫ t∧τm

0
φ′k(Ys,i)

(
di,iYs,i +

∑
j∈{1,...,d}\{i}

di,jY
+
s,j

)
1R+(Ys,i) ds

6
∫ t∧τm

0

(
|di,i|Y +

s,i +
∑

j∈{1,...,d}\{i}

di,jY
+
s,j

)
ds =

d∑
j=1

|di,j |
∫ t∧τm

0
Y +
s,j ds.

By (iv),

Ii,m,k,3(t) 6 (t ∧ τm)ci
2

k
6

2cit

k
.
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Now we estimate

Ii,m,k,5(t) =

d∑
j=1

∫ t∧τm

0

∫
Ud

[
φk(Ys−,i + zi)− φk(Ys−,i)− φ′k(Ys−,i)zi

]
1{‖z‖<1}Ys−,j1{Ys−,j>0} ds µj(dz)

+

d∑
j=1

∫ t∧τm

0

∫
Ud

[
φk(Ys−,i − zi)− φk(Ys−,i) + φ′k(Ys−,i)zi

]
1{‖z‖<1}(−Ys−,j)1{Ys−,j<0} ds µj(dz).

By (4.2) and (iii), we obtain∫ t∧τm

0

∫
Ud

[
φk(Ys−,i − zi)− φk(Ys−,i) + φ′k(Ys−,i)zi

]
1{‖z‖<1}(−Ys−,j)1{Ys−,j<0} ds µj(dz) 6 0

for all i, j ∈ {1, . . . , d}. By (2.12),
∫
Ud
zi1{‖z‖<1} µj(dz) <∞ for all i, j ∈ {1, . . . , d} with i 6= j,

hence using (iii), we obtain

Ii,m,k,5(t) 6
∫ t∧τm

0

∫
Ud

[
φk(Ys−,i + zi)− φk(Ys−,i)− φ′k(Ys−,i)zi

]
1{‖z‖<1}Y

+
s−,i ds µi(dz)

+
∑

j∈{1,...,d}\{i}

∫ t∧τm

0

∫
Ud

[
φk(Ys−,i + zi)− φk(Ys−,i)

]
1{‖z‖<1}Y

+
s−,j ds µj(dz).

By (4.2), for i 6= j,∫ t∧τm

0

∫
Ud

[
φk(Ys−,i + zi)− φk(Ys−,i)

]
1{‖z‖<1}Y

+
s−,j ds µj(dz) 6

∫ t∧τm

0
Y +
s,j ds

∫
Ud

zi1{‖z‖<1} µj(dz).

Applying (iv) with y = 0, we have xφ′′k(x) 6 2/k for all x ∈ R+ and k ∈ N. By Taylor’s theorem,

for all y ∈ R++, z ∈ R+ and k ∈ N, there exists some ϑ = ϑ(y, z) ∈ [0, 1] such that

φk(y + z)− φk(y)− φ′k(y)z = φ′′k(y + ϑz)
z2

2
6

2z2

2k(y + ϑz)
6
z2

ky
.

Hence, using (2.13), we obtain∫ t∧τm

0

∫
Ud

[
φk(Ys−,i + zi)− φk(Ys−,i)− φ′k(Ys−,i)zi

]
1{‖z‖<1}Y

+
s−,i ds µi(dz)

6
∫ t∧τm

0

∫
Ud

z2
i

kYs−,i
1{Ys−,i>0}1{‖z‖<1}Y

+
s−,i ds µi(dz) 6

t

k

∫
Ud

z2
i 1{‖z‖<1} µi(dz).

Using (4.1), one can easily check that

Ii,m,k,6,2(t) =
d∑
j=1

∫ t∧τm

0

∫
Ud

[
φk(Ys−,i + zi)− φk(Ys−,i)

]
1{‖z‖>1}Ys−,j1{Ys−,j>0} ds µj(dz)

+
d∑
j=1

∫ t∧τm

0

∫
Ud

[
φk(Ys−,i − zi)− φk(Ys−,i)

]
1{‖z‖>1}(−Ys−,j)1{Ys−,j<0} ds µj(dz).
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By (4.2), we obtain∫ t∧τm

0

∫
Ud

[
φk(Ys−,i − zi)− φk(Ys−,i)

]
1{‖z‖>1}(−Ys−,j)1{Ys−,j<0} ds µj(dz) 6 0

for all i, j ∈ {1, . . . , d}. By (2.2),
∫
Ud
zi1{‖z‖>1} µj(dz) <∞ for all i, j ∈ {1, . . . , d}, thus applying

(4.2), we obtain

Ii,m,k,6,2(t) 6
d∑
j=1

∫ t∧τm

0

∫
Ud

[
φk(Ys−,i + zi)− φk(Ys−,i)

]
1{‖z‖>1}Y

+
s−,j ds µj(dz)

6
d∑
j=1

∫ t∧τm

0
Y +
s,j ds

∫
Ud

zi1{‖z‖>1} µj(dz).

Summarizing, we have

φk(Yt∧τm,i) 6 φk(Y0,i) + Ci

d∑
j=1

∫ t∧τm

0
Y +
s,j ds+

2cit

k
+
t

k

∫
Ud

z2
i 1{‖z‖<1} µi(dz)

+ Ii,m,k,2(t) + Ii,m,k,4(t) + Ii,m,k,6,1(t), t ∈ R+,

(4.3)

where

Ci := max
j∈{1,...,d}

|di,j |+ max
j∈{1,...,d}\{i}

∫
Ud

zi µj(dz) +

∫
Ud

zi1{‖z‖>1} µi(dz).

By (iii), we obtain P(φk(Y0,i) 6 0) = 1, i ∈ {1, . . . , d}. By (i), the non-negativeness of φk and

monotone convergence theorem yield E(φk(Yt∧τm,i))→ E(Y +
t∧τm,i) as k →∞ for all t ∈ R+, m ∈ N,

and i ∈ {1, . . . , d}. We have
∫ t∧τm

0 Y +
s,j ds 6

∫ t
0 Y

+
s∧τm,j ds, hence taking the expectation of (4.3)

and letting k →∞, we obtain

E
( d∑
i=1

Y +
t∧τm,i

)
6 C

∫ t

0
E
( d∑
i=1

Y +
s∧τm,i

)
ds,

with C :=
∑d

i=1Ci. By Gronwall’s inequality, we conclude

E
( d∑
i=1

Y +
t∧τm,i

)
= 0

for all t ∈ R+ and m ∈ N. Hence P(Xt∧τm,i 6 X ′t∧τm,i) = 1 for all t ∈ R+, m ∈ N and

i ∈ {1, . . . , d}, and then P(Xt∧τm,i 6X
′
t∧τm,i for all m ∈ N) = 1 for all t ∈ R+ and i ∈ {1, . . . , d}.

Since X and X ′ have càdlàg trajectories, these trajectories are bounded almost surely on [0, T ] for

all T ∈ R+, hence τm
a.s.−→∞ as m→∞. This yields P(Xt 6X ′t) = 1 for all t ∈ R+. Since the set

of non-negative rational numbers Q+ is countable, we obtain P(Xt 6X ′t for all t ∈ Q+) = 1. Using

again that X and X ′ have càdlàg trajectories almost surely, we get P(Xt 6X ′t for all t ∈ R+) = 1.

2

4.3 Remark. We note that Dawson and Li [3, Theorem 2.3] provided a comparison theorem for SDEs

with jumps in a much more general setting, but only for 1-dimensional processes. 2
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Consider the following objects:

(E1) a probability space (Ω,F ,P);

(E2) a d-dimensional standard Brownian motion (W t)t∈R+ ;

(E3) a stationary Poisson point process p on V with characteristic measure m given in (3.1);

(E4) a random vector ξ with values in Rd+, independent of W and p.

4.4 Remark. Note that if conditions (E1)–(E4) are satisfied, then ξ, W and p are automatically

mutually independent according to Remark 3.3. 2

Provided that the objects (E1)–(E4) are given, let (Fξ,W, p
t )t∈R+ be the augmented filtration

generated by ξ, W and p, i.e., for each t ∈ R+, Fξ,W, p
t is the σ-field generated by σ(ξ; W s, s ∈

[0, t]; p(s), s ∈ (0, t] ∩ D(p)) and by the P-null sets from σ(ξ; W s, s ∈ R+; p(s), s ∈ R++ ∩ D(p))

(which is similar to the definition in Karatzas and Shreve [10, page 285]). One can check that

(Fξ,W, p
t )t∈R+ satisfies the usual hypotheses, (W t)t∈R+ is a standard (Fξ,W, p

t )t∈R+-Brownian motion,

and p is a stationary (Fξ,W, p
t )t∈R+-Poisson point process on V with characteristic measure m,

see, e.g., Barczy et al. [1].

4.5 Definition. Suppose that the objects (E1)–(E4) are given. An Rd+-valued strong solution of the

SDE (3.2) on (Ω,F ,P) and with respect to the standard Brownian motion W , the stationary

Poisson point process p and initial value ξ, is an Rd+-valued (Fξ,W, p
t )t∈R+-adapted càdlàg process

(Xt)t∈R+ with P(X0 = ξ) = 1 satisfying (D4)(b)–(e).

Clearly, if (Xt)t∈R+ is an Rd+-valued strong solution, then
(
Ω,F , (Fξ,W, p

t )t∈R+ ,P,W , p,X
)

is

an Rd+-valued weak solution.

4.6 Theorem. Let (d, c,β,B, ν,µ) be a set of admissible parameters in the sense of Definition 2.2

such that the moment condition (2.7) holds. Suppose that objects (E1)–(E4) are given. If E(‖ξ‖) <∞,

then there is a pathwise unique Rd+-valued strong solution to the SDE (3.2) with initial value ξ, and

the solution is a CBI process with parameters (d, c,β,B, ν,µ).

Proof. The pathwise uniqueness among Rd+-valued weak solutions follows from Lemma 4.2. Then, by

Theorem 5.5 in Barczy et al. [1] (Yamada-Watanabe type result for SDEs with jumps) and Theorem

3.7, we conclude that the SDE (3.2) has a pathwise unique Rd+-valued strong solution. 2

5 Special cases

In this section we specialize our results to dimension 1 and 2. Moreover, we consider a special case

of the SDE (3.2) with ν = 0, µi = 0, i ∈ {1, . . . , d}, i.e., without integrals with respect to

(compensated) Poisson random measures, and another special case with c = 0, i.e., without integral

with respect to a Wiener process.
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First we rewrite the SDE (3.2) in a form which is more comparable with the results of Li [13,

Theorem 9.31] (one-dimensional case) and Ma [14, Theorem 3.2] (two-dimensional case).

For each j ∈ {0, 1, . . . , d}, the thinning pj of p onto Rj is again a stationary (Ft)t∈R+-Poisson

point process on Rj , and its characteristic measure is the restriction m|Rj of m onto Rj (this

can be checked calculating its conditional Laplace transform, see Ikeda and Watanabe [7, page 44]).

Using these Poisson point processes, we obtain the useful decomposition

(5.1)

∫ t

0

∫
V0

f(Xs−, r) Ñ(ds, dr) +

∫ t

0

∫
V1

g(Xs−, r)N(ds, dr)

=
d∑
j=1

∫ t

0

∫
Rj,0

z1{u6Xs−,j} Ñj(ds, dr)

+
d∑
j=1

∫ t

0

∫
Rj,1

z1{u6Xs−,j}Nj(ds, dr) +

∫ t

0

∫
R0

rM(ds, dr),

where, for each j ∈ {1, . . . , d}, Nj(ds, dr) is the counting measure of pj on R++×Rj , Ñj(ds, dr) :=

Nj(ds, dr)− ds (µj(dz) du), and M(ds, dr) is the counting measure of p0 on R++ ×R0. Indeed,∫ t

0

∫
R′
F (s, r) Ñ(ds, dr) =

∫ t

0

∫
R′
F (s, r) Ñ ′(ds, dr), F ∈ F 2,loc

p ,

∫ t

0

∫
R′
G(s, r)N(ds, dr) =

∫ t

0

∫
R′
G(s, r)N ′(ds, dr), G ∈ F p,

are valid for the thinning p′ of p onto any measurable subset R′ ⊂ R, where N ′(ds, dr) denotes

the counting measure of the stationary (Ft)t∈R+-Poisson point process p′, and Ñ ′(ds, dr) :=

N ′(ds, dr)− 1{r∈R′}dsm(dr).

Remark that for any Rd+-valued weak solution of the SDE (3.2), the Brownian motion W and

the stationary Poisson point processes pj , j ∈ {0, 1, . . . , d} are mutually independent according

again to Theorem 6.3 in Chapter II of Ikeda and Watanabe [7]. Indeed, the intensity measures of

pj , j ∈ {0, 1, . . . , d}, are deterministic, and condition (6.11) of this theorem is satisfied, because pj ,

j ∈ {0, 1, . . . , d}, live on disjoint subsets of R.

For d = 1, applying (5.1), the SDE (3.2) takes the form

Xt = X0 +

∫ t

0
(β + dXs) ds+

∫ t

0

√
2cX+

s dWs

+

∫ t

0

∫
R1,0

z1{u6Xs−} Ñ1(ds, dr) +

∫ t

0

∫
R1,1

z1{u6Xs−}N1(ds, dr) +

∫ t

0

∫
R0

rM(ds, dr)

for t ∈ R+, where β ∈ R+, d = b̃−
∫∞

0 z1{z>1} µ1(dz), b̃ = b+
∫∞

0 (z− 1)+ µ1(dz), b ∈ R, c ∈ R+,

R1,0 = {0}×{z ∈ R++ : z < 1}×R++, R1,1 = {0}×{z ∈ R++ : z > 1}×R++, R0 = R++×{(0, 0)}.
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We have

I0 :=

∫ t

0

∫
R1,0

z1{u6Xs−} Ñ1(ds, dr) =

∫ t

0

∫ ∞
0

∫ ∞
0

z1{z<1}1{u6Xs−} Ñ1(ds, dz,du),

I1 :=

∫ t

0

∫
R1,1

z1{u6Xs−}N1(ds, dr) =

∫ t

0

∫ ∞
0

∫ ∞
0

z1{z>1}1{u6Xs−}N1(ds, dz, du),

I2 :=

∫ t

0

∫
R0

rM(ds, dr) =

∫ t

0

∫ ∞
0

zM(ds, dz),

where N1 and M are Poisson random measures on R++ × R2
++ and on R++ × R++ with

intensity measures ds µ1(dz) du and ds ν(dz), respectively, and Ñ1(ds, dz,du) := N1(ds, dz,du)−
ds µ1(dz) du. Under the moment conditions (2.2),

I0 + I1 =

∫ t

0

∫ ∞
0

∫ ∞
0

z1{u6Xs−} Ñ1(ds, dz, du) +

∫ t

0
Xs ds

∫ ∞
0

z1{z>1} µ1(dz).

Consequently, the SDE (3.2) can be rewritten in the form

Xt = X0 +

∫ t

0
(β + b̃Xs) ds+

∫ t

0

√
2cX+

s dWs

+

∫ t

0

∫ ∞
0

∫ ∞
0

z1{u6Xs−} Ñ1(ds, dz,du) +

∫ t

0

∫ ∞
0

zM(ds, dz), t ∈ R+,

hence, taking into account the form (2.14) of the infinitesimal generator of the process (Xt)t∈R+ , we

obtain equation (9.46) of Li [13].

In a similar way, for d = 2, applying (5.1), the SDE (3.2) takes the form

Xt = X0 +

∫ t

0
(β +DXs) ds+

2∑
i=1

∫ t

0

√
2ciX

+
s,ieie

>
i dW s +

∫ t

0

∫
R0

rM(ds, dr)

+
2∑
j=1

∫ t

0

∫
Rj,0

z1{u6Xs−,j} Ñj(ds, dr) +
2∑
j=1

∫ t

0

∫
Rj,1

z1{u6Xs−,j}Nj(ds, dr)

for t ∈ R+, where β ∈ R2
+, D is given in (2.8), (c1, c2)> ∈ R2

+,

R0 = U2 × {(0, 0, 0)} × {(0, 0, 0)},

R1,0 = {(0, 0)} × {z ∈ U2 : ‖z‖ < 1} × R++ × {(0, 0, 0)},

R2,0 = {(0, 0)} × {(0, 0, 0)} × {z ∈ U2 : ‖z‖ < 1} × R++,

R1,1 = {(0, 0)} × {z ∈ U2 : ‖z‖ > 1} × R++ × {(0, 0, 0)},

R2,1 = {(0, 0)} × {(0, 0, 0)} × {z ∈ U2 : ‖z‖ > 1} × R++.
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For each j ∈ {1, 2}, we have

Ij,0 :=

∫ t

0

∫
Rj,0

z1{u6Xs−,j} Ñj(ds, dr) =

∫ t

0

∫
U2

∫ ∞
0
z1{‖z‖<1}1{u6Xs−,j} Ñ j(ds, dz, du),

Ij,1 :=

∫ t

0

∫
Rj,1

z1{u6Xs−,j}Nj(ds, dr) =

∫ t

0

∫
U2

∫ ∞
0
z1{‖z‖>1}1{u6Xs−,j}N j(ds, dz,du),

I2 :=

∫ t

0

∫
R0

rM(ds, dr) =

∫ t

0

∫
U2

zM(ds, dz),

where N j and M are Poisson random measures on R++ × U2 × R++ and on R++ × U2 with

intensity measures ds µj(dz) du and ds ν(dz), respectively, and Ñ j(ds, dz, du) := N j(ds, dz, du)−
ds µj(dz) du. Under the moment conditions (2.2),

Ij,0 + Ij,1 =

∫ t

0

∫
U2

∫ ∞
0
z1{u6Xs−,j} Ñ j(ds, dz,du) +

∫ t

0
Xs,j ds

∫
U2

z1{‖z‖>1} µj(dz).

Consequently, the SDE (3.2) can be rewritten in the form

Xt = X0 +

∫ t

0
(β + B̃Xs) ds+

2∑
i=1

∫ t

0

√
2ciX

+
s,i dWs,i ei

+
2∑
j=1

∫ t

0

∫
U2

∫ ∞
0
z1{u6Xs−,j} Ñ j(ds, dz, du) +

∫ t

0

∫
U2

zM(ds, dz), t ∈ R+.

Due to (2.12), we have

Xt,1 = X0,1 +

∫ t

0

(
β1 + b̃1,1Xs,1 +

(
b̃1,2 −

∫
U2

z1 µ2(dz)

)
Xs,2

)
ds+

∫ t

0

√
2c1X

+
s,1 dWs,1

+

∫ t

0

∫
U2

∫ ∞
0

z11{u6Xs−,1} Ñ1(ds, dz,du) +

∫ t

0

∫
U2

∫ ∞
0

z11{u6Xs−,2}N2(ds, dz,du)

+

∫ t

0

∫
U2

z1M(ds, dz), t ∈ R+,

and

Xt,2 = X0,2 +

∫ t

0

(
β2 +

(
b̃2,1 −

∫
U2

z2 µ1(dz)

)
Xs,1 + b̃2,2Xs,2

)
ds+

∫ t

0

√
2c2X

+
s,2 dWs,2

+

∫ t

0

∫
U2

∫ ∞
0

z21{u6Xs−,2} Ñ2(ds, dz,du) +

∫ t

0

∫
U2

∫ ∞
0

z21{u6Xs−,1}N1(ds, dz,du)

+

∫ t

0

∫
U2

z2M(ds, dz), t ∈ R+.

In the special case ν = 0, we obtain equations (2.1) and (2.2) of Ma [14]. Indeed, due to (2.12), one
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can rewrite the infinitesimal generator (2.14) of the process (Xt)t∈R+ in the following form

(AXf)(x) =

2∑
i=1

cixif
′′
i,i(x) +

2∑
i=1

xi

∫
U2

(
f(x+ z)− f(x)− zif ′i(x)

)
µi(dz)

+ 〈β + B̃x,f ′(x)〉+

∫
U2

(
f(x+ z)− f(x)

)
ν(dz)

− x1f
′
2(x)

∫
U2

z2 µ1(dz)− x2f
′
1(x)

∫
U2

z1 µ2(dz)

=

2∑
i=1

cixif
′′
i,i(x) +

2∑
i=1

xi

∫
U2

(
f(x+ z)− f(x)− zif ′i(x)

)
µi(dz)

+ 〈β +
˜̃
Bx,f ′(x)〉+

∫
U2

(
f(x+ z)− f(x)

)
ν(dz)

for f ∈ C2
c (Rd+,R) and x ∈ Rd+, where

˜̃
B :=

 b̃1,1 b̃1,2 −
∫
U2
z1 µ2(dz)

b̃2,1 −
∫
U2
z2 µ1(dz) b̃2,2

 .
This form of the infinitesimal generator AX is readily comparable with the corresponding one in Ma

[14, equation (1.5)].

In what follows, we consider a special form of the SDE (3.2) without integrals with respect to

(compensated) Poisson random measures. Namely, if ν = 0, µi = 0, i ∈ {1, . . . , d}, then the SDE

(3.2) takes the form

Xt = X0 +

∫ t

0
b(Xs) ds+

∫ t

0
σ(Xs) dW s

= X0 +

∫ t

0
(β +BXs) ds+

d∑
i=1

∫ t

0

√
2ciXs,ieie

>
i dW s, t ∈ R+,

and consequently,

Xt,i =

∫ t

0

(
βi +

d∑
j=1

bi,jXs,j

)
dt+

∫ t

0

√
2ciXs,i dWs,i, t ∈ R+, i ∈ {1, . . . , d}.

If B is diagonal, then the process (Xt)t∈R+ is known to be a multi-factor Cox-Ingersoll-Ross

process, see, e.g., Jagannathan et al. [8].

Finally, Theorem 4.6 is valid also if the SDE (3.2) does not contain integral with respect to a

Wiener process, i.e., if c = 0. We note that in the proof of Theorem 3.7 we applied Theorem 7.1’ in

Chapter II of Ikeda and Watanabe [7], which is valid in case c = 0 as well.

Appendix
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A Extension of a probability space

We recall the definition of extensions of probability spaces, see, e.g., Ikeda and Watanabe [7, Chapter

II, Definition 7.1].

A.1 Definition. We say that a filtered probability space (Ω̃, F̃ , (F̃t)t∈R+ , P̃) is an extension of a

filtered probability space (Ω,F , (Ft)t∈R+ ,P), if there exists an F̃/F-measurable mapping π : Ω̃→ Ω

such that π−1(Ft) ⊂ F̃t for all t ∈ R+, P(A) = P̃(π−1(A)) for all A ∈ F , and Ẽ(X̃ | F̃t)(ω̃) =

E(X | Ft)(π(ω̃)) P̃-almost surely for each essentially bounded (F/B(Rd)-measurable) random variable

X : Ω→ Rd, where we set X̃(ω̃) := X(π(ω̃)), ω̃ ∈ Ω̃.

A.2 Remark. With the notations of Definition A.1, if (Xt)t∈R+ is an Rd-valued (Ft)t∈R+-adapted

stochastic process, then (X̃t)t∈R+ is (F̃t)t∈R+-adapted. Indeed, for each t ∈ R+ and B ∈ B(Rd),
we have

X̃
−1

t (B) = {ω̃ ∈ Ω̃ : X̃t(ω̃) ∈ B} = {ω̃ ∈ Ω̃ : Xt(π(ω̃)) ∈ B} = π−1(X−1
t (B)) ∈ F̃t,

since X−1
t (B) ∈ Ft. 2

A.3 Lemma. Let (Ω,F , (Ft)t∈R+ ,P) be a filtered probability space, and let (W t)t∈R+ be

a d-dimensional (Ft)t∈R+-Brownian motion. Let (Ω̃, F̃ , (F̃t)t∈R+ , P̃) be an extension of

(Ω,F , (Ft)t∈R+ ,P) with the mapping π : Ω̃ → Ω. Let W̃ t(ω̃) := W t(π(ω̃)) for all ω̃ ∈ Ω̃

and t ∈ R+. Then (W̃ t)t∈R+ is a d-dimensional (F̃t)t∈R+-Brownian motion.

Proof. According to Ikeda and Watanabe [7, Chapter I, Definition 7.2], we have to check that the

process (W̃ t)t∈R+ has continuous trajectories, it is (F̃t)t∈R+-adapted, and satisfies

Ẽ(exp{i〈u, W̃ t − W̃ s〉} | F̃s) = e−(t−s)‖u‖2/2 P̃-almost surely

for every u ∈ Rd and s, t ∈ R+ with s < t. Clearly, R+ 3 t 7→ W̃ t(ω̃) = W t(π(ω̃)) is continuous

for all ω̃ ∈ Ω̃. By Remark A.2, (W̃ t)t∈R+ is (F̃t)t∈R+-adapted. Finally, for every u ∈ Rd and

s, t ∈ R+ with s < t,

Ẽ(exp{i〈u, W̃ t − W̃ s〉} | F̃s)(ω̃) = E(exp{i〈u,W t −W s〉} | Fs)(π(ω̃)) = e−(t−s)‖u‖2/2

P̃-almost surely, since we have ξ(ω) = c P-almost surely with ξ := E(exp{i〈u,W t−W s〉} | Fs) and

c := e−(t−s)‖u‖2/2, which implies ξ(π(ω̃)) = c P̃-almost surely, because P̃({ω̃ ∈ Ω̃ : ξ(π(ω̃)) = c}) =

P̃(π−1(ξ−1({c}))) = P(ξ−1({c})) = 1. 2

A.4 Lemma. Let (Ω,F , (Ft)t∈R+ ,P) be a filtered probability space, let (W t)t∈R+ be a d-dimensional

(Ft)t∈R+-Brownian motion, and let p be a stationary (Ft)t∈R+-Poisson point process on V =

Rd+ × (Rd+ × R+)d with characteristic measure m, where m is given in (3.1). Let

Gt :=
⋂
ε>0

σ (Ft+ε ∪N ) , t ∈ R+,

where N denotes the collection of null sets under the probability measure P. Then (W t)t∈R+ is

a d-dimensional (Gt)t∈R+-Brownian motion, and p is a stationary (Gt)t∈R+-Poisson point process

on V with characteristic measure m.

Proof. The proof is essentially the same as the proof of Lemma A.5 in Barczy et al. [1]. 2
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