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Abstract

A multi-type continuous state and continuous time branching process with immigration satisfy-
ing some moment conditions is identified as a pathwise unique strong solution of certain stochastic
differential equation with jumps.

1 Introduction

Continuous state and continuous time branching processes with immigration (CBI processes) arise as
high density limits of Galton—Watson branching processes with immigration, see, e.g., Li [13, Theorem
3.43] without immigration and Li [12] with immigration. A single-type continuous state and continuous
time branching process (CB process) is a non-negative Markov process with a branching property. This
class of processes has been first introduced by Jifina [9] both in discrete and continuous times. As
a generalization of CB processes, Kawazu and Watanabe [11] introduced the more general class of
CBI processes, where immigrants may come from outer sources. They defined a single-type CBI
process as an [0, oo]-valued Markov process with oo as a trap in terms of Laplace transforms, see [11,
Definition 1.1]. An analytic characterization of CBI processes was also presented by giving the explicit
form of the corresponding non-negative strongly continuous contraction semigroup, see [11, Theorem

2010 Mathematics Subject Classifications: 60H10, 60J80.

Key words and phrases: multi-type continuous state and continuous time branching process with immigration

The research of M. Barczy and G. Pap was realized in the frames of TAMOP 4.2.4. A/2-11-1-2012-0001 ,,National
Excellence Program — Elaborating and operating an inland student and researcher personal support system”. The project
was subsidized by the European Union and co-financed by the European Social Fund. Z. Li has been partially supported
by NSFC under Grant No. 11131003 and 973 Program under Grant No. 2011CB808001.



1.1’]. Further, limit theorems for Galton-Watson branching processes with immigration towards CBI
processes were also investigated, see [11, Section 2]. Dawson and Li [2, Theorems 5.1 and 5.2] proved
that a general single-type CBI process is the pathwise unique strong solution of a stochastic differential
equation (SDE) with jumps driven by Wiener processes and Poisson random measures. Watanabe
[16, Definition 1.1] introduced two-type CB processes as [0, c0)?-valued Markov processes satisfying
a branching property. He characterized them in an analytic way by giving the explicit form of the
infinitesimal generator of the corresponding non-negative strongly continuous contraction semigroup,
see Watanabe [16, Theorem 1]. Fittipaldi and Fontbona [5, Theorem 2.1] represented a (sub)-critical
continuous time and continuous state branching process conditioned to never be extinct as a pathwise
unique strong solution of an appropriate SDE with jumps. It was also shown that a two-type diffusion
CB process can be obtained as a pathwise unique strong solution of an SDE (without jumps), see
Watanabe [16, Theorem 3]. Recently, for a special two-type (not necessarily diffusion) CBI process
(with a special immigration mechanism), an SDE with jumps (a special case of the SDE (3.2) given
later on) has already been presented by Ma [14, Theorem 2.1] together with the existence of a pathwise
unique [0, 00)?-valued strong solution of this SDE. For a comparison of our results with those of Ma
[14], see Section 5.

The aim of the present paper is to derive and study an SDE with jumps for a general multi-type
CBI process. Next, we give an overview of the structure of the paper by explaining some of its technical
merits and including some sort of preview of the types of results which are proved.

In Section 2 we recall some facts about CBI processes (e.g., set of admissible parameters, in-
finitesimal generator) with special emphasis on their identification (under some moment conditions)
as special immigration superprocesses. This identification turns out to be very important since it is
the starting point for deriving a formula for the expectation and an SDE with jumps for a general
multi-type CBI process (see the proofs of Lemma 3.4 and Theorem 3.7).

In Section 3 we formulate an SDE with jumps and, under the same moment conditions, we prove
that this SDE admits an [0, oo)d—valued weak solution which is unique in the sense of probability
law among [0, co)%valued weak solutions. The idea behind of deriving such an SDE goes back to
a result of Li [13, Theorem 9.18] that an immigration superprocess can be represented as a sum
of a continuous local martingale, a purely discontinuous local martingale and a drift term. In our
special case, this purely discontinuous local martingale takes the form fg f[O,oo)d\{O} zﬁo(ds,dz),
t >0, with some (not necessarily Poisson) random measure Ny(ds,dz) on (0,00) x ([0,00)¢\ {0}),
where Ny (ds,dz) denotes the compensation of Ny(ds,dz). The next key step is that the integral
fg f[O,oo)d\ (0} z]vo (ds,dz) can be rewritten as an appropriate sum of integrals with respect to a Possion
and compensated Poisson random measures, and some additional drift term, due to a representation
theorem of right continuous martingales, see, e.g., Ikeda and Watanabe [7, Chapter II, Definition 1.3
and Lemma 1.2]. We also prove that any |0, oo)d—valued weak solution of this SDE is a CBI process,
see Theorem 3.7. For the proof of Theorem 3.7, we need a formula for the first moment of a CBI
process, see Lemma 3.4. The proof of Lemma 3.4 is based on a formula for expectation of immigration
superprocesses, see Li [13, Proposition 9.11].

In Section 4 we prove that, under the same moment conditions, there is a pathwise unique |0, 00)d-
valued strong solution to the SDE (3.2) and the solution is a CBI process, see Theorem 4.6. For the
proof, we need a comparison theorem for the SDE (3.2) (see, Lemma 4.2), which, in particular,



yields that pathwise uniqueness holds for the SDE (3.2) among [0, c0)%-valued weak solutions. The
ideas of the proof of Lemma 4.2 follow those of Theorem 3.1 of Ma [14], which are adaptations of
those of Theorem 5.5 of Fu and Li [6]. More precisely, we derive an upper bound for an appropriate
deterministic function of the difference of two [0, 00)%valued weak solutions of the SDE (3.2) and
then apply Gronwall’s inequality.

In Section 5 we specialize our SDE (3.2) to dimension 1 and 2, respectively, which enables us to
compare our results with those of Dawson and Li [2, Theorems 5.1 and 5.2] (single-type) and Ma
[14, Theorem 2.1] (two-type), respectively. Moreover, we discuss a special case of the SDE (3.2) with
v=0, pu; =0, i € {l,...,d}, ie., without integrals with respect to (compensated) Poisson random
measures (corresponding to the so-called multi-factor Cox-Ingersoll-Ross process if B is diagonal,
see, e.g., Jagannathan et al. [8]), and another special case with ¢ = 0, i.e., without integral with
respect to a Wiener process.

In Appendix A we present some facts about extensions of probability spaces.

Finally, we mention that our work goes beyond that of Ma [14] in the sense that we consider general
multi-type CBI processes with arbitrary branching and immigration mechanisms instead of two-type
CBI processes with a special immigration mechanism, and we carefully present some missing details
in the proofs of Ma [14] for the general multi-type case such as the application of Theorem 9.18 in
Li [13] and of Theorem 7.4 in Chapter II in Ikeda and Watanabe [7]. Further, in a companion paper
we established Yamada-Watanabe type results for SDEs with jumps that are needed in the proof of
Theorem 4.6 (existence of pathwise unique strong solution of the SDE (3.2)). We point out that Ma
[14] implicitly used these results without proving or referring to them.

2 Multi-type CBI processes

Let Z+, N, R, Ry and Ry, denote the set of non-negative integers, positive integers, real numbers,
non-negative real numbers and positive real numbers, respectively. For z,y € R, we will use the
notations x Ay :=min{z,y} and z" :=max{0,z}. By ||z| and ||A]|, we denote the Euclidean
norm of a vector x € R? and the induced matrix norm of a matrix A € R¥?  respectively. The
natural basis in R¢ and the Borel g-algebras on R? and on Ri will be denoted by e, ..., eq,
and by B(RY) and B(R%), respectively. The d-dimensional unit matrix is denoted by I,. For
T = (Ti)ief1,. 4 € R? and y = (Yi)ieqn,....ay € R?, we will use the notation « < y indicating that
z; <y forall i€ {l,...,d}. By C?(R%L,R) we denote the set of twice continuously differentiable
real-valued functions on Ri with compact support. Throughout this paper, we make the conventions
f; = f(a’b} and [ := f(am) for any a,b € R with a <b.

2.1 Definition. A matriz A = (a;;); jeq1,...d} € R s called essentially non-negative if a;; € Ry

whenever i,5 € {1,...,d} with i # j, i.e., if A has non-negative off-diagonal entries. The set of
RdXd.

essentially non-negative d x d matrices will be denoted by )

2.2 Definition. A tuple (d,c,3,B,v, ) is called a set of admissible parameters if

(i) d €N,



(ii) ¢ = (ci)iequ,..ay € RY,

(iii) B = (Bi)ieq1,...q € RYL,

: dxd

(iv) B = (bij)ije(1,..ay € R(f) ;

(v) v is a Borel measure on Uy :=R%L\ {0} satisfying fUd(l N z]) v(dz) < oo,

(vi) = (p1,...,1q), where, for each © € {1,...,d}, p; 1is a Borel measure on Uy satisfying

(2.1) / A2+ S | (dz) < oo
Ua je{1,...d\{i}

2.3 Remark. Our Definition 2.2 of the set of admissible parameters is a special case of Definition 2.6
in Duffie et al. [4], which is suitable for all affine processes. Namely, one should take m =d, n =10
and zero killing rate in Definition 2.6 in Duffie et al. [4] noting also that part (v) of our Definition
2.2 is equivalent to the corresponding one fUd Z?Zl(l A zi)v(dz) < oo in Definition 2.6 in Duffie et
al. [4]. Indeed,

(LA z) <d(Allz])
1

(2

d d
1Auz||<m(zzi) <

=1

for all z = (21,...,24) € R?. Further, for all i € {1,...,d}, the condition (2.1) is equivalent to

(2.2) / (1A Zi)z + Z (IA Zj) wi(dz) < oo and / HzH]l{HzHZl} wi(dz) < oo.
Va FE{L o dP\{i} Ve

Indeed, if (2.1) holds, then [;; [[2[Lgjjzy=1y pi(d2z) = [y (2] A |2]1?)Lgjjz)>13 pi(dz) < oo, and using
that z <[zl and (1A z)* = (1A 2)*Lz<ay + (0A 20)2 12513 < 12120 20<0y + 121120513 =
||| Allz)1%, i € {1,...,d}, we have (2.2). If (2.2) holds, then, using again z; < ||2|, 7 € {1,...,d},
we have

/ Azl + S 5 | m(dz)
Ua je{1,...dP\{i}

— / 22+ s | Dy m(dz) + / 2+ 5 | ey (dz)
Ua Gefl,..d\{i} Ua JelL,.d\{i}

</ d+2 ). Il{||z<1}»ﬂz‘(dz)+/ 12l Tz )>13 pi(d2)
Ua Gef1,.dN\{i} Ua

b Y[ Begeeymlan) <o, ie{Lid)
JE(Lndp\ (i} Ve

yielding (2.1). Note that, here the finiteness of the first integral in (2.2) is nothing else but condition

(2.11) in Definition 2.6 in Duffie et al. [4], and the finiteness of the second integral in (2.2) is an

additional condition that we assume compared to Duffie et al. [4], its role is explained in Remark 2.5.
O



2.4 Theorem. Let (d,c,3,B,v,u) be a set of admissible parameters in the sense of Definition 2.2.
Then there exists a unique conservative transition semigroup (P;)iecr, acting on the Banach space
(endowed with the supremum norm) of real-valued bounded Borel-measurable functions on the state
space Ri such that its infinitesimal generator is

d
(AN(@) =Y cannfli(a) + (B + Ba. £ @) + [ (fle+2)- @) vld2)

Uq
d
+;$i /Ud(f(w—i-z) — f(®) — f{(@)(1 A 2)) pi(dz)

for f € C2(RL,R) and x € RY, where f! and 1 i€ {l,...,d}, denote the first and
second order partial derivatives of f with respect to its i-th variable, respectively, and f'(x) :=
(fi(x),..., fi(x))T. Moreover, the Laplace transform of the transition semigroup (Py)ter, has a

representation

/ ef<Azy>Pt(w’ dy) — ef<m7’v(t7A)>7f0t 1/’(”(37)\)) d87 x 6 Rd , A G Rd , t G R+7

R

where, for any X € R%, the continuously differentiable function R. > t — v(t,A) =
_l’_

(01t A), .., va(t, X)) T € RL is the unique locally bounded solution to the system of differential
equations

(2.4) at’UZ'(t, )\) = —gOi(U(t, )\)), Ui(o, )\) =\, 1€ {1, R ,d},

with
5i(A) 1= N2 — (Bes, A) + / (=™ — 14 A(LA =) pu(dz)
Uq

for )\ER‘j_ and i€ {l,...,d}, and

BN = (B,A) —/ (™) 1) u(dz),  AeRL

Uqg

Further, the function Ry x RY 3 (¢, A) = v(t,A) is continuous.

2.5 Remark. This theorem is a special case of Theorem 2.7 of Duffie et al. [4] with m =d, n =0
and zero killing rate. The unique existence of a locally bounded solution to the system of differential
equations (2.4) is proved by Li [13, page 45]. Here, we point out that the moment condition given in
part (vi) in Definition 2.2 (which is stronger than the one (2.11) in Definition 2.6 in Duffie et al. [4])
ensures that the semigroup (F;);cr, is conservative (we do not need the one-point compactification
of Ri), see Duffie et al. [4, Lemma 9.2] and Li [13, page 45]. For the continuity of the function
Ry xR% 35 (£, A) — v(t, A), see Duffie et al. [4, Proposition 6.4]. Finally, we note that the infinitesimal
generator (2.3) can be rewritten in another equivalent form, see formula (2.14) in Lemma 2.11. O

2.6 Definition. A conservative Markov process with state space Ri and with transition semigroup
(Py)ier, given in Theorem 2.4 is called a multi-type CBI process with parameters (d,c,3,B,v,u).



In what follows, we will identify a multi-type CBI process (Xi)ier, with parameter-
s (d,e,B,B,v,pu) under a moment condition as a special immigration superprocess. First we
parametrize the family of immigration superprocesses for which Theorem 9.18 in Li [13] is valid.
We will use some notations of the book of Li [13]. For a locally compact separable metric space F,
let us introduce the following function spaces:

B(FE) is the space of bounded real-valued Borel functions on FE,

C(FE) is the space of bounded continuous real-valued functions on FE,

C(E)*

(E)
e B(E)*' is the space of bounded non-negative real-valued Borel functions on FE,
(E)
(E)™ is the space of bounded continuous non-negative real-valued functions on F,

e Cy(E) is the space of continuous real-valued functions on E vanishing at infinity.

Let M(E) denote the space of finite Borel measures on E. We write pu(f) := [ f(z)p(dz) for
the integral of a function f:FE — R with respect to a measure p € M(E) 1f the mtegral exists.

2.7 Definition. A tuple (E, (R¢)ter, ¢, B,b, B, Hy, H2) 18 called a set of admissible parameters if

(i) E is a locally compact separable metric space,
(ii) (Rt)ier, 1s the transition semigroup of a Hunt process

§= (Qa g, (gt)t€R+a (gt)tGRJra (gt)t€R+7 (PCE):EEE)

with values in E (see, e.g., Li [13, page 314]) such that (R;)icr, preserves Co(E), and
Ry >t Rif € Co(E) is continuous in the supremum norm for every f € Cy(E),

) ce C(E)T,

) Be€ M(E),
(v) be O(E),

)

H, s a finite measure on M(E)° := M(E)\{0} (where 0 denotes the null measure) satisfying
fM(E)O k(1) Hi(dr) < oo,

(vil) B(z,dy) is a bounded kernel on E (i.e., from E to E) and Hs(x,dk) is a o-finite kernel
from E to M(E)° suchthat E >z (k(1) Ar(1)?)Ha(x,dr) is continuous with respect to
the topology of weak convergence in M(E)°, and the operators

oo [ (ARG dR)  andf )
M(E)°
preserve Co(E)t, where the kernel ~v(x,dy) on E is defined by
o dy) = Blandy) + [ wa(dy) Halar, ),
M(E)°

where ky(dy) denotes the restm’ction of k(dy) to E\{x}, and by ~(-,f) we mean the
function E >z ~(x, f) =[5 f(y)y(z,dy).



2.8 Remark. Note that Condition (2.25) in Li [13] readily follows from (vii) of Definition 2.7, since
a function in Cy(E) is bounded, hence

sup/ [(1) A m(l)z]Hg(x,d/{) < 00, sup/ kz(1) Ho(z,dr) < supy(z,1) < oo,
zeE JM(E)° el JM(E)° el

where we used that B(z,1) € Ry for all z € E. O

2.9 Theorem. Let (E, (Rt)t€R+,c,B,b,B,H1,H2) be a set of admissible parameters in the sense
of Definition 2.7. Then there exists a unique transition semigroup (Qi)icr, acting on the Banach
space (endowed with the supremum norm) of real-valued bounded Borel-measurable functions on the
state space M(E) such that its infinitesimal generator is

(AP = [

)P0 ldo) + [ (AP0 (. 52) = W) P s ) )

E

25) + [ F ) aldo) + /M(E)o (F(u+ ) — F(u) Hi(dr)

* /E </M(E)o (F('u + /{) - F('u) - R(F,(M; ))) HZ(fL', dfﬁ)) ,u(d:z:),

for p e M(E) and functions F : M(E) — R of the form F(u) = G(u(f1),...,u(fn)), where
neN, GeC*R"R), and fi,...,fn € Do(A), where A denotes the strong generator of (Ri)ter,
defined by

_— rx ek,
where the limit is taken in the supremum norm, and the domain Do(A) of A is the totality of
functions f € Co(E) for which the above limit exists,

F 5,)— F
F(pzr) = lim (’”65) (1) peM(E), z¢€k,
€.

and F"(u;x) is defined by the limit with F(-) replaced by F'(-;x).

Moreover, the Laplace transform of the transition semigroup (Q)icr, has a representation
(2.6) / e " NQy (1, dk) = e (Ve =Jg 1(Vf) ds, pweME), feB(E)", teRy,
M(E)

where, for any x € E and f € B(E)", the continuously differentiable function Ry 3t — Vif(x) €
R4 is the unique locally bounded solution to the integral evolution equation

t
Vif(x) = Ref(x) /0 ( /E oy, Vaf) Rt_s(xjdy)) ds,  teR,,
with

$(x, f) = c(z) f(2)® + b(x) f(z) — /E f(y) B(x,dy) + /M (e — 14 w({z}) f(x)) Ha(z,dr)

(E)°
for x€ E and f € B(E)", and



Proof. Formula (2.6), which is, in fact, formula (9.18) in Li [13], defines a transition semigroup of
an immigration superprocess corresponding to the skew convolution semigroup given by (9.7) in Li
[13]. Theorem 9.18 in Li [13] yields that the infinitesimal generator of the immigration superprocess
in question has the form given in (2.5), and the unicity of the transition semigroup. O

2.10 Definition. A Markov process with state space M(E) and with transition semigroup (Q¢)ier,
given in Theorem 2.9 is called an immigration superprocess with state space M (E) with parameters
(E7 (Rt)t€R+7c7/Bab7B7HlaH2)-

In what follows, we identify a multi-type CBI process (X;)ier, with parameters (d,c, 3, B,v, u)
under the moment condition

(2.7) / ”zH]l{||ZH>1} V(dz) < 00,
Uq

as a special immigration superprocess.

First we introduce the modified parameters 3 := (/gz’)ie{l,...,d}a B := (bij)ijeq1,..qy and D :=
(dij)ijef1,..ap given by

(28) ,5 =0 +/U z u(dz), gi,j = bi,j +/U (Zi — (51'7]')—’_ uj(dz),

(2.9) d@j = fl;i’j —/U Zi]l{||z||21} uj(dz),
d

with ¢;;:=1 if i=j, and §;;:=0 if i # j. The moment condition (2.7) together with the fact

that v and p satisfy Definition 2.2 imply B €R?, B € R?:)d and D € R?:)d. Indeed,

210) [ elvds) = [ QAL )+ [ ey vidz) < oo
Uyq Uy Uq

by part (v) of Definition 2.2 and (2.7). Moreover, for all ¢ € {1,...,d},

@) [ e 0 < [ alesymdn) < [ JelLgaeny ms) < oo
Uy Uy Uq

by 2z < ||z|, 2z €R%, and (2.2). Further, for all 4,j € {1,...,d}, i# j,

/Ziuj(dZ)Z/ Zﬂl{zi<1}ﬂj(dZ)+/ zilgz,>1y i (dz)
Uyq Uy Uq
(2.12)

< / (LA %) uj(dz) + / HzHl{HzH}l} ,uj(dz) < o0
Ugq Uq

by z < |z|, z € R, part (vi) of Definition 2.2 and (2.2). Finally, d;; is well-defined for all
i,7 €{1,...,d} because of (2.2), and, for all 4,j € {1,...,d}, i # 7,

di,j = b@j —|—/ Z ,uj(dz) — / Zi]l{||zH>1} ,uj(dz) = b@j —|—/ Ziﬂ{||z||<1} ,uj(dz) € R+.
Ugq Uda Ua



Note also that for all j € {1,...,d},

(2.13) / 120121z <1y 1(d2) < / (ZJZ + > Zk) )iz <1} #j(d2) < o0
Ua Ua ke{l,...dP\ {5}

by z < ||z|, 2z €R%, part (vi) of Definition 2.2 and (2.2).

For the discrete metric space E :={1,...,d}, we have the following identifications:

e B(E), C(E) and Cy(E) can be identified with R? since a function f: E — R can be
identified with the vector (f(1),...,f(d))" € RY,

e B(E)t and C(E)* can be identified with R%,

e M(E) can be identified with ]R‘i, since a finite Borel measure g on E can be identified with
the vector (u({1}),...,u({d}))" € R,

o for € M(E) and f e B(E), the integral u(f) = [ f(z)p(dz) = Z?Zl fl@)u({i}) can be
identified with the usual Euclidean inner product (u, f) in RY,

e M(E)°® can be identified with Uy.

If (2,F,P) is a probability space, then, by P-null sets from a sub o-algebra H C F, we mean the
elements of the set

{ACQ:3IBe€H suchthat AC B and P(B) =0}.

A filtered probability space (€, F, (F)ier,,P) is said to satisfy the usual hypotheses if (F;)ier, is
right continuous and JFy contains all the P-null sets in F.

2.11 Lemma. Let (d,c,3,B,v,pu) be a set of admissible parameters in the sense of Definition 2.2
satisfying the moment condition (2.7). Then (E, (Rt)teRJr,c,ﬂ,b,B,Hl,Hz) is a set of admissible
parameters in the sense of Definition 2.7, where

(i) E:={1,...,d} with the discrete metric,
(ii) (Rt)ier, is the transition semigroup given by Rif := f, fe€ B(E), teR,,
(iii) c € B(E)" s given by c(i) :=¢;, i € E,
(iv) B € M(E) is given by B({i}) =B, i€ E,
(v) be B(E), is given by b(i) := —pl;m, iekE,
)

(vi) B(x,dy) is the kernel on E given by B(i,{i}):=0 for i€ {l,...,d} and B(i,{j}) := b,

for i,5 €{1,...,d} with i#j,
(vii) Hy is the measure on M(E)° identified with the measure v on Uy,

(viii) Ha(z,dk) is the kernel from E to M(E)° such that the measure Hs(i,-) on M(E)° is
identified with the measure u; on Uy for each i€ {1,...,d}.



If (Q,F,(Fi)ier,,P) s a filtered probability space satisfying the usual hypotheses and (Yi)ier,
1s a cadlag immigration superprocess with parameters (E, (Rt)t€R+,c,ﬁ,b,B,H1,H2) satisfying
E(Yo(1)) < oo and adapted to (Fi)ier,, then X; := (Yi({1}),....Y:({d}))", t € R4, isa
multi-type CBI process with parameters (d,c,3,B,v,u) satisfying E(|| Xol|) < co. The infinitesi-
mal generator (2.3) of (Xt)t€R+ can also be written in the form

d
(Axf)(@ Zczxzf;:xmzxi /U (fl@+2) — [(@) ~ (= ' @))) wi(d2)
=1 d

(2.14)
(8 + Ba. f'(x)) + /U (fle+2) - f(x)) v(d2)
for feC?(RL,R) and = € RL.

Proof. The discrete metric space {1,...,d} is trivially a locally compact separable metric space.
Clearly, Rif :=f, f€ B(E), t € Ry, is the transition semigroup of the Hunt process

E = (Qa g? (gt)t€R+) (5t)t€R+7 (Ht)tER+7 (]P)CE>.1’EE)
with Q = {1,...,d}, G =G =29 teRy, &Lw) =0w) =w, weQ, tcR,, P,=4,
re{l,...,d}. Moreover, (R:)icr, trivially satisfies (ii) of Definition 2.7, and (iii), (iv) and (v) of
Definition 2.7 trivially hold. Further (vi) of Definition 2.7 also holds, since fUd (Z?Zl zi> v(dz) < oo

follows from (2.10) by z < ||z|, z € R4, i€ {1,...,d}. The kernel B(z,dy) on E is bounded,
since sup,cp B(r, E) = maxjeqq,. a4y 2]6{1’.”@}\{” bj; < co. On the dicrete metric space {1,...,d}
every function is continuous, hence E 3 z +— (k(1) A £(1)?)Ho(x,dk) is continuous with respect to
the topology of weak convergence in M (E)°. In order to show that the operator

P [ S AR e
preserve Co(E)™, it suffices to observe that for each A € Ri and i€ {1,...,d}, we have

| (2 A2 itdm) € B,
Uq
which follows from the estimate

/ (A 2) A 2)?) pi(dz) </ [AXZI A AN (=) < CA/ (=l A ll=]%) pi(dz)
Uy Uq

Uq

= o [ (2 A NP L gy dz) o [ (12l A TP Egagony 0(d2)
d

Uq

ZCA/ 12112 Lg21<1y Mz’(dz)+0>\/ 2] 12> 1y pi(dz) < o0
Ud Ud

with ¢y := max{||A||, [|A]|?} by (2.13) and (2.2). In order to show that the operator f + (-, f)
preserves Co(E)T, it suffices to observe that for each XA = (A1,...,\q)" € Ri and i€ {1,...,d},
we have

o,
i MQ‘
I,

>

)

BaD+ Y N[ sl ery,
jell,.dp\{i} U4
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which follows from (2.12). Consequently, (E, (Ri)ter, - ¢, 3,0, B, Hy, Hg) is a set of admissible pa-
rameters in the sense of Definition 2.7.

By Theorem 2.9, we have

E(efYt(f) 1Yo =p) = / e r(f) Qi(p,dr) = efu(th)*fot I(Vsf)ds
M(E)°
for pe M(E), fe€ B(E)" and t € R;, hence we obtain
E(e X0 | Xy = @) = o @0 Va6 4y crl feR,,

where, for any i € {1,...,d} and A € R%,  the function Ry 3¢+ v(t,\) = (vi(t,N),...,vq(t, N))
is the unique locally bounded solution to the integral evolution equation

t
Uz(t7)‘) :)‘Z_/ gpi(’v(S,A))d& t€R+, iE{l,...,d},
0

with
(p,()\) = CZ'/\Z2 — bi,i>\i — Z )\jbjﬂ' +/ (€7<)\’z> -1+ /\izi) ui(dz)
je{Ld}\{i} Ua
for A ERi and i€ {1,...,d}, and
V() = (B, A) +/ (1—e ™) p(dz), AeR?.
Uqg
We have

(2.15) ©i(A) = ¢;\? — (Bej, A) + / (=) — 14 (X, 2)) p(dz),
Uqg

since, by (2.12),

pi(N) — A2 + (Bes \) /U (™3 14 (A 2)) pi(dz)

d
= —Em-)\i — Z )\jbjﬂ' + Z )\jgjﬂ' — Z )\j /U 25 ,ui(dz) =0.
d

je{l,...d\{i} j=1 Je{L,....d\{i}

Moreover, we can write the functions ¢;, i € {1,...,d}, in the form

©i(A) = ciA? — (Bej, \) + / (=™ — 14 N(1A 2)) pi(dz)
Uqg

for A=(\,...,Aq)" €R% and i€ {l,...,d}. Indeed, by (2.11) and (2.12),

gpi()\)ci)\?+<Bei,)\>/ (6= — 14+ N(1A %)) pi(dz)
Uq

_ (B - Bei,\) —/U (LA =) — (A 2)) (=)

=—X\ (Zi — 1)+ ,ul(dz) — / ()\z(l VAN Zi) — )\zzz) pz(dz) =0.
Uy Ugq
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By Theorem 2.4, (X;)icr, is a multi-type CBI with parameters (d,c,3,B,v,pu) satisfying
E([| Xof|) < oo

Finally, (2.14) follows from

d

(Ax /)@ Zcm )= [ (flat2) - @) - (= £ @) mld2)

i=1 Ud

B+ B f(x) - /U (fle+2) - f(z)) v(dz)

d
=Y a [ (= @) - fi@)0 ) ) (B - Ba. f'@)
i=1 Ua

_in/ (fi’(x)(zi—(l/\zi))—i- > zjfj‘(w))uz-(dZ)

=1 JUd j€{1,. dP\{i}
Y e / 5:4)" p(dz) = 0.
=1 j=1

using (2.10), (2.11) and (2.12). O

3 Multi-type CBI process as a weak solution of an SDE

Let R := U?:o R;, where R;, j€{0,1,...,d}, are disjoint sets given by
Ro = Ug x {(0,0)}* C R x (RY x Ry)?,

and
Rj:={0} x Hjy x - x Hig CRL x (RT xRy, je{1,...,d},
where
{dem if =7,
3t = e .
{(0,0)} if i #j.
(Recall that U; = R;;.) Let m be the uniquely defined measure on V :=R% x (R%? x R;)? such
that m(V \R) =0 and its restrictions on Rj, j € {0,1,...,d}, are
(3.1) m|r, (dr) = v(dr), m|R,(dz,du) = p;(dz)du, je{l,...,d},

where we identify Rg with Uy and Ry, ..., Rq with Uz x U; in a natural way. Using again this
identification, let h:R¥ x V — Ri be defined by

T, if a:e]Ri, r € Ro,
h(x,r) = 2liuce;y, if ®= (z1,...,2q)" € ]Ri, r=(z,u) €Rj, je{l,...,d},
0, otherwise.

12



Consider the decomposition R = VyUV;, where Vj := U?:l Rjo and Vi :=RyU (U?:l Rjyl) with
Rj,k = {0} X Hj,l,k X o+ X Hj,d,k:a j € {1, . .,d}, ke {0, 1}, and

Ud7k><U1 if ©=j, U {ZGUd: ||Z|| <1} if k=0,
ikt = dk -—
’ {(0,0)} if i#j, {zeUs:|z| =1} if k=1

Then the sets V, and Vi are disjoint, and the function h can be decomposed in the form h = f+g¢g
with
f(z,7) := h(z, )Ly, (r), g(x,r) = h(x,r)ly(r), (x,7) e R x V.

Let (d,ec,B,B,v,u) be a set of admissible parameters in the sense of Definition 2.2 such that the
moment condition (2.7) holds. Let us consider the d-dimensional SDE

t t
Xt:Xo—i—/ b(Xs)ds—i—/ o(Xs)dW
0 0
(3.2) t t
w [ rxen Fasan + [ g Nasan,  ter
0 JV 0 JV;

where the functions b: R4 — R% and o :R? — R are defined by

d
b(x) := B+ Dz, o(x):= Z \/2ciz] eie] x € RY,
i=1

D is defined in (2.9), (Wy)ier, is a d-dimensional standard Brownian motion, N(ds,dr) is
a Poisson random measure on R, x V with intensity measure dsm(dr), and N(ds,dr) :=
N(ds,dr) — dsm(dr). For a short review on point measures and point processes needed for this
paper, see, e.g., Barczy et al. [1, Section 2].

3.1 Definition. Let n be a probability measure on (R%,B(R1)). An R%-valued weak solution of
the SDE (3.2) with initial distribution n is a tuple (Q,f, (Ft)ter,, P, W,p,X), where

(D1) (Q, F, (Fe)ier,,P) is a filtered probability space satisfying the usual hypotheses;
(D2) (Wy)ier, is a d-dimensional standard (F;)ier, -Brownian motion;

(D3) p is a stationary (Fi)ier, -Poisson point process on V' with characteristic measure m  given
in (3.1);

(D4) (Xy)er, is an RY -valued (F;)ier, -adapted cadlag process such that

the distribution of Xg is n,

(JE(IBX )] + (X )|2) ds < 00) =1 for all t € Ry,

(Jo Jip If (X, m) |2 dsm(dr) < 00) =1 forall t€Ry,

(Jo o 19(Xs—,7)[| N(ds,dr) < o0) =1 for all t € Ry, where N(ds,dr) is the

counting measure of p on Riy XV,

(e) equation (3.2) holds P-a.s., where N(ds,dr):= N(ds,dr) —dsm(dr).

(a)
(b)
()

)

P
i
(d) P
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For the definitions of an (F;);er,-Brownian motion and an (F);er, -Poisson point process, see,
e.g., Ikeda and Watanabe [7, Chapter I, Definition 7.2 and Chapter II, Definition 3.2].

3.2 Remark. If conditions (D1)-(D3) and (D4)(b)—(d) are satisfied, then the mappings Ry xVpxQ >
(5,7,w) = f(Xs (w),r) € R and Ry x Vi x Q 3 (s,7,w) — g(X, (w),r) € R? are in the
(multidimensional versions of the) classes F?)’loc and F',, respectively, defined in Ikeda and Watanabe
[7, pages 61, 62], the integrals in (3.2) are well-defined and have cadlag modifications as functions of
t, see, e.g., Barczy et al. [1, Remark 3.2].

Moreover, if ]E(f(f | Xs||ds) < oo for all ¢t € Ry, and the moment condition (2.7) holds, then
conditions (D4)(b)—(d) are satisfied, and the mappings R, x Vo x Q 3 (s,7,w) — f(Xs_ (w),r) € R?
and Ry x V3 x Q3> (s,7,w) = g(Xs_(w),r) € RY are in the (multidimensional versions of the)

smaller classes Ff, and Fé, respectively, defined in Ikeda and Watanabe [7, page 62]. Indeed, with
the notation Xy = (Xs1,...,Xsa) , s € Ry,

t
E(/o Vo 17X I dam dr) ZE(/ /Ud/ =] Il{||z||<1}ﬂ{u<x”}dsug(dZ)d“>

=1

t
ZE (/ Xs,j ds) / HZHZH{||Z||<1} ,u,j(dz) < 0
0 U,

Jj=1

.

by (2.13), and

t
B ([ [ lox.nasman)
0 JWV
d t
/ Lortasvian) + S (] 1t tex, ) dsnaz) au)
Ua = 0 Ju, Ju,

d t
=t [ irivtan + X8 ([ Xogas) [l gagen na) < o0
Ua = 0 Ua

by (2.10) and (2.2). Note that if (X;);er, is a CBI process with E(||X¢||) < oo satisfying the
moment condition (2.7), then E(fg | Xs|lds) < oo forall t€Ry, see Lemma 3.4. O

3.3 Remark. Note that if conditions (D1)—(D3) are satisfied, then W and p are automatically
independent according to Theorem 6.3 in Chapter II of Tkeda and Watanabe [7], since the intensity
measure dsm(dr) of p is deterministic. Moreover, if (Q,F, (Ft)t€R+7P,W,p,X) is an Ri—valued
weak solution of the SDE (3.2), then Fy, W and p are mutually independent, and hence Xo, W
and p are mutually independent as well, see, e.g., Barczy et al. [1, Remark 3.4]. a

3.4 Lemma. Let (Xy)icr, be a CBI process with parameters (d,c,B,B,v,pu) and with initial
distribution n satisfying [pa ||Z[| n(dz) < co. Suppose that the moment condition (2.7) holds. Then
+

E(X,) = B E(Xo) + (/t ouB du> B, teR,,
0
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where B € Rzli)d and B ¢ R?  are defined in (2.8). In particular, fg E(||Xs||)ds < oo for all
teR,.

Proof. By the tower rule for conditional expectations, it suffices to show
- t . _
(3.3) E(X,|Xo) =eBXy+ </ euB du) B, teRy,
0

where the conditional expectation E(X;| X)) € [0,00]? is meant in the generalized sense, see, e.g.,
Stroock [15, Theorem 5.1.6]. In order to show (3.3), it is enough to check that for a CBI process
(Xt)ter, with initial value Xo=x € R?, we have

- t .
(3.4) E(X;) =Bz + </ euB du> B, teR;, =xecR?.
0

Indeed, let ¢, : ]Ri — ]Ri, n € N, be simple functions such that ¢,(y) Ty as n — oo forall y € Ri.
Then, by the (multidimensional version of the) monotone convergence theorem for (generalized) con-
ditional expectations, see, e.g., Stroock [15, Theorem 5.1.6], we obtain E(¢n(X¢) | Xo) TE(X: | X0)
as n — oo P-almost surely. For each B € B(R?), we have

B(L5(X1) | Xo) = P(X, € BI Xo) = [ 1a(y) P(Xo:dy)
RJr
hence E(¢,(X¢) | Xo) fRd dn(y) Pi(Xo,dy). By the (multidimensional version of the) monotone
convergence theorem, fRi gbn( ) Pi(Xo,dy) T fRi y P,(Xo,dy) as n — oco. By (3.4), we get

_ t
E(XtXO)—/d yB(Xo,dy)—etBXg—i—(/ e“Bdu> 3,
R% 0

hence we conclude (3.3).

In order to show (3.4), we are going to apply Proposition 9.11 of Li [13] for the immigration
superprocess given in Lemma 2.11. For each f € B(E) and ¢ € E, the function Ry 3¢ — m f (i) is
the unique locally bounded solution to the linear evolution equation (2.35) in Li [13] taking the form

m (i) = f(i) + /0 (i, e f) ds — /0 b(i)s (i) ds

:f(i)+/0 Zwsf (i, ) ds/o b(i)wsf(z')ds:f(i)+/0 S f (g | ds.
where we used R,f = f for fe€ B(E) and t € Ry, b(i) = b“ and ~(i,{i}) = B(i,{i}) =0 for
ie{l,...,d}, and
(35) i 11 = B D + [ 2amtan) = bt [ 2tan) =,

for i,j € {1,...,d} with i # j. The functions Ry >t 7w f(i), f € B(E), i€ {l,...,d}, can
be identified with the functions Ry >t — m;(t,A), A € R? i€ {1,...,d}, which are the unique
locally bounded solution to the linear evolution equations

t ~
mi(t, A) = A +/ (Be;, m(s, X)) ds, teRy, ie{l,...,d}, AecR<
0
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Consequently, the functions Ry >t w(t,A) := (m1(t, A), ..., ma(t, X)), XA € R, satisfies

w(t, A >\+/an>\ teR,, AeR%

and hence
B' d
ﬂ'(t)\):et A, teRy, AeR%

The functional B(E) > f— I'(f) = +fM k(f) Hi1(dr) of [13, formula (9.20)] can be identified
with the functional RY 5 a mTB+fUd T z Z/(dz) =27 3. Hence Proposition 9.11 of Li [13] implies

LE(XD) = (B A z) + </Ot(e873T)\)T ds> 3= <)\,e“§w+ (/Ot B ds> B>

for t € R, and A € R, which yields (3.4). |

3.5 Remark. We call the attention that in the proof of the forthcoming Theorem 3.7, which states
existence of an ]R‘fr—valued weak solution of the SDE (3.2), we will extensively use that for a CBI
process (Xi)iecr, with parameters (d,c,3,B,v,u) satisfying E(||Xo|) < co and the moment
condition (2.7), we have fgIE(HXSH) ds < 0o, t € Ry, proved in Lemma 3.4. We point out that in
the proof of Lemma 3.4 we can not use the SDE (3.2), since at that point it has not yet been proved
that a CBI process is a solution of this SDE. This drives us back to Definition 2.6 of CBI processes in
the proof of Lemma 3.4. Having proved that a CBI process is a solution of the SDE (3.2), one could
give another proof of Lemma 3.4 (roughly speaking by taking expectations via localization argument).
O

3.6 Definition. We say that uniqueness in the sense of probability law holds for the SDE (3 2) among
Rd —valued weak solutions if whenever (Q F, (Ft)ier., P, W, p, ) and (Q F, (]:t)teRJr,P W,p, )
are  R% -valued weak solutions of the SDE (3.2) such that P(Xo € B) = IP’(XO € B) for all
B¢ B(Rd), then P(X € C)=P(X € C) for all C € D(Ry,RY).

3.7 Theorem. Let (d,c,3,B,v,u) be a set of admissible parameters in the sense of Definition 2.2

such that the moment condition (2.7) holds. Then for any probability measure n on (R%,B(R%))

with [ea ||z n(dz) < oo, the SDE (3.2) admits an R% -valued weak solution with initial distribution
+

n  which is unique in the sense of probability law among Ri—’ualued weak solutions. Moreover, any
Ri—’ualued weak solution is a CBI process with parameters (d,c,3, B,v, ).

Proof. Suppose that (X¢)ier, is a cadlag realization of a CBI process with parameters
(d,c,3,B,v,u) on a probability space (€2, F,P) having initial distribution n, ie., (X})wer,
is a time homogeneous Markov process having cadlag trajectories and the same finite dimensional
distributions as a CBI process with parameters (d,c,3, B,v, ) having initial distribution n (such
a realization exists due to Theorem 9.15 in Li [13]). Let

Fii=[)o(FE.UN),  teRy,

e>0

where N denotes the collection of null sets under the probability measure P, and (F7X);cr . stands
for the natural filtration generated by the process (X¢);cr,, hence the filtered probability space
(€, F, (Ft)ter,,P) satisfies the usual hypotheses.
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By the equivalence of parts (3) and (4) of Theorem 9.18 of Li [13] applied to the immigration
superprocess given in Lemma 2.11, we conclude that the process (X;);cr, has no negative jumps,
the (not necessarily Poisson) random measure

No(ds,dz) == > Iix,2x, }0wx.—x. )(ds,dz)

uER 4
on Ry; x Uy has predictable compensator

d
No(ds,dz) =" X, ;ds p;(dz) + dsv(dz),
7j=1

and . .
Xt—XO—/ (,B—i—EXS)ds—// zﬁo(ds,dz), teRy,
0 0 JUg

is a continuous locally square integrable martingale starting from 0 € R? with quadratic variation

t
<2(5m’0¢/ XS’Z' ds) s te R+,
0 i?je{17"'7d}

where Ng(ds,dz) := Np(ds,dz) — ﬁo(ds,dz). Indeed, first, note that R.f = f, t € Ry, f € B(E),
yields that the strong generator of (R¢)icr, is identically 0, ie., A =0, see Li [13, (7.1)]. Using
b(i) = —bs; and ~(i,{i}) = B(i,{i}) =0 for i€ {1,...,d} and 'y( {7} —bjZ for 4,5 € {1,...,d}
with i # j (see, (3.5)), the function B(E) > f — Af—i—’yf bf of Li[13, page 218] can be 1dent1ﬁed
with the function

process

(3.6) EBZ»—)Z]C (i,{j}) — b(i Zbylf

Recalling that the functional B(E) > f — I'(f) = n(f) + fM(E)O k(f) H(dk) is identified with the

functional R? >z — a3 (see, the end of the proof of Lemma 3.4), Theorem 9.18 of Li [13] yields
that for each w = (wy,...,wg)" € R?, the process (wTXt),ge]R+ has no negative jumps, and

t ~ _ t _
w' X, —w Xg— / (wT,B + wTBXS) ds — / w'z No(ds,dz), te Ry,
0 0 JUq

is a continuous locally square integrable martingale strating from 0 € R with quadratic variation
process

d t
:2Zciwi2/ X, ds, teR,.
i=1 0
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Further, by polarization identity, for all w,w € R% the cross quadratic variation process of
(wTXt)teR+ and (HJTXt)teRJr takes the form

w X, X): = ¢ ({w+ @)X~ ((w - &) X))

4
d d t
(QZCZ w; + w;) /X“ds Ci(wi—fﬁi)z/ Xsﬁ-ds)
1 0

=1
d t
=2 Z C;W;W; Xs,ids, teR,.
i=1 0

We note that the integral fg fUd z No(ds, dz) is well-defined, since z = 21z <1y +2 1213 2 € Ug,
and the functions Ry xUgxQ 3 (s, z,w) — z]l{Hz||<1} and Ry xUgxQ > (s,z,w) — ZIL{HzH}l} belong
to the classes FIQ) and F1 ,» respectively, where po denotes the point process on Uy with counting
measure Ny(ds,dz), i.e., pg( )= X,—X,_ for u € D(pg) with D(po) :={u e Ryt : X, # Xy}

Indeed,
t 9 R
E(// 2] ]1{||z<1}N0(d87dz)>
o Ju,

t d t
:// Hzﬂzﬂ{z||<1}d$’/(dz)+2// 12]% 12 <1y B(Xs ) ds 5 (dz)
0 Ju, oo Ju
d t
] Nl + 3 [ B ds [ IPLaay n(ds) < oc
Ud _]21 0 Ud

by Lemma 3.4 and the inequalities (2.10) and (2.13), and

t
E (/ / HzH]L{HzH}l} No(ds,dz)>
0 JUy

t d t
— / / 121 aory ds v(d2) + 3 / / 2 Lga o1y B(Xe ;) ds 1 (d)
0 Ud jil 0 Ud

/ |z]| v(dz) +Z/ 5, ds/ 2] gz 1y pi(dz) < o0
d

by Lemma 3.4 and the inequalities (2.10) and (2.2).

Using that P (fg Xs;ds < o0) =1, i € {l,...,d} (since X has cadlag trajectories almost
surely), by choosing w =e;, j € {l,...,d}, arepresentation theorem for continuous locally square
integrable martingales (see, e.g., Ikeda and Watanabe [7, Chapter II, Theorem 7.1°]) yields

X = XO+/(ﬂ+BX ds+Zel/ V2¢ “dWH+// z No(ds, dz)
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for all t e Ry, P-almost surely on an extension (ﬁ, F , (ft)teR +,ﬁ’) of the filtered probability space
(Q,F, (Ft)ier,,P) (see Definition A.1), and (Wiq1,...,Wia)ier, is a d-dimensional (ft)te]]{+-
Brownian motion. We note that, with a little abuse of notation, the extended random variables on
the extension (§~2, F , (ft)teR +,]T”) are denoted in the same way as the original ones. Let

g~tiZﬂU(ft+gU/\~/), te Ry,

e>0

where N denotes the collection of null sets under the probability measure P. Then the filtered proba-
bility space (€2, F, (G¢)ier, ,P) satisfies the usual hypotheses, and by Lemma A.4, (Wi 1,..., Wiq)ier,
is a d-dimensional (G;);er, -Brownian motion.

The aim of the following discussion is to show, by the representation theorem of Ikeda and Watan-
abe [7, Chapter II, Theorem 7.4], that the SDE (3.2) holds on an extension of the original probability
space. The predictable compensator of the random measure Ny(ds,dz) can be written in the form
]Vo(ds,dz) = dsq(s,dz), where

q(s,dz) ZX —jii(dz) +v(dz).
j=1

Let ©: R4 ><V><ﬁ—)UdU{O}:]Rfl|r be defined by
O(s,r,@) = (X, (@),7), (s,7,@) € Ry xV x .

(Note, that A = 0 in the notation of Ikeda and Watanabe [7, Chapter II, Theorem 7.4].) Then
condition (7.26) on page 93 in Ikeda and Watanabe [7] holds, since for all s € Ry, w € , and
B € B(Uy), we have

d
m({r eV :0(s,r,w) € B}) = Zm({r €R;:0O(s,r,w) € B})
=0

d
Zulxé )GRZ‘Zz]l{ngsﬂi(a,)}GB})-FI/({TER():T‘GB})

d
Z s—z )+V(B):q(S7B)(&V))7

where (¢ denotes the Lebesgue measure on Ry, and we used that 0 ¢ B. By Theorem II.7.4
in Tkeda and Watanabe [7], on an extension (ﬁ,]?, (]?t)teRJr,]?’) of (,F, (§t)t€R+,IF>), there is a

stationary (.f’-:t)teR ,-Poisson point process p on V with characteristic measure m such that

No((0,1 xB):/O /VILB(@(S,T))N(ds,dT)

— 4{seD(p):se (0,4, Os,p(s) €BY  P-as.

19



for all B € B(Uy), where N(ds,dr) denotes the counting measure of p, and D(p) is the domain
of p being a countable subset of R such that {s € D(p): s € (0,t], p(s) € B} is finite for
all t € Ry and compact subsets B € B(Ug). Then, by Lemma A.3, (Wi1,...,Wia)er, is a

d-dimensional (F)ier . -Brownian motion. Let

5t22ﬂ0'<.%t+su./:\:/’>, teR+,

e>0

where A denotes the collection of null sets under the probability measure P. Then the filtered prob-
ability space (Q, F, (’Qvt)teRM@) satisfies the usual hypotheses. By Lemma A.4, (W 1,..., Wi a)ier,

is a d-dimensional (G;);er, -Brownian motion, and p is a stationary (G;)ier, -Poisson point process
on V with characteristic measure m. Consequently,

(3.7) #{s € D(po) : s € (0,1], po(s) € B} = #{s € D(p) : s € (0,1], M(Xs—,p(s)) € B}

for all B € B(Uy). Using this representation, we will calculate fot Ju, # No(ds,dz), t € R,. First
observe that

t . t . t .
/ / ZNo(dS,dz) = / / ZIL{HzH}l} Ng(ds,dz) —l—/ / Zﬂ{||z||<1} No(ds,dz).
0 Ud 0 Ud 0 Ud

Since the function Ry x Uy x Q 3 (s, 2,w) — z1{z|>1y belongs to the class F > by Ikeda and
Watanabe [7, Chapter II, (3.8)], we obtain

t - t t N
/ / Z]l{‘|z||>1} No(ds,dz) = / / Z]l{||zH>1} Ng(ds,dz) - / / Z]l{||z||>1} No(ds,dz).
0 JUy 0 JUy 0 JUqg

Applying (3.7), we obtain

t
/0/Uz]l{||z|>1}No(d8»dz)= Y. pol) sy
d

s€D(po)N(0,t]

= D X p(9))Lnx, (s >1}—// T)L{n(x =13 V(ds,dr)

s€D(p)N(0,t]

t d
= / / T]l{H'r||>1} N(dS, dT) + Z/ / z]l{||zH>1}]l{u<XS,7j} N(ds, d’l“)
0 JRo = Jo Jr,

//V X5, 7) N(ds, dr) // 1<y N(ds, dr).

Here we used that the function Ry x Uy x Q> (s, z, (5) — zlygz|>1y belongs to the class le,o, hence

the function Ry x V x €23 (s, r,z) — h(X - belongs to the class F}U, and

K @) nx, @iz
function Ry x V x Q3 (s,7,0) = Pl <13 1R, () also belongs to the class Fllj (due to (2.10)),
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thus the function Ry xV xQ 3 (s, 7, 5) > g(Xs,(c;vJ), r) belongs to the class Fll) as well. Moreover,

t t d t
21y, No(ds, dz :/ / 2zl dsv(dz) + / / 215511 X, ds pi(dz
/O/Ud {l1>1} No( ) o Sy, ZED (dz) ; A (SR 11(dz)

t d  pt
:/ / Tﬂ{||rH>1} dSl/(dT)-i-Z/ X&j dS/ zﬂ{||zH>1} ,uj(dz).
0 JUy j=1 0 Uq

Let My denote the complete metric space of square integrable right continuous d-dimensional mar-
tingales on (Q,f, P) with respect to (j—zt)teR+ starting from 0, see, e.g., Ikeda and Watanabe |7,

Chapter II, Definition 1.3 and Lemma 1.2]. The function Ry x Uy X Q> (s,z,c:u) = z21yz)<1)

belongs to the class Ff,o, hence, by Ikeda and Watanabe [7, Chapter II, (3.9)], the process

(fg fUd z21{)z <1y ]Tfo(ds,dz))teR+ belongs to the space Ms. Moreover, by Ikeda and Watanabe

(7, page 63], [ Ju, ZLyjz1<1) No(ds,dz) is the limit of the sequence N Ju, #Lii gz }No(ds, dz),

<1
n €N, in My as n— oco. For all n €N, the mapping Ry x Uy X Q> (s,z,c:u) > zﬂ{lgllz\ld}

belongs to the class lejo N F;O, hence we obtain

t ~ t t N
/0/Uﬂ{;<||z<1}N0(dS7dz):// zl{;<z||<1}N0(d57dz)—// 2L <jzg<ay No(ds, dz).
d 0 JUy 0 JUy

Similarly as above,

t
d

t d :
0 =170 JR;

and

t
d

t d ¢
= /0 L ’I"]]_{%<Hrll<1} ds V(d'l") + Z/O /U L Z]]-{%guz”<1}]l{u<Xs,j} ds Nj(dz) du.
¢ j=1 aJ U1

Consequently,

t ~
d

t _ d ‘ R
— /0 /Iz r:ﬂ.{%<||rH<1} N(d87 dr) + Z/ / z:ﬂ.{%<||z“<1}:ﬂ_{u<Xs_’]} N(ds’ d/r-)
’ =170 JR;
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Taking the limit in My as n — oo, we conclude

t ~
/ / Z]l{|‘z||<1} Ng(ds,dz)
0 JUq

¢ _ d_ -t -
:// Tﬂ{||r||<1}N(d8adT)+Z// 2Lz <1y Lucx, ;) N(ds, dr)
0 JRo j=1 0 JR;

¢ ~ ¢ ~
:/ / Ly r|<1} N(ds,dr)—l—/ f(Xs—,7)N(ds,dr).
0 JRo 0 JV

Summarizing, we conclude

/ / ZNO dS dz / / 5 , T (dS d’l‘ / / ’r]l{H,,,||<1} N(ds d’l")
Ud Vl
/ / ’l“]l{‘|r||>1} ds l/(d’l‘ / XSJ ds/ z]l{HzH>1} s (dz)
Uq Uq
t " t .
—I—/ / T]l{||,,.||<1} N(ds,dr)—i—/ f(Xs—,7)N(ds,dr)
0 JRo 0 JV
t
:/ F(Xs_,7)N(ds,dr) + // Xs_,r)N(ds,dr)
0 Vo \%1

// rdsv(dr) Z/ ijds/ 21y 2|21y Hj(d2).
Uq Uqg

This proves that the SDE (3.2) holds IP’—alrnost surely, since

/(ﬂ—l—BX ds—// rdsv(dr) Z/ ijds/ 21y =1y 15 (d2)
Uq
ot
:ﬂt—i—B/ Xsds—t/ rv(dr) — /ijds/ Z]l{Hz||>1}M](dZ)
0 Uy Uy
t d t
= <,6+/ ru(dr)>t+D/ Xsds—l—Z/ le{”z;l},uj(dz)/ X, jds
Uq 0 =1 /U 0
d t t
—t/ ’I‘l/(d’l‘)—Z/ Xs,jds/ z]l{|z|>1},uj(dz):/ (,@—l-DXS)dS.
Ud jil 0 Ud 0

The aim of the following discussion is to show that (ﬁ, F, (gt)teR+,fD, W, p, X) is an Ri—valued
weak solution to the SDE (3.2). Recall that the filtered probability space (€, F, (G¢)ter +,ﬁ’) satisfies
the usual hypotheses, and by Lemma A.4, (W;1,..., Wy q)ier, isa d-dimensional (gt)teR+—Brownian

motion, and p is a stationary (G)ier ,-Poisson point process on V' with characteristic measure m.
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Since (X¢)ier, is Ri—valued and has cadlag trajectories on the original probability space (2, F,P),
by the definition of an extension of a probability space (see Definition A.1), the extended process
(which is denoted by X as well) on the extended probability space is Ri—valued and admits cadlag

trajectories as well. By Remark A.2, the process (X)icr, is (Qvt)teRJr—adapted, and clearly, the
distribution of X is n. Since (X¢);cr, has cadlag trajectories, (D4)(b) holds. Since the process
(fg Sy F(Xs—,7) N(ds,dr))t€R+ belongs to the space My, we have

~ 2
“( )
d ~ t
= ZE </ / HZH2]]‘{HZ”<1}]]‘{Ung,j} ds uj(dz) du) < 0
j=1 0 JU,; JUp

by Ikeda and Watanabe [7, Chapter II, (3.9)], which yields (D4)(c). We have already checked that
(D4)(d) and (D4)(e) are satisfied.

/t f(Xs_,7)N(ds,dr)
0 Vo

Now we turn to prove the uniqueness in the sense of probability law for the SDE (3.2) among
R‘i—valued weak solutions. If (Q,]—" (F)ter, P,W,p, X ) is an R‘i—valued weak solution to the
SDE (3.2), then for each G € C?(R,R) and w = (wy,...,wq)' € RY, by Itd’s formula for F(x) :=
Gw'z), = (z1,...,24)" € R, with 0., F(x) = G'(w z)wy, 0,0, F(x) = G"(w' z)wywy,
k.l e{l,...,d}, we have

6
Glw' X;) = G(w' Xo) + Zfé(t)a teRy,
=1

where
t
Ii(t) ::/ G'(w'X,)w' (8+ DX,)ds,
0
d ot
Ir(t) := Z/O ij/(’wTXs)\/2Csz,j dWs ;,
j=1
d
I3(t) == Z/ w?G”(wTXS)chs,j ds,
j=1"9
t ~
I(t) ::/ / [Glw"X,— +w'f(Xs_,7)) — Glw' X,_)] N(ds,dr),
0 JVy
I5(t) == /t/ [G(wTXS +w' f(X,,r) - Gw'X,)
0 JV

—Gw' X )w' f(X,_, )] dsm(dr),

t
Is(t) = /0 /V [G’(wTXS, +w'g(X, 7)) — G('wTXs,)] N(ds,dr).
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The last integral can be written as Ig(t) = Ig,1(f) + Ig2(t), where
t o~
I (t) := / / [Gw'X - +w'g(X,,7)) — Gw' X,_)] N(ds,dr),
0 Jw
t
Iso(t) == / / [G('wTXs +w'g(X,, 1)) — G('wTXS)] dsm(dr),
0 JV;

since

E </0t . |G(w" X, +w'g(X,-,7) — Gw' X,_)| dsm(dr))

. =E </Ot Ud|G(wTX5 +w'r) - Gw' X,)|ds V(dr)>

d t
+ZE </0 /U U ‘G(wTXS —l—wTZIL{ngS‘j}) —G(wTXS)‘1{||ZH>1} ds,uj(dz) du)
j=1 d 1

< 00,

ie., for all w € RY, the function Ry x Vi x Q3 (s,7r,w) = Gw' X, (w) +w'g(Xs (w), 7)) —
G(w' X, (w)) belongs to the class F}?. Indeed, by mean value theorem and (2.10), there exists
some 6y = Op(w, X, 7) € [0,1] such that

E </0t . IGw' X, +w'r) - Gw' X,)|ds V(dr)>

t
=F </ ‘G'(wTXS + HowTr)HwTr] ds V(dr)) < ||lw|| sup G/(x)]/ lr]| v(dr) < oo
0 Uq z€R Uy

due to that G’ is bounded. In a similar way, there exists some 6 = 0(w, X, z) € [0,1] such that
for each j € {1,...,d},

t
. (/ / [Glw! X+ w'zLpex, ) = Glw' X)|Lyjzz1) ds p(dz) d“)
o Ju,Ju,
t
=FE (/ / ‘G(wTXS + sz) - G(wTXS)}l{ugxsj}l{uzllh} ds pj(dz) du)
0 Uy J Uy
: T T T
!
=F (/0 /Ud Ul‘G (w' X+ 0w z)Hw Z’]l{ngsyj}]l{HzH?l} ds p;(dr) du)

t
< ]l sup |¢'(2)] / E(X,,)ds / 2l Lgga oy 15 (dz) < 00
rER 0 Uq

due to that G’ is bounded, Lemma 3.4 (which can be applied since fRi |z||n(dz) < co) and the

moment condition (2.2).
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In what follows, we identify some of these integrals with some terms in part (5) of Theorem 9.18
of Li [13]. We have

t t .
Il(t):/ G’(wTXs)wT,Bds+/ G(w'X,)w'BX,ds
0 0

d d t
—ZZ/O G/<’wTXS)wiX37j ds/[‘] Zi]l{||zH>1} ,uj(dz),
d

i=1 j=1

where the first two terms on the right hand side can be identified with fot G'(Ys(f))n(f)ds and
fot G (Ys(f)Ys(Af +~f —bf)ds (see, (3.6)). The sum of the third term on the right hand side and
Is2(t) + I5(t) can be written in the form

d
- Z/ / G/(wTXS)wTZ]l{Hz||>1}ﬂ{ugxsyj}dS ,uj(dz) du
j 1 0 Ud U1
t
+ / / [G(wTXS +w'r) - G('wTXs)] dsv(dr)
0 JUq

d  rt
i Z/o /U /U [Glw X+ w 2lex, ) — Glw! Xo)]1jz=1y ds pi(dz) du
]:1 d 1

d
—i—Z/ / / [G(wTXs—i—sz]l{ugxsj}) ~Gw'X,)
=170 JuaJuy ’

- G/(wTXS)wTZ]l{ngSJ}} Lyjz<1y ds g (dz) du
t
= / / [G’(wTXS +w'r) - G(wTXS)] dsv(dr)
0 Ju,
d_ rt
+ Z/ / / [G(wTXS + sz]l{ngS’j}) —Gw'X,)
=/ JugJu

— G'(wTXs)sz]l{ngs’j}] ds pj(dz) du,

which can be identified with

[ [ 600+ s) - GO am as
0 JM(E)

; /0 /E . (dz) /M(E)O[G(Ys(f)Jrﬁ(f))—G(Ys(f))—ff(f)G’(Ys(f))]H(rde) ds.

The integral I3(t) can be identified with f(f G"(Y4(f))Ys(cf?)ds.

Next we show that the process (I3(t)+I4(t) +I6,1(t))ier, is a continuous local martingale. Since
G’ is bounded and X has cadlag trajectories, we have P(fot wsz’('wTXs)2 2¢j X jds < o00) =1

25



for all t € Ry and j € {1,...,d}, hence (I3(t))icr, is a continuous local martingale (see, e.g.,
Karatzas and Shreve [10, Definition 3.2.23]). In order to prove that (/4(t));er, Iis a martingale, by
page 62 in Ikeda and Watanabe [7], it is enough to check that

t
E </ Gw X, +w' f(Xs7) - Glw' X[ dsm(dr)> < 0.
0 JVo
By mean value theorem, there exists some ¥y = ¥o(w, X, z) € [0,1] such that for each j € {1,...,d},

t
. (/ / |Glw X+ w21 (ex, ) — Glw! X)Lz ds p(d2) d“>
0 JUyg JU;
t
=FE (/ / ‘G’(wTXS + 190sz)}2(sz)211{u<X57j}IL{||Z||<1} ds pj(dz) du)
0 JU; JU;

t
< Hw!2SUP\G'(90)\2/ E(Xs,j)ds/ 2] 12 <1y 15(dz) < 00
AN 0 Uq

due to that G’ is bounded, Lemma 3.4 and (2.13). Hence (I4(t))icr, Iis a martingale. Further, by
(3.8) and page 62 in Ikeda and Watanabe [7], we get (/g1(t))icr, is a martingale. Consequently, by
Theorem 9.18 of Li [13], (X¢)ier, is a CBI process with parameters (d,c, 3, B,v,u). This yields
the uniqueness in the sense of probability law for the SDE (3.2) among Ri—valued weak solutions,
and that any Ri—valued weak solution is a CBI process with parameters (d,c,3, B,v, ) as well. O

4 Multi-type CBI process as a strong solution of an SDE

4.1 Definition. We say that pathwise uniqueness holds for the SDE (3.2) among Ri—valued weak
solutions if whenever (Q, F, (Ft)ter., P, W, p, X) and (Q, F, (Ft)ter,, P, W, p, X) are Ri—valued
weak solutions of the SDE (3.2) such that P(Xo = Xo) =1, then P(X; =X, forall teRy)=1.

Next we prove a comparison theorem for the SDE (3.2) in S.

4.2 Lemma. Let (d,c,3,B,v,u) be a set of admissible parameters in the sense of Defini-
tion 2.2 such that the moment condition (2.7) holds. Suppose that B € ]Rff_ with B < 3.
Let (Q,]:, (ft)teR+,]P’,W,p,X) and (Q,f, (Ft)ter,, P, W, p, X') be Ri—valued weak solu-
tions of the SDE (3.2) with B and (@', respectively. Then P(Xo < X() = 1 implies
P(X; < X} forall t€Ry)=1. Particularly, pathwise uniqueness holds for the SDE (3.2) among
Ri -valued weak solutions.

Proof. We follow the ideas of the proof of Theorem 3.1 of Ma [14], which is an adaptation of that
of Theorem 5.5 of Fu and Li [6]. There is a sequence ¢ : R — Ry, k € N, of twice continuously
differentiable functions such that

(i) ¢r(z) t 2zt as k— oo

(ii) ¢ (z) €[0,1] for all ze€ Ry and ke N;
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(iii) ¢,.(2) = ¢r(2) =0 whenever —z € Ry and k€ N;

(iv) ¢}(z—y) (Vo — \y)? <2/k forall z,y € Ry and keN.

For a construction of such functions, see, e.g., the proof of Theorem 3.1 of Ma [14]. Let Y, := X;— X
for all ¢t € Ry. By (3.2), and using that

// Xs_,7r)N(ds,dr) //rNdsdr // X' _,7)N(ds,dr),
Ro Ro Ro

V=Yoot [ (- s+ el DY) s+ [ VEa(y - XL) aw

we have

d  pt
+ ZA /]2 ]]-{u<XS gy :[L{u<X; J})ZZ]]_{||ZH<1} N(dS d’l")
=1 3,0

d_
+Z/ /72 (Lfusx, 3 — Luexr J})Zz]l{||z\|>1} N(ds,dr)
=1 7,1

forall t€ Ry and i€ {l,...,d}. For each m €N, put

= inf{t eR;: ze?ll,a)fd} max{Xy;, X;;} > }

By It6’s formula (which can be used since X and X' are adapted to the same filtration (F;)er, ),
we obtain

Ok (Yirrmi) = 0r(Y0) + D Limke(t)
=1

forall teRy, t€{l,...,d} and k,m € N, where

tATm
L1 (t) == / ¢2(Y3,i)(5z’ — B+ eiTDYs) ds,
0

tATm,
Ii,m,k,?(t) ::/ (Z)k sz 202(\/ 8,0 \/X;1> 5,0
0
1 tATm 2
Lim e 3(t) = 2/ ¢'é(Ys,i)2Cz'(\/ Xsi — \/Xé,z-) ds
0

tATm
Limga(t) : / / O (Yomsi + (Lpuex, ;3 — Luexs))2) — du(Vee z)} L{j2j<13 N (ds, dr)
]0

tATm ~
ZZ/O /R [ﬁf)k( s—i + 1) = Okl sfz)}ﬂ{nzud}ﬂ{xg S<usxo Ly >0y N(ds, dr)
7,0

d

tATm, ~
+ Z/O /R [¢k(Ys—,i —z;) — <Z5k(Ys—,z‘)} Loz« Lgx, - y<usx) 3Ly, <0y N(ds, dr),
j=1 70
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tATm
Izka / / ¢k: }/s z‘}'(ﬂ{u<Xg G IL{u<X’ it )Zz) ¢k( 5— z)
vaJus ’
= 0 (Yom i) (Lgucx,_ ;3 — Lgu<x .})Zi] L)z <1y ds pj(dz) du

= Zd:/owm /Ud /m [gbk( si+ 2i) — ok (Ysei) — ¢2(st,¢)zi}

X Lz Lixs_<usxo 3Ly >o0p ds pj(dz) du

s—,j
d tATm
L[ o= 2 - v + i)
—Jo U, Ju
X Lz <ty Lix, - j<usxr Hvie <oy ds pj(dz) du,

tATm
Li k6 (t / /R O (Yo + (Lgusx, ;3 — Lucx!_ )z zi) — or(Ys 1)]]1{Hz||>1}N(d3 dr),

where we used that

1 if Ys_ ;>0 and ij<u<Xs,,J,
(4.1) ]l{ngs_,]-} - ]l{uSXQ,’j} =4q -1 if Kg_d‘ <0 and XS_J <u< X;—,j7

0 otherwise.

Using formula (3.8) in Chapter II in Ikeda and Watanabe [7], the last integral can be written as
Liimk,6(t) = Lijmk,6,1(t) + Lim k6,2(t), where

tATm
Lim k6,1 (1) : / / O (Yo + (Lgusx,_ ;3 — Tucx!_ B 1zi) — or(Ys z)] Ljz>13 N (ds, dr)
7=1

d tATm
Lime6,2(t Z/ /U ; [¢k (Yrs—,i_‘_(]l{uéXS,,j}_]l{uéXg77j})zi)_st(YvS—yi)]]1{Hz||21} ds pj(dz) du,
j=1 a YU

since, for each j € {1,...,d},

(L,
=L
=L

O (Yomi + (Lpuex, ;3 — Luexy P)2) — oe(Yam i) | Lyjz1) ds pj(dz) du)

Or(Yo— i + 2i) — or(Ys— i)

Lz Lixs_ <usxo 3 Lyee >0y ds p(dz) dU>

Ou(Ys— i — 2i) — ou(Yo—si)

Liziey Lix, o ycusxr_ 3 gy <0y ds p(dz) dU>
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tATm
<E (/ / 2ilg|z|=13|Ys— ;] ds M(dz)) < 2mt/ 21251y 1 (dz) < o0,
0 Uy U,

where we used that, by properties (ii) and (iii) of the function ¢y, we have ¢ (u) € [0,1] for all
u € R, and hence, by mean value theorem,

(4.2) 2 <oy —2) — oY) KOS Gy +2) —dr(y) <2, yeER, zeRy, keN

One can check that the process (I % 2(t) + Lim ka(t) + Iiumukuﬁvl(t))teRJF is a martingale. Indeed,

by properties (ii) and (iii) of the function ¢; and the definition of 7,

E (/me (h(veavaa (Vi - \x0)) ds) s 2k </0

<Adeymt < oo,

tATm

(Xs;i + X;Z) d8>

hence, by Tkeda and Watanabe [7, page 55|, (I;mk2(t)) is a martingale. Next we show

teR4

tATm
E </O /U . 6% (Ve i + 21) — dr(Ys )| Lz Lix | <usx,— ;3 Lvio >0y ds p(dz) dU> < o0,
d 1

d

an
tATm
E( /0 /U ) 19neri =)~ oui)

for all j € {1,...,d}, which yield that the functions

Ly lix, y<usxs plivi <oy ds p1y(d2) dU> <0

Ry x Ug x U x Q3 (s, 2,u,w) =(dr(Ys—i(w) + 2i) — ¢r(Ysi(w))) L)< 1
X Lixr(w)y<usXoo @)} Yee j(@)>0) Ls<rn @)}
and
Ry x Ug x Up x Q3 (8, 2,u,w) = (dp(Ys—i(w) — 2i) — dn(Ys—i(w)) Ljjz)<1y
X Lix, - w)y<usx!_ @Yo j@)<0} Ls<rn @)}

belong to the class Fg, and then (I; 1 4(t))
Watanabe [7]. By (2.13) and (4.2),

teR, is a martingale, again by page 62 in Ikeda and

tATm
E (/ / ’¢k‘(}/s—,l + 21> - ¢k(1/5—7i)’2 ]]‘{Hz”<1}]l{X;7 j<u<Xs—,j}]]‘{Y57,j>0} dS :uj(dz) du)
0 Ug JUL ,
tATm )
SE (/ / / Zi Ljjz<1y Lyxs_ j<u<Xs,,j}]1{Ys,,j>o} ds p(dz) du>
0 Uy JUL )

tATm
—F </0 /U Z?]l{Hz”d}YSi’j]l{n_’Po} as uj(dz>> s 2mt/U Z?ﬂ{llz\kl} pj(dz) < oc.
d d
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In the same way one can get the finiteness of the other expectation. Finally, we show

tATm
- (/0 /U oot 2) = (Vo dl Tgzion Lx, <o 1 i y>0p s 145(42) dU) < oo,
d 1

and
tATm
E </0 /U . 0% (Yomi = 2i) = 6 (Yoo )| Lpzyz1y Loy <usxy }lqvi_ <0y ds pj(d2) du) < o0
d 1
for all j € {1,...,d}, which yield that the functions
R+ X Ud X U1 X Q ) (S,Z,U,W) H(qbk(}/;,’Z(W) -+ Z’i) — st(}/sf,l(w))):ﬂ-{“z”>l}
X Lgxr(w)<usXom (@)} Y (@)>0) Ls<rm (@)}
and
Ry x Ug x Ur x 23 (s, z,u,w) = (P (Ys—i(w) — 2i) — ¢ (Ys—i(w))) Lyjzy>13
X Dy, (w)y<usX!_ (@)} L{Ve_ (@)<0} L{s<rm(w)}

5=

belong to the class le), and then (1; p16,1(t))
[7, page 62]. By (2.2) and (4.2),

teR, is a martingale, again by Tkeda and Watanabe

tATm
E (/0 /U . |k (Yo i + 2i) — dr(Ys— i) ]]_{||ZH>1}]]'{X;,’j<u<xs—,j}:[]'{}/s—,j>0} ds p(dz) du)
d 1

tATm
<E (/ / / Zz']].{HzHZl}IL{X;_ j<u<XS—,j}:H'{Ys—,j>0} ds Nj(dz) du>
0 Uy JU, b

tATm
=FE </0 /U zz‘]l{uz||>1}ys—,j]1{1/5,,].>0} ds M(dz)) < 2mt/U zilg =1} 115(dz) < oo,
d d

and the finiteness of the other expectation can be shown in the same way.

Using the assumption B < 3’, the property that the matrix D has non-negative off-diagonal
entries and the properties (ii) and (iii), we obtain

tATm d
i@ = [ 6020 (m s di,ij,j) s
D .
J=1

tATm
< / 05 (Ysi) (qufm + > qu;r]> Ig, (Y,i)ds
0 FE{L,d\{i}

tATm d tATm
< / <di,i|Y;;- + Z di,jY;j> ds = Z |di,j|/ Y,h ds.
0 FE{L,e d}\ {3} j=1 0
By (iv),

2 2¢t
Lim e 3(t) < (EA Tm)ciE < kZ
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Now we estimate

tATm
L e 5 (t Z/ /U Ok (Ysi +21) — o (Vs i) — (ﬁ;g(yts—,i)zz} Loz<y Yo i lqy,_ >0y ds pi(d2)

tATm
+Z/ . |:¢k(YVS*7i_ zi) — o (Ys— Z)+¢k( s— Z)ZZ} 11{||zH<1}( ,j)ﬂ{Y <0} ds pj(dz).
By (4.2) and (iii), we obtain

tATm
L o6 = 20 = 60V + Vi) Lty Vim g Loy sy d2) <0
d

for all 4,5 € {1,...,d}. By (2.12), fUd 2ilq|z|<1y #j(d2) < oo forall 4,5 € {1,...,d} with i # j,
hence using (iii), we obtain

tATm
L mge5(t) < /o . |:¢k(}/s—,i +2) — o (Ys i) — %(E—J)Zi} Lijzf<1yYsr ; ds pi(dz)
d

tATm
+ / ¢st it zi) = ok(Ys- z)}]l{||zH<1}Y s ds pj(dz).
ge{l, NG Ua

By (4.2), for i # j,
tATm tATm
/0 g [ﬁbk(Ysﬁi +2i) — ¢k(st,i)] Lgjjz<13Ys" ; ds pj(dz) < /0 Y.h dS/U zil gz <1y Hj(d2).
d d

Applying (iv) with y =0, we have z¢}(z) < 2/k forall x € Ry and k € N. By Taylor’s theorem,
forall y € Ry4, z€ Ry and k € N, there exists some ¥ = ¥(y, z) € [0,1] such that

2 222 2

Orly+2) = 0uly) = h(v)z = Sy +02) 5 < s <

Hence, using (2.13), we obtain

tATm
/0 /U [(ﬁk(Ys—,i +2i) = Op (Yo i) = 03 (Yor i) 2i | Iz <1y Yol s ds pi(dz)
d

tATm 21‘2 t
</ / 3 Loy e < Yol ds pi(dz) < k/ 21z <1y pa(d2).
0 Uy 5—,1 Uy

Using (4.1), one can easily check that

tATm
Limk62(t Z/ /U Ak (Ys—i + 2) — ¢k(}/sf,i)}:H-{HZH?l}Y;f,j]]-{YS_’j>0} ds pj(dz)

d tATm
+]§1/0 /Ud[ﬁﬁk(Ys—,i— zi) — du(Ys— Z)]]l{||z||>1}( Yo )y, <oy ds py(dz).
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By (4.2), we obtain

tATm
/0 g [¢k(st,i— i) — Ok 871)]1{||z||>1}( i) gy, <oy dspj(dz) <

for all 4,5 € {1,...,d}. By (2.2), fUd 2il{|z|>13 1j(d2) < oo forall 4,5 € {1,...,d}, thus applying
(4.2), we obtain

d tATm
Liom k,6,2(t) < Z/O ; |:¢k(Ys—,i +2i) = O (Yoo i) | T2y Ys; ds p1i(d2)
i=1 a

tATm
/ Y ds/ zilgzz1y p(d2).
0 Uy

N
M=~

Summarizing, we have

d tAT
m 2¢;t t
Ok (Yinrm.i) < on(Yo0,i) +QZ/ Yhds + P k/ % L)z <1y 1i(d2)
(4.3) = Jo Us

+ Liimk,2(t) + Limp,a(t) + Limke1(1), teRy,

where

Ci:= max |d;;|+ max /z2 (dz +/ zil i(dz).
je{l,...,d}| il et o, 15 (dz) " (1zl>1} Hi(dz)

By (iii), we obtain P(¢x(Yp:) < 0) =1, ¢ € {1,...,d}. By (i), the non-negativeness of ¢, and
monotone convergence theorem yield E(¢x(Yirr,, i) — IE(YMT i) as k—oo forall te Ry, meN,

and i€ {1,...,d}. We have ftATm Yhds < fo e ds, hence taking the expectation of (4.3)
and letting k — oo, we obtain

(3 i) <0 f B(S 0 )

with C := 2?21 C;. By Gronwall’s inequality, we conclude

(3 k) 0

for all t € Ry and m € N. Hence P(Xinr, i < Xip,,, ;) =1 forall t € Ry, m € N and
i€{l,...,d}, and then P(Xnr,, i < Xj,,, ;forallmeN)=1 forall t€R, and i€ {1,...,d}.
Since X and X’ have cadlag trajectories, these trajectories are bounded almost surely on [0,7] for
all T € Ry, hence 7, =% oo as m — oo. Thisyields P(X; < X}) =1 forall t € R,. Since the set
of non-negative rational numbers Q. is countable, we obtain P(X; < X for all t € Q;) = 1. Using
again that X and X' have cadlag trajectories almost surely, we get P(X; < X} for all t € Ry) = 1.
O

4.3 Remark. We note that Dawson and Li [3, Theorem 2.3] provided a comparison theorem for SDEs
with jumps in a much more general setting, but only for 1-dimensional processes. O
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Consider the following objects:

El) a probability space (2, F,P);
E2) a d-dimensional standard Brownian motion (W})icr, ;

E3) a stationary Poisson point process p on V with characteristic measure m given in (3.1);

(
(
(
(E4) a random vector & with values in R%, independent of W and p.

4.4 Remark. Note that if conditions (E1)—(E4) are satisfied, then & W and p are automatically
mutually independent according to Remark 3.3. a

Provided that the objects (E1)—(E4) are given, let (ff’w’p)teR . be the augmented filtration
generated by &, W and p, i.e., for each t € R;, Ff’W’p is the o-field generated by o(&; Wy, s €
[0,t]; p(s),s € (0,t) N D(p)) and by the P-null sets from o(&; Wy, s € Ry; p(s),s € Ry N D(p))
(which is similar to the definition in Karatzas and Shreve [10, page 285]). Omne can check that
(‘7:5"/‘/’10)1&6]1{+ satisfies the usual hypotheses, (W);cr, is a standard (ff’w’p)teR+-Brownian motion,

f€7W7p

and p is a stationary (F; )ier, -Poisson point process on V' with characteristic measure m,

see, e.g., Barczy et al. [1].

4.5 Definition. Suppose that the objects (E1)—~(E4) are given. An R%-valued strong solution of the
SDE (3.2) on (2, F,P) and with respect to the standard Brownian motion W, the stationary
Poisson point process p and initial value &, is an Ri—valued (ﬂg’w’p)teR+—adapted cadlag process
(Xt)ier, with P(Xo=§) =1 satisfying (D4)(b)—(e).

Clearly, if (X{)ier, is an R%-valued strong solution, then (€2, F, (Ff’w’p)teR+,IP’, W.p,X) is
an Rﬂlr—valued weak solution.

4.6 Theorem. Let (d,c,3,B,v,u) be a set of admissible parameters in the sense of Definition 2.2
such that the moment condition (2.7) holds. Suppose that objects (E1)—(E4) are given. If E(||€|) < oo,
then there is a pathwise unique Ri—valued strong solution to the SDE (3.2) with initial value &, and
the solution is a CBI process with parameters (d,c,3,B,v,u).

Proof. The pathwise uniqueness among Ri—valued weak solutions follows from Lemma 4.2. Then, by
Theorem 5.5 in Barczy et al. [1] (Yamada-Watanabe type result for SDEs with jumps) and Theorem
3.7, we conclude that the SDE (3.2) has a pathwise unique Ri—valued strong solution. O

5 Special cases

In this section we specialize our results to dimension 1 and 2. Moreover, we consider a special case
of the SDE (3.2) with v =0, u; =0, @ € {1,...,d}, ie., without integrals with respect to
(compensated) Poisson random measures, and another special case with ¢ = 0, i.e., without integral
with respect to a Wiener process.
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First we rewrite the SDE (3.2) in a form which is more comparable with the results of Li [13,
Theorem 9.31] (one-dimensional case) and Ma [14, Theorem 3.2] (two-dimensional case).

For each j € {0,1,...,d}, the thinning p; of p onto R; is again a stationary (F;);ecr, -Poisson
point process on R;, and its characteristic measure is the restriction m|73j of m onto R; (this
can be checked calculating its conditional Laplace transform, see Ikeda and Watanabe [7, page 44]).
Using these Poisson point processes, we obtain the useful decomposition

/Ot VOf(Xs ,7) N(ds,dr) //V1 s—,7) N(ds,dr)

d t N
(5.1) = Z/O /R 2lucx,_ ;3 Nj(ds, dr)
j=1 4,0

d t t
—1—2/ / z]l{ugxsj}Nj(ds,dr)—i—/ / r M(ds,dr),
=170 IR ’ 0 JRo

where, for each j € {1,...,d}, N;(ds,dr) is the counting measure of p; on Ri4 xR, ]\ij(ds,dr) =
Nj(ds,dr) —ds (pj(dz)du), and M(ds,dr) is the counting measure of py on Ryy x Rg. Indeed,

t - t "
/ / F(s,r) N(ds,dr) = / / F(s,r)N'(ds,dr),  F e Fal,
0 / 0 !
t t
/ G(s,r) N(ds,dr) = / G(s,7) N'(ds,dr), GeF,,
R/ R/

are valid for the thinning p’ of p onto any measurable subset R’ C R, where N’(ds,dr) denotes
the counting measure of the stationary (F;)icr, -Poisson point process p/, and N'(ds,dr) :=
N'(ds,dr) — 1{perndsm(dr).

Remark that for any RY-valued weak solution of the SDE (3.2), the Brownian motion W and
the stationary Poisson point processes pj;, j € {0,1,...,d} are mutually independent according
again to Theorem 6.3 in Chapter II of Tkeda and Watanabe [7]. Indeed, the intensity measures of
pj, j€1{0,1,...,d}, are deterministic, and condition (6.11) of this theorem is satisfied, because p;,
j€40,1,...,d}, live on disjoint subsets of R.

For d =1, applying (5.1), the SDE (3.2) takes the form

t t
Xt:X0+/ (5+dX8)ds+/ V2e X dWy

/ / 2liucx, }Nl (ds,dr) + / / 2lu<x, y NVi(ds,dr) + / / M (ds,dr)
R10 Rl 1 Ro

for t € Ry, where BER,, d=b— I 211y pa(dz), b= b—l—foOQ z—1)"pi(dz), beR, ce Ry,
Rio={0}x{zeRyy: 2 <1 xRyy, Rin={0}x{z€Ryy: 221} xRy, Ro=Ryy x{(0,0)}.
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We have

t - t poo  roo ~
Iy ::/ / z]l{ugxs}Nl(ds,dr):// / 211y ljucx, ) N1(ds,dz, du),
0 JRi1,0 0 JO 0
t t 00 00 .
Il ::/ / Zl{uéXs_} Nl(ds,dT') :/ / / 21{221}1{U<X5_} Nl(ds,dz,du),
0 JR11 0 JO 0
Ig—// M(ds,dr) // dsdz
Ro

where N; and M are Poisson random measures on R, X Ri . and on Ry x Ry with

intensity measures dspi(dz)du and dsv(dz), respectively, and Ni(ds,dz,du) := Ni(ds,dz,du) —
ds p1(dz) du. Under the moment conditions (2.2),

t oo 00 ~ t 00
Iy+1 = / / / z]l{ngs_}Nl(ds,dz,du)—i—/ X ds/ 211y pa(dz).
o Jo Jo 0 0

Consequently, the SDE (3.2) can be rewritten in the form

t _ t
Xt:Xo+/ (5+bXs)ds+/ V2e X dWy

// / 2liucx, }Nl (ds,dz,du) + // M (ds,dz), te Ry,

hence, taking into account the form (2.14) of the infinitesimal generator of the process (Xi)ier,, we
obtain equation (9.46) of Li [13].

In a similar way, for d =2, applying (5.1), the SDE (3.2) takes the form

t 2 t t
+ / (B+DX;)ds + Z/ 2c;: X eie] AW+ / / r M(ds,dr)
0 i=1 0 ’ 0 RO

2t
—i—Z/ / 2lpucx, 3 Nj(ds,dr) —I-Z/ / 2lpucx, 3 Vj(ds,dr)
2170 IRy R,

for t € Ry, where 3 € Ri, D is given in (2.8), (c1,¢2)! € RZ,
Ro = Uz x {(07070)} X {(07 070)}7
Rio=1{(0,0)} x {ze€Us: ||z|| <1} x Ryy x {(0,0,0)},

Rao = {

(0,0)} x{(0,0,0)} x{z € Uz : ||lz]| <1} x Ry,
Ri1={(0,0)} x {z € Uz : |[z]| = 1} x R4 x {(0,0,0)},
(0,0)

R271 = { 0,0 } X {(O 0 0)} X {Z e Us : ||Z|| > 1} X R++.
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For each j € {1,2}, we have

t . t 0o ~
Ij,o = / / ZJl{ngs,,j} Nj(ds, d’l") = / / / ZI[{||ZH<1}H{USX5,J'} Nj(ds,dz, du),
0 JRjo0 0 JU2 JO

t t 00
Ij71 = / / ZR{USXsf,j} Nj(ds,dr) = / / / z]l{HZH?l}]l{USXsf,j} Nj(ds,dz,du),
0 T\’,j}l 0 U2 0

t t
Iy ;:/ / ’I‘M(dS,d’I’) = / / ZM(dS,dZ),
0 JRo 0 JU2

where N, and M are Poisson random measures on R;y x Us x Ryy and on Ryy x Us with
intensity measures dsp;(dz)du and dsv(dz), respectively, and N;(ds,dz,du) := N;(ds,dz,du) —
ds pj(dz)du. Under the moment conditions (2.2),

t o} ~ t
Lio+ 11 = / / / Z]l{ngsjj}Nj(dS,dZ,du) —I—/ Xs,j dS/ ZJl{HZH>1} uj(dz).
0 JU2 JO 0 Uz

Consequently, the SDE (3.2) can be rewritten in the form

t ~ 2t
Xt:X0+/ (ﬂ+BXS)ds+Z/ V26X AWy e
0 iz1 70 '
2t 0o ~ t L
—i—Z/ / / 2liucx, .}Nj(ds,dz,du)—i—/ / z M(ds,dz), teRy.
=Jo Juz o N 0 Jue

Due to (2.12), we have

¢ B = ¢
X1 = Xo, +/ (ﬁl +b1,1Xs1 + <bl,2 - / 21 ,ug(dz)> Xs,2) ds -I—/ \/ 2C1X;r1 dW; 1
0 Us 0

t 00 ~ t 00
+ / / / zll{ugxsil}ﬁl(ds,dz,du) + / / / Zl]l{u<X3772} Ng(ds,dz,du)
0 Uy JO 0 Us JO

t
+/ / 2 M(ds,dz), teRy,
0 JU2

and

¢ = B ¢
Xi2 = Xoo2 + / <52 + <b2,1 - / 2 Ml(dz)> Xs1 + 62,2X5,2> ds +/ \/QCQX;_Q dWy o
0 Us 0

t ] ~ t 00
+ / / / 22l fucx, o) No(ds,dz,du) + / / / 22l fucx, 1) N1(ds,dz,du)
0 JU2 JO 0 JU2 JO

¢
+// 29 M (ds, dz), teRy.
0 JUs

In the special case v =0, we obtain equations (2.1) and (2.2) of Ma [14]. Indeed, due to (2.12), one
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can rewrite the infinitesimal generator (2.14) of the process (X;);cr, in the following form

(Ax f)(@ Zczxz +Zzz / (@ +2) — fl@) — 2 fl(2)) paldz)
(8 + B, f(@) + /U (f@+2) - f(z)) v(dz)

—xlfﬁ(ﬂf)/U 22 pi1(dz) —$2f{(x)/ 21 pi2(d2)

Us
2
=S canfl, +zxz / (@ +2) — () — 5 /(@) pild2)
=1

(84 B, f'(@) + /U (fl@+ 2) — f(@)) v(dz)
for f e C?(RL,R) and z € RY, where

5. b1 byg — Ju, 71 12(dz)
byt — Ju, 22 11(d2) Do

This form of the infinitesimal generator Ax is readily comparable with the corresponding one in Ma
[14, equation (1.5)].

In what follows, we consider a special form of the SDE (3.2) without integrals with respect to
(compensated) Poisson random measures. Namely, if v =0, pu; =0, i € {1,...,d}, then the SDE
(3.2) takes the form

¢ t
Xt:XO—F/ b(Xs)ds—}—/ o(Xs)dW
0 0

t d t
- X, +/ (B+BX,)ds + Z/ V2 X e8] AW, teRy,
0 i=1 0

and consequently,

t d ¢
Xt,z’ = / (,BZ + Zb¢7jXS7j>dt+/ \/ZCZ'XSJ' dWSJ', teRy, 1€ {1, - ,d}.
0 . 0
Jj=1

If B is diagonal, then the process (Xi)er, is known to be a multi-factor Cox-Ingersoll-Ross
process, see, e.g., Jagannathan et al. [8].

Finally, Theorem 4.6 is valid also if the SDE (3.2) does not contain integral with respect to a
Wiener process, i.e., if ¢ = 0. We note that in the proof of Theorem 3.7 we applied Theorem 7.1’ in
Chapter II of Tkeda and Watanabe [7], which is valid in case ¢ =0 as well.

Appendix
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A Extension of a probability space

We recall the definition of extensions of probability spaces, see, e.g., Ikeda and Watanabe [7, Chapter
11, Definition 7.1].

A.1 Definition. We say that a filtered probability space (SN) F, (ft)teﬂg+,~) is an extension of a
filtered probability space (2, F,(Ft)ier,,P), if there exists an ]-"/]-" measurable mapping T : Q-0
such that 7r*1(.7-"t) CF forall teRy, P(A) =P YA) forall AcF, and E(X|F)@) =
E(X | F)(x(@)) P-almost surely for each essentially bounded (F /B(R%)-measurable) random variable
X :Q = RY where we set X (@) := X (7(@)), @€ Q.

A.2 Remark. With the notations of Definition A.1, if (X¢)icr, is an R%valued (Ft)ter, -adapted
stochastic process, then (X)icr, is (Ft)ier,-adapted. Indeed, for each t € Ry and B € B(RY),
we have

—~_1 ~ ~ ~ ~

X, B)={wecQ: Xy (@) eB}={wecQ: X;(r(@)) € B} =7 YX;1(B)) € F,
since X;(B) € Fi. O

A.3 Lemma. Let (Q,F,(Ft)ier,.P) be a filtered probability space, and let (Wi)ier,  be
a d-dimensional  (Fy)ier, -Brownian motion.  Let (Q, F, (ft)t€R+, P) be an estension of
(€, F, (Fi)ter,,P) with the mapping w : Q — Q. Let Wt( ) = Wy(x(@)) for all & € Q
and t € Ry. Then (ﬁv/t)teR+ is a d-dimensional (-%t)teR+ -Brownian motion.

Proof. According to Ikeda and Watanabe [7, Chapter I, Definition 7.2], we have to check that the
process (Wy)icr, has continuous trajectories, it is (F;);er, -adapted, and satisfies

E(exp{i(u, W, — W)} | F,) = e~ (t=9)lul?/2 P-almost surely

for every u € R? and s,t € R with s <t. Clearly, Ry 3t — Wy(&) = W(n(@)) is continuous
for all @ € 2. By Remark A.2, (Wy)er, is (Ft)icr,-adapted. Finally, for every u € R? and
s,t € Ry with s <t,

B(exp{itu, Wi = W)} | F)(@) = E(exp{i(u, W, = W)} | F)(r(@)) = eI
P-almost surely, since we have &(w) = ¢ P-almost surely with ¢ := E(exp{i(u, Wi — W)} | Fs) and
ci= e~ (t=9lul*/2 " which implies &(7(@)) = ¢ P-almost surely, because P({& € Q: {(n(@)) = ¢}) =
P(r= (& ({e)) =P ({c}) =1

A.4 Lemma. Let (Q, F,(Fi)ier,.P) be a filtered probability space, let (Wy)icr, be a d-dimensional
(Ft)ter, -Brownian motion, and let p be a stationary (F;)ier, -Poisson point process on V =
R? x (R x Ry)? with characteristic measure m, where m is given in (3.1). Let

gtI:ﬂU(.Ft+gUN), t€R+,
e>0
where N denotes the collection of null sets under the probability measure P. Then (Wy)er, is

a d-dimensional (Qt)t€R+ -Brownian motion, and p is a stationary (gt)t€R+ -Poisson point process
on V' with characteristic measure m.

Proof. The proof is essentially the same as the proof of Lemma A.5 in Barczy et al. [1]. |
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