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Abstract: A family of continuous-state branching processes with immigration are
constructed as the solution flow of a stochastic equation system driven by time–
space noises. The family can be regarded as an inhomogeneous increasing path-
valued branching process with immigration. Two nonlocal branching immigration
superprocesses can be defined from the flow. We identify explicitly the branching
and immigration mechanisms of those processes. The results provide new perspec-
tives into the tree-valued Markov processes of Aldous and Pitman [Ann. Inst. H.
Poincaré Probab. Statist. 34 (1998), 637–686] and Abraham and Delmas [Ann.
Probab. 40 (2012), 1167–1211].
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1 Introduction

Continuous-state branching processes (CB-processes) are positive Markov processes in-
troduced by Jǐrina (1958) to model the evolution of large populations of small particles.
Continuous-state branching processes with immigration (CBI-processes) are generaliza-
tions of them describing the situation where immigrants may come from other sources of
particles; see, for example, Kawazu and Watanabe (1971). The law of a CB-process is
determined by its branching mechanism ϕ, which is a function with the representation

ϕ(λ) = bλ+
1

2
σ2λ2 +

∫ ∞

0

(e−zλ − 1 + zλ)m(dz), (1.1)

where σ ≥ 0 and b are constants and (z ∧ z2)m(dz) is a finite measure on (0,∞). In
most cases, we only define the function ϕ on [0,∞), but it can usually be extended to an

1 Supported by NSFC (No. 11131003), 973 Program (No. 2011CB808001) and 985 Program.
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analytic function on an interval strictly larger than [0,∞). The branching mechanism is
said to be critical, subcritical or supercritical according as b = 0, b > 0 or b < 0.

A CB-process can be obtained as the small particle limit of a sequence of discrete
Galton–Watson branching processes; see, for example, Lamperti (1967). A genealogical
tree is naturally associated with a Galton–Watson process. The genealogical structures
of CB-processes were investigated by introducing continuum random trees in the pioneer
work of Aldous (1991, 1993), where the quadratic branching mechanism ϕ(λ) = λ2 was
considered. Continuum random trees corresponding to general branching mechanisms
were constructed in Le Gall and Le Jan (1998a, 1998b) and were studied further in
Duquesne and Le Gall (2002). By pruning a Galton–Watson tree, Aldous and Pitman
(1998) constructed a decreasing tree-valued process. Then they used time-reversal to
obtain an increasing tree-valued process starting with the trivial tree. They gave some
characterizations of the increasing process up to the ascension time, the first time when
the increasing tree becomes infinite.

Tree-valued processes associated with general CB-processes were studied in Abraham
and Delmas (2010). By shifting a critical branching mechanism, they defined a fam-
ily of branching mechanisms {ψθ : θ ∈ Θ}, where Θ = [θ∞,∞) or (θ∞,∞) for some
θ∞ ∈ [−∞, 0]. Abraham and Delmas (2010) constructed a decreasing tree-valued Markov
process {Tθ : θ ∈ Θ} by pruning a continuum tree, where the tree Tθ has branching
mechanism ψθ. The explosion time A was defined as the smallest negative time when the
tree (or the total mass of the corresponding CB-process) is finite. Abraham and Delmas
(2010) gave some characterizations of the evolution of the tree after this time under an
excursion law. For the quadratic branching mechanism, they obtained explicit expres-
sions for some interesting distributions. Those extend the results of Aldous and Pitman
(1998) on Galton–Watson trees in the time-reversed form. The main tool of Abraham
and Delmas (2010) was the exploration process of Le Gall and Le Jan (1998a, 1998b) and
Duquesne and Le Gall (2002). Some general ways of pruning random trees in discrete
and continuous settings were introduced in Abraham et al. (2010, 2012).

In this paper, we study a class of increasing path-valued Markov processes using the
techniques of stochastic equations and measure-valued processes developed in recent years.
Those path-valued processes are counterparts of the tree-valued processes of Abraham and
Delmas (2010). A special case of the model is described as follows. Let T = [0,∞) or
[0, a] or [0, a) for some a > 0. Let (θ, λ) 7→ ζθ(λ) be a continuous function on T × [0,∞)
with the representation

ζθ(λ) = βθλ+

∫ ∞

0

(1− e−zλ)nθ(dz), θ ∈ T, λ ≥ 0,

where βθ ≥ 0 and znθ(dz) is a finite kernel from T to (0,∞). Let ϕ be a branching
mechanism given by (1.1). Then the function

ϕq(λ) := ϕ(λ)−
∫ q

0

ζθ(λ)dθ, λ ≥ 0 (1.2)
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also has the representation (1.1) with the parameters (b,m) = (bq,mq) depending on
q ∈ T . Let m(dy, dz) be the measure on T × (0,∞) defined by

m([0, q]× [c, d]) = mq[c, d], q ∈ T, d > c > 0.

Let W (ds, du) be a white noise on (0,∞)2 based on the Lebesgue measure and let
Ñ0(ds, dy, dz, du) be a compensated Poisson random measure on (0,∞) × T × (0,∞)2

with intensity dsm(dy, dz)du. Let µ ≥ 0 be a constant. For q ∈ T we consider the
stochastic equation

Xt(q) = µ− bq

∫ t

0

Xs−(q)ds+ σ

∫ t

0

∫ Xs−(q)

0

W (ds, du)

+

∫ t

0

∫
[0,q]

∫ ∞

0

∫ Xs−(q)

0

zÑ0(ds, dy, dz, du). (1.3)

We shall see that there is a pathwise unique positive càdlàg solution {Xt(q) : t ≥ 0} to
(1.3). Then we can talk about the solution flow {Xt(q) : t ≥ 0, q ∈ T} of the equation
system. We prove that each {Xt(q) : t ≥ 0} is a CB-process with branching mechanism
ϕq, and {(Xt(q))t≥0 : q ∈ T} is an inhomogeneous path-valued increasing Markov process
with state space D+[0,∞), the space of positive càdlàg paths on [0,∞) endowed with the
Skorokhod topology.

The formulation of path-valued processes provides new perspectives into the evolution
of the random trees of Aldous and Pitman (1998) and Abraham and Delmas (2010). From
this formulation we can derive some structural properties of the model that have not been
discovered before. For q ∈ T let us define the random measure Zq(dt) = Xt(q)dt on [0,∞).
We shall see that {Zq : q ∈ T} is an inhomogeneous increasing superprocess involving a
nonlocal branching structure, and the total mass process

σ(q) :=

∫ ∞

0

Xs(q)ds, q ∈ T

is an inhomogeneous CB-process. Then one can think of {X(q) : q ∈ T} as a path-valued
branching process. On the other hand, for each t ≥ 0 the random increasing function
q 7→ Xt(q) induces a random measure Yt(dq) on T such that Xt(q) = Yt[0, q] for q ∈ T .
We prove that {Yt : t ≥ 0} is a homogeneous superprocess with both local and nonlocal
branching structures. We also establish some properties of an excursion law N0 for the
superprocess {Yt : t ≥ 0}. Given a branching mechanism ϕ of the form (1.1), for a suitable
interval T we can define a family of branching mechanisms {ϕq : q ∈ T} by

ϕq(λ) = ϕ(λ− q)− ϕ(−q), λ ≥ 0,

where the two terms on the right-hand side are defined using (1.1). The family can be
represented by (1.2) with ζθ(λ) = −(∂/∂λ)ϕθ(λ). In this case, the path-valued process
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q 7→ (Xt(q))t≥0 under the excursion law N0 corresponds to the time-reversal of the tree-
valued process θ 7→ Tθ of Abraham and Delmas (2010). In general, we may associate
{X(q) : q ∈ T} with a “forest-valued branching process”.

To make the exploration self-contained, we shall consider a slightly generalized form of
the equation system (1.3) involving some additional immigration structures. In Section 2,
we present some preliminary results on inhomogeneous immigration superprocesses and
CBI-processes. In Section 3 a class of CBI-processes with predictable immigration rates
are constructed as pathwise unique solutions of stochastic integral equations driven by
time–space noises. In Section 4 we introduce the path-valued increasing Markov processes
and identify them as path-valued branching processes with immigration. A construction
of those processes is given in Section 5 using a system of stochastic equations generalizing
(1.3). In Section 6 we derive a homogeneous nonlocal branching immigration superprocess
from the flow. The properties of the process under an excursion law are studied in
Section 7.

We sometimes write R+ for [0,∞). Let F (T ) denote the set of positive right continuous
increasing functions on an interval T ⊂ R. For a measure µ and a function f on a
measurable space we write ⟨µ, f⟩ =

∫
fdµ if the integral exists. Throughout this paper,

we make the conventions ∫ b

a

=

∫
(a,b]

and

∫ ∞

a

=

∫
(a,∞)

for any b ≥ a ∈ R. Other notations are explained as they first appear.

2 Inhomogeneous immigration superprocesses

In this section, we present some preliminary results on inhomogeneous immigration su-
perprocesses and CBI-processes. Suppose that T ⊂ R is an interval, and E is a Lusin
topological space. Let Ẽ = T × E. A function (s, x) 7→ f(s, x) on Ẽ is said to be locally
bounded if for each compact interval S ⊂ T the restriction of (s, x) 7→ f(s, x) to S × E
is bounded. Let M(E) be the space of finite Borel measures on E endowed with the
topology of weak convergence. Let B+(E) be the set of bounded positive Borel functions
on E. Let I (E) denote the set of all functionals I on B+(E) with the representation

I(f) = ⟨λ, f⟩+
∫
M(E)◦

(1− e−⟨ν,f⟩)L(dν), f ∈ B+(E), (2.1)

where λ ∈ M(E) and (1 ∧ ⟨ν, 1⟩)L(dν) is a finite measure on M(E)◦ := M(E) \ {0}.
Let J (E) denote the set of all functionals on B+(E) of the form f 7→ J(f) := a + I(f)
with a ≥ 0 and I ∈ I (E). By Theorems 1.35 and 1.37 in Li (2011) one can prove the
following:
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Theorem 2.1 There is a one-to-one correspondence between functionals V ∈ J (E) and
infinitely divisible sub-probability measures Q on M(E), which is determined by∫

M(E)

e−⟨ν,f⟩Q(dν) = exp { − V (f)}, f ∈ B+(E). (2.2)

Theorem 2.2 If U ∈ J (E) and if V : f 7→ v(·, f) is an operator on B+(E) such that
v(x, ·) ∈ J (E) for all x ∈ E, then U ◦ V ∈ J (E).

Suppose that (Pr,t : t ≥ r ∈ T ) is an inhomogeneous Borel right transition semigroup
on E. Let ξ = (Ω,F ,Fr,t, ξt,Pr,x) be a right continuous inhomogeneous Markov process
realizing (Pr,t : t ≥ r ∈ T ). Let (s, x) 7→ bs(x) be a Borel function on Ẽ, and let
(s, x) 7→ cs(x) be a positive Borel function on Ẽ. Let ηs(x, dy) be a kernel from Ẽ to E,
and let Hs(x, dν) be a kernel from Ẽ to M(E)◦. Suppose that the function

|bs(x)|+ cs(x) + ηs(x,E) +

∫
M(E)◦

(⟨ν, 1⟩ ∧ ⟨ν, 1⟩2 + ⟨νx, 1⟩)Hs(x, dν)

on S × E is locally bounded, where νx(dy) denotes the restriction of ν(dy) to E \ {x}.
For (s, x) ∈ Ẽ and f ∈ B+(E) define

ϕs(x, f) = bs(x)f(x) + cs(x)f(x)
2 −

∫
E

f(y)ηs(x, dy)

+

∫
M(E)◦

[e−⟨ν,f⟩ − 1 + ν({x})f(x)]Hs(x, dν). (2.3)

Let Tt = T ∩ (−∞, t] for t ∈ T . By Theorem 6.10 in Li (2011) one can show there is
an inhomogeneous Borel right transition semigroup (Qr,t : t ≥ r ∈ T ) on the state space
M(E) defined by∫

M(E)

e−⟨ν,f⟩Qr,t(µ, dν) = exp { − ⟨µ, Vr,tf⟩}, f ∈ B+(E), (2.4)

where (r, x) 7→ vr,t(x) := Vr,tf(x) is the unique locally bounded positive solution to the
integral equation

vr,t(x) = Pr,x[f(ξt)]−
∫ t

r

Pr,x[ϕs(ξs, vs,t)]ds, r ∈ Tt, x ∈ E. (2.5)

Let us consider a right continuous realization X = (W,G ,Gr,t, Xt,Qr,µ) of the transi-
tion semigroup (Qr,t : t ≥ r ∈ T ) defined by (2.4). Suppose that (s, x) 7→ gs(x) is a locally
bounded positive Borel function on Ẽ. Let ψs(x, f) = −gs(x) + ϕs(x, f) for f ∈ B+(E).
Following the proofs of Theorems 5.15 and 5.16 in Li (2011), one can see

Qr,µ exp
{
− ⟨Xt, f⟩ −

∫ t

r

⟨Xs, gs⟩ds
}
= exp { − ⟨µ, Ur,tf⟩}, (2.6)
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where (r, x) 7→ ur,t(x) := Ur,tf(x) is the unique locally bounded positive solution to

ur,t(x) = Pr,x[f(ξt)]−
∫ t

r

Pr,x[ψs(ξs, us,t)]ds, r ∈ Tt, x ∈ E. (2.7)

Then there is an inhomogeneous Borel right sub-Markov transition semigroup (Qg
r,t : t ≥

r ∈ T ) on M(E) given by∫
M(E)

e−⟨ν,f⟩Qg
r,t(µ, dν) = exp { − ⟨µ, Ur,tf⟩}. (2.8)

A Markov process with transition semigroup given by (2.8) is called an inhomogeneous
superprocess with branching mechanisms {ψs : s ∈ T}. The family of operators (Ur,t : t ≥
r ∈ T ) is called the cumulant semigroup of the superprocess. From (2.8) one can derive
the following branching property :

Qg
r,t(µ1 + µ2, ·) = Qg

r,t(µ1, ·) ∗Qg
r,t(µ2, ·) (2.9)

for t ≥ r ∈ T and µ1, µ2 ∈ M(E), where “∗” denotes the convolution operation. Some
special branching mechanisms are given in Dawson et al. (2002), Dynkin (1993) and Li
(1992, 2011). Clearly, the semigroup (Qr,t : t ≥ r ∈ T ) given by (2.4) corresponds to a
conservative inhomogeneous superprocess. In general, the inhomogeneous superprocess is
not necessarily conservative.

We can append an additional immigration structure to the inhomogeneous superpro-
cess. Suppose that ρ(ds) is a Radon measure on T and {Js : s ∈ T} ⊂ J (E) is a family
of functionals such that s 7→ Js(f) is a locally bounded Borel function on T for each
f ∈ B+(E).

Theorem 2.3 There is an inhomogeneous transition semigroup (Qρ,J
r,t : t ≥ r ∈ T ) on

M(E) given by∫
M(E)

e−⟨ν,f⟩Qρ,J
r,t (µ, dν) = exp

{
− ⟨µ, Ur,tf⟩ −

∫ t

r

Js(Us,tf)ρ(ds)
}
, (2.10)

where (r, x) 7→ ur,t(x) := Ur,tf(x) is the unique locally bounded positive solution to (2.7).

Proof. By Theorems 2.1 and 2.2, for any t ≥ r ∈ T we can define an infinitely divisible
sub-probability measure Nr,t on M(E) by∫

M(E)

e−⟨ν,f⟩Nr,t(dν) = exp
{
−
∫ t

r

Js(Us,tf)ρ(ds)
}
.

It is easy to check that

Nr,t = (Nr,sQ
g
s,t) ∗Ns,t, t ≥ s ≥ r ∈ T,
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where

Nr,sQ
g
s,t =

∫
M(E)

Nr,s(dµ)Q
g
s,t(µ, ·).

Following the arguments in Li (2002, 2011) one can show

Qρ,J
r,t (µ, ·) = Qg

r,t(µ, ·) ∗Nr,t, t ≥ r ∈ T (2.11)

defines an inhomogeneous sub-Markov transition semigroup onM(E). Clearly, the Laplace
functional of this transition semigroup is given by (2.10). �

If a Markov process with state spaceM(E) has transition semigroup (Qρ,J
r,t : t ≥ r ∈ T )

given by (2.10), we call it an inhomogeneous immigration superprocess with immigration
mechanisms {Js : s ∈ T} and immigration measure ρ. The intuitive meaning of the model
is clear in view of (2.11). That is, the population at any time t ≥ 0 is made up of two
parts, the native part generated by the mass µ ∈ M(E) at time r ≥ 0 has distribution
Qg

r,t(µ, ·) and the immigration in the time interval (r, t] gives the distribution Nr,t. When
E shrinks to a singleton, we can identifyM(E) with the positive half line R+ = [0,∞). In
this case, the transition semigroups given by (2.8) and (2.10) determine one-dimensional
CB- and CBI-processes, respectively.

Now let us consider a branching mechanism ϕ of the form (1.1). We can define the
transition semigroup (Pt)t≥0 of a homogeneous CB-process by∫

R+

e−λyPt(x, dy) = e−xvt(λ), t, λ ≥ 0, (2.12)

where t 7→ vt(λ) is the unique locally bounded positive solution of

vt(λ) = λ−
∫ t

0

ϕ(vs(λ))ds,

which is essentially a special form of (2.5). We can write the above integral equation into
its differential form

d

dt
vt(λ) = −ϕ(vt(λ)), v0(λ) = λ. (2.13)

The Chapman–Kolmogorov equation of (Pt)t≥0 implies vr(vt(λ)) = vr+t(λ) for all r, t, λ ≥
0. The set of functions (vt)t≥0 is the cumulant semigroup. Observe that λ 7→ ϕ(λ) is
continuously differentiable with

ϕ′(λ) = b+ σ2λ+

∫ ∞

0

z(1− e−zλ)m(dz), λ ≥ 0.

By differentiating (2.12) and (2.13) in λ ≥ 0 one can show∫
R+

yPt(x, dy) = x
d

dλ
vt(λ)

∣∣∣
λ=0+

= xe−bt. (2.14)
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It is easy to see that (Pt)t≥0 is a Feller semigroup. Let us consider a càdlàg realization
X = (Ω ,F ,Fr,t, Xt,Pr,x) of the corresponding CB-process with an arbitrary initial time
r ≥ 0. Let η(ds) be a Radon measure on [0,∞). By Theorem 5.15 in Li (2011), for
t ≥ r ≥ 0 and f ∈ B+[0, t], we have

Pr,x

[
exp

{
−

∫
[r,t]

f(s)Xsη(ds)
}]

= exp { − xut(r, f)}, (2.15)

where r 7→ ut(r, f) is the unique bounded positive solution to

ut(r, f) +

∫ t

r

ϕ(ut(s, f))ds =

∫
[r,t]

f(s)η(ds), 0 ≤ r ≤ t. (2.16)

In particular, for r ≥ 0 and f ∈ B+[0,∞) with compact support, we have

Pr,x

[
exp

{
−
∫ ∞

r

f(s)Xsds
}]

= exp { − xu(r, f)}, (2.17)

where r 7→ u(r, f) is the unique compactly supported bounded positive function on [0,∞)
solving

u(r, f) +

∫ ∞

r

ϕ(u(s, f))ds =

∫ ∞

r

f(s)ds, r ≥ 0. (2.18)

It is not hard to see that u(r, f) = 0 for r > lf := sup{t ≥ 0 : f(t) > 0}. For any r ≥ 0
let

σr(X) =

∫ ∞

r

Xsds.

Theorem 2.4 Suppose that ϕ(λ) → ∞ as λ→ ∞. Then for any λ ≥ 0 we have

Pr,x

[
e−λσr(X)1{σr(X)<∞}

]
= exp { − xϕ−1(λ)}, (2.19)

where ϕ−1 is the right inverse of ϕ defined by

ϕ−1(λ) = inf{z ≥ 0 : ϕ(z) > λ}. (2.20)

Proof. A proof of (2.19) was already given in Abraham and Delmas (2010). We here
give a simple derivation of the result since the argument is also useful to prove the next
theorem. By (2.15) and (2.16), for any t ≥ r and z, θ ≥ 0 we have

Pr,x

[
exp

{
− zXt − θ

∫ t

r

Xsds
}]

= exp { − xut(r, z, θ)},
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where r 7→ ut(r, z, θ) is the unique bounded positive solution to

ut(r, z, θ) +

∫ t

r

ϕ(ut(s, z, θ))ds = z + θ(t− r), 0 ≤ r ≤ t.

Then one can see ut(r, z, ϕ(z)) = z. It follows that

Pr,x

[
exp

{
− zXt − ϕ(z)

∫ t

r

Xsds
}]

= e−zx.

Since σr(X) <∞ implies limt→∞Xt = 0, if ϕ(z) > 0, we get

Pr,x

[
e−ϕ(z)σr(X)1{σr(X)<∞}

]
= e−zx.

That gives (2.19) first for λ = ϕ(z) > 0 and then for all λ ≥ 0. �

Let t 7→ ρ(t) be a locally bounded positive Borel function on [0,∞). Suppose that
h ≥ 0 is a constant and zn(dz) is a finite measure on (0,∞). Let ψ be an immigration
mechanism given by

ψ(λ) = hλ+

∫ ∞

0

(1− e−zλ)n(dz), λ ≥ 0. (2.21)

By Theorem 2.3 we can define an inhomogeneous transition semigroup {P ρ
r,t : t ≥ r ≥ 0}

on R+ by ∫
R+

e−λyP ρ
r,t(x, dy) = exp

{
− xvt−r(λ)−

∫ t

r

ψ(vt−s(λ))ρ(s)ds
}
. (2.22)

A positive Markov process with transition semigroup (P ρ
r,t)t≥r≥0 is called an inhomoge-

neous CBI-process with immigration rate ρ = {ρ(t) : t ≥ 0}. It is easy to see that the
homogeneous time–space semigroup associated with (P ρ

r,t)t≥r≥0 is a Feller transition semi-
group. Then (P ρ

r,t)t≥r≥0 has a càdlàg realization Y = (Ω ,F ,Fr,t, Yt,P
ρ
r,x). A modification

of the proof of Theorem 5.15 in Li (2011) shows that, for t ≥ r ≥ 0 and f ∈ B+[0, t],

Pρ
r,x

[
exp

{
−

∫
[r,t]

f(s)Ysη(ds)
}]

= exp
{
− xut(r, f)−

∫ t

r

ψ(ut(s, f))ρ(s)ds
}
, (2.23)

where r 7→ ut(r, f) is the unique bounded positive solution to (2.16). In particular, for
r ≥ 0 and f ∈ B+[0,∞) with compact support, we have

Pρ
r,x

[
exp

{
−

∫ ∞

r

f(s)Ysds
}]
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= exp
{
− xu(r, f)−

∫ ∞

r

ψ(u(s, f))ρ(s)ds
}
, (2.24)

where r 7→ u(r, f) is the unique compactly supported bounded positive solution to (2.18).
For any r ≥ 0 let

σr(Y ) =

∫ ∞

r

Ysds.

By a modification of the proof of Theorem 2.4, we get the following:

Theorem 2.5 Suppose that ϕ(λ) → ∞ as λ→ ∞. Then for any r, λ ≥ 0 we have

Pρ
r,x

[
e−λσr(Y )1{σr(Y )<∞}

]
= exp

{
− xϕ−1(λ)− ψ(ϕ−1(λ))

∫ ∞

r

ρ(s)ds
}
,

where ϕ−1(λ) is defined by (2.20).

3 The predictable immigration rate

The main purpose of this section is to give a construction of the CBI-process with transi-
tion semigroup (P ρ

r,t)t≥r≥0 defined by (2.22) as the pathwise unique solution of a stochastic
integral equation driven by time–space noises. For the convenience of applications, we
shall generalize the model slightly by considering a random immigration rate. This is
essential for our study of the path-valued Markov processes. The reader is referred to
Bertoin and Le Gall (2006), Dawson and Li (2006, 2011), Fu and Li (2010) and Li and
Mytnik (2011) for some related results.

Suppose that (Ω ,F ,Ft,P) is a filtered probability space satisfying the usual hypothe-
ses. Let {W (t, ·) : t ≥ 0} be an (Ft)-white noise on (0,∞) based on the Lebesgue measure
and let {p0(t) : t ≥ 0} and {p1(t) : t ≥ 0} be (Ft)-Poisson point processes on (0,∞)2 with
characteristic measures m(dz)du and n(dz)du, respectively. We assume that the white
noise and the Poisson processes are independent of each other. Let W (ds, du) denote
the stochastic integral on (0,∞)2 with respect to the white noise. Let N0(ds, dz, du) and
N1(ds, dz, du) denote the Poisson random measures on (0,∞)3 associated with {p0(t)}
and {p1(t)}, respectively. Let Ñ0(ds, dz, du) denote the compensated random measure
associated with {p0(t)}. Suppose that ρ = {ρ(t) : t ≥ 0} is a positive (Ft)-predictable
process such that t 7→ P[ρ(t)] is locally bounded. We are interested in positive càdlàg
solutions of the stochastic equation

Yt = Y0 + σ

∫ t

0

∫ Ys−

0

W (ds, du) +

∫ t

0

∫ ∞

0

∫ Ys−

0

zÑ0(ds, dz, du)

+

∫ t

0

(hρ(s)− bYs−)ds+

∫ t

0

∫ ∞

0

∫ ρ(s)

0

zN1(ds, dz, du). (3.1)
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For any positive càdlàg solution {Yt : t ≥ 0} of (3.1) satisfying P[Y0] < ∞, one can
use a standard stopping time argument to show that t 7→ P[Yt] is locally bounded and

P[Yt] = P[Y0] + ψ′(0)

∫ t

0

P[ρ(s)]ds− b

∫ t

0

P[Ys]ds, (3.2)

where

ψ′(0) = h+

∫ ∞

0

zn(dz).

By Itô’s formula, it is easy to see that {Yt : t ≥ 0} solves the following martingale problem:
For every f ∈ C2(R+),

f(Yt) = f(Y0) + local mart.− b

∫ t

0

Ysf
′(Ys)ds+

1

2
σ2

∫ t

0

Ysf
′′(Ys)ds

+

∫ t

0

Ysds

∫ ∞

0

[f(Ys + z)− f(Ys)− zf ′(Ys)]m(dz)

+

∫ t

0

ρ(s)
{
hf ′(Ys) +

∫ ∞

0

[f(Ys + z)− f(Ys)]n(dz)
}
ds. (3.3)

Proposition 3.1 Suppose that {Yt : t ≥ 0} is a positive càdlàg solution of (3.1) and
{Zt : t ≥ 0} is a positive càdlàg solution of the equation with (b, ρ) replaced by (c, η).
Then we have

P[|Zt − Yt|] ≤ P[|Z0 − Y0|] + ψ′(0)

∫ t

0

P[|η(s)− ρ(s)|]ds

+ |c|
∫ t

0

P[|Zs − Ys|]ds+ |b− c|
∫ t

0

P[Ys]ds.

Proof. For each integer n ≥ 0 define an = exp{−n(n+ 1)/2}. Then an → 0 decreasingly
as n→ ∞ and ∫ an−1

an

z−1dz = n, n ≥ 1.

Let x 7→ gn(x) be a positive continuous function supported by (an, an−1), so that∫ an−1

an

gn(x)dx = 1

and gn(x) ≤ 2(nx)−1 for every x > 0. Let

fn(z) =

∫ |z|

0

dy

∫ y

0

gn(x)dx, z ∈ R.

11



It is easy to see that |f ′
n(z)| ≤ 1 and

0 ≤ |z|f ′′
n(z) = |z|gn(|z|) ≤ 2n−1, z ∈ R.

Moreover, we have fn(z) → |z| increasingly as n → ∞. Let αt = Zt − Yt for t ≥ 0. From
(3.1) we have

αt = α0 + h

∫ t

0

[η(s)− ρ(s)]ds− c

∫ t

0

αs−ds+ (b− c)

∫ t

0

Ys−ds

+σ

∫ t

0

∫ Zs−

Ys−

W (ds, du) +

∫ t

0

∫ ∞

0

∫ Zs−

Ys−

zÑ0(ds, dz, du)

+

∫ t

0

∫ ∞

0

∫ η(s)

ρ(s)

zN1(ds, dz, du). (3.4)

By this and Itô’s formula,

fn(αt) = fn(α0) + h

∫ t

0

f ′
n(αs)[η(s)− ρ(s)]ds− c

∫ t

0

f ′
n(αs)αsds

+(b− c)

∫ t

0

f ′
n(αs)Ysds+

1

2
σ2

∫ t

0

f ′′
n(αs)|αs|ds

+

∫ t

0

αs1{αs>0}ds

∫ ∞

0

[fn(αs + z)− fn(αs)− zf ′
n(αs)]m(dz)

−
∫ t

0

αs1{αs<0}ds

∫ ∞

0

[fn(αs − z)− fn(αs) + zf ′
n(αs)]m(dz)

+

∫ t

0

[η(s)− ρ(s)]1{η(s)>ρ(s)}ds

∫ ∞

0

[fn(αs + z)− fn(αs)]n(dz)

−
∫ t

0

[ρ(s)− η(s)]1{ρ(s)>η(s)}ds

∫ ∞

0

[fn(αs − z)− fn(αs)]n(dz)

+mart. (3.5)

It is easy to see that |fn(a+ x)− fn(a)| ≤ |x| for any a, x ∈ R. If ax ≥ 0, we have

|fn(a+ x)− fn(a)− xf ′
n(a)| ≤ (2|ax|) ∧ (n−1|x|2).

Taking the expectation in both sides of (3.5) gives

P[fn(αt)] ≤ P[fn(α0)] + h

∫ t

0

P[|η(s)− ρ(s)|]ds+ |c|
∫ t

0

P[|αs|]ds

+ |b− c|
∫ t

0

P[Ys]ds+

∫ t

0

P[|η(s)− ρ(s)|]ds
∫ ∞

0

zn(dz)

+n−1σ2t+

∫ t

0

ds

∫ ∞

0

{(2zP[|αs|]) ∧ (n−1z2)}m(dz).

Then we get the desired estimate by letting n→ ∞. �
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Proposition 3.2 Suppose that {Yt : t ≥ 0} is a positive càdlàg solution of (3.1), and
{Zt : t ≥ 0} is a positive càdlàg solution of the equation with (b, ρ) replaced by (c, η).
Then we have

P
[
sup
0≤s≤t

|Zs − Ys|
]
≤ P[|Z0 − Y0|] + ψ′(0)

∫ t

0

P[|η(s)− ρ(s)|]ds

+
(
|c|+ 2

∫ ∞

1

zm(dz)
)∫ t

0

P[|Zs − Ys|]ds

+ |b− c|
∫ t

0

P[Ys]ds+ 2σ
(∫ t

0

P[|Zs − Ys|]ds
) 1

2

+2
(∫ t

0

P[|Zs − Ys|]ds
∫ 1

0

z2m(dz)
) 1

2

.

Proof. This follows by applying Doob’s martingale inequality to (3.4). �

Theorem 3.3 For any Y0 ≥ 0 there is a pathwise unique positive càdlàg solution {Yt :
t ≥ 0} of (3.1).

Proof. The pathwise uniqueness of the solution follows by Proposition 3.1 and Gronwall’s
inequality. Without loss of generality, we may assume Y0 ≥ 0 is deterministic in proving
the existence of the solution. We give the proof in three steps.

Step 1. Let B(t) = W ((0, t]× (0, 1]). Then {B(t) : t ≥ 0} is a standard Brownian motion.
By Theorems 5.1 and 5.2 in Dawson and Li (2006), for any constant ρ ≥ 0 there is a
pathwise unique positive solution to

Yt = Y0 + σ

∫ t

0

√
Ys−dB(s) +

∫ t

0

∫ ∞

0

∫ Ys−

0

zÑ0(ds, dz, du)

+

∫ t

0

(hρ− bYs−)ds+

∫ t

0

∫ ∞

0

∫ ρ

0

zN1(ds, dz, du).

It is simple to see that {Yt : t ≥ 0} is a weak solution to

Yt = Y0 + σ

∫ t

0

∫ Ys−

0

W (ds, du) +

∫ t

0

∫ ∞

0

∫ Ys−

0

zÑ0(ds, dz, du)

+

∫ t

0

(hρ− bYs−)ds+

∫ t

0

∫ ∞

0

∫ ρ

0

zN1(ds, dz, du). (3.6)

As pointed out at the beginning of this proof, the pathwise uniqueness holds for (3.6).

Step 2. Let 0 = r0 < r1 < r2 < · · · be an increasing sequence. For each i ≥ 1 let ηi be
a positive integrable random variable measurable with respect to Fri−1

. Let ρ = {ρ(t) :
t ≥ 0} be the positive (Ft)-predictable step process given by

ρ(t) =
∞∑
i=1

ηi1(ri−1,ri](t), t ≥ 0.
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By the result in the first step, on each interval (ri−1, ri] there is a pathwise unique solution
{Yt : ri−1 < t ≤ ri} to

Yt = Yri−1
+ σ

∫ t

ri−1

∫ Ys−

0

W (ds, du) +

∫ t

ri−1

∫ ∞

0

∫ Ys−

0

zÑ0(ds, dz, du)

+

∫ t

ri−1

(hηi − bYs−)ds+

∫ t

ri−1

∫ ∞

0

∫ ηi

0

zN1(ds, dz, du).

Then {Yt : t ≥ 0} is a solution to (3.1).

Step 3. Suppose that ρ = {ρ(t) : t ≥ 0} is general positive (Ft)-predictable process such
that t 7→ P[ρ(t)] is locally bounded. Take a sequence of positive predictable step processes
ρk = {ρk(t) : t ≥ 0} so that

P
[ ∫ t

0

|ρk(s)− ρ(s)|ds
]
→ 0 (3.7)

for every t ≥ 0 as k → ∞. Let {Yk(t) : t ≥ 0} be the solution to (3.1) with ρ = ρk. By
Proposition 3.1, Gronwall’s inequality and (3.7), one sees

sup
0≤s≤t

P[|Yk(s)− Yi(s)|] → 0

for every t ≥ 0 as i, k → ∞. Then Proposition 3.2 implies

P
[
sup
0≤s≤t

|Yk(s)− Yi(s)|
]
→ 0

for every t ≥ 0 as i, k → ∞. Thus there is a subsequence {ki} ⊂ {k} and a càdlàg process
{Yt : t ≥ 0} so that

sup
0≤s≤t

|Yki(s)− Ys| → 0

almost surely for every t ≥ 0 as i → ∞. It is routine to show that {Yt : t ≥ 0} is a
solution to (3.1). �

Theorem 3.4 If ρ = {ρ(t) : t ≥ 0} is a deterministic locally bounded positive Borel func-
tion, the solution {Yt : t ≥ 0} of (3.1) is an inhomogeneous CBI-process with transition
semigroup {P ρ

r,t : t ≥ r ≥ 0} defined by (2.22).

Proof. By the martingale problem (3.3), when ρ(t) = ρ is a deterministic constant
function, the process {Yt : t ≥ 0} is a Markov process with transition semigroup {P ρ

r,t :
t ≥ r ≥ 0}; see, for example, Theorem 9.30 in Li (2011). If ρ = {ρ(t) : t ≥ 0} is
a general deterministic locally bounded positive Borel function, we can take each step
function ρk = {ρk(t) : t ≥ 0} in the last proof to be deterministic. Then the solution
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{Yk(t) : t ≥ 0} of (3.1) with ρ = ρk is an inhomogeneous CBI-process with transition
semigroup {P ρk

r,t : t ≥ r ≥ 0}. In other words, for any λ ≥ 0, t ≥ r ≥ 0 and G ∈ Fr we
have

P[1Ge
−λYk(t)] = P

[
1G exp

{
− Yk(r)vt−r(λ)−

∫ t

r

ρk(s)ψ(vt−s(λ))ds
}]
.

Letting k → ∞ along the sequence {ki} mentioned in the last proof gives

P[1Ge
−λYt ] = P

[
1G exp

{
− Yrvt−r(λ)−

∫ t

r

ρ(s)ψ(vt−s(λ))ds
}]
.

Then {Yt : t ≥ 0} is a CBI-process with immigration rate ρ = {ρ(t) : t ≥ 0}. �

In view of the result of Theorem 3.4, the solution {Yt : t ≥ 0} to (3.1) can be called
an inhomogeneous CBI-process with branching mechanism ϕ, immigration mechanism ψ
and predictable immigration rate ρ = {ρ(t) : t ≥ 0}.

4 Path-valued branching processes

In this section, we introduce some path-valued Markov processes, which are essentially
special forms of the immigration superprocesses defined by (2.7) and (2.10). Suppose that
T ⊂ R is an interval, and {ϕq : q ∈ T} is a family of branching mechanisms, where ϕq

is given by (1.1) with the parameters (b,m) = (bq,mq) depending on q ∈ T . We call
{ϕq : q ∈ T} an admissible family if for each λ ≥ 0, the function q 7→ ϕq(λ) is decreasing
and continuously differentiable with the derivative ζq(λ) := −(∂/∂q)ϕq(λ) of the form

ζq(λ) = βqλ+

∫ ∞

0

(1− e−zλ)nq(dz), q ∈ T, λ ≥ 0, (4.1)

where βq ≥ 0 and nq(dz) is a σ-finite kernel from T to (0,∞) satisfying

sup
p≤θ≤q

[
βθ +

∫ ∞

0

znθ(dz)
]
<∞, q ≥ p ∈ T.

For an admissible family {ϕq : q ∈ T}, we clearly have

ϕp,q(λ) := ϕp(λ)− ϕq(λ) =

∫ q

p

ζθ(λ)dθ. (4.2)

It follows that

bq = bp −
∫ q

p

βθdθ −
∫ q

p

dθ

∫ ∞

0

znθ(dz) (4.3)
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and

mq(dz) = mp(dz) +

∫
{p<θ≤q}

nθ(dz)dθ. (4.4)

We say q0 ∈ T is a critical point of the admissible family {ϕq : q ∈ T} if bq0 = 0, which
means ϕq0 is a critical branching mechanism. By (4.3) one can see q 7→ bq is a continuous
decreasing function on T , so the set of critical points T0 ⊂ T can only be an interval.

Let us consider a function µ ∈ F (T ) and an admissible family of branching mechanisms
{ϕq : q ∈ T}. Write µ(p, q] = µ(q) − µ(p) for q ≥ p ∈ T . Recall that (2.22) defines the
transition semigroup {P ρ

r,t : t ≥ r ≥ 0} of an inhomogeneous CBI-process {Yt : t ≥ 0}. Let
Pρ

x(ϕ, ψ, dw) denote the law on D+[0,∞) of such a process with initial value Y0 = x ≥ 0.
Given any ρ ∈ D+[0,∞), we define the probability measure Pp,q(ρ, dw) on D

+[0,∞) by

Pp,q(ρ,B) =

∫
D+[0,∞)

1B(ρ+ w)Pρ
µ(p,q](ϕq, ϕp,q, dw) (4.5)

for Borel sets B ⊂ D+[0,∞). In view of (2.24), for any f ∈ B+[0,∞) with compact
support, we have ∫

D+[0,∞)

exp
{
−
∫ ∞

0

f(s)w(s)ds
}
Pp,q(ρ, dw)

= exp
{
− µ(p, q]uq(0, f)−

∫ ∞

0

up,q(s, f)ρ(s)ds
}
, (4.6)

where s 7→ uq(s) := uq(s, f) is the unique compactly supported bounded positive solution
to

uq(s) +

∫ ∞

s

ϕq(uq(t))dt =

∫ ∞

s

f(t)dt, (4.7)

and

up,q(s, f) = f(s) + ϕp,q(uq(s, f)), s ≥ 0. (4.8)

We remark that uq(s, f) = up,q(s, f) = 0 for s > lf := sup{t ≥ 0 : f(t) > 0}.

Proposition 4.1 For any f ∈ B+[0,∞) with compact support, we have

up(s, up,q(·, f)) = uq(s, f), s ≥ 0, p ≤ q ∈ T (4.9)

and

up,θ(s, uθ,q(·, f)) = up,q(s, f), s ≥ 0, p ≤ θ ≤ q ∈ T. (4.10)
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Proof. From (4.2) and (4.7) we can see that s 7→ v(s) := uq(s, f) is a solution of

v(s) =

∫ ∞

s

[f(t) + ϕp,q(uq(t, f))]dt−
∫ ∞

s

ϕp(v(t))dt. (4.11)

On the other hand, by (4.7) and (4.8) we have

up(s, up,q(·, f)) =
∫ ∞

s

up,q(t, f)dt−
∫ ∞

s

ϕp(up(t, up,q(·, f)))dt

=

∫ ∞

s

[f(t) + ϕp,q(uq(t, f))]dt

−
∫ ∞

s

ϕp(up(t, up,q(·, f)))dt.

Then s 7→ up(s, up,q(·, f)) is also a solution to (4.11). By the uniqueness of the solution
to the equation, we get (4.9). It follows that

up,θ(s, uθ,q(·, f)) = uθ,q(s, f) + ϕp,θ(uθ(s, uθ,q(·, f)))
= f(s) + ϕθ,q(uq(s, f)) + ϕp,θ(uq(s, f))
= f(s) + ϕp,q(uq(s, f)).

Then we have (4.10). �

Proposition 4.2 For any f ∈ B+[0,∞) with compact support we have

up,q(s, f) = f(s) +

∫ q

p

ψθ(s, uθ,q(·, f))dθ, s ≥ 0, q ≥ p ∈ T, (4.12)

where ψθ(s, f) = ζθ(uθ(s, f)).

Proof. By (4.2) and (4.8) one can see p 7→ up,q(s, f) is a decreasing function. In view of
(4.9) and (4.10), for q > θ > p ∈ T , we get

up,q(s, f) = up,θ(s, uθ,q(·, f)) = uθ,q(s, f) + ϕp,θ(uθ(s, uθ,q(·, f))).

Then we differentiate both sides to see

d

dp
up,q(s, f)

∣∣∣
p=θ−

=
d

dp
ϕp,θ(uθ(s, uθ,q(·, f)))

∣∣∣
p=θ−

= −ζθ(uθ(s, uθ,q(·, f))),

which implies (4.12). �

From (4.6) one can see that Pp,q(ρ, dw) is a probability kernel on D+[0,∞). By (4.9)
and (4.10) it is easy to check that the family of kernels {Pp,q : q ≥ p ∈ T} satisfies
the Chapman–Kolmogorov equation. Then {Pp,q : q ≥ p ∈ T} form an inhomogeneous
Markov transition semigroup on D+[0,∞). This semigroup is closely related to some
nonlocal branching superprocesses. For α ≥ 0 let M [0, α] be the space of finite Borel
measures on [0, α] furnished with the topology of weak convergence.
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Theorem 4.3 There is a Markov transition semigroup {Qα
p,q : q ≥ p ∈ T} on M [0, α]

such that, for f ∈ B+[0, α],∫
M [0,α]

e−⟨ν,f⟩Qα
p,q(η, dν) = exp

{
− µ(p, q]uαq (0, f)− ⟨η, uαp,q(·, f)⟩

}
, (4.13)

where

uαq (s, f) = uq(s, f1[0,α]), uαp,q(s, f) = up,q(s, f1[0,α]). (4.14)

Proof. We first consider an absolutely continuous measure η ∈ M [0, α] with a density
ρ ∈ D+[0, α]. Suppose that {Xt : t ≥ 0} is a random path with distribution Pp,q(ρ1[0,α], ·)
on D+[0,∞). Let Qα

p,q(η, ·) be the distribution on M [0, α] of the random measure X such
that X(dt) = Xtdt for 0 ≤ t ≤ α. The Laplace function of Qα

p,q(η, ·) is clearly given by
(4.13) and (4.14). In particular, we can use those two formulas to define a probability
measure on M [0, α]. For an arbitrary η ∈ M [0, α], choose a sequence of absolutely
continuous measures {ηn} ⊂ M [0, α] with densities in D+[0, α] so that ηn → η weakly.
Let Qα

p,q(ηn, ·) be the probability measure on M [0, α] defined by∫
M [0,α]

e−⟨ν,f⟩Qα
p,q(ηn, dν) = exp

{
− µ(p, q]uαq (0, f)− ⟨ηn, uαp,q(·, f)⟩

}
.

For f ∈ C+[0, α] one can see from (4.7) and (4.8) that uαp,q(·, f) ∈ C+[0, α], and hence

lim
n→∞

∫
M [0,α]

e−⟨ν,f⟩Qα
p,q(ηn, dν) = exp

{
− µ(p, q]uαq (0, f)− ⟨η, uαp,q(·, f)⟩

}
.

Then (4.13) really gives the Laplace functional of a probability measure Qα
p,q(η, ·) on

M [0, α] which is the weak limit of Qα
p,q(ηn, ·) as n→ ∞. It is easy to see that Qα

p,q(η, dν)
is a kernel on M [0, α]. The semigroup property of the family {Qα

p,q : q ≥ p ∈ T} follows
from (4.9) and (4.10). �

Theorem 4.4 Let q ∈ T and f ∈ B+[0, α]. Then (p, s) 7→ uαp,q(s) := uαp,q(s, f) is the
unique locally bounded positive solution to

uαp,q(s) = f(s) +

∫ q

p

ψα
θ (s, u

α
θ,q)dθ, s ∈ [0, α], q ≥ p ∈ T, (4.15)

where ψα
θ (s, f) = ζθ(u

α
θ (s, f)). Moreover, the transition semigroup {Qα

p,q : q ≥ p ∈ T}
defines an immigration superprocess in M [0, α] with branching mechanisms {−ψα

θ : θ ∈
T}, immigration mechanisms {uαθ (0, ·) : θ ∈ T} and immigration measure µ.
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Proof. From (4.12) one can see that uαp,q(s) = uαp,q(s, f) satisfies (4.15). By letting t = α
and η(ds) = ds in (2.15), we infer that the functional f 7→ uαθ (s, f) on B+[0, α] is the
Laplace exponent of an infinitely divisible probability measure carried by M [s, α]. It is
easy to see that ψα

θ (s, 0) = 0. By Theorem 2.2 the composed functional f 7→ ψα
θ (s, f) is

also the Laplace exponent of an infinitely divisible probability measure on M [s, α]. Then
it has the representation

ψα
θ (s, f) = ⟨ηαθ (s), f⟩+

∫
M [s,α]◦

(1− e−⟨ν,f⟩)Hα
θ (s, dν), (4.16)

where ηαθ (s) ∈M [s, α] and (1∧⟨ν, 1⟩)Hα
θ (s, dν) is a finite measure onM [s, α]◦. By letting

f(t) = λ and taking the derivatives in both sides of (4.16), we have

d

dλ
ψα
θ (s, λ)

∣∣∣
λ=0+

= ⟨ηαθ (s), 1⟩+
∫
M [s,α]◦

⟨ν, 1⟩Hα
θ (s, dν).

On the other hand, using (2.14) and (2.15),

d

dλ
uαθ (s, λ)

∣∣∣
λ=0+

=

∫ α

s

e−bθ(t−s)dt.

From (4.1) we have

d

dλ
ζθ(λ)

∣∣∣
λ=0+

= βθ +

∫ ∞

0

znθ(dz).

It follows that

d

dλ
ψα
θ (s, λ)

∣∣∣
λ=0+

=
[
βθ +

∫ ∞

0

znθ(dz)
] ∫ α

s

e−bθ(t−s)dt.

As a function of (θ, s), the above quantity is bounded on S × [0, α] for each bounded
closed interval S ⊂ T . By Example 2.5 of Li (2011) one sees that f 7→ −ψα

θ (·, f) is a
special form of the operator given by (2.3), and so (4.15) is a special case of (2.7). Thus
(p, s) 7→ uαp,q(s, f) is the unique locally bounded positive solution to (4.15). By (4.9) we
have

µ(p, q]uαq (0, f) =

∫ q

p

uαq (0, f)µ(dθ) =

∫ q

p

uαθ (0, u
α
θ,q(·, f))µ(dθ). (4.17)

Then {Qα
p,q : q ≥ p ∈ T} defines an immigration superprocess in M [0, α] with branching

mechanisms {−ψα
θ : θ ∈ T}, immigration mechanisms {uαθ (0, ·) : θ ∈ T} and immigration

measure µ. �

Let M [0,∞) denote the space of Radon measures on [0,∞) endowed with the topology
of vague convergence. For any α ≥ 0 we regardM [0, α] as the subset of M [0,∞) consisting
of the measures supported by [0, α]. We can also embed D+[0,∞) continuously into
M [0,∞) by identifying the path w ∈ D+[0,∞) and the measure ν ∈ M [0,∞) such that
ν(ds) = w(s)ds for s ≥ 0.
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Theorem 4.5 There is an extension {Qp,q : q ≥ p ∈ T} of {Pp,q : q ≥ p ∈ T} on
M [0,∞), which is given by∫

M [0,∞)

e−⟨ν,f⟩Qp,q(η, dν) = exp
{
− µ(p, q]uq(0, f)− ⟨η, up,q(·, f)⟩

}
(4.18)

for f ∈ B+[0,∞) with compact support.

Proof. Given η ∈ M [0,∞), we define παη ∈ M [0, α] by παη(ds) = 1[0,α]η(ds). It is easy
to check that παπβη = παη for β ≥ α ≥ 0. Then the sequence of probability measures
{Qp,q(πkη, ·) : k = 1, 2, · · ·} induce a consistent family of finite-dimensional distributions
on the product space M∞ :=

∏∞
k=1M [0, k]. Let Q be the unique probability measure on

M∞ determined by the family. Then under Q the canonical sequence (X1, X2, · · ·) of M∞
converges almost surely to a random Radon measure X on [0,∞), which has distribution
Qp,q(η, ·) on M [0,∞) given by (4.18). It is easy to show that Qp,q(η, dν) is a probability
kernel on the space M [0,∞). The semigroup property of {Qp,q : q ≥ p ∈ T} follows from
(4.9) and (4.10). �

Since the state space M [0,∞) contains infinite measures, the transition semigroup
{Qp,q : q ≥ p ∈ T} defined by (4.18) does not fit exactly into the setup of the second
section. However, if {Zq : q ∈ T} is a Markov process in M [0,∞) with transition
semigroup {Qp,q : q ≥ p ∈ T}, for each α ≥ 0, the restriction of {Zq : q ∈ T} to [0, α]
is an inhomogeneous immigration superprocess with transition semigroup {Qα

p,q : q ≥
p ∈ T}. Then we can think of the original process {Zq : q ∈ T} as an inhomogeneous
immigration superprocess with the extended state space M [0,∞). The model can be
described intuitively as follows. The offspring born by a “particle” at site s ≥ 0 at time
θ ∈ T are spread over the interval [s,∞) according to the law determined by ψθ(s, ·).
Thus the superprocess only involves a nonlocal branching structure. The immigration
rate is given by µ(dθ) and the immigrants coming at time θ ∈ T are distributed in [0,∞)
according to the law given by uθ(0, ·). The spatial motion of the immigration superprocess
is trivial.

Suppose that {(Xt(q))t≥0 : q ∈ T} is a Markov process with transition semigroup
{Pp,q : q ≥ p ∈ T} defined by (4.6). We can identify the random path (Xt(q))t≥0 with
the absolutely continuous random measure Zq on [0,∞) with (Xt(q))t≥0 as a density. By
Theorem 4.5, the measure-valued process {Zq : q ∈ T} is an immigration superprocess
with transition semigroup {Qp,q : q ≥ p ∈ T} defined by (4.18). Therefore we can
naturally call {(Xt(q))t≥0 : q ∈ T} a path-valued branching process with immigration. By
(4.5) we have Xq ≥ Xp almost surely for q ≥ p ∈ T . If µ(q) = µ independent of q ∈ T ,
we simply call {Xq : q ≥ 0} a path-valued branching process.

By (4.8) or (4.12) we have up,q(s, f) ≥ f(s) for any s ≥ 0 and f ∈ B+[0,∞) with
compact support. Then (4.18) implies that the set of infinite measures on [0,∞) is
absorbing for {Qp,q : q ≥ p ∈ T}. Let {Q∞

p,q : q ≥ p ∈ T} denote the sub-Markov
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restriction of {Qp,q : q ≥ p ∈ T} to the space M [0,∞) of finite measures on [0,∞). If
f ∈ B+[0,∞) is bounded away from zero, we define

u∞q (s, f) = lim
α→∞

uq(s, f1[0,α]), u∞p,q(s, f) = lim
α→∞

up,q(s, f1[0,α]).

For an arbitrary f ∈ B+[0,∞), define

u∞q (s, f) = lim
n→∞

u∞q (s, f + 1/n), u∞p,q(s, f) = lim
n→∞

u∞p,q(s, f + 1/n).

By (4.15) one can see u∞p,q(s) := u∞p,q(s, f) solves

u∞p,q(s) = f(s) +

∫ q

p

ψ∞
θ (s, u∞θ,q)dθ, s ≥ 0, q ≥ p ∈ T, (4.19)

where ψ∞
θ (s, f) = ζθ(u

∞
θ (s, f)). From (4.8) we obtain

u∞p,q(s, f) = f(s) + ϕp,q(u
∞
q (s, f)), s ≥ 0. (4.20)

It is easy to show that, for f ∈ B+[0,∞),∫
M [0,∞)

e−⟨ν,f⟩Q∞
p,q(η, dν) = exp

{
− µ(p, q]u∞q (0, f)− ⟨η, u∞p,q(·, f)⟩

}
. (4.21)

To avoid the triviality of {Q∞
p,q : q ≥ p ∈ T}, we need to assume ϕq(λ) → ∞ as λ → ∞

for every q ∈ T . In this case, we can define the right inverse ϕ−1
q of ϕq as in (2.20). By

(2.17), (2.19) and (4.20), we have

u∞q (s, λ) = ϕ−1
q (λ), u∞p,q(s, λ) = ϕp(ϕ

−1
q (λ)), s ≥ 0, λ ≥ 0. (4.22)

Theorem 4.6 Suppose that ϕq(λ) → ∞ as λ → ∞ for every q ∈ T . Let S ⊂ T be an
interval not containing critical points of {ϕq : q ∈ T}. Then for any q ∈ S and f ∈
B+[0,∞) there is a unique locally bounded positive solution (p, s) 7→ u∞p,q(s) := u∞p,q(s, f)
to (4.19) on S × [0,∞). Moreover, the sub-Markov transition semigroup {Q∞

p,q : q ≥
p ∈ S} defines an inhomogeneous immigration superprocess in M [0,∞) with branching
mechanisms {−ψ∞

θ : θ ∈ S}, immigration mechanisms {u∞θ (0, ·) : θ ∈ S} and immigration
measure µ.

Proof. For any s ≥ 0 and θ ∈ S one can see by (2.17) that the functional f 7→ u∞θ (s, f)
on B+[0,∞) is the exponent of an infinitely divisible sub-probability measure carried by
M [s,∞). Then we have the representation

u∞θ (s, f) = a∞θ (s) + ⟨η∞θ (s), f⟩+
∫
M [s,∞)◦

(1− e−⟨ν,f⟩)H∞
θ (s, dν),
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where a∞θ (s) ≥ 0, η∞θ (s) ∈ M [s,∞) and (1 ∧ ⟨ν, 1⟩)H∞
θ (s, dν) is a finite measure on

M [s,∞)◦. By the first equality in (4.22) we get a∞θ (s) = u∞θ (s, 0) = ϕ−1
θ (0). It follows

that

⟨η∞θ (s), 1⟩+
∫
M [s,∞)◦

⟨ν, 1⟩H∞
θ (s, dν) = 1/ϕ′

θ(ϕ
−1
θ (0)).

The right-hand side is bounded on each compact subinterval of S. By Theorem 2.2,
the composed functional f 7→ ψ∞

θ (s, f) = ζθ(u
∞
θ (s, f)) is the exponent of an infinitely

divisible sub-probability measure carried by M [s,∞). Then f 7→ ψ∞
θ (s, 0)−ψ∞

θ (s, f) can
be represented by a special form of (2.3). That shows (4.19) is a special case of (2.7). The
desired result now follows in view of (4.21) and (4.17) with α = ∞. �

If ϕq(λ) → ∞ as λ → ∞ for every q ∈ T , we can restrict {Pp,q : q ≥ p ∈ T}
to the space D+

in[0,∞) of integrable paths in D+[0,∞) to get a sub-Markov transition
semigroup {P∞

p,q : q ≥ p ∈ T}. This semigroup can also be regarded as a restriction of
{Q∞

p,q : q ≥ p ∈ T}. For f ∈ B+[0,∞), we have∫
D+

in[0,∞)

exp
{
−

∫ ∞

0

f(s)w(s)ds
}
P∞

p,q(η, dw)

= exp
{
− µ(p, q]u∞q (0, f)−

∫ ∞

0

u∞p,q(s, f)η(s)ds
}
. (4.23)

For an inhomogeneous immigration superprocess {Zq : q ∈ T} with transition semi-
group {Qp,q : q ≥ p ∈ T} or {Q∞

p,q : q ≥ p ∈ T}, we define its total mass process
{σ(q) : q ∈ T} by σ(q) = Zq[0,∞). For a path-valued branching process with immigration
{(Xt(q))t≥0 : q ∈ T} with transition semigroup {Pp,q : q ≥ p ∈ T} or {P∞

p,q : q ≥ p ∈ T},
its total mass process is defined as

σ(q) =

∫ ∞

0

Xs(q)ds, q ∈ T.

We here think of {σ(q) : q ∈ T} as a process with state space R+ and cemetery ∞. In
view of (4.21), (4.22) and (4.23), we have

Theorem 4.7 Suppose that ϕq(λ) → ∞ as λ→ ∞ for every q ∈ T . Then {σ(q) : q ∈ T}
is an inhomogeneous Markov process with transition semigroup {Rp,q : q ≥ p ∈ T} such
that, for λ ≥ 0,∫

R+

e−λyRp,q(x, dy) = exp
{
− xϕp(ϕ

−1
q (λ))− µ(p, q]ϕ−1

q (λ)
}
. (4.24)

Before concluding this section, let us consider the admissible family of branching
mechanisms {ϕq : q ∈ R} defined by ϕq(λ) = λ2 − 2qλ for λ ≥ 0. In this special case,
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zero is the only critical point of the family {ϕq : q ∈ R}. Let {(Xt(q))t≥0 : q ∈ R} be a
corresponding path-valued branching process. Let {σ(q) : q ∈ R} be the process of total
mass. By Theorem 4.7 one can see that {σ(q) : q ∈ R} is an inhomogeneous Markov
process with transition semigroup {Rp,q : q ≥ p ∈ R} defined by∫

R+

e−λyRp,q(x, dy) = exp { − xvp,q(λ)}, λ ≥ 0, (4.25)

where

vp,q(λ) = λ+ 2(q − p)(
√
q2 + λ+ q).

This process can be obtained from two homogeneous CB-processes by simple transforma-
tions. For t, λ ≥ 0 let

u−t (λ) = e−2tλ+ 2e−t(1− e−t)(
√
1 + λ− 1).

It is easy to check that

u−t−s(λ) = e2sv−e−s,−e−t(e−2tλ), λ ≥ 0, t ≥ s ∈ R.
From this and (4.25) one can see that {e−2tσ(−e−t) : t ∈ R} is a homogeneous Markov
process with transition semigroup (R−

t )t≥0 defined by∫
R+

e−λyR−
t (x, dy) = e−xu−

t (λ), λ ≥ 0.

Moreover, we have

d

dt
u−t (λ) = −ϕ−(u

−
t (λ)),

where

ϕ−(z) = 2z − 2(
√
1 + z − 1).

Then {e−2tσ(−e−t) : t ∈ R} is actually a conservative homogeneous CB-process in [0,∞)
with branching mechanism ϕ−. Similarly, one sees {e2tσ(et) : t ∈ R} is a homogeneous
Markov process with transition semigroup (R+

t )t≥0 defined by∫
R+

e−λyR+
t (x, dy) = e−xu+

t (λ), λ ≥ 0,

where

u+t (λ) = e2tλ+ 2et(et − 1)(
√
1 + λ+ 1).

One can easily see that

d

dt
u+t (λ) = −ϕ+(u

+
t (λ)),

where

ϕ+(z) = −2z − 2(
√
1 + z + 1).

Then {e2tσ(et) : t ∈ R} is a CB-process with branching mechanism ϕ+.
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5 Construction by stochastic equations

In this section, we give a construction of the path-valued process {(Xt(q))t≥0 : q ∈ T}
with transition semigroup {Pp,q : q ≥ p ∈ T} defined by (4.6) as the solution flow of a
system of stochastic equations driven by time–space noises. We shall assume T = [0,∞)
or [0, a] or [0, a) for some a > 0. This specification of the index set is clearly not essential
for the applications. Let µ ∈ F (T ), and let {ϕq : q ∈ T} be an admissible family of
branching mechanisms, where ϕq is given by (1.1) with the parameters (b,m) = (bq,mq)
depending on q ∈ T . Let µ(p, q] = µ(q) − µ(p) for q ≥ p ∈ T , and let m(dy, dz) be the
measure on T × (0,∞) defined by

m([0, q]× [c, d]) = mq[c, d], q ∈ T, d > c > 0. (5.1)

Let ρ = ρ(s) be a locally bounded positive Borel function on [0,∞) and let ψ be an
immigration mechanism given by (2.21).

Suppose that (Ω ,F ,Ft,P) is a filtered probability space satisfying the usual hypothe-
ses. Let W (ds, du) be an (Ft)-white noise on (0,∞)2 based on the Lebesgue measure, let
Ñ0(ds, dy, dz, du) be a compensated (Ft)-Poisson random measure on (0,∞)×T×(0,∞)2

with intensity dsm(dy, dz)du and let N1(ds, dz, du) be an (Ft)-Poisson random measure
on (0,∞)3 with intensity dsn(dz)du. Suppose that W (ds, du), Ñ0(ds, dy, dz, du) and
N1(ds, dz, du) are independent of each other. For q ∈ T it is easy to see that

Ñ(ds, dz, du) :=

∫
{0≤y≤q}

Ñ0(ds, dy, dz, du)

is a compensated Poisson random measure with intensity dsmq(dz)du. By Theorem 3.3
for every q ∈ T there is a pathwise unique solution to the stochastic equation

Xt(q) = µ(q)− bq

∫ t

0

Xs−(q)ds+ σ

∫ t

0

∫ Xs−(q)

0

W (ds, du)

+

∫ t

0

∫
[0,q]

∫ ∞

0

∫ Xs−(q)

0

zÑ0(ds, dy, dz, du)

+h

∫ t

0

ρ(s)ds+

∫ t

0

∫ ∞

0

∫ ρ(s)

0

zN1(ds, dz, du). (5.2)

By Theorem 3.4 the solution {Xt(q) : t ≥ 0} is a CBI-process with branching mechanism
ϕq, immigration mechanism ψ and immigration rate ρ.

Theorem 5.1 The process {(Xt(q))t≥0 : q ∈ T} is a path-valued branching process with
immigration in D+[0,∞) having transition semigroup {Pp,q : q ≥ p ∈ T} defined by (4.6).

Proof. We can rewrite equation (5.2) into

Xt(q) = µ(q)− hq

∫ t

0

Xs−(q)ds+ σ

∫ t

0

∫ Xs−(q)

0

W (ds, du)
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+h

∫ t

0

ρ(s)ds+

∫ t

0

∫ q

0

∫ ∞

0

∫ Xs−(q)

0

zN0(ds, dy, dz, du)

+

∫ t

0

∫
{0}

∫ ∞

0

∫ Xs−(q)

0

zÑ0(ds, dy, dz, du)

+

∫ t

0

∫ ∞

0

∫ ρ(s)

0

zN1(ds, dz, du), (5.3)

where

q 7→ hq := bq +

∫ q

0

dθ

∫ ∞

0

znθ(dz) = b0 −
∫ q

0

βθdθ

is a decreasing function. Then, for q ≥ p ∈ T , one can see by a simple modification of
Theorem 2.2 in Dawson and Li (2011) that Xt(q) ≥ Xt(p) for every t ≥ 0 with probability
one. Let ξt(p, q) = Xt(q)−Xt(p) for t ≥ 0. From (5.3) we have

ξt(p, q) = µ(p, q]− bq

∫ t

0

ξs−(p, q)ds+

∫ q

p

βθdθ

∫ t

0

Xs−(p)ds

+σ

∫ t

0

∫ ξs−(p,q)

0

W (ds,Xs−(p) + du)

+

∫ t

0

∫
[0,q]

∫ ∞

0

∫ ξs−(p,q)

0

zÑ0(ds, dy, dz,Xs−(p) + du)

+

∫ t

0

∫ q

p

∫ ∞

0

∫ Xs−(p)

0

zN0(ds, dy, dz, du). (5.4)

Here W (ds,Xs−(p)+ du) is a white noise based on the Lebesgue measure. Note also that∫
{0≤y≤q}

N0(ds, dy, dz,Xs−(p) + du)

is a Poisson random measure with intensity dsmq(dz)du, and∫
{p<y≤q}

N0(ds, dy, dz, du)

is a Poisson random measure with intensity∫
{p<θ≤q}

dsnθ(dz)dudθ.

Clearly, the white noise and the two random measures are independent. By Theorem 3.4,
conditioned upon {Xt(p) : t ≥ 0} the process {ξt(p, q) : t ≥ 0} is a CBI-process with
branching mechanism ϕq, immigration mechanism ϕp,q, and immigration rate {Xt−(p) :
t ≥ 0}. Conditioned upon {Xt(p) : t ≥ 0}, the process {ξt(p, q) : t ≥ 0} is clearly
independent of the σ-algebra generated by {Xt(v) : t ≥ 0, v ∈ [0, p]}. Then {(Xt(q))t≥0 :
q ∈ T} is a path-valued Markov process with transition semigroup {Pp,q : q ≥ p ∈ T}. �
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Theorem 5.2 There is a positive function (t, u) 7→ C(t, u) on [0,∞) × T bounded on
compact sets so that, for any t ≥ 0 and p ≤ q ≤ u ∈ T ,

P
{

sup
0≤s≤t

[Xs(q)−Xs(p)]
}

≤ C(t, u)
{
µ(p, q] + bp − bq

+
√
µ(p, q] +

√
bp − bq

}
. (5.5)

Proof. Since {Xt(p) : t ≥ 0} is a CBI-process, we see from (3.2) that t 7→ P[Xt(p)] is
locally bounded. Let {ξt(p, q) : t ≥ 0} be defined as in the last proof. By (5.4) we have

P[ξt(p, q)] = µ(p, q]− bq

∫ t

0

P[ξs(p, q)]ds+ (bp − bq)

∫ t

0

P[Xs(p)]ds.

By Gronwall’s inequality one can find a positive function (t, u) 7→ C0(t, u) on [0,∞)× T
bounded on compact sets so that, for any t ≥ 0 and p ≤ q ≤ u ∈ T ,

P[ξt(p, q)] ≤ C0(t, u){µ(p, q] + bp − bq}. (5.6)

Applying Doob’s inequality to the martingales in (5.4), we obtain

P
{

sup
0≤s≤t

ξs(p, q)
}
≤ µ(p, q] + 2σ

(∫ t

0

P[ξs(p, q)]ds
) 1

2

+ |bq|
∫ t

0

P[ξs(p, q)]ds+ (bp − bq)

∫ t

0

P[Xs(p)]ds

+

∫ ∞

1

zmq(dz)

∫ t

0

P[ξs(p, q)]ds

+2
(∫ t

0

P[ξs(p, q)]ds

∫ 1

0

z2mq(dz)
) 1

2

.

Then the desired estimate follows from (5.6). �

Now let us consider a special admissible family of branching mechanisms. Suppose
that ϕ is a critical or supercritical branching mechanism given by (1.1) with b ≤ 0. Let
T = T (ϕ) be the set of q ≥ 0 so that∫ ∞

1

zeqzm(dz) <∞.

Then T = [0, a] or [0, a), where a = sup(T ). We can define an admissible family of
branching mechanisms {ϕq : q ∈ T} by

ϕq(λ) = ϕ(λ− q)− ϕ(−q), λ ≥ 0, (5.7)

where the two terms on the right-hand side are defined using formula (1.1). Let {Xt(q) :
t ≥ 0, q ∈ T} be the solution flow of stochastic equation system (1.3). By Theorem 5.1
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we see that {(Xt(q))t≥0 : q ∈ T} is an inhomogeneous path-valued branching process with
transition semigroup {Pp,q : q ≥ p ∈ T} given by∫

D+[0,∞)

e−
∫∞
0 f(s)w(s)dsPp,q(η, dw) = exp

{
−
∫ ∞

0

up,q(s, f)η(s)ds
}
, (5.8)

where f ∈ B+[0,∞) has compact support, and up,q(s, f) is given by (4.8). If ϕ(λ) → ∞
as λ → ∞, by Theorem 4.7 the corresponding total mass process {σ(q) : q ∈ T} is an
inhomogeneous CB-process with transition semigroup {Rp,q : q ≥ p ∈ T} given by∫

R+

e−λyRp,q(x, dy) = exp { − xϕp(ϕ
−1
q (λ))}, λ ≥ 0. (5.9)

By Theorem 2.5 we have

P[e−λσ(q)1{σ(q)<∞}] = e−µϕ−1
q (λ), λ ≥ 0, q ∈ T. (5.10)

It is simple to see that

q 7→ ϕ−1
q (0) = q + ϕ−1(ϕ(−q))

is continuous on T . Let A = inf{q ∈ T : σ(q) = ∞} be the explosion time of {σ(q) : q ∈
T}. For any q ∈ T we can let λ = 0 in (5.10) to obtain

P{A > q} = P{σ(q) <∞} = e−µϕ−1
q (0). (5.11)

This gives a characterization of the distribution of A.

Theorem 5.3 Suppose that ϕ(λ) → ∞ as λ→ ∞. Then for any θ ∈ T , we have

P[σ(θ)1{σ(θ)<∞}] =
µe−µ[θ+ϕ−1(ϕ(−θ))]

ϕ′(ϕ−1(ϕ(−θ)))
. (5.12)

Proof. Let λ ≥ 0 and u = ϕ−1
θ (λ). By (5.10) we have

P[σ(θ)e−λσ(θ)1{σ(θ)<∞}] = − d

dλ
e−µϕ−1

θ (λ) = µe−µϕ−1
θ (λ) d

dλ
ϕ−1
θ (λ).

From the relation ϕθ(u) = ϕ(u− θ)− ϕ(−θ), one can see

ϕ−1
θ (λ) = θ + ϕ−1(λ+ ϕ(−θ)).

It follows that

P[σ(θ)e−λσ(θ)1{σ(θ)<∞}] =
µe−µ[θ+ϕ−1(λ+ϕ(−θ))]

ϕ′(ϕ−1(λ+ ϕ(−θ)))
.

Then we get (5.12) by letting λ = 0. �
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Theorem 5.4 Suppose that ϕ(λ) → ∞ as λ → ∞. Let θ ∈ [0, a) and let G(θ) be a
positive random variable measurable with respect to the σ-algebra generated by {Xt(v) :
t ≥ 0, 0 < v ≤ θ}. Then we have

P[G(θ)|A = θ] =
ϕ′(ϕ−1(ϕ(−θ)))
µe−µ[θ+ϕ−1(ϕ(−θ))]

P[G(θ)σ(θ)1{σ(θ)<∞}]. (5.13)

Proof. Since q 7→ ϕ−1
q (0) is continuous on T , for any q ∈ (θ, a) we can see by (5.9) that

P[G(θ)1{A>q}] = P[G(θ)1{σ(q)<∞}] = P[G(θ) exp{−σ(θ)ϕθ(ϕ
−1
q (0))}].

It is easy to see that

ϕθ(ϕ
−1
q (0)) = ϕθ(q̄ + q) = ϕ(q̄ + q − θ)− ϕ(−θ),

where q̄ = ϕ−1(ϕ(−q)). By elementary calculations,

d

dq
ϕθ(ϕ

−1
q (0)) = ϕ′(q̄ + q − θ)

(
1− ϕ′(−q)

ϕ′(q̄)

)
.

It follows that

− d

dq
P[G(θ)1{A>q}]

∣∣∣
q=θ+

= [ϕ′(θ̄)− ϕ′(−θ)]P[G(θ)σ(θ)1{σ(θ)<∞}],

and hence

P[G(θ)|A = θ] =
P[G(θ)σ(θ)1{σ(θ)<∞}]

P[σ(θ)1{σ(θ)<∞}]
. (5.14)

Then we get (5.13) from (5.12) and (5.14). �

6 A nonlocal branching superprocess

In this section, we consider a nonlocal branching superprocess defined from the solution
flow of (5.2). We first assume T = [0, a] for some a > 0. Let µ ∈ F (T ), and let
{ϕq : q ∈ T} be an admissible family of branching mechanisms, where ϕq is given by
(1.1) with the parameters (b,m) = (bq,mq) depending on q ∈ T . Let m(dy, dz) be the
measure on T × (0,∞) defined by (5.1). Let ρ = {ρ(t) : t ≥ 0} be a locally bounded
positive Borel function on [0,∞). Let ψ be an immigration mechanism given by (2.21).
Let X(q) = {Xt(q) : t ≥ 0} be the solution of (5.2) for q ∈ T . Then the path-valued
Markov process {X(q) : q ∈ T} has transition semigroup {Pp,q : q ≥ p ∈ T} defined
by (4.6). Let QT denote the set of rationals in T . For any t ≥ 0 we define the random
function Yt ∈ F (T ) by Yt(a) = Xt(a) and

Yt(q) = inf{Xt(u) : u ∈ QT ∩ (q, a]}, 0 ≤ q < a. (6.1)
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Similarly, for any t > 0, define Zt ∈ F (T ) by Zt(a) = Xt−(a) and

Zt(q) = inf{Xt−(u) : u ∈ QT ∩ (q, a]}, 0 ≤ q < a. (6.2)

By Theorem 5.2, for each q ∈ T we have

P{Yt(q) = Xt(q) and Zt(q) = Xt−(q) for all t ≥ 0} = 1. (6.3)

Consequently, for every q ∈ T the process {Yt(q) : t ≥ 0} is almost surely càdlàg and
solves (5.2), so it is a CBI-process with branching mechanism ϕq, immigration mechanism
ψ and immigration rate ρ. In view of (4.3) and (4.4), for every q ∈ T we almost surely
have

Yt(q) = µ(q) + At + σ

∫ t

0

∫ Ys−(q)

0

W (ds, du)

− b0

∫ t

0

Ys−(q)ds+

∫ q

0

βθdθ

∫ t

0

Ys−(q)ds

+

∫ t

0

∫
{0}

∫ ∞

0

∫ Ys−(q)

0

zÑ0(ds, dy, dz, du)

+

∫ t

0

∫ q

0

∫ ∞

0

∫ Ys−(q)

0

zN0(ds, dy, dz, du), (6.4)

where

At = h

∫ t

0

ρ(s)ds+

∫ t

0

∫ ∞

0

∫ ρ(s)

0

zN1(ds, dz, du).

For t ≥ 0 let Yt(dx) and Zt(dx) denote the random measures on T induced by the
random functions Yt and Zt ∈ F (T ), respectively. For any f ∈ C1(T ) one can use Fubini’s
theorem to see

⟨Yt, f⟩ = f(a)Yt(a)−
∫ a

0

f ′(q)Yt(q)dq. (6.5)

Fix an integer n ≥ 1 and let qi = ia/2n for i = 0, 1, · · · , 2n. By (6.3) and (6.4) it holds
almost surely that

2n∑
i=1

f ′(qi)Yt(qi) =
2n∑
i=1

f ′(qi)µ(qi) + σ
2n∑
i=1

f ′(qi)

∫ t

0

∫ Zs(qi)

0

W (ds, du)

+At

2n∑
i=1

f ′(qi)− b0

2n∑
i=1

f ′(qi)

∫ t

0

Zs(qi)ds

+
2n∑
i=1

f ′(qi)

∫ qi

0

βθdθ

∫ t

0

ds

∫
[0,qi]

Zs(dx)
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+
2n∑
i=1

f ′(qi)

∫ t

0

∫
{0}

∫ ∞

0

∫ Zs(qi)

0

zÑ0(ds, dy, dz, du)

+
2n∑
i=1

f ′(qi)

∫ t

0

∫ qi

0

∫ ∞

0

∫ Zs(qi)

0

zN0(ds, dy, dz, du)

=
2n∑
i=1

f ′(qi)µ(qi) + σ

∫ t

0

∫ Zs(a)

0

Fn(s, 0, u)W (ds, du)

+At

2n∑
i=1

f ′(qi)− b0

∫ t

0

[ 2n∑
i=1

f ′(qi)Zs(qi)
]
ds

+

∫ t

0

ds

∫
T

Zs(dx)

∫ a

0

Fn(s, x ∨ θ, 0)βθdθ

+

∫ t

0

∫
{0}

∫ ∞

0

∫ Zs(a)

0

zFn(s, 0, u)Ñ0(ds, dy, dz, du)

+

∫ t

0

∫ a

0

∫ ∞

0

∫ Zs(a)

0

zFn(s, y, u)N0(ds, dy, dz, du), (6.6)

where

Fn(s, y, u) =
2n∑
i=1

f ′(qi)1{y≤qi}1{u≤Zs(qi)}.

By the right continuity of q 7→ Zs(q) it is not hard to see that, as n→ ∞,

2−nFn(s, y, u) → F (s, y, u) :=

∫ a

y

1{u≤Zs(q)}f
′(q)dq. (6.7)

Then we can multiply (6.6) by 2−n and let n→ ∞ to see, almost surely,∫ a

0

f ′(q)Yt(q)dq =

∫ a

0

f ′(q)µ(q)dq + σ

∫ t

0

∫ Zs(a)

0

F (s, 0, u)W (ds, du)

+At

∫ a

0

f ′(q)dq − b0

∫ t

0

ds

∫ a

0

f ′(q)Zs(q)dq

+

∫ t

0

ds

∫
T

Zs(dx)

∫ a

0

F (s, x ∨ θ, 0)βθdθ

+

∫ t

0

∫
{0}

∫ ∞

0

∫ Zs(a)

0

zF (s, 0, u)Ñ0(ds, dy, dz, du)

+

∫ t

0

∫ a

0

∫ ∞

0

∫ Zs(a)

0

zF (s, y, u)N0(ds, dy, dz, du). (6.8)

From (6.4), (6.5) and (6.8) it follows that, almost surely,

⟨Yt, f⟩ = ⟨µ, f⟩+ f(0)At + σ

∫ t

0

∫ Zs(a)

0

[f(a)− F (s, 0, u)]W (ds, du)
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− b0

∫ t

0

⟨Zs, f⟩ds+
∫ t

0

ds

∫
T

Zs(dx)

∫ a

0

f(x ∨ θ)βθdθ

+

∫ t

0

∫
{0}

∫ ∞

0

∫ Zs(a)

0

z[f(a)− F (s, 0, u)]Ñ0(ds, dy, dz, du)

+

∫ t

0

∫ a

0

∫ ∞

0

∫ Zs(a)

0

z[f(a)− F (s, y, u)]N0(ds, dy, dz, du). (6.9)

Theorem 6.1 The measure-valued process {Yt : t ≥ 0} has a càdlàg modification.

Proof. By (6.9) one can see {⟨Yt, f⟩ : t ≥ 0} has a càdlàg modification for every f ∈
C1(T ). Let U be the countable set of polynomials having rational coefficients. Then
U is uniformly dense in both C1(T ) and C(T ). For f ∈ U let {Y ∗

t (f) : t ≥ 0} be a
càdlàg modification of {⟨Yt, f⟩ : t ≥ 0}. By removing a null set from Ω if it is necessary,
we obtain a càdlàg process {Y ∗

t : t ≥ 0} of rational linear functionals on U , which can
immediately be extended to a càdlàg process of real linear functionals on C(T ). By Riesz’s
representation, the latter determines a measure-valued process, which is clearly a càdlàg
modification of {Yt : t ≥ 0}. �

Theorem 6.2 The càdlàg modification of {Yt : t ≥ 0} is the unique solution of the
following martingale problem: For every G ∈ C2(R) and f ∈ C(T ),

G(⟨Yt, f⟩) = G(⟨µ, f⟩) +
∫ t

0

G′(⟨Ys, f⟩)ds
∫
T

Ys(dx)

∫
T

f(x ∨ θ)βθdθ

− b0

∫ t

0

G′(⟨Ys, f⟩)⟨Ys, f⟩ds+
1

2
σ2

∫ t

0

G′′(⟨Ys, f⟩)⟨Ys, f 2⟩ds

+

∫ t

0

ds

∫
T

Ys(dx)

∫ ∞

0

[
G(⟨Ys, f⟩+ zf(x))

−G(⟨Ys, f⟩)− zf(x)G′(⟨Ys, f⟩)
]
m0(dz)

+

∫ t

0

ds

∫
T

Ys(dx)

∫
T

dθ

∫ ∞

0

[
G(⟨Ys, f⟩+ zf(x ∨ θ))

−G(⟨Ys, f⟩)
]
nθ(dz) + hf(0)

∫ t

0

G′(⟨Ys, f⟩)ρ(s)ds

+

∫ t

0

ρ(s)ds

∫ ∞

0

[
G(⟨Ys, f⟩+ zf(0))−G(⟨Ys, f⟩)

]
n(dz)

+ local mart. (6.10)

Proof. We first assume f ∈ C1(T ). By (6.9) and Itô’s formula, we get

G(⟨Yt, f⟩) = G(⟨µ, f⟩)− b0

∫ t

0

G′(⟨Zs, f⟩)⟨Zs, f⟩ds
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+
1

2
σ2

∫ t

0

ds

∫ Zs(a)

0

G′′(⟨Zs, f⟩)[f(a)− F (s, 0, u)]2du

+

∫ t

0

G′(⟨Zs, f⟩)ds
∫
T

Zs(dx)

∫
T

f(x ∨ θ)βθdθ

+

∫ t

0

ds

∫ Zs(a)

0

du

∫ ∞

0

[
G(⟨Zs, f⟩+ z[f(a)− F (s, 0, u)])

−G(⟨Zs, f⟩)− z[f(a)− F (s, 0, u)]G′(⟨Zs, f⟩)
]
m0(dz)

+

∫ t

0

ds

∫ Zs(a)

0

du

∫
T

dθ

∫ ∞

0

[
G(⟨Zs, f⟩+ z[f(a)− F (s, θ, u)])

−G(⟨Zs, f⟩)
]
nθ(dz) + hf(0)

∫ t

0

G′(⟨Zs, f⟩)ρ(s)ds

+

∫ t

0

ρ(s)ds

∫ ∞

0

[
G(⟨Zs, f⟩+ zf(0))−G(⟨Zs, f⟩)

]
n(dz)

+ local mart.

For s, u > 0 let Z−1
s (u) = inf{q ≥ 0 : Zs(q) > u}. It is easy to see that {q ≥ 0 : u ≤

Zs(q)} = [Z−1
s (u),∞), except for at most countably many u > 0. Then in the above we

can replace f(a)− F (s, θ, u) by

f(a)−
∫ a

θ

1{Z−1
s (u)≤q}f

′(q)dq = f(Z−1
s (u) ∨ θ).

It follows that

G(⟨Yt, f⟩) = G(⟨µ, f⟩)− b0

∫ t

0

G′(⟨Zs, f⟩)⟨Zs, f⟩ds

+
1

2
σ2

∫ t

0

ds

∫ Zs(a)

0

G′′(⟨Zs, f⟩)f(Z−1
s (u))2du

+

∫ t

0

G′(⟨Zs, f⟩)ds
∫
T

Zs(dx)

∫
T

f(x ∨ θ)βθdθ

+

∫ t

0

ds

∫ Zs(a)

0

du

∫ ∞

0

[
G(⟨Zs, f⟩+ zf(Z−1

s (u)))

−G(⟨Zs, f⟩)− zf(Z−1
s (u))G′(⟨Zs, f⟩)

]
m0(dz)

+

∫ t

0

ds

∫ Zs(a)

0

du

∫
T

dθ

∫ ∞

0

[
G(⟨Zs, f⟩+ zf(Z−1

s (u) ∨ θ))

−G(⟨Zs, f⟩)
]
nθ(dz) + hf(0)

∫ t

0

G′(⟨Zs, f⟩)ρ(s)ds

+

∫ t

0

ρ(s)ds

∫ ∞

0

[
G(⟨Zs, f⟩+ zf(0))−G(⟨Zs, f⟩)

]
n(dz)

+ local mart.

= G(⟨µ, f⟩) +
∫ t

0

G′(⟨Zs, f⟩)ds
∫
T

Zs(dx)

∫
T

f(x ∨ θ)βθdθ
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− b0

∫ t

0

G′(⟨Zs, f⟩)⟨Zs, f⟩ds+
1

2
σ2

∫ t

0

G′′(⟨Zs, f⟩)⟨Zs, f
2⟩ds

+

∫ t

0

ds

∫
T

Zs(dx)

∫ ∞

0

[
G(⟨Zs, f⟩+ zf(x))

−G(⟨Zs, f⟩)− zf(x)G′(⟨Zs, f⟩)
]
m0(dz)

+

∫ t

0

ds

∫
T

Zs(dx)

∫
T

dθ

∫ ∞

0

[
G(⟨Zs, f⟩+ zf(x ∨ θ))

−G(⟨Zs, f⟩)
]
nθ(dz) + hf(0)

∫ t

0

G′(⟨Zs, f⟩)ρ(s)ds

+

∫ t

0

ρ(s)ds

∫ ∞

0

[
G(⟨Zs, f⟩+ zf(0))−G(⟨Zs, f⟩)

]
n(dz)

+ local mart.

For each q ∈ T the càdlàg process {Xt(q) : t ≥ 0} has at most countably many discontinu-
ity points Aq := {t > 0 : Yt−(q) ̸= Yt(q)}. In view of (6.1) and (6.2), we have Zt(q) = Yt(q)
for all q ∈ T and t ∈ B := Ac

a ∩ (∩u∈QT
Ac

u). Here B ⊂ [0,∞) is a set with full Lebesgue
measure. Then we have (6.10) for f ∈ C1(T ). For an arbitrary f ∈ C(T ), we get (6.10)
by an approximation argument. The uniqueness (in distribution) of the solution to the
martingale problem follows by a modification of the proof of Theorem 7.13 in Li (2011).
�

The martingale problem (6.10) is essentially a special case of the one given in The-
orem 10.18 of Li (2011); see also Theorem 9.18 of Li (2011). Let f 7→ Ψ(·, f) be the
operator on C+(T ) defined by

Ψ(x, f) =

∫
T

f(x ∨ θ)βθdθ +
∫
T

dθ

∫ ∞

0

(1− e−zf(x∨θ))nθ(dz). (6.11)

By modifying the proof of Theorem 3.4 one can show the following:

Theorem 6.3 The solution {Yt : t ≥ 0} of the martingale problem (6.10) is an immigra-
tion superprocess with transition semigroup (Qt)t≥0 defined by∫

M(T )

e−⟨ν,f⟩Qt(µ, dν) = exp
{
− ⟨µ, Vtf⟩ −

∫ t

0

ψ(Vsf(0))ρ(s)ds
}
, (6.12)

where f ∈ C+(T ), and t 7→ Vtf is the unique locally bounded positive solution of

Vtf(x) = f(x)−
∫ t

0

[ϕ0(Vsf(x))−Ψ(x, Vsf)]ds, t ≥ 0, x ∈ T. (6.13)

The branching mechanism of the immigration superprocess {Yt : t ≥ 0} has local part
(x, f) 7→ ϕ0(f(x)) and nonlocal part (x, f) 7→ Ψ(x, f); see Example 2.5 in Li (2011). The
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process has immigration mechanism f 7→ ψ(f(0)) and immigration rate ρ = {ρ(s) : s ≥
0}. Then the immigrants only come at the origin. The spatial motion in this model is
trivial. Heuristically, when an infinitesimal particle dies at site x ∈ T , some offspring are
born at this site according to the local branching mechanism and some are born in the
interval (x, a] according to the nonlocal branching mechanism. Therefore the branching of
an infinitesimal particle located at x ∈ T does not make any influence on the population
in the interval [0, x). This explains the Markov property of the path-valued process
{(Yt(q))t≥0 : q ∈ T}.

The cumulant semigroup (Vt)t≥0 can also be defined by a differential evolution equa-
tion. In fact, by Theorem 7.11 of Li (2011), for any f ∈ C+(T ), the integral equation
(6.13) is equivalent to{

dVtf

dt
(x) = −ϕ0(Vtf(x)) +Ψ(x, Vtf), t ≥ 0, x ∈ T,

V0f(x) = f(x), x ∈ T.
(6.14)

Then the transition semigroup (Qt)t≥0 can also be defined by (6.12) for f ∈ C+(T ) with
t 7→ Vtf being the unique locally bounded positive solution of (6.14).

Theorem 6.4 Let Y = (Ω ,G ,Gt, Yt,Qµ) be any càdlàg immigration superprocess with
transition semigroup (Qt)t≥0 defined by (6.12) and (6.13). Then under Qµ for every q ∈ T
the process {Yt[0, q] : t ≥ 0} has a càdlàg version and {(Yt[0, q])t≥0 : q ∈ T} is a path-
valued branching process with immigration with transition semigroup {Pp,q : q ≥ p ∈ T}
defined by (4.6).

Proof. By Theorem 6.2, one can see that for each q ∈ T the restriction of {Yt : t ≥ 0}
to [0, q] is also an immigration superprocess with state space M [0, q]. In particular, the
process {Yt[0, q] : t ≥ 0} has a càdlàg version. Clearly, the finite-dimensional distributions
of the path-valued process {(Yt[0, q])t≥0 : q ∈ T} are uniquely determined by the initial
state µ ∈ M(T ) and transition semigroup (Qt)t≥0. Then {(Yt[0, q])t≥0 : q ∈ T} has
identical finite-dimensional distributions with the process {(Yt(q))t≥0 : q ∈ T} defined
by (6.4). Since {(Yt(q))t≥0 : q ∈ T} is a Markov process with transition semigroup
{Pp,q : q ≥ p ∈ T}, so is {(Yt[0, q])t≥0 : q ∈ T}. �

If T = [0,∞) or [0, a) for some a > 0, we may apply the above results to the interval
[0, q] ⊂ T for q ∈ T . Then for each q ∈ T , there is a immigration superprocess {Y q

t : t ≥ 0}
in M [0, q]. Those processes determine a nonlocal branching immigration superprocess
{Yt : t ≥ 0} in M (T ), the space of Radon measures on T furnished with the topology
of vague convergence. The results established in this section hold for this process with
obvious modifications.
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7 The excursion law

In this section we assume T = [0, a] for some a > 0. However, the results obtained
here can be modified to the case T = [0, a) or [0,∞) obviously. Let {ϕq : q ∈ T} be an
admissible family of branching mechanisms, where ϕq is given by (1.1) with the parameters
(b,m) = (bq,mq) depending on q ∈ T . In addition, we assume ϕ′

0(λ) → ∞ as λ → ∞.
By Theorem 6.3, we can define the transition semigroup (Qt)t≥0 of a non-local branching
superprocess by∫

M(T )

e−⟨ν,f⟩Qt(µ, dν) = exp { − ⟨µ, Vtf⟩}, f ∈ C+(T ), (7.1)

where t 7→ Vtf is the unique locally bounded positive solution of (6.13). Let (Q◦
t )t≥0

denote the restriction of the semigroup to M(T )◦.

Theorem 7.1 The cumulant semigroup of (Vt)t≥0 in (7.1) admits the representation

Vtf(x) =

∫
M(T )◦

(1− e−⟨ν,f⟩)Lt(x, dν), t > 0, x ∈ T, (7.2)

where (Lt(x, ·))t>0 is a σ-finite entrance law for (Q◦
t )t≥0.

Proof. We need a modification of the characterization (6.14) of the cumulant semigroup.
Let us consider a jump process ξ in T with generator A defined by

Af(x) =

∫ a

0

(f(q)− f(x))γ(dq), x ∈ T, f ∈ C(T ),

where

γ(dq) = βqdq +

∫
{0<z<∞}

znq(dz)dq.

Let ϕ∗(λ) = γ[0, a]λ+ ϕ0(λ), and let f 7→ Ψ∗(·, f) be the operator on C+(T ) defined by

Ψ∗(x, f) =

∫ a

0

∫ ∞

0

[e−zf(x∨y) − 1 + zf(x ∨ y)]m(dy, dz).

Now the first equation in (6.14) can be rewritten as

dVtf

dt
(x) = AVtf(x)− ϕ∗(Vtf(x))−Ψ∗(x, Vtf).

Then we may think of (Vt)t≥0 as the cumulant semigroup of a superprocess with underlying
spatial motion ξ and branching mechanism (x, f) 7→ ϕ∗(f(x)) + Ψ∗(x, f). Since clearly
ϕ′
∗(λ) → ∞ as λ→ ∞, the result follows by Theorem 8.6 of Li (2011). �
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Let us consider a canonical càdlàg realization Y = (Ω ,G ,Gt, Yt,Qµ) of the non-local
branching superprocess with transition semigroup (Qt)t≥0 defined by (6.13) and (7.1),
where Ω = D([0,∞),M(T )). Let Yt(q) = Yt[0, q] for t ≥ 0 and q ∈ T . By Theorem 6.4,
we have

Qµ exp
{
−
∫ ∞

0

Ys(q)f(s)ds
}
= exp { − µ[0, q]uq(0, f)}, (7.3)

where s 7→ uq(s, f) is the unique compactly supported bounded positive solution to (4.7).
By Theorems 8.22 and 8.23 of Li (2011), for each x ∈ T there is an excursion law Nx on
D([0,∞),M(T )) of the superprocess such that Nx{Y0 ̸= 0} = 0 and

Nx

[
1− e−

∫∞
0 ⟨Ys,fs⟩ds

]
= − logQδx

[
e−

∫∞
0 ⟨Ys,fs⟩ds

]
(7.4)

for any bounded positive Borel function (s, y) 7→ fs(y) on [0,∞)×T with compact support.
In view of (7.3) and (7.4), for any f ∈ B+[0,∞) with compact support, we have

N0

[
1− e−

∫∞
0 Ys(q)f(s)ds

]
= uq(0, f), (7.5)

where s 7→ uq(s, f) is the unique compactly supported bounded positive solution to (4.7).

Theorem 7.2 Under N0 the path-valued process {(Yt(q))t≥0 : q ∈ T} satisfies the Markov
property with transition semigroup {Pp,q : q ≥ p ∈ T} such that∫

D+[0,∞)

e−
∫∞
0 f(s)w(s)dsPp,q(η, dw) = exp

{
−
∫ ∞

0

up,q(s, f)η(s)ds
}
, (7.6)

where f ∈ B+[0,∞) has compact support, and up,q(s, f) is defined by (4.8).

Proof. By Theorem 6.4, under Qδ0 the process {(Yt(q))t≥0 : q ∈ T} satisfies the Markov
property with transition semigroup defined by (7.6). Suppose that (s, x) 7→ fs(x) is a
bounded positive Borel function on [0,∞) × T , and s 7→ gs is a bounded positive Borel
function on [0,∞), both with compact supports. Then we have

Qδ0

[
exp

{
−
∫ ∞

0

[⟨Ys, fs1[0,p]⟩+ Ys(q)gs]ds
}]

= Qδ0

[
exp

{
−

∫ ∞

0

[⟨Ys, fs1[0,p]⟩+ Ys(p)up,q(s, g)]ds
}]
.

From this and (7.4) it follows that

N0

[
1− exp

{
−
∫ ∞

0

[⟨Ys, fs1[0,p]⟩+ Ys(q)gs]ds
}]

= N0

[
1− exp

{
−

∫ ∞

0

[⟨Ys, fs1[0,p]⟩+ Ys(p)up,q(s, g)]ds
}]
.
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Then subtracting the quantity

N0

[
1− exp

{
−
∫ ∞

0

⟨Ys, fs1[0,p]⟩ds
}]

from both sides, we get

N0

[
exp

{
−
∫ ∞

0

⟨Ys, fs1[0,p]⟩ds
}

·
(
1− exp

{
−

∫ ∞

0

Ys(q)gsds
})]

= N0

[
exp

{
−

∫ ∞

0

⟨Ys, fs1[0,p]⟩ds
}

·
(
1− exp

{
−

∫ ∞

0

Ys(p)up,q(s, g)ds
})]

.

A monotone class argument shows that

N0

[
F
(
1− exp

{
−

∫ ∞

0

Ys(q)gsds
})]

= N0

[
F
(
1− exp

{
−

∫ ∞

0

Ys(p)up,q(s, g)ds
})]

for any positive Borel function F on D([0,∞),M(T )) measurable with respect to the
σ-algebra generated by {Yt[0, v] : t ≥ 0, 0 ≤ v ≤ p}. That implies the desired Markov
property of the process {(Yt(q))t≥0 : q ∈ T}. �

A characterization of the finite-dimensional distributions of the path-valued process
{(Yt(q))t≥0 : q ∈ T} under the excursion law N0 can be given by combining (7.5) and
(7.6). Similarly, one can obtain characterizations of the finite-dimensional distributions
of the path-valued process {(Yt(q))0≤t≤α : q ∈ T} for α > 0 and the total mass process

σ(q) :=

∫ ∞

0

Yt(q)dt, q ∈ T.

The following result should be compared with Theorem 6.7 of Abraham and Delmas
(2010).

Theorem 7.3 Suppose that ϕ is a branching mechanism such that ϕ(λ) → ∞ as λ→ ∞.
Let {ϕq : q ∈ T} be the admissible family defined by (5.7). Let θ ∈ T be a strictly positive
constant. Then for any positive random variable G(θ) measurable with respect to the
σ-algebra generated by {Yt(v) : t ≥ 0, v ∈ [0, θ]}, we have

N0[G(θ)|A = θ] = ϕ′(ϕ−1(ϕ(−θ)))N0[G(θ)σ(θ)1{σ(θ)<∞}].

Proof. Based on Theorem 7.2 and the Markov property of the path-valued process
{(Yt(q))t≥0 : q ∈ T}, this follows as in the proofs of Theorems 5.3 and 5.4. �
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