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1 Introduction

It is well-known that a binary branching super-Brownian motion {X; : ¢ > 0} over the one-
dimensional Euclidean space R is absolutely continuous with respect to the Lebesgue measure
with the density process { X;(z) : t > 0,z € R} solving the stochastic partial differential equation

gXt(x) = %AXt(x) + /X (x)Wi(z), t>0,z€R, (1.1)

ot
where {W;(z) : t > 0,2 € R} is the derivative of a space-time Gaussian white noise. The above
stochastic partial differential equation was first established by Konno and Shiga (1988); see also
Reimers (1989). The weak uniqueness of the solution to (1.1) follows from that of a martingale
problem for the super-Brownian motion. The pathwise uniqueness for the equation (1.1) still
remains open. The main difficulty comes from the unbounded drift coefficient and the non-
Lipschitz diffusion coefficient. See, e.g., Mytnik (2002) and Mytnik and Perkins (2011) for some
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important progresses in the subject. A different approach for pathwise uniqueness of the super-
Brownian motion was suggested in the recent work of Xiong (2013), where a stochastic equation
for the distribution function process of {X; : t > 0} was formulated and the strong existence
and uniqueness for the equation were established. The purpose of this work is to generalize the
result of Xiong (2013) to a super-Lévy process with general branching mechanism.

Let Z(R) denote the Borel o-algebra on R. Let M (RR) be the space of finite Borel measures on
R endowed with the weak convergence topology. Let B(R) denote the Banach space of bounded
Borel functions on R furnished with the supremum norm || - ||. For p € M(R) and f € B(R)
write u(f) = [ fdu. Let C(R) be the subset of B(R) of bounded continuous functions. Let
Co(R) be the subset of C(R) of functions vanishing at infinity. Let C2?(R) be the subset of
C(R) of functions with derivatives up to the second order belonging to C(R). Let CZ(R) be the
subset of C?(R) of functions with derivatives up to the second order belonging to Co(R). We
use the superscript “+” to denote the subsets of positive elements of the function spaces, e.g.,
B(R)™. The notations are also used for other similar underlying spaces, e.g., B(R4.). Let (P;)¢>0
denote the transition semigroup of a one-dimensional Lévy process £ with strong generator A
characterized by

1
Af(@) = B @) + 300" @) + [ [ +2) = J@) - F@guenlulds)  (12)
for f € C2(R), where o > 0 and 3 are constants, and (1 A 22)v(dz) is a finite Borel measure on
R°:=R\ {0}. Let ¢ be a branching mechanism given by

1 o

BN) = bA+ N’ +/ (= 1+ 2\)m(dz), A>0, (1.3)
0

where ¢ > 0 and b are constants, and (2A22)m(dz) is a finite measure on (0, 00). By a super-Léuvy

process we mean a cadlag Markov process in M (R) with transition semigroup (Q:)s>0 defined
by

| e 0Qup ) = expl (e}, S < BE) (1.4)
M(R)

where (t,z) — v¢(z) is the unique locally bounded positive solution to
t
ve(x) +/ P_g[p(vs())](x)ds = P f(x), reR, t>0. (1.5)
0

Let D(R) be the set of bounded right-continuous increasing functions f on R satisfying
f(=00) = 0. Then there is a 1-1 correspondence between D(R) and M (R) assigning a measure
to its distribution function. We endow D(R) with the topology induced by this correspondence
from the weak convergence topology of M(R). Then for any M (R)-valued stochastic process
{X¢ : t > 0}, its distribution function process {Y; : t > 0} is a D(R)-valued stochastic process.

Our first main result in this paper, Theorem 3.1, asserts that a cddlag D(IR)-valued stochastic
process {Y; : t > 0} is the distribution function process of a super-Lévy process if and only if
there exist, on an extension of the original probability space, a Gaussian white noise {W(dt, du) :



t > 0,u > 0} with intensity dtdu and a compensated Poisson random measure {No(dt, dz, du) :
t >0,z > 0,u > 0} with intensity dtm(dz)du so that {Y; : ¢ > 0} solves the stochastic integral

equation
Yi(x) /A* ds—i—f// W (ds, du)

/// ' Nods,dz. du) —b/Y (1.6)

where A* denotes the dual operator of A. We remark that (1.6) does not hold for every = € R.
Let . (R) denote the Schwartz space of rapidly decreasing functions on R. The above equation
can only be understood in the following weak sense: for every f € Z(R),

(Vi ) = (Yo, f) + /(Ys,Af ds+\f/f dy/ /YS_(y)W(ds du)

_b/ Ys,fds+/f dy// /YS Y Ro(ds. de. du). (1.7)

where “(-,-)” denotes the duality between .#(R) and its dual space .’(R).

We shall make the convention that a stochastic integral takes automatically a predictable
version of the integrand. The technical details are given in Section 2. Then we can simply write
Ys(z) instead of Ys_(z) in both (1.6) and (1.7). We shall use this convention in the sequel of
the introduction.

Our second main result, Theorem 6.12, establishes the pathwise uniqueness for cddldg D(R)-
valued solutions of (1.6) under a mild condition on A. Let D!(R) be the subset of D(R)
consisting of absolutely continuous functions. Under our condition, there is a version of the
solution so that ¥; € D(R) for every ¢ > 0. This makes it possible for us to connect (1.6) with

a backward doubly stochastic equation. Take a constant T" > 0 and define the Gaussian white
noise W7 (ds,dz) on [0,T] x R by

WL([0,t] x A) = W([T —t,T] x 4), 0<t<T, Aec %(0,)
and the compensated Poisson random measure NJ (ds, dz, du) on [0,T] x (0, 00)? by
NE([0,8] x B) = No([T —t, T} x B), 0<t<T, Be %(0,00).

From (1.6) we get the stochastic integral equation, for 0 <t < T,

T T— [ Yr_g(x) -
Yr_(z) = Yo(a:)—i—/ A*YT_S(a:)ds—i—ﬁ/ / W (ds,du)
t t— Jo

T T— proo pYr_s(z) —
/ bYr_s(x)ds +/ / / 2N (ds, dz, du). (1.8)
t t— 0 0

Let {£*(t) : t > 0} be a Lévy process with generator A*, which is defined on a further extension of
the probability space and is independent of {W(ds, du)} and {No(ds,dz,du)}. By the Lévy-Itd
representation, we have

t ~ t
& (t)=¢(0)+ 0B — pt — /0 /{|Z§1} zM (ds,dz) —/0 /{Z|>1} zM (ds,dz). (1.9)
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where {B; : t > 0} is a standard Brownian motion, {M(ds,dz) : s > 0,z € R°} is a Poisson
random measure with intensity dsv(dz) and {M(ds,dz) : s > 0,z € R°} is the compensated
measure. Let & = £*(t) —&*(rAt) for t,r > 0. From (1.8) and (1.9) we shall derive the backward
doubly stochastic equation, for 0 <r <t < T and =z € R,

T T— rYr_s(&5+x)
Yroi(& +2) = Yo(&h+2)—b / Yroo(€ + 2)ds + Ve / / W (&5, du)
t t— 0
T— oo Yroo(El+z) T
—i—/ / / 2N (ds, dz, du) — a/ VYr_s(& + x)dBs
t— 0 0 t

T
[ ] Wrea(€ o) = Vi€ )l s ), (110

Compared with (1.6), the advantage of (1.10) is that it does hold for every x € R in the strong
sense, so its pathwise uniqueness can be treated as a one-dimensional stochastic equation. The

key point of our approach to the pathwise uniqueness of (1.6) is to reduce the problem to that
of (1.10).

This work is strongly influenced by Xiong (2013), where the special case with A = A/2 and b =
m(0,00) = 0 was considered. In fact, a general result on the existence and uniqueness of strong
solutions to a stochastic partial differential equation was established by Xiong (2013), from which
the results on the binary branching super Brownian motion and some other measure-valued
diffusion processes were derived. The approach of Xiong (2013) relies heavily on the theory of
weighted Sobolev norms. In our case, we cannot establish the equation (1.10) simultaneously
for all (t,x) € [r,T] x R because of the lack of (right- or left-) continuity of the process t —
Yr_(& +). It is clear that both sides of (1.10) are neither right-continuous nor left-continuous.
This feature makes the treatment of the backward doubly stochastic equation technically more
difficult. The establishment of (1.10) requires careful estimations for some stochastic integrals
with respect to Gaussian white noises and Poisson random measures. We also prove a general
pathwise uniqueness result for one-dimensional backward doubly stochastic equations, which
can be applied to (1.10). We think the general result is of independent interest.

We would like to mention that the pathwise uniqueness for some similar stochastic equations
of distribution functions of superprocesses was established in Dawson and Li (2012). The process
of distribution functions of a generalized Fleming-Viot process over the real line with Brownian
mutation was characterized as the pathwise unique solution of a jump-type stochastic partial
differential equation in Li et al. (2012+), which generalizes another result of Xiong (2013). The
study of backward doubly stochastic equations was initiated in the pioneer work of Pardoux and
Peng (1994). We refer the reader to Bertoin (1992) and Sato (1999) for the general theory of
Lévy processes.

The paper is organized as follows. In Section 2 a criterion for pathwise uniqueness for general
backward doubly stochastic equations is given. In Section 3 we prove some results on the
super-Lévy process and establish the stochastic equation (1.6). In Section 4 the measurability
and integrability properties required by (1.10) are proved. In Section 5 we establish a useful
intermediate smoothed version of the stochastic equation. The pathwise uniqueness for (1.6) is
established in Section 6.

Notation: Let V and A denote the first and the second order spatial differential operators,



respectively. For notational convenience, we sometimes write Ry for [0,00). Throughout this
paper, we make the conventions

Y T Y= 0
R A A
. v Jew S Jew v @)

for any y > x € R. We also set

1 2
s(z) = exp{—2z°/26}, z€R,§>0. 1.11
5(z) = s exp{~*/20) (1.11)
We use C' to denote a positive constant whose value might change from line to line. We write
Cfr if the constant depends on another constant 7" > 0.

2 Backward doubly stochastic equations

In this section, we give a criterion of pathwise uniqueness for a general backward doubly stochas-
tic equation with jumps. We formulate the result in a general abstract setting since it is of
independent interest.

Suppose that FE, F and U; (i = 0,1) are Polish spaces, and that 7(du), v(du) and p;(du) are
o-finite Borel measures on E, F and U; (i = 0,1), respectively. Let T > 0 be a fixed constant.
Let (©2,.7,P) be a complete probability space furnished with filtrations {.%#; : 0 <t < T'} and
{4, : 0 <t < T}, which are independent and satisfy the usual hypotheses. Let {B;: 0 <t < T}
be a standard (.%;)-Brownian motion and {M(dt,du) : 0 < t < T,u € F} be an (.%#;)-Poisson
random measure with intensity dtv(du). Let {W(dt,du) : 0 <t < T,u € E} be a (%)-Gaussian
white noise with intensity dtm(du). For each i = 0,1 let {N;(dt,du) : 0 < t < T,u € U;}
be a (¥;)-Poisson random measure with intensity dtu;(du). Suppose that {Ny(dt,du)} and
{N1(dt,du)} are independent of each other. Let {N;(dt, du)} denote the compensated measure
of {N;(dt,du)}. Here we consider those two Poisson random measures to formulate our results
in a convenient way for possible applications to immigration superprocesses in the future; see
(1.7) and (2.1) in Fu and Li (2010).

Let 4 = o(FU%r_,) for 0 <r <t <T. Then 4" = 0(F U%r) and %‘,T_t =o(FrU9,).
It is easy to see that both {% : 0 <t < T} and {%. ' :0 <t < T} are filtrations satisfying
the usual hypotheses. Observe also that {B; : 0 <t < T} is a standard (4 )-Brownian motion
and {M(dt,du) : 0 <t < T,u € F} is a (4°)-Poisson random measure with intensity dtv(du).
We define the (¢4} ~")-Gaussian white noise {W7(dt,du) : 0 <t < T,u € E} by

WT0,t] x A)=W(T —t,T] x A), 0<t<T, Ae B(E).
For i = 0,1 define the (¢} ~")-Poisson random measure { N/ (dt,du) : 0 <t < T,u € U;} by

NI([0,t] x B) = Ny(IT —t,T) x B), 0<t<T, BecBU;.

A real process {& : 0 < s < T} is said to be progressive with respect to the family of o-
algebras {9 : 0 < r <t < T} if for any 0 < r < ¢ < T the restriction of (s,w) — &s(w) to



[r,t] x © is measurable with respect to the o-algebra Z[r,t] x 4]. A two-parameter real process
{¢s(u) : 0 < s <T,u € E} is said to be progressive with respect to the family of o-algebras
{9 : 0 <r <t<T}if forany 0 < r < ¢t < T the restriction of (s,u,w) — (s(u,w) to
[r,t] X E x € is measurable with respect to the o-algebra B|r,t] x B(E) x 4.

Let & denote the o-algebra on €2 x [0, T'] generated by all real-valued left continuous processes
progressive with respect to the o-algebras {¢) : 0 <r <t <T}. A process {£;:0<s<T}is
said to be predictable if the mapping (w, s) — &s(w) is P-measurable. A two-parameter process
{¢s(u) : 0 < s < T,u € E} is said to be predictable if the mapping (w,s,x) — (s(w,x) is
(P x B(F))-measurable. The reader may refer to Ikeda and Watanabe(1989, Section I1.3) for
the theory of time-space stochastic integrals of predictable two-parameter processes respect to
point processes or random measures. The stochastic integrals respect to martingale measures
were discussed in Li (2011, Section 7.3).

For a > 1 we introduce some Banach spaces of stochastic processes as follows.

Let .#% denote the space of (¢;)-progressive processes {{s : 0 < s < T'} such that

1

el o= [ [ teseas] "} < o

Let . (E) denote the space of two-parameter (¥, )-progressive processes {£s(u) : 0 < s <
T,u € E} such that

iy =B [ [ as [ eslenan] 7} < o

Let .7 (F') denote the space of two-parameter (/" )-progressive processes {(s(u) : 0 < s <
T,u € F} such that

etz =m{[ [ [ 16, a]*} < oo

For i = 0,1 let .Zf(U;) denote the space of two-parameter (%, )-progressive processes
{7s(u) : 0 < s <T,u € U;} such that

i, =B{[ [ [ et nT @m0} < o0

Here and in the sequel, the stochastic integral of a progressive process refers to that of a
predictable version of the integrand. For example, a process {(s(u) : 0 < s < T,u € E}
in the space .#%(E) is clearly progressive with respect to the filtration {¢° : 0 < s < T}
and for a.e. (u,w) € E x § the integral fOT (t(u,w)dt exists. Then a (4)-predictable process
{¢(s,u) : 0 < s <T,u € E} can be defined using

¢(s,u,w) = limsup — / Cevo(u, w) (2.1)

d—0+



In fact, by Lebesgue’s theorem, for a.e. (u,w) € E x Q we have ((s,u,w) = (s(u,w) for a.e.
s € [0,T], so we can take {((s,u) : 0 < s < T,u € E} as a representative of {(s(u) : 0 < s <

T,u € E}. We use W7 (ds, du), NT(ZS du) and NT(ds du) to denote the relevant backward
stochastic integrals. For example, for any process {y(s,u) : 0 < s < T,u € Uy} in the space
M3 (Up) we have

/ - At N @y = [ ' [ A s, 22)

Observe that the integrand (s,u) — (T — s,u) on the right-hand side of (2.2) is progressive
with respect to the filtration {&} ~*:0 < s < T}, so it has a (%% ~*)-predictable version.

We shall establish a generalized It6-Pardoux-Peng formula for a stochastic process defined by
forward and backward stochastic integrals. For this purpose, let us consider a random variable
Y measurable with respect to the o-algebra %:,T and a multi-parameter process

{(b(S), Z(s),a(s,x),((s,y),yo(s,uo),yl(s,ul)) :0<s< T,IL‘ € an € F7 U € U(),Ul € Ul}

belonging to .#1 x ME x MEE) x MEF) x MEUy) x A:(Uy). We define the process {; :
0<t<T} by

T T % T— [
Y, = YT+/ b(s)ds—{—/ /a(s,u)WT ds, du) —I—/ / Yo(s, u)N{ (ds, du)
t t E U
= —
+/ / v1(s,u)N{ (ds, du) —/ s)dBs — / /C s, u)M (ds, du). (2.3)
t— Uy

In general, the sample paths of the process {Y; : 0 < t < T'} are neither right-continuous nor
left-continuous. But the left and right limits exist and the set of discontinuity points is at most
countable. In fact, it is easy to see that the second, third and sixth terms on the right-hand of
(2.3) are continuous, the forth and fifth terms are left-continuous with right limits, and the last
term is right-continuous with left limits. Observe also that the third and the forth terms are
time-reversed martingales with respect to the decreasing family of o-algebras {4} : 0 <t < T'}.

Proposition 2.1 (It6-Pardoux-Peng formula) Suppose that the process {Y; : 0 < ¢t < T}
defined by (2.3) is progressive with respect to the family of o-algebras {94 : 0 <r <t < T}.
Then for any 0 <t <T and any function f on R with bounded and continuous first and second
derivatives we have, almost surely,

f(vy) = f(Yr) +/Tf’Y ds+//f Ya(s, u)WT (ds, du)

/ ds/f” 27 (du)

+ / / F(Ya+0(s,u)) — FOV2)INE (s, du)
t} Up
n / ds /U (Ve 4 v0(s,0) — F(Ys) = £/ (Ya)yo(s, w)]o(du)
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T—
+ / F(Ya+ (s, u>> FOV)INT (G5, du)

// (Vs + (5, ) f( o)W (ds, du)
- / s / (Y + Clsow)) — F(Ys) = (V)¢ (s, u)](du). (2.4)
t F

Sketch of Proof. We first consider the continuous case by assuming po(Up) = p1(Ur) = v(F) = 0.

Lett =ty <t; <---
we have

Yoo =Y, +

<ty =T be a partition of [t,T] and let £, = maxi<;<y, [t; —ti—1]. By (2.3)

T ti
/ ds+/ / s,u) ds du) / Z(s)dBs.
t -1 t —1 ti—l

By Taylor’s expansion there exist 7;, 0; € [t;—1,;] so that

f(}/tifl) =

FY) + /(Y ) (Y, 1—Yt)—*f"( (Yo, = Y3,)?

t;
f(Y};) tlfYQI d8+/t1/fYt (s,u) dsdu)
B N/ ()dB—ff”( (Y, —Y;,)?

ti—1

+[f' (Y ) — f Yt//su dsdu
ti—1

ti
f(Y}lt) tlfYQI ds—i—/tl/fYt (s,u) dsdu)
| P02 = L), )

—i—f” Yt — Ya] / / a(s,u) ds du)
ti—1
t;
f(Y) + I (Ya_y) ds+/ /f Y, )a(s,w) ds ,du)
ti—1 ti—1

t;

- oz, o ([ >ds)

;”1 /t / a(s,u) ds du )2 + </tt2 Z(s)dBS>2}
- (Y, /t ds/t / S, u) ds du)

() / b(s)ds / Z(s)dB,

+ f(Y) dB/ / s, u)W ds du)
ti—1 ti—1



+(Y) /t:b(s)ds /tt_ /E a(s, )W (s, du)
+f”(Ygi)(/t;;/Ea(s,u)WT(%,du)f
—f”(Yai)/t:Z(s)dBS /t:/Ea(s,u)WT(c%,du).

By taking the summation we obtain
[0 = f YT+Z/ (Y b ds—z/ /fYt Ya(s, u) W (d, du)
- Z / (Vi) Z(5)dB, —{jf” ([ e’
—fo” : [(/ 1/ s, )W (s du))Q—i—(/ti 2(s)aB,) |

ti—1

t;
—Zf”( - / ds/ / (s,u)WT( s ,du)
i=1 ti—1 ti—1

1—

n t;

+ ), / / Z(s)dBs
i=1 ti—1 ti—1
n t -

+Zf”(Yn)/ Z(s)st/ /a(s,u)WT(ds,du)
1= i ti—1
nl tz t

+ ) 02/ / / (5,0)W7 (s, du)
= ti—1 ti—1
n1 t;

+ fl/ o,
200w,
n tz 5 <_

- Zf”( i / Z(s dBS/ /a(s,u)WT(ds,du).
=1 ti—1 tio1 JE

Then we can let £, — 0 to get

a(s,u) WT(ds du))

T
F00) = FO) + [ F(Yb(s)ds + / [0l W (5 o)

—/t f( §)dBs + = / ds/f” 27 (du)
5 / £(V)2(s)%d

Based on the above formula in the continuous case, the proof of (2.4) is that in the classical
case; see, e.g., Protter (2005, p.78) and Situ (2005, p.59). One can first show the equation holds
for the case v(F') = 0 and then for the general case. O

Suppose that g is a Borel function on R and o and g; are Borel functions on the product
spaces R x E and R x U; (i = 0,1), respectively. We consider the following backward doubly



stochastic integral equation:
T T —
Y; = YT+/ B(Y;)ds+/ /G(Y;,U)WT(ds,du)
t t JE

+ go Y;,U NO dS,dU) + gl<Y:?7u)Nl (dS,dU)
Up t— U1

_/t Z.dB, — / /gs M (ds, du). (2.5)

A two-parameter process {(Ys, Zs,(s(u)) : 0 < s < T,u € F} is called a solution of (2.5) if it is
progressive with respect to the family of o-algebras {¢] : 0 < r < ¢t < T} and for every fixed
0 <t < T the equation is satisfied almost surely. The last statement includes the requirement
that the multi-parameter process

{(B(Ys), Zs,0(Ys, ), Cs(y), 90(Ys, u0), 91(Ys,u1)) : 0 < s <T,x € E,y € F,ug € Up,u1 € U}

belongs to A5 x M2 x ME(E)x ME(F) x M2(Up) x #+(Uy). We are interested in the pathwise
uniqueness of solution to (2.5). To simplify the formulation of the result, let us consider the
following:

Condition 2.2 For each u € Uy, x — = + go(x,u) is nondecreasing and

[ lot.0) = ot wPn(d) + [ loo(eu) = ol w) Puo(d)
E Ug

+ 91(2,w) = g1(y, w)|pa(du) + |6(z) = By)| < Cle —y|

for all z,y € R.

It should be noticed that we do not require (2.5) holds simultaneously for all 0 < ¢ < T
because of the lack of left- and right-continuities of the process {Y; : 0 < ¢ < T'}. For the same
reason, the following Yamada-Watanabe type theorem only establishes the pathwise uniqueness
for the solution of (2.5) at any fixed time.

Theorem 2.3 Suppose that Condition 2.2 is satisfied and both {(Y1(t), Z1(t),(1(t,u)) : 0 <
t < T,u € F} and {(Ya(t), Z2(t),Ca2(t,u)) : 0 < t < T,u € F} are solutions of (2.5) with
Yi(T) =Ya(T). Then P{Yi(t) =Ya(t)} =1 for every 0 <t <T and

E[/OT|21(S) . Zz(s)|2ds} +E[/0Tds/F|g1(s,u) —Cg(s,u)|2u(du)] —0. (2.6)

Proof. This proof adapts the arguments from [2, 4, 17]. Let Y (t) = Y1 (t) — Ya(t), Z(t) = Z1(t) —

Zy(t), C(t,u) = Ci(t,u) — Gt u), bs) = B(Yi(s)) — B(Ya(s)), (t u) = o(Vi(t),u) — o(Ya(t), u
and v;(t,u) = ¢;(Y1(t),u) — ¢i(Ya(t),u) (i =0,1). In view of (2.5), we have

Y(t):/ d8+// suWTdsdu / /’yosu OTdsdu)
t— Uy
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+/:_ /U1 yl(s,u)NlT(&_s,du)—/tTZ(s)dBS—/tT/Fq(s,u)M(ds,du). (2.7)

For each integer k£ > 0 define a = exp{—k(k+ 1)/2}. Then a; — 0 decreasingly as k — oo and

ag—1
/ 2z =k, k>1.
ag

Let = — gx(x) be a positive continuous function supported by (ag,ar—1) so that

ak—1
/ gx(z)dr =1

ak

and gi(z) < 2(kz)~! for every x > 0. Let

|=| Yy
:/ dy/ gk (z)dz, z e R.
0 0

It is easy to see that |f;(z)| < 1 and
0<[2|f{(2) = |2lg(2) < 267%,  z€R.

Moreover, we have fi(z) — |z| increasingly as k — oo. Then by (2.7) and the It6-Pardoux-Peng
formula established in Proposition 2.1 we get

- /tTf,;(Y(s) ds—/ Z(s)*ds
—|—1/Tds/ (Y (s))als, u)2r(du)

/ [ L07(6) 3 05,) = S )]
/ ds [ LAY (9) % 3000, 10) = Y (9) = FLCY (81t 0] o)
/ ds / FelY (8) + C(s.0)) = Y () = Y ()G, )] v(du)
—/ fi(Y(s))Z(s)dBs + / /fk (s,u)WT (s, du)
/ [ A 6) 4 2000, ) = AV ()] o@,du)
/ [ L (6) o) = 0 ()] M. ). (2.8

Here the last four terms on the right-hand side have mean zero. Using the convexity of the

function z — fx(z), one can show that the second and sixth terms are negative. Moreover, it is
easy to see that

= % /E FLY (s))a(s, u)*m(du) < %C’gk(|Y(s)\)|Y(s)\ <Ck Y,
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which tends to zero as k — oo. By Lemma 3.1 in Li and Pu (2012) one can see that, as k — oo,
(o) = [ TAO(5)+ r0(s ) = Y () = 0 ()0l )] o) = 0.
0

By (2.8) and Fatou’s lemma we obtain

T
BV ®l < klinoloE[fk(Y(t))_/t (Gk(s)‘FHk(S))ds}
/tT E[‘b(8)|]ds+/tTE[/(h ”YI(S,U)!ul(du)}dg

T
< c/t E[|Y (s)[]ds.

IN

By Gronwall’s inequality, we have E[|Y (¢)|] = 0, and so P{Y1(t) = Ya2(¢{)} = 1. Returning to
(2.7) we get a.s.

/OT Z(s)dBs + /OT/FC(S’U)M(CZS’dU) =0.

Then we can take the expectation of the square of the left-hand side to obtain

E[/OT Z(s)%zs] +E[/0Tds/F<(s,u)2y(du)] ~0.

That gives (2.6) and completes the proof. O

3 The super-Lévy process

In this section, we establish the stochastic equation (1.6) for the distribution function process
of a super-Lévy process and derive some consequences of the equation. For s,u > 0 let

Y, (u) = inf{z € R: Yi(x) > u}.
Let (P;)¢>0 be the transition semigroup of a Lévy process with strong generator A given by (1.2).

Let PP = e %P, for t > 0 and b € R. The following main result of this section is a generalization
of Theorem 1.3 in Xiong (2013).

Theorem 3.1 A cddlag D(R)-valued stochastic process {Y; : t > 0} is the distribution function
process of a super-Lévy process with transition semigroup defined by (1.4) and (1.5) if and only if
there exist, on an enlarged probability space, a Gaussian white noise {W (ds,du) : s > 0,u > 0}
with intensity dsdu and a compensated Poisson random measure {No(ds,dz,du) 18>0,z >
0,u > 0} with intensity dsm(dz)du so that {Y; : t > 0} solves the stochastic equation (1.6).

12



Proof. Suppose that {Y; : t > 0} is a cadlag D(R)-valued stochastic process solving the stochas-
tic equation (1.6). Let {X; : ¢ > 0} be the corresponding cddlag M (R)-valued process. By
integration by parts, for any f € . (R) we have X;(f) = — (Y%, f/), and so (1.7) yields

Xi(f) = —<Yb,f’>—/Ot%,Af’)ds—ﬁ/ot/ooo [/Rf’(m)l{m_m}dm]W(ds,du)

+b/t Y, f) ds—/t/oo/oo /f’ ) sy, ( }dx}zj\?o(ds,dz,du)
- X(f)—/< L (Af) ds—\f// / )dx}W(ds,du)

—b/X ds—// / / )dx}zNo(ds dz, du)

:XMﬁ+AX¢H—WW+§m+mU%

where

f//f# W (ds, du) (3.1)

// / f(Y7 () 2No(ds, dz, du). (3.2)

Since s +— Y; has at most countably may jumps, by It6’s formula, for any G € C?(R),

and

GXi(f) = G(Xo /@/G’f FOV ()2 du
/G’ Af—bfds+/ds/ du/ £+ 2 )
G(Xs(f)) — 2f (Y ()G (X, (f) } (dz) + local mart.
=w%m>/M<< dﬁ/G’ X,(Af — bf)ds
/dg/X'm:/ GIXL() + 2 (@) - GX()
— 2f(2)G'(X(f))|m(dz) + local mart. (3.3)

By an approximation argument, one can see the above relation remains true for any f € Z(A),
the full domain of the strong generator A. By Li (2011, Theorem 7.13) one can see {X; : t > 0}
is a super-Lévy process.

Conversely, suppose that {Y; : ¢ > 0} is the distribution function process of a cddlag super-
Lévy process {X; : t > 0} with transition semigroup defined by (1.4) and (1.5). Then Y;_(z) =
X;—(—o0,z] for t > 0 and = € R. By considering a conditional probability, we may assume X

13



and Yy are deterministic. By Li (2011, p.153) one can see {X; : t > 0} satisfies the following
martingale problem: For each f € C3(R),

X0 =%l + CXu(Af — bf)ds + L) + IF), (3.4

where t — If(f) is a continuous martingale with quadratic variation process

(I(f)) = /0 X,(cf?)ds, (3.5)

and t — I#(f) is a purely discontinuous martingale. Let K (u,dv) be the kernel from M(R) to
M(R)° := M(R) \ {0} defined by

/M(R)O F()K(p,dv) = /Ru(da:) /OOO F(udy)m(du)

for positive Borel functions F' on M(R). Then there is an optional random measure N(ds,dv)
n (0,00) x M(R)° with predictable compensator N (ds,dv) = dsK(Xs_,dv) such that

/ / N(ds, dv), (3.6)

where N(ds,dv) = N(ds,dv) — N(ds,dv). As in the proof of Li (2011, Theorem 7.25), one
can see that there exists an orthogonal martingale measure {I¢(dt,dx) : t > 0,2 € R} having
covariation measure cdtX;(dz) so that

:/Ot/Rf(x)IC(ds,dx).

For any g € B(R4) we can define a continuous martingale ¢ — Zf(g) by

/ / \VI%(ds, dz). (3.7)

Since s — X, has at most countably may jumps, we have

= e [as [ o wxe @ =e [ as [ g0 @rav)
- c/otds/oYS(oo)g / ds/ W) <y, (oo du

Observe that the family {Zf(g) : t > 0,9 € B(R4)} determines a martingale measure {Zf(B) :
t>0,B € #(R4)}. By El Karoui and Méléard (1990, Theorem III-6), on some extension of
the probability space one can define a Gaussian white noise W (ds, du) on (0, 00)? based on the
Lebesgue measure so that

\[// W)L {usy, (oo W (ds, du). (3.8)

14



For x € R it is easy to see that

/dé’/l{ys )<Yo (2) y>a} Xs dy /dS/l{y —Yi () e} Xs(dy) | =
Then by (3.7) and (3.8) we have
If(—o0,z] = //l{yq,}f (ds,dy) = //l{ys )<V, (2)}L° (ds, dy)
= // Liu<y,_ ()} 2 (ds, du) :\ﬁ// Liu<y,_ (2} W (ds, du).
0o Jo 0o Jo

For any g € B(R?) we can define a purely discontinuous martingale ¢ — Z4(g) by

// N(ds dy/R (v(1),Ys—(x))v(dz). (3.9)

Then {Z(g) : t > 0,9 € B(R%)} determines a martingale measure {Z%(dt, dz, du) : t,y,u > 0}
with compensator Zd(dt, dz,du) determined by

/Ot /R2 g(z,u)Z4ds, dz, du) = / / N(ds, dv) /R (v(1),Ys_(z))v(dz)

= /O ds/RXs_(da;)/O 9(z,Ys—(x))zm(dz)
= /Otds /Ooo dU/OOOg(Z,U)Zl{ugYS(oo)}m(dz)'

By Ikeda and Watanabe (1989, p.93), on an extension of the probability space, there is a Poisson
random measure Ny(ds,dz,du) on (0,00)® with intensity dsm(dz)du so that

/ /R2 z,u)Z%ds, dz, du) / / / (z,u)2lfu<y,_ (s )}No(ds dz,du), (3.10)

where Ny(ds, dz, du) = No(ds,dz,du) — dsm(dz)du. By (3.6), (3.9) and (3.10) it follows that

t
Itd(—oo,:n] = /0 /M(R)O N(ds,dy)/Rl{yq}u(dy)

t ~
= // N(dsady)/l{Ys(y)gYs(a:)}y(dy)_Ht(:E)
0 JM(R) R
t
:// l{ugysf(x)}Zd(ds,dz,du)—Ht(x)
o Jr2

t oo st(m) ~
= // / zNo(ds, dz,du) — Hy(z),
0 JO 0
// N(ds,dv) /1{Y5(y)SY5(m),y>x}y(dy)'
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For any k£ > 0 let

t ~
Hy(t, x) =/ / 1{y(1)§k}N(d5adV)/ Liy,_(y)<Vs_ (@) >}V (dY).
0 JME®R)° R

It is easy to see that
2 ! .
E[H(t,z)"] = E[/o dS/RXs(dy)/O u 1{YS,(y)gys,(x),ym}m(du)} =0.

Then by Fatou’s lemma one can see E[H;(x)?] = 0, and so H;(z) = 0 almost surely. It follows

that
t poo pYs_(x)
Itd(—oo,a:]:// / zNy(ds,dz, du).
0 JO 0

Let f(z) = [.° f(y)dy for f € (R). It is simple to see that Af = Af and (Y3, f) = Xi(f). By
stochastic Fubini’s theorem,

t

Vi f) = XolF) + / X,(Af = bf)ds + IE(F) + I8(F)
= 0o+ [0 anas b [ 0 pas
b ) 0 b

0

+ [ 100l @y + [ 1(~o0,)f(a)d
R R
Then we have (1.7), which is the weak form of (1.6). O

Proposition 3.2 Suppose that {Y; : t > 0} is the distribution function process of a super-Lévy
process solving (1.6). Let {¢4; : t > 0} be the augmented filtration generated by {Y; : t > 0} and
{W(dt,du), No(dt,dz,du) : t > 0,z > 0,u > 0}. Then for each t > 0 the mapping (s, z,w) —
Ys(z,w) restricted to [0,t] x R x € is measurable relative to the o-algebras 2[0,t] x B(R) x 4,
and B(R4).

Proof. By Theorem 3.1 the measure-valued process {X; : t > 0} corresponding to {Y; : t > 0}
is a super-Lévy process. By the right-continuity of {X, : s > 0}, for f € .(R) the mapping
(s,w) — X (f,w) restricted to [0, ] x € is measurable relative to the o-algebras £[0,t] x 4 and
Z(R). By a monotone class argument, the measurability also holds for f € B(R). In particular,
for x € R the mapping (s,w) — Ys(z,w) = Xs((—00, z],w) restricted to [0,¢] x § is measurable
relative to the o-algebras Z0,t] x 4, and #(R,). By the right-continuity of z +— Ys(z,w) one
can see (s,z,w) — Ys(z,w) restricted to [0,¢] x R x € is measurable relative to the o-algebras
PBl0,t] x B(R) x 4, and B(R,). O

Proposition 3.3 (Li, 2011, p.48 and p.157) Suppose that {X; : t > 0} is a super-Lévy process
with deterministic initial state Xo = p € M(R). Then for t > 0 and f € B(R) we have

E{Xi(f)} = w(PLf) = nPi(f) and B{ sup X,(1)} < oc.
te[0,7]
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Proposition 3.4 Suppose that {X; : t > 0} is a super-Lévy process with distribution function
process {Y; : t > 0} solving the stochastic equation (1.6). Then for any t > 0 and f € B(R) we
have a.s.

&@:Xﬂ%ﬂﬁ%[wam%wmmm>

+/Ot /Ooo /OOO PP F(Y: (w) No(ds, dz, du). (3.11)

Proof. Under the conditions of the theorem, it is simple to see that (3.1) and (3.2) define two
martingale measures I°(ds,dz) and I%(ds,dz) on (0,00) x R. By Li (2011, Theorem 7.26), we

have
X (f) = Xo(PPf) // PP f(x)(I¢ + I?)(ds, dz),

which can be rewritten into the form of (3.11). O

Proposition 3.5 Suppose that {X; : t > 0} is a super-Lévy process with deterministic initial
state Xo = u € M(R). Then for any a > 0 we have

sup B{|X;(f) — X, (P’ )|} =0 (t—r+orr—t—) (3.12)
f€Ba

where B, = {f € B(R) : || f]| < a}.

Proof. By Proposition 3.4, for any ¢ > r > 0 we have

X(f) = .aJ+f//‘aJ (=))W (ds, dz)

i / /0 /0 2PY (Y () No(ds, dz, du). (3.13)

Based on Proposition 3.3, we can give some estimates of the stochastic integrals on the right-hand
side. For the first integral we have

o{[ [ [ R0 eowias.ao)]'}
—E /tds/oo (PP . f Y;l(u))]?du}
- /ds/ (PP F(2)]2X, (d:p)}
3[wATmAﬂ&mmﬂm@>

1P ["as [ PIfi@hutao)

L1172 (1) (t = 7).

IA

IN
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For the second integral we have

/ / / T ePL OV () Bods, dz,dw) )
—E /ds/ zmdz/ [Ptb,sf(stl(u))]Qdu}
:/zmdz /d,s/Pts 2X(dx)}

< 122 (1)t — ) / 22 (d2)

0

o [ [ [ ot oot
=B ‘/t /OO /OO 2P (Y, () No(ds, dz, du) |}

| ds | amldz) /0 P (Y (w)dul |

:2/1 zm(dz) E /7"d8/0 |Ptb,sf(x)|X5(dx)}

2/Oozm dz /tds/ (dz) /|Ptb_s F(2)|Pb(z, dy)

<2 [“amiaz) [ as [ PbIfI@MC

< 2| fllel(t - () / m(dz).

and

Then we have (3.12). O

A super-Lévy process is typically absolutely continuous with respect to the Lebesgue measure.
For the convenience of statements of the results, let us consider the following condition:

Condition 3.6 There exists a continuous function (t,z) — p(z) on (0,00) x R so that
Pz, dy) = pi(y —x)dy, t>0, 7,y €R,
and
pe(z) <t79C(t), t>0, z€R

for a constant 0 < aw < 1 and an increasing function t — C(t) on [0, 00).

It is well-known that the above condition is satisfied if (P;)¢>0 is the transition semigroup of
a stable process with index in (1,2]. Under the condition, we write p?(z) = e %p;(z) for t > 0
and z € R.
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Theorem 3.7 Suppose that Condition 3.6 holds and {X; : t > 0} is a super-Lévy process with
distribution function process {Y; : t > 0} defined by (1.6). Then for each t > 0 the random
measure X;(dz) is absolutely continuous with respect to the Lebesgue measure with density

Xi(w) = /pg(””_z (dz) +\/5/t /Oopi’s(w—lgl(z))W(ds,dz)
/ / / (@ = Y (w)No(ds,dz, du),  z €R. (3.14)

Proof. By Proposition 3.4 and a stochastic Fubini’s theorem one can see for each t > 0 the
random measure X;(dz) is absolutely continuous with density given by (3.14); see the proof of
Li (2011, p.171). O

Proposition 3.8 Suppose that Condition 3.6 holds and {X; : t > 0} is a super-Lévy process
with deterministic and absolutely continuous initial state Xo = p € M(R). Then for any r > 0
and a > 0 we have

lim sup E[|X,(f) = X,(f)]] =0 (3.15)
T feB,

with B, = {f € B(R) : || f]| < a}.

Proof. Let (P/)¢>0 denote the dual semigroup of (P;)¢>o. Fix a density x — h(z) of the measure
wu(dz). By the duality relation, we have

sup [u(Pf — PA)| = sup | [ )P (o) — PPl
f€Ba feB, ' JR

<a / PPR(z) — Ph(z)|da. (3.16)
R

The right-hand side tends to zero as t — r+ or r — t— by the strong continuity of (P;)¢>o on
the Banach space L!(R) of integrable functions. By (3.11), for any ¢t > 7 > 0 and f € B(R)

Xo(f = Plof) = w(BLf = Blf) /e / / — B (Y ()W (ds, du)
2( - L(u))No(ds, dz, du). .
+/0 /0 /0 P f = PL ) (Ys () No(ds, dz, du) (3.17)

As in the proof of Proposition 3.5, we can estimate the stochastic integrals on the right-hand
side. For the first integral we have

ol [ [ wrs-r f><Y-1<u>>W<ds,du>\2}
=n{ [as [ 1P ose) = PLp@)P X ()}
= [ s [ 1P 1@ - PLp@)P ko). (3.18)

R
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For the second integral we have

o{| [ [ [ et - Lo ) Motas e}

—{ [ d / “2m(d2) / PL S >—Pr,sf<a:>12xs<dx>}
- / Pmids) [ ds [P of(e) = P ofa)Ppdn) (3.19)
and
B{| [ [ [ A= R0 )l Nods.de. )|}
2B{ [as [“amae) [TIPL1@) - P @)X}

= b By T b(dx). .
-y / em(dz) /O /R PY f(x) — PY_ f(2)|uP(dx) (3.20)

IN

For n > 1let fn(z,y) = f(z +y)l{y<ny and fi(z,y) = f(z + y)1{y>n)- We have

s [ 1P f@) - P @) Pupldo)
0 R .
§2e|”|’f||f|y/O dsA‘Af(x+y) [e_b(t_s)ptfs(y)—e_b(r_s)prfs(y)]dy’uPs(dﬂv)
< 2@|b|t|]fH/ ds/,uP (dx) /\fn z,y) He*b(t*s)pt—s(y)—efb(Tfs)pr—s(y)‘dy
+ 26 | / “ / uPs(dz) / [ y)lle™psy) + " prs(y)]dy
< 2600 £ / o / 1Py (dz) / 7 ”pt—s@) — M p(y)|dy
o R {ly|<n}
+ 221 712 / ds / [Pi—s(0, [-n,n]%) 4+ Pr—s(0, [-n, n]%)| Py (dz).
0 R
By the property of the transition semigroup (P;)s>0 we have

lim sup Ps(0,[—n,n|%) =0, T>0.
n—oo OSSST

Then we can use Condition 3.6, the continuity of (¢, z) — e %p;(z) and dominated convergence
to see that

sup /T ds/ [Ptb_sf(:v) - Pf_sf(:c)]zupf(dx) —0 (t—r+orr—t-).
feBa R

This implies

sup/ ds/}Ptbsf(x)—Pfsf(:z:)’qu(dm)%O (t—=r+orr—t-).
feB4 JO R
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From (3.16)—(3.20) it follows that

sup E{|X,(f) — X, (P, f)|} =0 (t—r+orr—t-). (3.21)
feBa
Then we get (3.15) from (3.12) and (3.21). O

Theorem 3.9 Suppose that Condition 3.6 holds and {Y; : t > 0} is the distribution function
process of a super-Lévy process solving (1.6) with deterministic and absolutely continuous initial
state Yo € DY(R). Then {Y;(z) : t > 0,z € R} is continuous in L' (P).

Proof. By Theorem 3.1 the measure-valued process {X; : t > 0} corresponding to {Y; : ¢t > 0} is
a super-Lévy process. For r;t > 0 and =,y € R we have

E{[Y:(2) = Yi(y)|} < E{|X;(12) = Xi(12)[} + E{X:(|1o — 1,[)}, (3.22)

where 1,(z) = 1{,<;}. Suppose that Yo(dz) = h(z)dx. By Proposition 3.3 we have

BX(1: = 1,0} = [ Pl = LlEn(dz) = [ [1202) = 1, ()P hE) e
which goes to zero as (r,x) — (¢,y). Then the result follows by (3.22) and Proposition 3.8. O

Suppose that Condition 3.6 holds and {Y; : ¢ > 0} is a solution of (1.6) with deterministic
initial state Yp € D(R). Let {¢ : ¢ > 0} be the filtration generated by {Y; : ¢t > 0}. By
Theorem 3.7 for every t > 0 we have almost surely Y; € D!(R). In particular, for every ¢ > 0
the function = — Y;(z) is absolutely continuous on R almost surely. For ¢ > 0 a version of
the derivative of z — Y;(x) is defined by (3.14). Recalling (1.11) for any § > 0 we define the
operator T by

Ty f(x) = /R F(w)as(y — )y = /R fla+2)gs(2)dz, wER (3.23)
It is easy to see that

VY, (z) := liminf T}/, X¢(x) = lim inf/ 91/n(y — ) Xi(dy), t>0,zeR (3.24)
R

n—o0 n—0o0

defines a modification of the density field {X;(x) : ¢ > 0,z € R} so that for each t > 0 the
mapping (s, z,w) + VYs(z,w)1l{es0y restricted to [0,¢] x R x Q is measurable relative to the
o-algebra A|0,t] x B(R) x %,.

4 Measurability and integrability properties

In this section, we always assume Condition 3.6 is satisfied. We shall establish the measurability
and integrability properties required by the stochastic integral equation (1.10). Suppose that
{Y; : t > 0} is a solution of (1.6) with deterministic initial state Yy € D(R). Let p € M(R)
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be the measure determined by Yy. By Theorem 3.1 the corresponding measure-valued process
{Xi : t > 0} is a super-Lévy process with Xo = p. Write 1,(2) = 1y.<,) for notational
convenience. By Proposition 3.4 we have

Vo) = [ PPLudn) + Z@) + o) (1)
where
f/ / PY 1 (Yo ()W (ds, du)
+ /0 /0 /0 2PY 1,(Y N (u)No(ds, dz, du) (4.2)
and

Hy(z) = /t /OO /OO ZPY 1,(Y N (w)No(ds, dz, du)

/ ds / m(dz) / P? 1Y N (w))du. (4.3)

Let Hy(z) and Hy(z) denote the first and the second terms on the right-hand side of (4.3),
respectively. According to (4.1), we can write

VVi(z) = /R Pz — y)uldy) + V Z(x) + VHy(x), (4.4)
where
VZ@w) = 7 [ [ =Y )W s,
+ /0 t /0 1 /O T (o — Y () No(ds, dz, du) (4.5)
and

Vi (z) - /t/oo/oozpt (@ — Y (w)) No(ds, dz, du)

/ds/ zm dz/ 2 (z— Y, N (u))du. (4.6)

Let VH;(x) and VH;(x) denote the first and the second terms on the right-hand side of (4.6),
respectively.

Let {& :t >0} and {& : 0 <r <t < T} be given as in the introduction. Let {%; : ¢ > 0}
be the augmented natural filtration of {& : ¢ > 0}. Let {%; : ¢ > 0} be the augmented filtration
generated by {V; : t > 0} and {W (dt,du), No(dt,dz,du) : t > 0,z > 0,u > 0}. Fix the constant
T >0andlet {&] :0<r <t <T} be the family of s-algebras defined as in Section 2.
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Proposition 4.1 For any 0 < r <t <wu < T, the restriction to [t,u] x R x Q of the mapping
(s,@,w) = (Yr—s(§(w) + 2,w), VY1_s(§5(w) + 7,w)) (4.7)

is measurable with respect to the o-algebra B[t,u] x B(R) x 4!.

Proof. 1t is clear that the restriction to [¢, u] x Q of (s,w) +— &L (w) is measurable relative to the o-
algebras B[t, u] x 4! and Z(R). Then the restriction to [t,u] x Rx of (s, x,w) + (s, (w)+x,w)
is measurable relative to the o-algebras Z[t,u] x B(R) x 4! and Bt,u] x B(R) x 4.. By
Proposition 3.2 the restriction to [t,u] x R x Q of (s,y,w) — Yr_s(y,w) is measurable relative
to the o-algebras %B[t,u] x B(R) x 4! and #(R,). Then the composed mapping (s,z,w) —
Yr_s(€5(w) + x,w) is measurable relative to the o-algebras Z[t,u] x B(R) x 4! and B(R.).
The required measurability of the other coordinate in (4.7) follows as a consequence. a

Lemma 4.2 For each T > 0 there is a constant Ct > 0 so that

E[Zr_s(& +2)*] <COrp(l), 0<r<s<T,zeR. (4.8)

Proof. Since {¢!} is independent of {Y5(x)}, {W (ds, du)} and {No(ds, dz, du)}, by 1t6’s isometry

we have
BZr.( +a] = eB{[ | o | Pt oW o o]}
ee{[ [ [T et ) otz )] )

- ce{ [ T [ e

- op{ T LIPh e P X}

< o] /0 TSXU(l)du},
where

1
C:c+/O 22m(dz). (4.9)

Then (4.8) follows by Proposition 3.3. O

Lemma 4.3 For each T > 0 there is a constant Cp > 0 so that, for 0 < r < s < T and
z<y€ER,

B{ 12016 +1) - Zr-n(& + 0P} < (- 0 (4.10)
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Proof. Since {¢} is independent of {Y;(z)} and {W (ds, du)}, by Ito’s isometry we have
E{ /T / Phy o (Lery — Lersa) (Y (u) W (dv, du)r}

{/T Sd”/ [Prso(Lersy = Legra) (Vs (u))]%zu}

{7 [Pt~ 1) )

E{ /T sd’”/X du) /PT s—v(ly—¢ = Lo—g)(u)] ps_r(ﬁ)dg}

- /OT de/RMTPg (du) /R /R[lyé(n) — Lo (M]P7—s—(n — u)dn}Zps_r(g)dg

|
&=

I
=

s y —¢

<crty-o) [ g Lt [ o [ v -
T—-s vy

—Crly-a) [ =i [apdan) [ [ pr o= gan
T—s dv Yy—u

~Crly—a) [ e L) [ pu=pdn [*preoman

=Crly—a) [ = [ ude) [ ot yan [ e o(n — w)dn

=Cr(y — ) /OT_S(T_?_U)Q/RM(CZZ) /xypT_r(n—Z)dn

Cru(1)(T — 5)1
< (y—x)? 0 o) T )

where we have also used Condition 3.6 twice. Similarly,

/TS /T / 2Ph_y (g — Legas) (V5 () No(dv, dz. )|}
B{ [ / 22m(d2) / PR (e — L) (V7 ()P}

Cru(1)(T — s)t=

< 2

-9 = a)(T— )

By putting the two inequalities together we obtain (4.10). O

Lemma 4.4 For each T' > 0 there is a constant Cp > 0 so that, for 0 <r < s < T and z € R,
B{[VZr(&} + 2} < Co(T =9 [ pros(o = uldy). (4.11)
R

Proof. Let us bound separately the two terms corresponding to the right-hand side of (4.5).
Since {£} is independent of {Ys(z)} and {W (ds, du)}, by Ito’s isometry it follows that

B{] /O T_S /0 o€ = ¥ )W (v, dw)] )
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{
e [0 [ e X}
{

T—s

v [ Xofdw) [ Do (6 = 0Ppcsl = )
-/ R [ ) [ a6 = upesto - )€

0 R R

<or [ o e [ ntu—utan) [ prorsto -

T—s dv
< CT/O m /RPT—T(JU — y)u(dy)

< Op(T — s)t— /RpTr(x —y)u(dy).

By similar calculations,

([T ] sty )Motz a] )
_E /T de/ 22m(dz) / pr_s_v(§§+x—Y;1(u))2du}

< Cp(T — s)* O‘/Rpr_p r(x—y)p(dy).

Then we have (4.11). O

Proposition 4.5 For any 0 <r < 7T and x € R we have
T 1
B{ [/ VYra(g + 2)ds] } < oo
T

Proof. We are going to bound separately the three terms corresponding to the right-hand side
of (4.4). It is simple to see that

/T‘/pr (& + o —y)u(dy )‘ZdS}
/ds/)/p“g V)u(dy)| por(o — €)de

< Cru(l) / W [ r-ste=nntan) [ oo - )i

T S
= CTu(l)/ (Td_s)a /RpT-r(x —y)u(dy)
< Crp(DA(T — )2 < . (4.12)
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By (4.11) we have

T
E{/T IV Zr—s(& + x)’2ds} < Crp(1)(T — r)?—?a < 0.

By the Cauchy-Schwarz inequality and Proposition 3.3,

E{([ﬂvﬁrxg+xwmﬁﬂ>
coms{([ | [ foroates o usaf'a) ')
T—s %
< CrE{ (/Txﬂ d&/ﬁdi/ ,fj/pTSS2§+x_u) Xoy(d))” }
/0 Xsl(l)dsq [/ dS/ dSQ/pT o (€ + 7 — u)? X, (du )]
1)

T T—s

ds dsa | pr—s—s,(& +x —u) SQdu}}
0 R

NI

<cr{E|
<cr{E]
Similarly, we have
([ wses s )’
< CrE|( / ‘/T / / 2Liusx,, (1)) No(ds1, dz, du)
/ / / Drs o (€0 + 2 — Yo, (u)2No(dsy, dz, du ‘ds)é}
< CrE / / / L uex,, (1)) No(dst, dz, du))l
/ ds/T / / P (€ + 3 — Yo (u)2No(dsy, dz, du)) }
<CT / / / Lucx,, (1)) No(ds1, dz, du)}} {E[/ ds

T

/T S/ / Pr—s—s, (€5 + 1 = Y, (u))*No(ds2, dz, du)”
/ d51/ dz / d.s/Tsds2/
/’stsxg+x— Yy, ()% }}

1

<cT / ds/T stQ/pT ooy (€7 4 7 — u)? SQ(du)]}i.

N

(4.13)

}é

(4.14)

(4.15)

By the independence of {£} and {X,}, the square of the right-hand side of (4.14) or (4.15) is

bounded above by

Cr / " ds /0 s, /R P (du) /R P s (€ — 0)py_p(w — €)dE
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< Cr /TT ds /OT_S(T —5—s2) “dsy /RPT—T(!E —y)u(dy)

T
<Cr [ (=90 [ proo - gty
r R
< Crp()(T —r)*72 < 0. (4.16)
Combining (4.4) and (4.12)—(4.16) we obtain the desired result. O

Lemma 4.6 For any 0 <r < T and x € R we have

D=

/ / |Hp o€+ —2) - HTSg’”+x|Mdsdz)} } 0. (4.17)
(=<1}

Proof. By the Cauchy-Schwarz inequality,
T z R 2 1
Lhs. of (4.17) = E{(/ / ’/ VHT,5(5§+x—n)dn‘ M(ds,dz))Q}
v J{lzl<1y ' Jo
T z R 1
<B{([ [ aMsds) [ VH(& - n)Pdn)’)
rJ{lzl<1} 0
T z T—s
= E{(/ / zM (ds,dz)
r J{lzl<1}

oo 2 1
| A€+ o ==Y )] an) )

T T—s
- CE{(/ / 2M(ds, dz)
r J{el<y 1

dsy
/R sy (€5 + @ = — u) Xy, (du) ?zd”) ]

zim(dzy)

o0
d81
1

0 0

o[ o [ | i ]
| e 2 == 0P
<C /XS1 dsl} //{|Z<1} (ds dz)/d/ sy
[Pt =Xt}
<

1

E[/T /{Zlgl}zM(ds,dz) /0 dn/OT_s dss
J N o M) o

(The above qualities are all positive because of the product z foz.) Then by the independence of
{&} and {X;} we have

T z T—s
{Lhs. of (4.17)}* < Cr / ds / 2v(dz) / dn / dso / w(dy)
r {|z|<1} 0 0 R
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/ps T(w —-n—- é)pT s— 52(5 - u>2d§

[0-
o]
J

< C / —5—52)" dsz/ zv(dz)
{lzl<1}
/ r(@ —n—y)u(dy)
< Crpl) / )= ads/ 22v(dz) < oo
(T —r)* {lz1<1}
Then we have (4.17). O

Lemma 4.7 For any 0 <r < T and x € R we have

D=

/ / |Hp—s (&5 + @ — 2) — Hp_s(&, + @) | M (ds dz)} } 0. (4.18)
{IZ\<1}

Proof. By the Cauchy-Schwarz inequality,

Lhus. of (4.18) = E{[/T /{|z<1}’/oz VHT—S(§§+:U—v)dvrM(ds,dz)F}

(L fy 1000 [0t ]}
T z T—s 0o 00
CE{</ /{|z<1}2M(dS,dz)

1
leT s—51 gs +zr—n- Y ( ))Nﬂ(dshdzladw)‘ dﬁ>2}

IN

IN

<C / / / 211wy <, ( )}No(dsl,dzl,dwl))
T—s
. / / szs,dz/dn/ / /
{lz|<1} )
Zsz 5—82 gs—i_x Y ( )) NO(d827dZ27dw2))2}
S / / / 211{w1<Y oo)}No(dsl,dzl,dwl)}
T—s
E/ / szs,dz/dn/ / /
{l=|<1} )
2oy (€0 + @ = = Vi (12))2No(dsz, dz, duo) |}
T—s
< C / / M (ds, dz) / dn/ dsz/ zom(dza)
{IZ\<1} .
2
| preeales o = = Y )P
0
<

T z T—s
E{/ / zM(ds,dz)/ dn/ ds
r {|z|<1} 0 0
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1

/}RIOT—S—S2 & +x—n-— w2)2X52(dw2)] }2.

The right-hand side is finite by the proof of Lemma 4.6. O

Proposition 4.8 For any 0 <r < T and x € R we have

Nl

E //’YTsfs—t—x—z) YTSSS—F:C‘Mdez)} }<oo (4.19)

Proof. Recall the decomposition (4.1). We shall bound separately the three terms corresponding
to the right-hand side. We first observe

B{ [ S L PO =g @t a(as,d2))
_/Tds /{|z<1}y (dz) / /P%_s(lg—lgz)(y)ﬂ(dy)r%—r(x_f)dg
/ ds /{|z<1} v(dz) /]R /Rﬂ(dy) /;Zprs(n—y)dnrps_r(x—i)df

< Cru(1) / /{|z|<1} ) [ ) [ po-sta - €1 /_Zst'n y)dn
o [ 2 [ [ [y /nnﬂps_r(x—f)dg
—on [ /{|z|<1} ) [ i) [ prestn=idn [ ¢ = me
— Cru(1) / /|z|<1} ) [ntan) [ prestc =

CTM(l) 2
< / (T_) [ e (4.20)

By Lemma 4.3 we have

T
r T 2
E / /{|Z|<1} |ZT—8(§5 +x— Z) - ZT—5<§S + a:)‘ M(ds’ dz)}

T
_ / ds / B{[Zr_o(€" + 2 — 2) — Zr_o(€] + 2)]2}0(d2)
e sy

< Crp(1)(T —r)t=e ey 22v(dz). (4.21)

By the Cauchy-Schwarz inequality,

N|=

)

E [/T /{|Z|>1} [Yroal€] 47— 2) — Ye_o(& +2) "M (ds, dz)
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1 1
< E{[ sup Xp_g( 2 / / Xr_s(1)M(ds, dz)r}
s€[0,T7 {]z|>1}
3
< {E[ sup XT,S(l) / ds/ E[XT,S(l)]V(dz)} < .
s€[0,7] r {l=1>1}
Then the result follows from (4.20), (4.21) and Lemmas 4.6 and 4.7. O

By Propositions 4.5 and 4.8 the last two terms on the right-hand side of (1.10) are well-defined.
To see the second and the third terms make sense, it suffices to observe, for 0 < r <t¢ < T and
z € R,

E{ /tT Yr_s(& + a;)ds} < E{ /TT XT_S(l)ds} < 00

On the other hand, we have

E{‘/t / /T e NI (s, dz du)f}
{/ ds/ Yr_o(€] +2)2m(d)
{/

XT s( /Olz m(dz)}<oo.

<E

and

E{‘ /T /Oo /YTS(&ngm) zN, (% dz du)‘}
/ ds / Yi_o(€" +x)zm(dz)}
<E / Xp_sf )ds/l (dz)}<oo.

Then the fourth term on the right-hand side of (1.10) is also well-defined.

5 A smoothed stochastic equation

The purpose of this section is to establish a smoothed form of the stochastic equation (1.10).
We shall use the settings of the last section. More specifically, we consider a deterministic and
absolutely continuous initial state Yy € D'(R). Let Uy(x) = Yr_4(z) for 0 <t < T and = € R.
For any 6 > 0 and any function h on R let h? = Tsh if the right-hand side is well-defined. Then
letting f(y) = gs(y — ) in (1.8) we have

T T— Us(y)
Uie) = B+ [ AU+ [y [ [ W@

T T— proo pUs(y) —
—/ bUS (z)ds + / 9s(y — x)dy/ / / 2N{ (ds, dz, du). (5.1)
t R t— 0 0
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Clearly, each term in (5.1) has a version smooth in z € R, so we can fix 0 < ¢ < T and assume
the equation holds simultaneously for all x € R in the strong sense. The main result of this
section is the following:

Proposition 5.1 For any x € R, § >0 and 0 <r <t < T we almost surely have
T T
UG +3) = UBler +a)—b [ U3 +a)ds—a [ VUNE +x)aB,
t t
T
- / / US(ED + @ — 2) — UL + )] M (ds, d2)
%
+\[/ / / 1{u<US(£T+x+z)}dZ} WT(dS, du)
tf

T—
/ / / / 1{u<Ug(£r+z+v)}d'U:| zNE (ds dz,du). (5.2)

We give the proof of this proposition by a number of lemmas. Let r =tg <t; < --- <t, =T
be a partition of [r,T] and let v; = t; Vt. Let ¢, = maxj<i<p |t — ti—1|. By (1.9) and Ito’s
formula, for any f € C?(R),

f(&* ) = / A*f(&%(s))ds + My, (5.3)

where A* denotes the weak form of the dual generator and

D= [ Feenas [ ] 1€ e -0 - 1€ eidsa) 6

is a martingale. We can write £*(s) instead of £*(s—) on the right-hand side of (5.4) with the
convention that a stochastic integral takes automatically a predictable version of the integrand.
In view of (5.1), (5.3) and (5.4), using a stochastic Fubini’s theorem we have

Uf(fHﬂ:)—U%(&’Hx)
Z Uy (&)U (&, + ) +Z Uy (& +x) = UL (&, + )]

:_Z vi A*U5 55+xd8—02/ \V4 vllfs‘f‘CC)B
/ /O v;— 155 +$—Z) ’Uz 1(65 +ﬂ7)] ~(dS,dZ)

+Z/ [A*US(&) + x) — bUL (&), + x)]ds

+\f2/ _/ / 1{u<U5(§T +x+z)}d4 WT(ds du)

/ / / / V) Lu<u,(er. +x+v)}dv] zNT (ds dz, du)
Vi—1—
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- / UE 4 a)ds — o / s—) VU _ (€] + 2)dB,

—/ / Zfi(s—)[Ufi,l(ﬁg +z—2)-Up_ 1(5’“ + )| M(ds, dz)

/ AT (€ + ) — ATIE, + a)]ds

T—
<
+ﬁ/ /o Zli(s)[/R95(2)1{u§U5(§;i+$+z)}dZ] W (ds, du)
= i=1

T— 0o co N i .
+/ /0 /0 Z Ii(s) [/Rgé(v)l{ugUs(ggiHﬂ)}dv] zNOT(ds, dz,du), (5.5)
= i=1

where I;(s) = 1p,_, v,)(8) and Li(s—) = 1(,,_, »;)(s). Then (5.2) follows from (5.5) and the

lemmas to follow.

Lemma 5.2 For any 6 > 0 and T > 0 there is positive constant C(9) so that

B{ sup [|U:] +1107)+ VORI + |AT2) + 40PN } < Cr(d).
te[0,7

Proof. Since the measure-valued process {X; : t > 0} corresponding to {Y; : ¢ > 0} is a super-
Lévy process, using the contraction property of the operator T we see

E{ sup ||Uf|y} gE{ sup ||Ut\|} { sup XT,t(1)}.

te[0,7) tel0,T te[0,T

By Proposition 3.3 the right-hand side is bounded. Note that Vgs(z) = —zgs(z)/6. Then we
have

E{téié%} v} = E{W)Z’}épm‘ : / Uil + 2)2g5(2)d2| }

1
5B{ sw [0} [ [elos(z
t€[0,T

IN

where the right-hand side is bounded. Similarly one can prove the assertions for AUt‘S and A*U;s .
O

Lemma 5.3 The two-parameter process
{(U(z), U (), VU (), AU (), AU (2)) : 0 < t < T,z € R} (5.6)

is continuous in L!(P).
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Proof. The assertion for (t,z) — Uy(z) follows from Theorem 3.9 and that for (¢,z) — U (z)
follows by Proposition 3.3 and the contraction property of Ts. For r;t > 0 and z,y € R we get

B{VUI (@) - VUi )} = 5B /R U +2) — Uily + 2)2g5(2)d2| )

% /R B{|U; (x + 2) — Usly + 2)|} 2195 (=)d=

IN

By Theorem 3.9 and dominated convergence the right-hand side goes to zero as (r,z) — (t,y).
The arguments for the last two coordinators in (5.6) are similar. O

Lemma 5.4 Foranyx € R, § >0and 0<r <t<T, as e, — 0 we have
/ N, +2) —~ US(E +)lds} — 0. (5.7)
Proof. By the independence of {£7} and {Us(z)},

Lh.s. of (5.7) / B{f(s,€], + 2,67 + x)}ds, (5.8)

where

(S,.Z‘,y) = f(37x7y) = E{’Ug(l‘) - Ug(y)‘}

is a bounded continuous function on [0, 7] x R? by Lemmas 5.2 and 5.3. Then by the right-
continuity of s — &, and dominated convergence, the right-hand side of (5.8) goes to zero as
€n — 0. O

Lemma 5.5 Foranyx € R, § >0 and 0 <r <t <T, as e, — 0 we have
/ AT, (€ +2) ~ AVE, +2)lds} - 0. (5.9)
Proof. By the independence of {7} and {Us(z)},
Lhs. of (5.9) < / \A* (€t a) - AT +x)\}ds
/ B{| AV +2) ~ AVE, + )| s
- / fos—)ds / B{|A°U]_,(€) ~ A'UL(©)|} Py (2. dE)
/ B{| AV +2) ~ AVE, + )| s (5.10)
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Observe that

(s,6.1) = fs(&m) = E{|A"V(€) — AU ()]}

is a bounded continuous function on [0, 7] x R? by Lemmas 5.2 and 5.3. By dominated conver-
gence and the right-continuity of s — &7, the right-hand side of (5.10) goes to zero as &, — 0.
O

Lemma 5.6 Foranyx € R, § >0and 0<r <t<T, as e, — 0 we have

E{‘/fzn:l( VUL (& +2) — VU (&) + 2)|dB, } - 0. (5.11)

Proof. By the Holder inequality and the Burkholder-Davis-Gundy inequality,

Lhs. of (5.11) < CE{[/TiIi(s—)VUSil(ﬁg—i—x) —VU§(§§+x),2dsF}
roi=1

< C’{E[t:[url?p]HVUfH /TEn:li(s—)E[m(vi_l,s,fg)]ds};
< ofnl e 19001] [ as [ 3 heomus s 087 .09}

where
(t,s,x2) — m(t,s,z) = E{|VUE(3:) — VUf(x)H

is a bounded continuous function on [0,7])? x R by Lemmas 5.2 and 5.3. Then we get (5.11) by
dominated convergence. O

Lemma 5.7 Foranyx € R, § >0 and 0 <r <t <T, as e, — 0 we have
ol [ [ X He € e -0l € )
U3+ a = 2) - US(E + )} (ds,dz)| b = 0. (5.12)

Proof. By the Burkholder-Davis-Gundy inequality,

Lh.s. of (5.12) < CE / /OZI s, & 42, 2) M(dS,dZ)F}’

where
fils,&2) = [U)_ (6 —2)=U)_ (9] — [U2(€—2) - UL(&)].
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For any s > 0 and z,£ € R we have E{| fi(s,&, 2)|} — 0 as €, — 0 by Lemma 5.3. Moreover, we
have

[fils, €, 2)] < 2(]z[ A 1)ts[up] T2+ IV TP]

i

Then by the Cauchy-Schwarz inequality,

{Lhs. of (5.12)}* < C{E<tes[lépﬂ TP1+ VU] % / / ZI
(o€ + 2. 2)I(2] A 1>M<ds,dz>} )
on{ s (1081 + 1voe{ [ [ ZI

t€[0,T]
o+ 22l A DM <ds,dz>}

T
= C’/ ds/ ZL(S—)E{M(S,@Z+x,z)|}(|z|/\l)u(dz)
- c/ ds/ xdg/ Zf B fi(s, €, )12 A D(dz),

which tends to zero as €, — 0 by dominated convergence. O

IN

Lemma 5.8 Foranyx € R, § >0 and 0 <r <t <T, as e, — 0 we have

’/ / /95( 2)(Lusvi (e, +a+2)

— 2
—1{u§US(§§+x+Z)})dz} WT(ds,du)’ } 0. (5.13)

Proof. By 1td’s isometry, we have

Lhas. of (5.13) < / ds/ ’ZI /1{u<US(§v tato)}

2
N 1{“§Us(£g+m+z)})ga(Z)dz‘ }du

/ ds/ / |1{u<Us(EU +x+2)}

_ 1{u§US(§g+:p+z)}‘2du}95(z)d2

:/ ds/ UE, + 2+ 2)

—Us(& + o+ z)|}g5(z)dz

IN
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T n
_ / ds / SOL(S)E{h (€, + 3+ € + 2+ 2)hgs(2)dz,  (5.14)
r R i=1
where

(s,&,m) = hs(&n) = E{|Us(&) — Us(n)[}

is a bounded continuous function on [0,7] x R? by Lemmas 5.2 and 5.3. By dominated conver-
gence and the right-continuity of s — &, the right-hand side of (5.14) tends to zero as &, — 0.
g

Lemma 5.9 Foranyx € R, § >0and 0<r <t<T, as e, — 0 we have
’/ / / ZI / (V) Lusu, (g5, +a+v)}
o
— | 95(v)1{u<u, (r+atv)}dv| Ny (ds,dz,du)‘} — 0. (5.15)
R
Proof. Let hs(€,n) be defined as in the last proof. One can see
‘ / / / ZI / )1{u<Us(§U t+atv)}
~ o A— 2
N /R 95 (V)1 fustr, 614040y 00 | NE (ds,dz,du)’ }

T 1 n
< [ as [ s | S HOIR{R(E, o+ 0.8+ )i

and
T—
‘/ / / ZI /R )1{u<Ué(£v +a-+0)} 4V
<
- /R 95 ()L st ez oy do] VT (ds, dz, du)| |
T— co poo M
E{ /T_ /1 /0 ;fz’(S)Z[/Rgé(v)ll{u<Us(€$i+x+v)}
F
_1{u<Ug(§r+l.+v |dv} Ng(ds,dz,du)}
T
E{/ ds/l dz/ ZI / ) —
_1{u§Us (&r+ztv)} |dv} du}
T oo n
<2 [ as [ am(d) [ Y LGRULE, + o4 0.8 bt o))gs()do
T 1 R4
The right-hand sides of both inequalities tend to zero as €, — 0. O
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6 Backward equation and pathwise uniqueness

In this section, we shall prove the pathwise uniqueness for the stochastic integral equation (1.6).
The key step is to establish the backward doubly stochastic integral equation (1.10). We shall
use the settings of the last two sections. In particular, we assume Condition 3.6 is satisfied. In
the following Lemmas 6.2-6.10, we also assume Yy € D(R).

Lemma 6.1 For any t > 0 the mappings x + Zi(z) and x — YV Zy(z) are continuous in L*(P).

Proof. We only show the result for  — VZ;(x) since that for x — Z;(x) is simpler. By (4.5)
and Itd’s isometry, for any ¢t > 0 and x,y € R we have

B{[vzi(@) - vz} - cB{ [ s / Tl Y ) ey Y () P
= on{ s [ o -2 - sh - P00
< (et /Ot(Tciss)a/1R|pt_s(x—z)—pt_s(y—z)mps(dz), (6.1)

where C' is defined by (4.9). By dominated convergence one can see the right-hand side of (6.1)
tends to zero as x — ¥. O

Lemma 6.2 Forr c Rand 0 <r <t<T, as § — 0 we have

E{\ /t TWZ%_S@ + ) — VZp_y(&] + x)]dB, 2} — 0. (6.2)

Proof. Since {Z(x)} is independent of {£7} and {Bs}, by It6’s isometry we have
T
Lhs. of (6.2) < / E{[VZ%_S(gg +a) = V(€ +x)]2}ds

< /T ds/Rhg(:B, 2)gs(z)dz, (6.3)
where
Wi, 2) = B{[VZr-u(€ + 2 +2) = VZr_o( + 2.
By (4.11) it is easy to see that

Wi(w,2) < 2B{[VZr (& + o+ 2)2 + [VZr_o(& + o)}

Cr CTN(l)
T g [t i) < il

By Lemma 6.1 and the independence of {¢} and {Us(z)} it follows that (x,z) — hi(z,z) is
bounded and continuous on R2. Then we can apply dominated convergence in (6.3) to obtain
(6.2). O

<
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Lemma 6.3 Forx e Rand 0 <r <t<T, as § — 0 we have

E{\ /t T[Vﬁ%_s(sz + @) — VHr_ (€ + x))dB;

} - 0. (6.4)

Proof. Since {Y;(x)} is independent of {¢!} and { Bs}, by the Burkholder-Davis-Gundy inequality
and the Cauchy-Schwarz inequality we have

T—s 00
Lhs. of (6.4) < C / ‘/ dsl/ m(dz) / [T(;prfsfsl(fg—i—:c—Yszl(u))
0
pT S— sl(gs +x_}/;1 du‘ dS) }
T T—s
= C’TE{(/ ‘/ dsl/[Tng_s_sl(§§+$—u)
1
—pT551£ +ZL'—U 31 du)’ dS)Q}
T—s
< CYT:E / X31 d81 / dS/ ds2/ Tspr—s— S92 ‘Ss +$_u)
T PT—s—s2 gs +x_u 82(du)> }
T—s
<c / X, (1)dsi | B / ds/ d82/TapT352§8+:c—u>
— PT—s—s5(&s +x—u)]2Xs2(du)}}
T—s
S / dS/ dSQ/T5pT352£s+x_u)

e+ )Xoy ()]},

Then by the independence of {{.} and {X} we have

T T—s
{Lh.s. of (6.4)}* < CT/ ds/ dSQ//L(dy) IR{pSQ(u—y)du

ps r .’L‘—g)[Tng s— 52( — PT—s— sg(g_u)]gdg
T— s
CT/ ds/ T —s—s2) dsz/f5T352,x y)u(dy),

IN

where
Fs(r 5. 50,2, y) = / Py (1 — )l / Der (& — E)T5pr—ssy (€ — 1) — Prossa(€ — w)|dE. (6.5)
R R

It is easy to see that f5(r,s, s, 2,y) — 0 as § — 0 and

fs(r,s,82,2,y) < /Rps—r(w - §)d§/Rp82 (u = Y[ Tspr—s—5,(§ — 1) + pr—s—5,(§ — u)]du
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= /ps—r(w - §)d€/[pT—s(§ —y+ U) "i_pT—s(é~ - y)]Qé(”)dv
R R
= [ orera =+ )+ oo = plaso)do < Cr(T =)
Then we get (6.4) by dominated convergence. O

Lemma 6.4 Forr c Rand 0 <r <t<T, as § — 0 we have

B| [ (VHE_.(& + ) - V(& + ),

} 0. (6.6)

Proof. Since {Hs(x)} is independent of {¢7} and { B}, by the Burkholder-Davis-Gundy inequal-
ity and the Cauchy-Schwarz inequality we have

s or @) < o{( [ [ [T emato g v w)

2 1
P (€ + @ = Y @) No(dst, dz, du)| ds)* }
T poo poo %
CTE{</ / / 21{u§y51(oo)}N0(d81,dZ,du))
0 1 0
T T—s poo poo
([as [ [ ] et o v w)
r 0
1
—Pros (6 @ = Yy () PNo(dsz, dz,du) ) }
T poo
CT{E[/ / / zl{u§y51(oo)}]\70(dsl,dz,du)}
0 1 0
T T—s poo poo
A R A A e )

R S2<ss+x—Y32 () *No(dsz, dz, du) | }*

E[/OTX$1(1)d31/ am(dz)] - / ds/T )

[ s /0 |TapTw<fs+x—YS2 (w))

Py (€ 4 — Y (w))] du]}

T—s
< O / ds/ d52/|T5pT332£ +5L'_u)

—PT—s—s, (&5 + 7 — )| XSQ(dU)} } ;

IN

IN

=

IN

[NIE

N

which goes to zero as § — 0 by the proof of Lemma 6.3. O
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Lemma 6.5 Forx e Rand 0 <r <t<T, as § — 0 we have
4 4
B{|[ [ (#(&ro-n-2h (g o)
t J{lz|<1} )
—[Zr-sl€ + @ = 2) = Zr (€ + )} (ds, d2) | } = 0. (6.7)
Proof. Since {Z,(x)} is independent of {£7} and {M (ds,dz)}, by 1t6’s isometry we have

T
Lhs of (6.7) < / ds /{ . E{’[Z%,S(gg b —2)— 20 (€ + )]

2
~Zr (€ w = 2) — Zr (& + @) fuld2)

/TT s /{ V@) /R ho(,, 2)gs(y)dy, (6.8)

Wi(w,y.2) = B{|[Zr-u(& +a+y—2) = Zr_y(& +2+y)

2
~[Zru(g + o =2~ Zr- (& + )|

IN

where

By (4.10) we have

Cru(1)2?

r <
hs(x7y> Z) — (T— T)a

On the other hand, by Lemma 6.1 it is easy to see that the function y — h%(z,y, z) is continuous
and vanishes at y = 0. By dominated convergence, the right-hand side of (6.8) tends to zero as
0 —0. O

Lemma 6.6 Forx e Rand 0 <r <t<T, as d — 0 we have
r 70 70
B{| [ [ (o2 - B (€ 4 0)
i<y ) )
— B o(€ + 0 = 2) = By (& + @)} (ds, d2)|} 0. (6.9)

Proof. Since {Ys(z)} is independent of {£}} and {M (ds,dz)}, by the Burkholder-Davis-Gundy
inequality and the Cauchy-Schwarz inequality,

Lhs. of (6.9) < CE{(/T/{Z|<1} E
(€ 40— 2) — Hroale] )] M(ds,a2)) )

or{([ [ [y
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—VHp_ (€7 + 2 —n)] dn‘QM ds dz))é}

//{ |<1} dsdz/]VHT (& +x—mn)

—VHp_ (€7 + 2z —n)%dy 2}

T—s
< CE / / M (ds, dz) / ‘/ dsl/ zm(dz)
/1= |<1}

/0 Tsph o o, (€0 + 2 —n— Y ()

(€ == Yo ) an) )

T—s
<CTE // szsdz/‘/
{l=1<1}

[
R

—pT_ng ba )Xo ) dn) )

< CrE / X, d81 / / M(ds, dz) / dn
{l= |<1}

/ d52/|TapT2<§+x n—u)

0
P14 =0 — )X (dw)) )

< CT / X, d31 / / M(ds dz/
{l= |<1}

[ /RmpT__gw -

0
1

—Prsan (€ 7 — 1= 0) Xy (du)] |

/ / zM (ds,dz) / dn
{\ [<1}

/ dSQ/\TapT——z(f +x—n—u)

0
1

s sy (60— 1 — u)|* X, (du)”2.

Then by the independence of {&} and {X;} we have

{Lhs. of (6.9)}* < Cr /TTds/{Zlgl}zy(dz) /O dn/OTs dSQ/R,,L(dy)

Py (1t — y)du / Dor( =1 — )| Tspr—s—sy (€ — )
R R
—PT—s—s9 (5 - ’LL) |2d§
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/ / T — s — s9)~%dss /{ )
/ / (r, 8, 82,0 —n,y)u(dy),

where the function fs is defined by (6.5). By the proof of Lemma 6.3 we have (6.9). O

Lemma 6.7 Forr c Rand 0 <r <t <T, as § — 0 we have
4 0
B{| [ [ (o2 - B (€ 4 0)
! )
[Hp_s(€7 + @ — 2) — Hy_ (€7 + 2)]} M (ds, dz)‘} ) (6.10)

Proof. Since {Ys(z)} is independent of {£} and {M (ds,dz)}, by the Burkholder-Davis-Gundy
inequality and the Cauchy-Schwarz inequality,

T
Lhs. of (6.10) < CB{( / / [ [ (& + 0 — 2) — Hb_ (€ +2)]

—[Hp—s(& +x — 2) — Hp_s(&L + $)]‘2M(ds7 dz)) 5}

- / /{Zm} / VHS_ (€ +— 1)
~VHr_(€ + 2~ n)ldn| M(ds,d2))

< on{( | ' /{ s ) [T

~VHr_(€ +a—n)[dn)

T
E (/ / zM (ds,dz)
{\Z|<1}

T—

=

}

N

)

IN

T(SPT 5— 31(55 +xr—n- ( ))

[N

—ph 51(634—:6—17 Yo (w ))]No(dsl,dzl,dw)‘ d )

1

CTE{ / / / 21w <y, (oo)}NO(dsl,dzl,dwl)) ?
0 IT 0 1
</ / zM(ds,dz)/ dn
TT {lz|<1} 0
s oo o
/ / / 22|T5PT75732 (52 +T—1n— }fsgl(w2))

1
—PT—s— 525 +x—-n- Y (w2))| No(d52vdz2>dw2))2}

< C / / / le{w1<Y OO)}Ng(dsl,dzl,dwl)}

42

j

IN



T z
E[/ / zM(ds,dz)/ dn
TT_{\ZISI} 0
[ A AR R )
1

—Pr—s—s,(§s +x ==Y, Yw)) > No d52,dz2,dw2)]}2

T—s
/ / M (ds,dz) / dn/ d32/ zom(dza)
{\Z|<1}

|T6pT—s—S2 (fs +x—n- Y52 (w2))

IN

0
P e (€ + = = Y, ()] dw}}

T—s
/ / M (ds,dz) / dn/
{\Z|<1}

’T5pT78782 (é-s +x— n— w2)
R

N

IN

N

DT e (€ + 1 = — wp) P X, (du)] .

The right-hand side tends to zero as § — 0 by the proof of Lemma 6.6. a

Lemma 6.8 Forr c Rand 0 <r <t<T, as § — 0 we have

B [ ' [ € =) =¥ )

~[Yros(€] + @ = ) = Yrool€] + )]} M (ds, d2)| | > 0. (6.11)
Proof. Since {Y;(x)} is independent of {&} and {M(ds, dz)}, we have

T
Lhs. of (6.11) < 2/ ds/{| 1}E{‘[Y7‘§S(§§+aﬁ—z)—Yj§5(§§—|—m)]
z|>

— Vo (§] + @ = ) = Vi (€] + )| Jr(d2)
/ ds/ (z,dy) /{Z|>1} v(dz) Rhs(y,z,v)gg(v)dv,

IN

where
hs(y, 2,0) = BY|Vr—oly — 2+ 0) = Yr_s(y = 2)] — Vr—s(y +0) = Yrs()]| }

By Proposition 3.3, Theorem 3.9 and dominated convergence one sees (y, z,v) — hs(y, z,v) is
a bounded continuous function on R? vanishing at v = 0. Then (6.11) holds by dominated
convergence. |
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Lemma 6.9 Forx e Rand 0 <r <t<T, as § — 0 we have
‘ / / / Dugyr_ (grata)de
T
~Nusyr (e W (ds,du)’ =0 (6.12)

Proof. Since {¢7'} is independent of {Ys(x)} and {W7 (ds,du)}, by Itd’s isometry and the Holder
inequality we have

T 9] 2
L.h.s. of (612) = / dS/ E{’/[l{USYTs(ﬁg-i-x—&-z)} _1{USYT,S(£§+x)}]g5(Z)dZ‘ }du
TT 0 OOR ;
/ ds / B{ / [Lusvr ervata)) — Lusvr (e van 2du fg5(2)dz
TT R 0
/ ds / B{|Yr o€ + 2+ 2) = Yr_o(€ + 2) }gs(2)dz
— / ds / (. de) / E{|Vr_a(€ + 2) — Yr_o(6)| g5 (2)dz

By Proposition 3.3, Theorem 3.9 and dominated convergence one can see

(5,6 2) = E{|Y7_s(§ — 2) = Y1 (I}

is a bounded continuous function on [0, T] x R?. By dominated convergence we get (6.12). O

IN

IN

Lemma 6.10 Forx e Rand0<r <t<T, as 6 — 0 we have

T

—1{USYT_S(€M)}]N5F (ds, dz, du)‘} 0. (6.13)

Proof. Since {¢7'} is independent of {Ys(z)} and {N{ (ds,dz,du)}, by similar calculations as in
the last proof, we have

‘ / / / / 2 usyr_(erat2)y 42 = Lusyr_ (srm)}}w(%’d%d“)‘z}
g/o zm(dz/ ds [ P2 (w.d) [ BVl + )~ Vi ©lhs(2)i:

which tends to zero as § — 0. On the other hand, one can see

‘ / / / / Dfusvr vt dz = Lusvr e+ | N6 (%,dz,du)\}
52/ m(dz) / dS/ (2, d€) /E{!YTS(HZ)—YT5(6)}95(Z)d2

The right-hand side clearly goes to zero as § — 0. a

44



Theorem 6.11 For any x € R and 0 < r <t < T, the backward doubly stochastic integral
equation (1.10) almost surely holds.

Proof. By considering a conditional probability, we may assume that Yy is deterministic. We
first assume Yy € D'(R). By Proposition 3.3, Theorem 3.9 and dominated convergence it is easy
to see that, as § — 0,

e{ [ V(€ 1) - Vil + lds) 0.

By Lemmas 6.2-6.4 we have, as 6 — 0,

}—>0.

T
B{| [ (V¥ .(&f +0) - VYol + 0)dB,
t
By Lemmas 6.5-6.8 we have, as 6 — 0,
g 0 0
B{| [ [ (07 a2 - Vi +a)
- 2
— Vr (€ + 2 — 2) = Yy (€ + 2)] il (ds, dz)| } 0.
Combining those with Lemmas 6.9 and 6.10, we get the desired equation from (5.2) by letting
9 — 0. For a solution of with general initial state Yy € D(R), we let Y = Y4 for ¢ > 0 and

0 < ¢ <T. By Theorem 3.7 we have Y € D!(R) almost surely. Then we can apply (1.10) to
T —e>0and (t,z) — Y () to get

(T—e)— fpoo —
Yr-o(§ +2) = Ye(&p + o) + \ﬁ/ / Liy<yy . (ervan W' (ds, du)
t— 0
(T—E)— o0 [e.e] - <
+ / / / Vusyr e+ N (ds, dz, du)
i T—e 0 0 T—e
s / Vo o€ +a)ds—o | VY o(€ + 2)dB,s
t t
T—e _
[ [ g a0 - Yo ol (s de). (614)
t o
By Proposition 3.8 we have

E{IYE(€%+1‘)—Yo(£%+l‘)|}I/RE{IYe(y)—%(y)I}P%_T(w,dy)a

which tends to zero as € — 0. Then by letting € — 0 in (6.14) we obtain the desired equation.
O

Theorem 6.12 The pathwise uniqueness holds for cadlag D(R)-valued solutions of the stochas-
tic equation (1.6).
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Proof. Suppose that {Y;! : t > 0} and {Y;? : t > 0} are two cddldg D(R)-valued solutions of (1.6)
with YO1 = Y02 € D(R). By considering a conditional probability, we may assume that the initial
state is deterministic. Since both (¢,z) — Y} (& + ) and (¢,z) — Y2, (& + z) satisfy (1.10),
by Theorem 2.3 for any 0 <r <t < T and x € R we have P{Y} (& +2)=Y2 (& +2)} = 1.
In particular, for any 0 <t < T and x € R we have almost surely

Yi_o(x) = Y7 4(& +2) = YE_(§ +x) = Y7 _,(2).

Then the continuity of z — Y,!}(x) and z — Y?(x) imply P{Y,!}(x) = Y2(x) for all z € R} =1
for every t > 0. It follows that (Y;', f) = (Y2, f) almost surely for every ¢t > 0 and f € .7(R).
By the right-continuity of the processes we obtain P{(Y;!, f) = (Y2, f) for t > 0} = 1 for every
f € Z(R). Considering a suitable sequence {f1, f2, -} C .7 (R) we can conclude P{Y;!(x) =
Y2(x) for t > 0 and z € R} = 1. That gives the pathwise uniqueness for (1.6). O
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