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Parameter estimation for a subcritical affine two factor model

Mátyás Barczy∗, Leif Döring, Zenghu Li, Gyula Pap

Abstract

For an affine two factor model, we study the asymptotic properties of the maximum likelihood and
least squares estimators of some appearing parameters in the so-called subcritical (ergodic) case based on
continuous time observations. We prove strong consistency and asymptotic normality of the estimators in
question.

1 Introduction

We consider the following 2-dimensional affine process (affine two factor model){
dYt = (a− bYt) dt+

√
Yt dLt,

dXt = (m− θXt) dt+
√
Yt dBt,

t > 0,(1.1)

where a > 0, b,m, θ ∈ R, and (Lt)t>0 and (Bt)t>0 are independent standard Wiener processes. Note that
the process (Yt)t>0 given by the first SDE of (1.1) is the so-called Cox–Ingersol–Ross (CIR) process which
is a continuous state branching process with branching mechanism bz + z2/2, z > 0, and with immigration
mechanism az, z > 0. Chen and Joslin [9] applied (1.1) for modelling quantitative impact of stochastic recovery
on the pricing of defaultable bonds, see their equations (25) and (26).

The process (Y,X) given by (1.1) is a special affine diffusion process. The set of affine processes contains a
large class of important Markov processes such as continuous state branching processes and Ornstein–Uhlenbeck
processes. Further, a lot of models in financial mathematics are affine such as the Heston model [15], the model
of Barndorff-Nielsen and Shephard [4] or the model due to Carr and Wu [8]. A precise mathematical formulation
and a complete characterization of regular affine processes are due to Duffie et al. [13]. These processes are
widely used in financial mathematics due to their computational tractability, see Gatheral [14].

This article is devoted to estimate the parameters a, b, m and θ from some continuously observed real
data set (Yt, Xt)t∈[0,T ], where T > 0. To the best knowledge of the authors the parameter estimation problem
for multi-dimensional affine processes has not been tackled so far. Since affine processes are frequently used
in financial mathematics, the question of parameter estimation for them is of high importance. In Barczy et
al. [1] we started the discussion with a simple non-trivial two-dimensional affine diffusion process given by (1.1)
in the so called critical case: b > 0, θ = 0 or b = 0, θ > 0 (for the definition of criticality, see Section
2). In the special critical case b = 0, θ = 0 we described the asymptotic behavior of least squares estimator
(LSE) of (m, θ) from some discretely observed low frequency real data set X0, X1, . . . , Xn as n → ∞. The
description of the asymptotic behavior of the LSE of (m, θ) in the other critical cases b = 0, θ > 0 or b > 0,
θ = 0 remained opened. In this paper we deal with the same model (1.1) but in the so-called subcritical
(ergodic) case: b > 0, θ > 0, and we consider the maximum likelihood estimator (MLE) of (a, b,m, θ) using
some continuously observed real data set (Yt, Xt)t∈[0,T ], where T > 0, and the LSE of (m, θ) using some
continuously observed real data set (Xt)t∈[0,T ], where T > 0. For studying the asymptotic behaviour of
the MLE and LSE in the subcritical (ergodic) case, one first needs to examine the question of existence of a
unique stationary distribution and ergodicity for the model given by (1.1). In a companion paper Barczy et
al. [2] we solved this problem, see also Theorem 2.5. Further, in a more general setup by replacing the CIR
process (Yt)t>0 in the first SDE of (1.1) by a so-called α-root process (stable CIR process) with α ∈ (1, 2),
the existence of a unique stationary distribution for the corresponding model was proved in Barczy et al. [2].

In general, parameter estimation for subcritical (also called ergodic) models has a long history, see, e.g., the
monographs of Liptser and Shiryaev [27, Chapter 17], Kutoyants [23], Bishwal [7] and the papers of Klimko

∗ Corresponding author
2010 Mathematics Subject Classifications: 62F12, 60J25.
Key words and phrases: affine process, maximum likelihood estimator, least squares estimator.

The research of M. Barczy and G. Pap was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 ,,National Excellence
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and Nelson [22] and Sørensen [32]. In case of the one-dimensional CIR process Y , the parameter estima-
tion of a and b goes back to Overbeck and Rydén [28] (conditional LSE), Overbeck [29] (MLE), and
see also Bishwal [7, Example 7.6] and the very recent papers of Ben Alaya and Kebaier [5], [6] (MLE). In
Ben Alaya and Kebaier [5], [6] one can find a systematic study of the asymptotic behavior of the quadruplet(
log(Yt), Yt,

∫ t

0
Ys ds,

∫ t

0
1/Ys ds

)
as t → ∞. Finally, we note that Li and Ma [25] started to investigate the

asymptotic behaviour of the (weighted) conditional LSE of the drift parameters for a CIR model driven by a
stable noise (they call it a stable CIR model) from some discretely observed low frequency real data set. To
give another example besides the one-dimensional CIR process, we mention a model that is somewhat related
to (1.1) and parameter estimation of the appearing parameters based on continuous time observations has been
considered. It is the so-called Ornstein–Uhlenbeck process driven by α-stable Lévy motions, i.e.,

dUt = (m− θUt) dt+ dZt, t > 0,

where θ > 0, m ̸= 0, and (Zt)t>0 is an α-stable Lévy motion with α ∈ (1, 2). For this model Hu and Long
investigated the question of parameter estimation, see [17], [18] and [19].

It would be possible to calculate the discretized version of the estimators presented in this paper using the
same procedure as in Ben Alaya and Kebaier [5, Section 4] valid for discrete time observations of high frequency.
However, it is out of the scope of the present paper.

We give a brief overview of the structure of the paper. Section 2 is devoted to a preliminary discussion of
the existence and uniqueness of a strong solution of the SDE (1.1), we make a classification of the model (see
Definition 2.4), we also recall our results in Barczy et al. [2] on the existence of a unique stationary distribution
and ergodicity for the affine process given by SDE (1.1), see Theorem 2.5. Further, we recall some limit theorems
for continuous local martingales that will be used later on for studying the asymptotic behaviour of the MLE
of (a, b,m, θ) and the LSE of (m, θ), respectively. In Sections 3–8 we study the asymptotic behavior of the
MLE of (a, b,m, θ) and LSE of (m, θ) proving that the estimators are strongly consistent and asymptotically
normal under appropriate conditions on the parameters. We call the attention that for the MLE of (a, b,m, θ)
we require a continuous time observation (Yt, Xt)t∈[0,T ] of the process (Y,X), but for the LSE of (m, θ) we
need a continuous time observation (Xt)t∈[0,T ] only for the process X. We note that in the critical case we
obtained a different limit behaviour for the LSE of (m, θ), see Barczy et al. [1, Theorem 3.2].

A common generalization of the model (1.1) and the well-known Heston model [15] is a general affine diffusion
two factor model {

dYt = (a− bYt) dt+ σ1

√
Yt dLt,

dXt = (m− κYt − θXt) dt+ σ1

√
Yt (ϱLt +

√
1− ϱ2dBt),

t > 0,(1.2)

where a, σ1, σ2 > 0, b,m, κ, θ ∈ R, ϱ ∈ (−1, 1), and (Lt)t>0 and (Bt)t>0 are independent standard
Wiener processes. One does not need to estimate the parameters σ1, σ2 and ϱ, since these parameters
could —in principle, at least— be determined (rather than estimated) using an arbitrarily short continuous
time observation of (Y,X), see Remark 2.5 in Barczy and Pap [3]. For studying the parameter estimation of
a, b, m, κ and θ in the subcritical case, one needs to investigate ergodicity properties of the model (1.2).
For the submodel (1.1), this has been proved in Barczy et al. [2], see also Theorem 2.5. For the Heston model,
ergodicity of the first coordinate process Y is sufficient for statistical purposes, see Barczy and Pap [3]; the
existence of a unique stationary distribution and the ergodicity for Y has been proved by Cox et al. [10,
Equation (20)] and Li and Ma [25, Theorem 2.6]. After showing appropriate ergodicity properties of the model
(1.2), one could obtain the asymptotic behavior of the MLE and LSE of (a, b,m, κ, θ) with a similar method
used in the present paper.

2 Preliminaires

Let N, Z+, R and R+ denote the sets of positive integers, non-negative integers, real numbers and non-
negative real numbers, respectively. By ∥x∥ and ∥A∥ we denote the Euclidean norm of a vector x ∈ Rm

and the induced matrix norm ∥A∥ = sup{∥Ax∥ : x ∈ Rm, ∥x∥ = 1} of a matrix A ∈ Rn×m, respectively.

The next proposition is about the existence and uniqueness of a strong solution of the SDE (1.1) which
follows from the theorem due to Yamada and Watanabe, further it clarifies that the process given by the SDE
(1.1) belongs to the family of regular affine processes, see Barczy et al. [2, Theorem 2.2 with α = 2].

2.1 Proposition. Let
(
Ω,F ,P

)
be a probability space, and (Lt, Bt)t∈R+ be a 2-dimensional standard Wiener

process. Let (η0, ζ0) be a random vector independent of (Lt, Bt)t>0 satisfying P(η0 > 0) = 1. Then, for all
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a > 0, and b,m, θ ∈ R, there is a (pathwise) unique strong solution (Yt, Xt)t>0 of the SDE (1.1) such that
P((Y0, X0) = (η0, ζ0)) = 1 and P(Yt > 0, ∀ t > 0) = 1. Further, we have

Yt = e−b(t−s)

(
Ys + a

∫ t

s

e−b(s−u) du+

∫ t

s

e−b(s−u)
√
Yu dLu

)
, 0 6 s 6 t,(2.1)

and

Xt = e−θ(t−s)

(
Xs +m

∫ t

s

e−θ(s−u) du+

∫ t

s

e−θ(s−u)
√
Yu dBu

)
, 0 6 s 6 t.(2.2)

Moreover, (Yt, Xt)t>0 is a regular affine process with infinitesimal generator

(Af)(y, x) = (a− by)f ′
1(y, x) + (m− θx)f ′

2(y, x) +
1

2
y(f ′′

1,1(y, x) + f ′′
2,2(y, x)),

where (y, x) ∈ R+ × R, f ∈ C2
c (R+ × R,R), f ′

i , i = 1, 2, and f ′′
i,j, i, j ∈ {1, 2}, denote the first and

second order partial derivatives of f with respect to its i-th and i-th and j-th variables, respectively, and
C2
c (R+ × R,R) is the set of twice continuously differentiable real-valued functions defined on R+ × R having

compact support.

2.2 Remark. Note that in Proposition 2.1 the unique strong solution (Yt, Xt)t>0 of the SDE (1.1) is adapted
to the augmented filtration (Ft)t∈R+ corresponding to (Lt, Bt)t∈R+ and (η0, ζ0), constructed as in Karatzas
and Shreve [21, Section 5.2]. Note also that (Ft)t∈R+ satisfies the usual conditions, i.e., the filtration (Ft)t∈R+

is right-continuous and F0 contains all the P-null sets in F . Further, (Lt)t∈R+ and (Bt)t∈R+ are
independent (Ft)t∈R+ -standard Wiener processes. In Proposition 2.1 it is the assumption a > 0 which ensures
P(Yt > 0, ∀ t > 0) = 1. 2

In what follows we will make a classification of the affine processes given by the SDE (1.1). First we recall
a result about the first moment of (Yt, Xt)t∈R+ , see Proposition 3.2 in Barczy et al. [1].

2.3 Proposition. Let (Yt, Xt)t∈R+ be an affine diffusion process given by the SDE (1.1) with a random initial
value (η0, ζ0) independent of (Lt, Bt)t>0 such that P(η0 > 0) = 1, E(η0) < ∞ and E(|ζ0|) < ∞. Then[

E(Yt)

E(Xt)

]
=

[
e−bt 0

0 e−θt

][
E(η0)
E(ζ0)

]
+

[∫ t

0
e−bs ds 0

0
∫ t

0
e−θs ds

][
a

m

]
, t ∈ R+.

Proposition 2.3 shows that the asymptotic behavior of the first moment of (Yt, Xt)t∈R+ as t → ∞ is
determined by the spectral radius of the diagonal matrix diag(e−bt, e−θt), which motivates our classification
of the affine processes given by the SDE (1.1).

2.4 Definition. Let (Yt, Xt)t∈R+ be an affine diffusion process given by the SDE (1.1) with a random initial
value (η0, ζ0) independent of (Lt, Bt)t>0 satisfying P(η0 > 0) = 1. We call (Yt, Xt)t∈R+ subcritical, critical
or supercritical if the spectral radius of the matrix[

e−bt 0

0 e−θt

]

is less than 1, equal to 1 or greater than 1, respectively.

Note that, since the spectral radius of the matrix given in Definition 2.4 is max(e−bt, e−θt), the affine
process given in Definition 2.4 is

subcritical if b > 0 and θ > 0,

critical if b = 0, θ > 0 or b > 0, θ = 0,

supercritical if b < 0 or θ < 0.

Further, under the conditions of Proposition 2.3, by an easy calculation, if b > 0 and θ > 0, then

lim
t→∞

[
E(Yt)

E(Xt)

]
=

[
a
b
m
θ

]
,
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if b = 0 and θ = 0, then

lim
t→∞

[
1
t E(Yt)
1
t E(Xt)

]
=

[
a

m

]
,

if b = 0 and θ > 0, then

lim
t→∞

[
1
t E(Yt)

E(Xt)

]
=

[
a
m
θ

]
,

if b > 0 and θ = 0, then

lim
t→∞

[
E(Yt)

1
t E(Xt)

]
=

[
a
b

m

]
,

and if b < 0 and θ < 0, then

lim
t→∞

[
ebt E(Yt)

eθt E(Xt)

]
=

[
E(η0)− a

b

E(ζ0)− m
θ

]
.

Remark also that Definition 2.4 of criticality is in accordance with the corresponding definition for one-
dimensional continuous state branching processes, see, e.g., Li [24, page 58].

In the sequel
P−→ and

L−→ will denote convergence in probability and in distribution, respectively.

The following result states the existence of a unique stationary distribution and the ergodicity for the affine
process given by the SDE (1.1), see Theorems 3.1 with α = 2 and Theorem 4.2 in Barczy et al. [2].

2.5 Theorem. Let us consider the 2-dimensional affine model (1.1) with a > 0, b > 0, m ∈ R, θ > 0, and
with a random initial value (η0, ζ0) independent of (Lt, Bt)t>0 satisfying P(η0 > 0) = 1. Then

(i) (Yt, Xt)
L−→ (Y∞, X∞) as t → ∞, and the distribution of (Y∞, X∞) is given by

E
(
e−λ1Y∞+iλ2X∞

)
= exp

{
−a

∫ ∞

0

vs(λ1, λ2) ds+ i
m

θ
λ2

}
, (λ1, λ2) ∈ R+ × R,(2.3)

where vt(λ1, λ2), t > 0, is the unique non-negative solution of the (deterministic) differential equation{
∂vt

∂t (λ1, λ2) = −bvt(λ1, λ2)− 1
2 (vt(λ1, λ2))

2 + 1
2e

−2θtλ2
2, t > 0,

v0(λ1, λ2) = λ1.
(2.4)

(ii) supposing that the random initial value (η0, ζ0) has the same distribution as (Y∞, X∞) given in part
(i), we have (Yt, Xt)t>0 is strictly stationary.

(iii) for all Borel measurable functions f : R2 → R such that E
(
|f(Y∞, X∞)|

)
< ∞, we have

(2.5) P

(
lim

T→∞

1

T

∫ T

0

f(Ys, Xs) ds = E(f(Y∞, X∞))

)
= 1,

where the distribution of (Y∞, X∞) is given by (2.3) and (2.4).

Moreover, the random variable (Y∞, X∞) is absolutely continuous, the Laplace transform of Y∞ takes the
form

E(e−λ1Y∞) =

(
1 +

λ1

2b

)−2a

, λ1 ∈ R+,(2.6)

i.e., Y∞ has Gamma distribution with parameters 2a and 2b, all the (mixed) moments of (Y∞, X∞) of
any order are finite, i.e., E(Y n

∞|X∞|p) < ∞ for all n, p ∈ Z+, and especially,

E(Y∞) =
a

b
, E(X∞) =

m

θ
,

E(Y 2
∞) =

a(2a+ 1)

2b2
, E(Y∞X∞) =

ma

θb
, E(X2

∞) =
aθ + 2bm2

2bθ2
,

E(Y∞X2
∞) =

a

(b+ 2θ)2b2θ2
(
θ(ab+ 2aθ + θ) + 2m2b(2θ + b)

)
.
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In all what follows we will suppose that we have continuous time observations for the process (Y,X), i.e.,
(Yt, Xt)t∈[0,T ] can be observed for some T > 0, and our aim is to deal with parameter estimation of (a, b,m, θ).
We also deal with parameter estimation of θ provided that the parameter m ∈ R is supposed to be known.

Next we recall some limit theorems for continuous local martingales. We will use these limit theorems in the
sequel for studying the asymptotic behaviour of different kinds of estimators for (a, b,m, θ). First we recall a
strong law of large numbers for continuous local martingales, see, e.g., Liptser and Shiryaev [27, Lemma 17.4].

2.6 Theorem. Let
(
Ω,F , (Ft)t>0,P

)
be a filtered probability space satisfying the usual conditions. Let

(Mt)t>0 be a square-integrable continuous local martingale with respect to the filtration (Ft)t>0 started from
0. Let (ξt)t>0 be a progressively measurable process such that

P
(∫ t

0

(ξu)
2 d⟨M⟩u < ∞

)
= 1, t > 0,

and

P
(
lim
t→∞

∫ t

0

(ξu)
2 d⟨M⟩u = ∞

)
= 1,(2.7)

where (⟨M⟩t)t>0 denotes the quadratic variation process of M . Then

P

(
lim
t→∞

∫ t

0
ξu dMu∫ t

0
(ξu)2 d⟨M⟩u

= 0

)
= 1.(2.8)

In case of Mt = Bt, t > 0, where (Bt)t>0 is a standard Wiener process, the progressive measurability of
(ξt)t>0 can be relaxed to measurability and adaptedness to the filtration (Ft)t>0.

The next theorem is about the asymptotic behaviour of continuous multivariate local martingales.

2.7 Theorem. (van Zanten [33, Theorem 4.1]) Let
(
Ω,F , (Ft)t>0,P

)
be a filtered probability space

satisfying the usual conditions. Let (Mt)t>0 be a d-dimensional square-integrable continuous local martingale
with respect to the filtration (Ft)t>0 started from 0. Suppose that there exists a function Q : [0,∞) → Rd×d

such that Q(t) is a non-random, invertible matrix for all t > 0, limt→∞ ∥Q(t)∥ = 0 and

Q(t)⟨M⟩tQ(t)⊤
P−→ ηη⊤ as t → ∞,

where η is a d × d random matrix defined on
(
Ω,F ,P

)
. Then, for each Rk-valued random variable V

defined on
(
Ω,F ,P

)
, it holds that

(Q(t)Mt, V )
L−→ (ηZ, V ) as t → ∞,

where Z is a d-dimensional standard normally distributed random variable independent of (η, V ).

We note that Theorem 2.7 remains true if the function Q, instead of the interval [0,∞), is defined only
on an interval [t0,∞) with some t0 > 0.

3 Existence and uniqueness of maximum likelihood estimator

Let P(a,b,m,θ) denote the probability measure on the measurable space (C(R+,R+ × R),B(C(R+,R+ × R)))
induced by the process (Yt, Xt)t>0 corresponding to the parameters (a, b,m, θ) and initial value (Y0, X0). Here
C(R+,R+×R) denotes the set of continuous R+×R-valued functions defined on R+, B(C(R+,R+×R)) is the
Borel σ-algebra on it, and we suppose that the space (C(R+,R+×R),B(C(R+,R+×R))) is endowed with the
natural filtration (At)t>0, given by At := φ−1

t (B(C(R+,R+×R))), where φt : C(R+,R+×R) → C(R+,R+×R)
is the mapping φt(f)(s) := f(t∧ s), s > 0. For all T > 0, let P(a,b,m,θ),T := P(a,b,m,θ) |AT

be the restriction
of P(a,b,m,θ) to AT .

3.1 Lemma. Let a > 1/2, b,m, θ ∈ R, T > 0, and suppose that P(Y0 > 0) = 1. Let P(a,b,m,θ) and P(1,0,0,0)

denote the probability measures induced by the unique strong solutions of the SDE (1.1) corresponding to the
parameters (a, b,m, θ) and (1, 0, 0, 0) with the same initial value (Y0, X0), respectively. Then P(a,b,m,θ),T
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and P(1,0,0,0),T are absolutely continuous with respect to each other, and the Radon-Nykodim derivative of
P(a,b,m,θ),T with respect to P(1,0,0,0),T (so called likelihood ratio) takes the form

L
(a,b,m,θ),(1,0,0,0)
T ((Ys, Xs)s∈[0,T ]) = exp

{∫ T

0

(
a− bYs − 1

Ys
dYs +

m− θXs

Ys
dXs

)

− 1

2

∫ T

0

(a− bYs − 1)(a− bYs + 1) + (m− θXs)
2

Ys
ds

}
,

where (Yt, Xt)t>0 denotes the unique strong solution of the SDE (1.1) corresponding to the parameters
(a, b,m, θ) and the initial value (Y0, X0).

Proof. First note that the SDE (1.1) can be written in the form:

d

[
Yt

Xt

]
=

[[
−b 0

0 −θ

][
Yt

Xt

]
+

[
a

m

]]
dt+

[√
Yt 0

0
√
Yt

][
dLt

dBt

]
, t > 0.

Note also that under the condition a > 1
2 , for all y0 > 0, we have P(Yt > 0, ∀ t ∈ R+ |Y0 = y0) = 1, see, e.g.,

page 442 in Revuz and Yor [30]. Since P(Y0 > 0) = 1, by the law of total probability, P(Yt > 0, ∀ t ∈ R+) = 1.

We intend to use Lemma A.1. By Proposition 2.1, under the conditions of the present lemma, there is a
pathwise unique strong solution of the SDE (1.1). We has to check∫ T

0

(a− bYs)
2 + (m− θXs)

2 + 1

Ys
ds < ∞ a.s. for all T ∈ R+.

Since (Y,X) has continuous sample paths almost surely, this holds if∫ T

0

1

Ys
ds < ∞ a.s. for all T ∈ R+.(3.1)

Under the conditions a > 1/2 and P(Y0 > 0) = 1, Theorems 1 and 3 in Ben-Alaya and Kebaier [6] yield
(3.1). More precisely, if a > 1

2 and y0 > 0, then Theorems 1 and 3 in Ben-Alaya and Kebaier [6] yield

P

(∫ T

0

1

Ys
ds < ∞

∣∣∣Y0 = y0

)
= 1, T ∈ R+.

Since P(Y0 > 0) = 1, by the law of total probability, we get (3.1). We give another, direct proof for
(3.1). Namely, since Y has continuous sample paths almost surely and P(Yt > 0, ∀ t ∈ R+) = 1, we have
P(inft∈[0,T ] Yt > 0) = 1 for all T ∈ R+, which yields (3.1). 2

By Lemma 3.1, under its conditions the log-likelihood function takes the form

logL
(a,b,m,θ),(1,0,0,0)
T ((Ys, Xs)s∈[0,T ]) = (a− 1)

∫ T

0

1

Ys
dYs − b(YT − Y0) +m

∫ T

0

1

Ys
dXs

− θ

∫ T

0

Xs

Ys
dXs −

a2 − 1

2

∫ T

0

1

Ys
ds+ abT − b2

2

∫ T

0

Ys ds

− m2

2

∫ T

0

1

Ys
ds+mθ

∫ T

0

Xs

Ys
ds− θ2

2

∫ T

0

X2
s

Ys
ds

=: fT (a, b,m, θ), T > 0.

We remark that for all T > 0 and all initial values (Y0, X0), the probability measures P(a,b,m,θ),T , a > 1/2,
b,m, θ ∈ R, are absolutely continuous with respect to each other, and hence it does not matter which measure
is taken as a reference measure for defining the MLE (we have chosen P(1,0,0,0),T ). For more details, see, e.g.,

Liptser and Shiryaev [26, page 35]. Then the equation ∂fT
∂θ (a, b,m, θ) = 0 takes the form

−
∫ T

0

Xs

Ys
dXs +m

∫ T

0

Xs

Ys
ds− θ

∫ T

0

X2
s

Ys
ds = 0.
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Moreover, the system of equations

∂fT
∂a

(a, b,m, θ) = 0,
∂fT
∂b

(a, b,m, θ) = 0,
∂fT
∂m

(a, b,m, θ) = 0,
∂fT
∂θ

(a, b,m, θ) = 0,

takes the form 
∫ T

0
1
Ys

ds −T 0 0

−T
∫ T

0
Ys ds 0 0

0 0
∫ T

0
1
Ys

ds −
∫ T

0
Xs

Ys
ds

0 0 −
∫ T

0
Xs

Ys
ds

∫ T

0
X2

s

Ys
ds



a

b

m

θ

 =


∫ T

0
1
Ys

dYs

−(YT − Y0)∫ T

0
1
Ys

dXs

−
∫ T

0
Xs

Ys
dXs

 .

First, we suppose that a > 1/2, and b ∈ R and m ∈ R are known. By maximizing logL
(a,b,m,θ),(1,0,0,0)
T

in θ ∈ R, we get the MLE of θ based on the observations (Yt, Xt)t∈[0,T ],

θ̃MLE
T :=

−
∫ T

0
Xs

Ys
dXs +m

∫ T

0
Xs

Ys
ds∫ T

0
X2

s

Ys
ds

, T > 0,(3.2)

provided that
∫ T

0
X2

s

Ys
ds > 0. Indeed,

∂2fT
∂θ2

(θ,m) = −
∫ T

0

X2
s

Ys
ds < 0.

Using the SDE (1.1), one can also get

θ̃MLE
T − θ = −

∫ T

0
Xs√
Ys

dBs∫ T

0
X2

s

Ys
ds

, T > 0,(3.3)

provided that
∫ T

0
X2

s

Ys
ds > 0. Note that the estimator θ̃MLE

T does not depend on the parameters a > 1/2

and b ∈ R. In fact, if we maximize logL
(a,b,m,θ),(1,0,0,0)
T in (a, b, θ) ∈ R3, then we obtain the MLE of (a, b, θ)

supposing that m ∈ R is known, and one can observe that the MLE of θ by this procedure coincides with
θ̃MLE
T .

By maximizing logL
(a,b,m,θ),(1,0,0,0)
T in (a, b,m, θ) ∈ R4, the MLE of (a, b,m, θ) based on the observations

(Yt, Xt)t∈[0,T ] takes the form

âMLE
T :=

∫ T

0
Ys ds

∫ T

0
1
Ys

dYs − T (YT − Y0)∫ T

0
Ys ds

∫ T

0
1
Ys

ds− T 2
, T > 0,(3.4)

b̂MLE
T :=

T
∫ T

0
1
Ys

dYs − (YT − Y0)
∫ T

0
1
Ys

ds∫ T

0
Ys ds

∫ T

0
1
Ys

ds− T 2
, T > 0,(3.5)

m̂MLE
T :=

∫ T

0
X2

s

Ys
ds
∫ T

0
1
Ys

dXs −
∫ T

0
Xs

Ys
ds
∫ T

0
Xs

Ys
dXs∫ T

0
X2

s

Ys
ds
∫ T

0
1
Ys

ds−
(∫ T

0
Xs

Ys
ds
)2 , T > 0,(3.6)

θ̂MLE
T :=

∫ T

0
Xs

Ys
ds
∫ T

0
1
Ys

dXs −
∫ T

0
1
Ys

ds
∫ T

0
Xs

Ys
dXs∫ T

0
X2

s

Ys
ds
∫ T

0
1
Ys

ds−
(∫ T

0
Xs

Ys
ds
)2 , T > 0,(3.7)

provided that
∫ T

0
Ys ds

∫ T

0
1
Ys

ds− T 2 > 0 and
∫ T

0
X2

s

Ys
ds
∫ T

0
1
Ys

ds−
(∫ T

0
Xs

Ys
ds
)2

> 0. Indeed,[
∂2fT
∂a2 (a, b,m, θ) ∂2fT

∂b∂a (a, b,m, θ)
∂2fT
∂a∂b (a, b,m, θ) ∂2fT

∂b2 (a, b,m, θ)

]
=

[
−
∫ T

0
1
Ys

ds T

T −
∫ T

0
Ys ds

]
,

[
∂2fT
∂m2 (a, b,m, θ) ∂2fT

∂θ∂m (a, b,m, θ)
∂2fT
∂m∂θ (a, b,m, θ) ∂2fT

∂θ2 (a, b,m, θ)

]
=

[
−
∫ T

0
1
Ys

ds
∫ T

0
Xs

Ys
ds∫ T

0
Xs

Ys
ds −

∫ T

0
X2

s

Ys
ds

]
,
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and the positivity of
∫ T

0
Ys ds

∫ T

0
1
Ys

ds − T 2 and
∫ T

0
X2

s

Ys
ds
∫ T

0
1
Ys

ds −
(∫ T

0
Xs

Ys
ds
)2

yield
∫ T

0
1
Ys

ds > 0,

respectively. Using the SDE (1.1) one can check that[
âMLE
T − a

b̂MLE
T − b

]
=

[∫ T

0
1
Ys

ds −T

−T
∫ T

0
Ys ds

]−1 [ ∫ T

0
1√
Ys

dLs

−
∫ T

0

√
Ys dLs

]
,

[
m̂MLE

T −m

θ̂MLE
T − θ

]
=

[ ∫ T

0
1
Ys

ds −
∫ T

0
Xs

Ys
ds

−
∫ T

0
Xs

Ys
ds

∫ T

0
X2

s

Ys
ds

]−1 [ ∫ T

0
1√
Ys

dBs

−
∫ T

0
Xs√
Ys

dBs

]
,

and hence

âMLE
T − a =

∫ T

0
Ys ds

∫ T

0
1√
Ys

dLs − T
∫ T

0

√
Ys dLs∫ T

0
Ys ds

∫ T

0
1
Ys

ds− T 2
, T > 0,(3.8)

b̂MLE
T − b =

T
∫ T

0
1√
Ys

dLs −
∫ T

0
1
Ys

ds
∫ T

0

√
Ys dLs∫ T

0
Ys ds

∫ T

0
1
Ys

ds− T 2
, T > 0,(3.9)

m̂MLE
T −m =

∫ T

0
X2

s

Ys
ds
∫ T

0
1√
Ys

dBs −
∫ T

0
Xs

Ys
ds
∫ T

0
Xs√
Ys

dBs∫ T

0
X2

s

Ys
ds
∫ T

0
1
Ys

ds−
(∫ T

0
Xs

Ys
ds
)2 , T > 0,(3.10)

and

θ̂MLE
T − θ =

∫ T

0
Xs

Ys
ds
∫ T

0
1√
Ys

dBs −
∫ T

0
1
Ys

ds
∫ T

0
Xs√
Ys

dBs∫ T

0
X2

s

Ys
ds
∫ T

0
1
Ys

ds−
(∫ T

0
Xs

Ys
ds
)2 , T > 0,(3.11)

provided that
∫ T

0
Ys ds

∫ T

0
1
Ys

ds− T 2 > 0 and
∫ T

0
X2

s

Ys
ds
∫ T

0
1
Ys

ds−
(∫ T

0
Xs

Ys
ds
)2

> 0.

3.2 Remark. For the stochastic integrals
∫ T

0
1
Ys

dYs,
∫ T

0
Xs

Ys
dXs and

∫ T

0
1
Ys

dXs in (3.4), (3.5), (3.6) and
(3.7), we have

⌊nT⌋∑
i=1

1

Y i−1
n

(
Y i

n
− Y i−1

n

) P−→
∫ T

0

1

Ys
dYs as n → ∞,

⌊nT⌋∑
i=1

X i−1
n

Y i−1
n

(
X i

n
−X i−1

n

) P−→
∫ T

0

Xs

Ys
dXs as n → ∞,

⌊nT⌋∑
i=1

1

Y i−1
n

(
X i

n
−X i−1

n

) P−→
∫ T

0

1

Ys
dXs as n → ∞,

(3.12)

following from Proposition I.4.44 in Jacod and Shiryaev [20] with the Riemann sequence of deterministic sub-
divisions

(
i
n ∧ T

)
i∈N, n ∈ N. Thus, there exist measurable functions Φ,Ψ,Ξ : C([0, T ],R+ × R) → R such

that
∫ T

0
1
Ys

dYs = Φ((Ys, Xs)s∈[0,T ]),
∫ T

0
Xs

Ys
dXs = Ψ((Ys, Xs)s∈[0,T ]) and

∫ T

0
1
Ys

dXs = Ξ((Ys, Xs)s∈[0,T ]),
since the convergences in (3.12) hold almost surely along suitable subsequences, the members of the sequences
in (3.12) are measurable functions of (Ys, Xs)s∈[0,T ], and one can use Theorems 4.2.2 and 4.2.8 in Dudley [12].
Hence the right hand sides of (3.4), (3.5), (3.6) and (3.7) are measurable functions of (Ys, Xs)s∈[0,T ], i.e., they
are statistics. 2

The next lemma is about the existence of θ̃MLE
T (supposing that a > 1

2 , b ∈ R and m ∈ R are known).

3.3 Lemma. If a > 1
2 , b,m, θ ∈ R, and P(Y0 > 0) = 1, then

P

(∫ T

0

X2
s

Ys
ds ∈ (0,∞)

)
= 1 for all T > 0,(3.13)

and hence there exists a unique MLE θ̃MLE
T which has the form given in (3.2).
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Proof. First note that under the condition a > 1
2 , for all y0 > 0, we have P(Yt > 0, ∀ t ∈ R+ |Y0 = y0) = 1,

see, e.g., page 442 in Revuz and Yor [30]. Since P(Y0 > 0) = 1, by the law of total probability, we get
P(Yt > 0, ∀ t ∈ R+) = 1. Note also that, since X has continuous trajectories almost surely, by the proof of

Lemma 3.1, we have P
( ∫ T

0
X2

s

Ys
ds ∈ [0,∞)

)
= 1 for all T > 0. Further, for any ω ∈ Ω,

∫ T

0
X2

s (ω)
Ys(ω) ds = 0

holds if and only if Xs(ω) = 0 for almost every s ∈ [0, T ]. Using that X has continuous trajectories almost
surely, we have

P

(∫ T

0

X2
s

Ys
ds = 0

)
> 0

holds if and only if P(Xs = 0, ∀ s ∈ [0, T ]) > 0. Due to a > 1
2 there does not exist a constant c ∈ R such

that P(Xs = c, ∀ s ∈ [0, T ]) > 0. Indeed, if c ∈ R is such that P(Xs = c, ∀ s ∈ [0, T ]) > 0, then using (2.2),
we have

c = e−θs

(
c+m

∫ s

0

eθu du+

∫ s

0

eθu
√
Yu dBu

)
, s ∈ [0, T ],

on the event {ω ∈ Ω : Xs(ω) = c, ∀ s ∈ [0, T ]}. In case θ ̸= 0, the process(∫ s

0

eθu
√
Yu dBu

)
s∈[0,T ]

would be equal to the deterministic process
(
(c−m/θ)(eθs − 1)

)
s∈[0,T ]

on the event {ω ∈ Ω : Xs(ω) =

c, ∀ s ∈ [0, T ]} having positive probability. Since the quadratic variation of the deterministic process(
(c−m/θ)(eθs − 1)

)
s∈[0,T ]

is the identically zero process (due to the fact that the quadratic variation pro-

cess is a process starting from 0 almost surely), the quadratic variation of
(∫ s

0
eθu

√
Yu dBu

)
s∈[0,T ]

should

be identically zero on the event {ω ∈ Ω : Xs(ω) = c, ∀ s ∈ [0, T ]}. This would imply that
∫ s

0
e2θuYu du = 0

for all s ∈ [0, T ] on the event {ω ∈ Ω : Xs(ω) = c, ∀ s ∈ [0, T ]}. Using the almost sure continuity and
non-negativeness of the sample paths of Y , we have Ys = 0 for all s ∈ [0, T ] on the event

{ω ∈ Ω : Xs(ω) = c, ∀ s ∈ [0, T ]} ∩ {ω ∈ Ω : (Ys(ω))s∈[0,T ] is continuous}

having positive probability. If θ = 0, then replacing
(
(c−m/θ)(eθs − 1)

)
s∈[0,T ]

by (−ms)s∈[0,T ], one can

arrive at the same conclusion. Hence P(inf{t ∈ R+ : Yt = 0} = 0) > 0 which leads us to a contradiction. This
implies (3.13).

The above argument also shows that we can make a shortcut by arguing in a little bit different way. Indeed,
if C is a random variable such that P(Xs = C, ∀ s ∈ [0, T ]) > 0, then on the event {ω ∈ Ω : Xs(ω) =
C(ω), ∀ s ∈ [0, T ]}, the quadratic variation of X would be identically zero. Since, by the SDE (1.1), the

quadratic variation of X is the process
(∫ t

0
Yu du

)
t>0

, it would imply that
∫ s

0
Yu du = 0 for all s ∈ [0, T ]

on the event {ω ∈ Ω : Xs(ω) = C(ω), ∀ s ∈ [0, T ]}. Using the almost sure continuity and non-negativeness of
the sample paths of Y , we have Ys = 0 for all s ∈ [0, T ] on the event

{ω ∈ Ω : Xs(ω) = C(ω), ∀ s ∈ [0, T ]} ∩ {ω ∈ Ω : (Ys(ω))s∈[0,T ] is continuous}

having positive probability. As before, this leads us to a contradiction. 2

The next lemma is about the existence of (âMLE
T , b̂MLE

T , m̂MLE
T , θ̂MLE

T ).

3.4 Lemma. If a > 1
2 , b,m, θ ∈ R, and P(Y0 > 0) = 1, then

P

(∫ T

0

Ys ds

∫ T

0

1

Ys
ds− T 2 ∈ (0,∞)

)
= 1 for all T > 0,(3.14)

P

∫ T

0

X2
s

Ys
ds

∫ T

0

1

Ys
ds−

(∫ T

0

Xs

Ys
ds

)2

∈ (0,∞)

 = 1 for all T > 0,(3.15)

and hence there exists a unique MLE (âMLE
T , b̂MLE

T , m̂MLE
T , θ̂MLE

T ) which has the form given in (3.4), (3.5) (3.6)
and (3.7).

Proof. First note that under the condition a > 1
2 , as it was detailed in the proof of Lemma 3.3, we have

P(Yt > 0, ∀ t ∈ R+) = 1. By Cauchy-Schwarz’s inequality, we have∫ T

0

Ys ds

∫ T

0

1

Ys
ds− T 2 > 0, T > 0,(3.16)
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and hence, using also that Y has continuous trajectories almost surely and
∫ T

0
1
Ys

ds < ∞ (see the proof of
Lemma 3.1), we have

P

(∫ T

0

Ys ds

∫ T

0

1

Ys
ds− T 2 ∈ [0,∞)

)
= 1, T > 0.

Further, equality holds in (3.16) if and only if KYs = L/Ys for almost every s ∈ [0, T ] with some K,L > 0,
K2 + L2 > 0 (K and L may depend on ω ∈ Ω and T > 0) or equivalently KY 2

s = L for almost every
s ∈ [0, T ] with some K,L > 0, K2 + L2 > 0. Note that if K were 0, then L would be 0, too, hence
K can not be 0 implying that equality holds in (3.16) if and only if Y 2

s = L/K for almost every s ∈ [0, T ]
with some K > 0 and L > 0 (K and L may depend on ω ∈ Ω and T ). Using that Y has continuous
trajectories almost surely, we have

P

(∫ T

0

Ys ds

∫ T

0

1

Ys
ds− T 2 = 0

)
> 0(3.17)

holds if and only if P(Y 2
s = L/K, ∀ s ∈ [0, T ]) > 0 with some random variables K and L such that

P(K > 0, L > 0) = 1 (K and L may depend on T ). Similarly, as it was explained at the end of the proof
of Lemma 3.3, this implies that the quadratic variation of the process (Y 2

s )s∈[0,T ] would be identically zero on
the event {ω ∈ Ω : Y 2

s (ω) = L(ω)/K(ω), ∀ s ∈ [0, T ]} having positive probability. Since, by Itô’s formula,

dY 2
t = 2Yt dYt + Yt dt = (2Yt(a− bYt) + Yt) dt+ 2Yt

√
Yt dLt, t > 0,

the quadratic variation of (Y 2
t )t>0 is the process

(∫ t

0
4Y 3

u du
)
t>0

. If (3.17) holds, then
∫ s

0
4Y 3

u du = 0 for

all s ∈ [0, T ] on the event {ω ∈ Ω : Y 2
s (ω) = L(ω)/K(ω), ∀ s ∈ [0, T ]} having positive probability. Using the

almost sure continuity and non-negativeness of the sample paths of Y , we have Ys = 0 for all s ∈ [0, T ] on
the event

{ω ∈ Ω : Y 2
s (ω) = L(ω)/K(ω), ∀ s ∈ [0, T ]} ∩ {ω ∈ Ω : (Yt(ω))t>0 is continuous}

having positive probability. This yields us to a contradiction since P(Yt > 0,∀ t > 0) = 1, implying (3.14).

Now we turn to prove (3.15). By Cauchy-Schwarz’s inequality, we have

∫ T

0

X2
s

Ys
ds

∫ T

0

1

Ys
ds−

(∫ T

0

Xs

Ys
ds

)2

> 0, T > 0,(3.18)

and hence, since X has continuous trajectories almost surely, by the proof of Lemma 3.1, we have

P

∫ T

0

X2
s

Ys
ds

∫ T

0

1

Ys
ds−

(∫ T

0

Xs

Ys
ds

)2

∈ [0,∞)

 = 1, T > 0.

Further, equality holds in (3.18) if and only if KX2
s/Ys = L/Ys for almost every s ∈ [0, T ] with some

K,L > 0, K2 + L2 > 0 (K and L may depend on ω ∈ Ω and T > 0) or equivalently KX2
s = L for

almost every s ∈ [0, T ] with some K,L > 0, K2 + L2 > 0. Note that if K were 0, then L would be 0,
too, hence K can not be 0 implying that equality holds in (3.18) if and only if X2

s = L/K for almost every
s ∈ [0, T ] with some K > 0 and L > 0 (K and L may depend on ω ∈ Ω and T ). Using that X has
continuous trajectories almost surely, we have

P

∫ T

0

X2
s

Ys
ds

∫ T

0

1

Ys
ds−

(∫ T

0

Xs

Ys
ds

)2

= 0

 > 0(3.19)

holds if and only if P(X2
s = L/K, ∀ s ∈ [0, T ]) > 0 with some random variables K and L such that

P(K > 0, L > 0) = 1 (K and L may depend on T ). Similarly, as it was explained at the end of the proof of
Lemma 3.3, this implies that the quadratic variation of the process (X2

s )s∈[0,T ] would be identically zero on
the event {ω ∈ Ω : X2

s (ω) = L(ω)/K(ω), ∀ s ∈ [0, T ]} having positive probability. Since, by Itô’s formula,

dX2
t = 2Xt dXt + Yt dt = (2Xt(m− θXt) + Yt) dt+ 2Xt

√
Yt dBt, t > 0,

the quadratic variation of (X2
t )t>0 is the process

(∫ t

0
4X2

uYu du
)
t>0

. If (3.19) holds, then
∫ s

0
4X2

uYu du = 0

for all s ∈ [0, T ] on the event {ω ∈ Ω : X2
s (ω) = L(ω)/K(ω), ∀ s ∈ [0, T ]} having positive probability. Using
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the almost sure continuity and non-negativeness of the sample paths of X2Y , we have X2
sYs = 0 for all

s ∈ [0, T ] on the event

{ω ∈ Ω : X2
s (ω) = L(ω)/K(ω), ∀ s ∈ [0, T ]} ∩ {ω ∈ Ω : (X2

t (ω)Yt(ω))t>0 is continuous} =: A

having positive probability. Since P(Yt > 0, ∀ t > 0) = 1, we have Xs = 0 for all s ∈ [0, T ] on the
event A having positive probability. Repeating the argument given in the proof of Lemma 3.3, we arrive at a
contradiction. This implies (3.15). 2

4 Existence and uniqueness of least squares estimator

Studying LSE for the model (1.1), the parameters a > 0 and b ∈ R will be not supposed to be known.
However, we will not consider the LSEs of a and b, we will focus only on the LSEs of m and θ, since we
would like use a continuous time observation only for the process X, and not for the process (Y,X), studying
LSEs.

First we give a motivation for the LSE based on continuous time observations using the form of the LSE
based on discrete time low frequency observations.

Let us suppose that m ∈ R is known (a > 0 and b ∈ R are not supposed to be known). The LSE of θ
based on the discrete time observations Xi, i = 0, 1, . . . , n, can be obtained by solving the following extremum
problem

θ̃LSE,D
n := argmin

θ∈R

n∑
i=1

(Xi −Xi−1 − (m− θXi−1))
2.

Here in the notation θ̃LSE,D
n the letter D refers to discrete time observations, and we note that X0 denotes

an observation for the second coordinate of the initial value of the process (Y,X). This definition of LSE
of θ can be considered as the corresponding one given in Hu and Long [18, formula (1.2)] for generalized
Ornstein-Uhlenbeck processes driven by α-stable motions, see also Hu and Long [19, formula (3.1)]. For a
motivation of the LSE of θ based on the discrete observations Xi, i ∈ {0, 1, . . . , n}, see Remark 3.4 in Barczy
et al. [1]. Further, by Barczy et al. [1, formula (3.5)],

θ̃LSE,D
n = −

∑n
i=1(Xi −Xi−1)Xi−1 −m (

∑n
i=1 Xi−1)∑n

i=1 X
2
i−1

(4.1)

provided that
∑n

i=1 X
2
i−1 > 0. Motivated by (4.1), the LSE of θ based on the continuous time observations

(Xt)t∈[0,T ] is defined by

θ̃LSET := −
∫ T

0
Xs dXs −m

∫ T

0
Xs ds∫ T

0
X2

s ds
,(4.2)

provided that
∫ T

0
X2

s ds > 0, and using the SDE (1.1) we have

θ̃LSET − θ = −
∫ T

0
Xs

√
Ys dBs∫ T

0
X2

s ds
,(4.3)

provided that
∫ T

0
X2

s ds > 0.

Let us suppose that the parameters a > 0 and b,m ∈ R are not known. The LSE of (m, θ) based on the
discrete time observations Xi, i = 0, 1, . . . , n, can be obtained by solving the following extremum problem

(m̂LSE,D
n , θ̂LSE,D

n ) := argmin
(θ,m)∈R2

n∑
i=1

(Xi −Xi−1 − (m− θXi−1))
2.

By Barczy et al. [1, formulas (3.27) and (3.28)],

m̂LSE,D
n =

∑n
i=1 X

2
i−1

∑n
i=1(Xi −Xi−1)−

∑n
i=1 Xi−1

∑n
i=1(Xi −Xi−1)Xi−1

n
∑n

i=1 X
2
i−1 − (

∑n
i=1 Xi−1)

2(4.4)

and

θ̂LSE,D
n =

∑n
i=1 Xi−1

∑n
i=1(Xi −Xi−1)− n

∑n
i=1(Xi −Xi−1)Xi−1

n
∑n

i=1 X
2
i−1 − (

∑n
i=1 Xi−1)

2 ,(4.5)
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provided that n
∑n

i=1 X
2
i−1 − (

∑n
i=1 Xi−1)

2
> 0. Motivated by (4.4) and (4.5), the LSE of (m, θ) based on

the continuous time observations (Xt)t∈[0,T ] is defined by

m̂LSE
T :=

(XT −X0)
∫ T

0
X2

s ds−
(∫ T

0
Xs ds

)(∫ T

0
Xs dXs

)
T
∫ T

0
X2

s ds−
(∫ T

0
Xs ds

)2 ,(4.6)

θ̂LSET :=
(XT −X0)

∫ T

0
Xs ds− T

∫ T

0
Xs dXs

T
∫ T

0
X2

s ds−
(∫ T

0
Xs ds

)2 ,(4.7)

provided that T
∫ T

0
X2

s ds −
(∫ T

0
Xs ds

)2
> 0. Note that, by Cauchy-Schwarz’s inequality, T

∫ T

0
X2

s ds −(∫ T

0
Xs ds

)2
> 0, and T

∫ T

0
X2

s ds−
(∫ T

0
Xs ds

)2
> 0 yields that

∫ T

0
X2

s ds > 0. Then[
m̂LSE

T

θ̂LSET

]
=

[
T −

∫ T

0
Xs ds

−
∫ T

0
Xs ds

∫ T

0
X2

s ds

]−1 [
XT −X0

−
∫ T

0
Xs dXs

]
,

and using the SDE (1.1) one can check that[
m̂LSE

T −m

θ̂LSET − θ

]
=

[
T −

∫ T

0
Xs ds

−
∫ T

0
Xs ds

∫ T

0
X2

s ds

]−1 [ ∫ T

0

√
Ys dBs

−
∫ T

0
Xs

√
Ys dBs

]
,

and hence

m̂LSE
T −m =

−
∫ T

0
Xs ds

∫ T

0
Xs

√
Ys dBs +

∫ T

0
X2

s ds
∫ T

0

√
Ys dBs

T
∫ T

0
X2

s ds−
(∫ T

0
Xs ds

)2 ,(4.8)

and

θ̂LSET − θ =
−T

∫ T

0
Xs

√
Ys dBs +

∫ T

0
Xs ds

∫ T

0

√
Ys dBs

T
∫ T

0
X2

s ds−
(∫ T

0
Xs ds

)2 ,(4.9)

provided that T
∫ T

0
X2

s ds−
(∫ T

0
Xs ds

)2
> 0.

4.1 Remark. For the stochastic integral
∫ T

0
Xs dXs in (4.2), (4.6) and (4.7), we have

⌊nT⌋∑
i=1

X i−1
n

(
X i

n
−X i−1

n

) P−→
∫ T

0

Xs dXs as n → ∞,

following from Proposition I.4.44 in Jacod and Shiryaev [20]. For more details, see Remark 3.2. 2

The next lemma is about the existence of θ̃LSET (supposing that m ∈ R is known, but a > 0 and b are
unknown).

4.2 Lemma. If a > 0, b,m, θ ∈ R, and P(Y0 > 0) = 1, then

P

(∫ T

0

X2
s ds ∈ (0,∞)

)
= 1 for all T > 0,(4.10)

and hence there exists a unique LSE θ̃LSET which has the form given in (4.2).

Proof. First note that under the condition on the parameters, for all y0 > 0, we have

P(inf{t ∈ R+ : Yt = 0} > 0 |Y0 = y0) = 1,

and hence, by the law of total probability, P(inf{t ∈ R+ : Yt = 0} > 0) = 1. Since X has continuous
trajectories almost surely, we readily have

P

(∫ T

0

X2
s ds ∈ [0,∞)

)
= 1, T > 0.
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Observe also that for any ω ∈ Ω,
∫ T

0
X2

s (ω) ds = 0 holds if and only if Xs(ω) = 0 for almost every s ∈ [0, T ].
Using that X has continuous trajectories almost surely, we have

P

(∫ T

0

X2
s ds = 0

)
> 0

holds if and only if P(Xs = 0, ∀ s ∈ [0, T ]) > 0. By the end of the proof of Lemma 3.3, if P(Xs = 0, ∀ s ∈
[0, T ]) > 0, then Ys = 0 for all s ∈ [0, T ] on the event

{ω ∈ Ω : Xs(ω) = 0, ∀ s ∈ [0, T ]} ∩
{
ω ∈ Ω : (Ys(ω))s∈[0,T ] is continuous

}
having positive probability. This would yield that P(inf{t ∈ R+ : Yt = 0} = 0) > 0 leading us to a
contradiction, which implies (4.10). 2

The next lemma is about the existence of (m̂LSE
T , θ̂LSET ).

4.3 Lemma. If a > 0, b,m, θ ∈ R, and P(Y0 > 0) = 1, then

P

T

∫ T

0

X2
s ds−

(∫ T

0

Xs ds

)2

∈ (0,∞)

 = 1 for all T > 0,(4.11)

and hence there exists a unique LSE (m̂LSE
T , θ̂LSET ) which has the form given in (4.6) and (4.7).

Proof. Just as in the proof of Lemma 4.2, we have P(inf{t ∈ R+ : Yt = 0} > 0) = 1. By Cauchy-Schwarz’s
inequality, we have

T

∫ T

0

X2
s ds−

(∫ T

0

Xs ds

)2

> 0, T > 0,(4.12)

and hence, since X has continuous trajectories almost surely, we readily have

P

T

∫ T

0

X2
s ds−

(∫ T

0

Xs ds

)2

∈ [0,∞)

 = 1, T > 0.

Further, equality holds in (4.12) if and only if KX2
s = L for almost every s ∈ [0, T ] with some K,L > 0,

K2 + L2 > 0 (K and L may depend on ω ∈ Ω and T ). Note that if K were 0, then L would be 0,
too, hence K can not be 0 implying that equality holds in (4.12) if and only if X2

s = L/K for almost every
s ∈ [0, T ] with some K > 0 and L > 0 (K and L may depend on ω ∈ Ω and T ). Using that X has
continuous trajectories almost surely, we have

P

T

∫ T

0

X2
s ds−

(∫ T

0

Xs ds

)2

= 0

 > 0(4.13)

holds if and only if P(X2
s = L/K, ∀ s ∈ [0, T ]) > 0 with some random variables K and L such that

P(K > 0, L > 0) = 1 (K and L may depend on T ). Using again that X has continuous trajectories almost
surely, we have (4.13) holds if and only if P(Xs = C, ∀ s ∈ [0, T ]) > 0 with some random variable C (note
that C =

√
L/K if X is non-negative and C = −

√
L/K if X is negative). This leads us to a contradiction

by the end of the proof of Lemma 3.3. Indeed, if P(Xs = C, ∀ s ∈ [0, T ]) > 0 with some random variable C,
then, by the end of the proof of Lemma 3.3, we have Ys = 0 for all s ∈ [0, T ] on the event{

ω ∈ Ω : Xs(ω) = C(ω), ∀ s ∈ [0, T ]
}
∩
{
ω ∈ Ω : (Ys(ω))s∈[0,T ] is continuous

}
having positive probability. This would yield that P(inf{t ∈ R+ : Yt = 0} = 0) > 0 leading us to a
contradiction, which implies (4.11). 2

5 Consistency of maximum likelihood estimator

5.1 Theorem. If a > 1
2 , b > 0, m ∈ R, θ > 0, and P(Y0 > 0) = 1, then the MLE of θ is strongly

consistent: P
(
limT→∞ θ̃MLE

T = θ
)
= 1.
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Proof. By Lemma 3.3, there exists a unique MLE θ̃MLE
T of θ which has the form given in (3.2). Further, by

(3.3),

θ̃MLE
T − θ = −

∫ T

0
Xs√
Ys

dBs∫ T

0
X2

s

Ys
ds

, T > 0.

The strong consistency of θ̃MLE
T will follow from a strong law of large numbers for continuous local martingales

(see, e.g., Theorem 2.6) provided that we check that

P

(∫ T

0

X2
s

Ys
ds < +∞

)
= 1, T > 0,(5.1)

P

(
lim

T→∞

∫ T

0

X2
s

Ys
ds = +∞

)
= 1.(5.2)

Since (Y,X) has continuous trajectories almost surely, we have (5.1). Next we check (5.2). By Theorem 2.5,
we have

lim
T→∞

1

T

∫ T

0

X2
s

1 + Ys
ds = E

(
X2

∞
1 + Y∞

)
a.s.,

where

E
(

X2
∞

1 + Y∞

)
6 E(X2

∞) =
aθ + 2bm2

2bθ2
< ∞.

Next we check that E(X2
∞/(1 + Y∞)) > 0. Since X2

∞/(1 + Y∞) > 0, we have E(X2
∞/(1 + Y∞)) = 0 holds if

and only if P(X2
∞/(1 + Y∞) = 0) = 1 or equivalently P(X∞ = 0) = 1 which leads us to a contradiction since

X∞ is absolutely continuous by Theorem 2.5. Hence we have

P

(
lim

T→∞

∫ T

0

X2
s

1 + Ys
ds = ∞

)
= 1,

which yields (5.2). 2

5.2 Theorem. If a > 1
2 , b > 0, m ∈ R, θ > 0, and P(Y0 > 0) = 1, then the MLE of (a, b,m, θ) is

strongly consistent: P
(
limT→∞(âMLE

T , b̂MLE
T , m̂MLE

T , θ̂MLE
T ) = (a, b,m, θ)

)
= 1.

Proof. By Lemma 3.4, there exists a unique MLE (âMLE
T , b̂MLE

T , m̂MLE
T , θ̂MLE

T ) of (a, b,m, θ) which has the

form given in (3.4), (3.5), (3.6) and (3.7). First we check that P(limT→∞ θ̂MLE
T = θ) = 1. By (3.11), using also

that
∫ T

0
X2

s

Ys
ds
∫ T

0
1
Ys

ds−
(∫ T

0
Xs

Ys
ds
)2

> 0 yields
∫ T

0
X2

s

Ys
ds
∫ T

0
1
Ys

ds > 0, we have

θ̂MLE
T − θ =

1
T

∫ T
0

Xs
Ys

ds

1
T

∫ T
0

X2
s

Ys
ds

·
∫ T
0

1√
Ys

dBs∫ T
0

1
Ys

ds
−

∫ T
0

Xs√
Ys

dBs∫ T
0

X2
s

Ys
ds

1− ( 1
T

∫ T
0

Xs
Ys

ds)
2

1
T

∫ T
0

X2
s

Ys
ds· 1

T

∫ T
0

1
Ys

ds

a.s.(5.3)

due to (3.15). Next, we show that E(1/Y∞) < ∞, E(X∞/Y∞) < ∞ and E(X2
∞/Y∞) < ∞, which, by part

(iii) of Theorem 2.5, will imply that

P

(
lim

T→∞

1

T

∫ T

0

1

Ys
ds = E

(
1

Y∞

))
= 1,(5.4)

P

(
lim

T→∞

1

T

∫ T

0

Xs

Ys
ds = E

(
X∞

Y∞

))
= 1,(5.5)

P

(
lim

T→∞

1

T

∫ T

0

X2
s

Ys
ds = E

(
X2

∞
Y∞

))
= 1.(5.6)

We only prove E(X2
∞/Y∞) < ∞ noting that E(1/Y∞) < ∞ and E(X∞/Y∞) < ∞ can be checked in the

very same way. First note that, by Theorem 2.5, P(Y∞ > 0) = 1, and hence the random variable X2
∞/Y∞ is

well-defined with probability one. By Hölder’s inequality, for all p, q > 0 with 1
p + 1

q = 1, we have

E
(
X2

∞
Y∞

)
6 (E(X2p

∞ ))1/p
(
E
(

1

Y q
∞

))1/q

.
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Since, by Theorem 2.5, E(|X∞|n) < ∞ for all n ∈ N, to prove that E
(

X2
∞

Y∞

)
< ∞ it is enough to check that

there exists some ε > 0 such that E
(

1
Y 1+ε
∞

)
< ∞. Using that, by Theorem 2.5, Y∞ has Gamma distribution

with density function (2b)2a

Γ(2a) x
2a−1e−2bx1{x>0}, we have, for any ε > 0,

E
(

1

Y 1+ε
∞

)
=

∫ ∞

0

1

x1+ε
· (2b)

2a

Γ(2a)
x2a−1e−2bx dx =

(2b)2a

Γ(2a)

∫ ∞

0

x2a−2−εe−2bx dx.

Due to our assumption a > 1/2, one can choose an ε such that max(0, 2a− 2) < ε < 2a− 1, and hence for
all M > 0, ∫ ∞

0

x2a−2−εe−2bx dx 6
∫ M

0

x2a−2−ε dx+M2a−2−ε

∫ ∞

M

e−2bx dx

=
M2a−1−ε

2a− 1− ε
+M2a−2−ε lim

L→∞

e−2bL − e−2bM

−2b

=
M2a−1−ε

2a− 1− ε
+M2a−2−ε e

−2bM

2b
< ∞,

which yields that E(1/Y 1+ε
∞ ) < ∞ for ε satisfying max(0, 2a− 2) < ε < 2a− 1.

Further, since E(1/Y∞) > 0 and E(X2
∞/Y∞) > 0 (due to the absolutely continuity of X∞, as it was

explained in the proof of Theorem 5.1), (5.4) and (5.6) yield that

P

(
lim

T→∞

∫ T

0

1

Ys
ds = ∞

)
= P

(
lim

T→∞

∫ T

0

X2
s

Ys
ds = ∞

)
= 1.

Using (5.3), (5.4), (5.5), (5.6), Slutsky’s lemma and a strong law of large numbers for continuous local martin-
gales (see, e.g., Theorem 2.6), we get

lim
T→∞

(
θ̂MLE
T − θ

)
=

E(X∞
Y∞ )

E
(

X2
∞

Y∞

) · 0− 0

1− (E(X∞
Y∞ ))

2

E
(

X2
∞

Y∞

)
E( 1

Y∞ )

= 0 a.s.,

where we also used that the denominator is strictly positive. Indeed, by Cauchy-Schwarz’s inequality,(
E
(
X∞

Y∞

))2

6 E
(
X2

∞
Y∞

)
E
(

1

Y∞

)
,(5.7)

and equality would hold if and only if P(KX2
∞/Y∞ = L/Y∞) = 1 with some K,L > 0, K2 + L2 > 0. By

Theorem 2.5, (Y∞, X∞) is absolutely continuous and then P(X∞ = c) = 0 for all c ∈ R. This implies that
(5.7) holds with strict inequality.

Similarly, by (3.8), (3.9) and (3.10), we have

âMLE
T − a =

∫ T
0

1√
Ys

dLs∫ T
0

1
Ys

ds
− 1

1
T

∫ T
0

1
Ys

ds
·
∫ T
0

√
Ys dLs∫ T

0
Ys ds

1− 1
1
T

∫ T
0

Ys ds· 1
T

∫ T
0

1
Ys

ds

a.s.,

b̂MLE
T − b =

1
1
T

∫ T
0

Ys ds
·
∫ T
0

1√
Ys

dLs∫ T
0

1
Ys

ds
−

∫ T
0

√
Ys dLs∫ T

0
Ys ds

1− 1
1
T

∫ T
0

Ys ds· 1
T

∫ T
0

1
Ys

ds

a.s.,

m̂MLE
T −m =

∫ T
0

1√
Ys

dBs∫ T
0

1
Ys

ds
−

1
T

∫ T
0

Xs
Ys

ds
1
T

∫ T
0

1
Ys

ds
·
∫ T
0

Xs√
Ys

dBs∫ T
0

X2
s

Ys
ds

1− ( 1
T

∫ T
0

Xs
Ys

ds)
2

1
T

∫ T
0

X2
s

Ys
ds· 1

T

∫ T
0

1
Ys

ds

a.s.,

due to (3.14) and (3.15). Since E(Y∞) < ∞, by part (iii) of Theorem 2.5,

P

(
lim

T→∞

1

T

∫ T

0

Ys ds = E(Y∞)

)
= P

(
lim

T→∞

∫ T

0

Ys ds = ∞

)
= 1,(5.8)
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and then, similarly as before, one can argue that

lim
T→∞

(âMLE
T − a) =

0− 1

E( 1
Y∞ )

· 0

1− 1

E(Y∞)E( 1
Y∞ )

= 0 a.s.,

lim
T→∞

(̂bMLE
T − b) =

1
E(Y∞) · 0− 0

1− 1

E(Y∞)E( 1
Y∞ )

= 0 a.s.,

lim
T→∞

(m̂MLE
T −m) =

0− E(X∞
Y∞ )

E( 1
Y∞ )

· 0

1− (E(X∞
Y∞ ))

2

E
(

X2
∞

Y∞

)
E( 1

Y∞ )

= 0 a.s.,

where we also used that E(Y∞)E
(

1
Y∞

)
> 1 (which can be checked using Cauchy-Schwarz’s inequality and

the absolute continuity of Y∞). Using that the intersection of four events with probability one is an event with
probability one, we have the assertion. 2

5.3 Remark. If a = 1
2 , b > 0, θ > 0, m ∈ R, and P(Y0 > 0) = 1, then one should find another approach

for studying the consistency behaviour of the MLE of (a, b,m, θ), since in this case

E
(

1

Y∞

)
=

∫ ∞

0

2be−2bx

x
dx = ∞,

and hence one cannot use part (iii) of Theorem 2.5. In this paper we renounce to consider it. 2

6 Consistency of least squares estimator

6.1 Theorem. If a > 0, b > 0, m ∈ R, θ > 0, and P(Y0 > 0) = 1, then the LSE of θ is strongly

consistent: P
(
limT→∞ θ̃LSET = θ

)
= 1.

Proof. By Lemma 4.2, there exists a unique θ̃LSET of θ which has the form given in (4.2). By (4.3), we have

θ̃LSET − θ = −
∫ T

0
Xs

√
Ys dBs∫ T

0
X2

s ds
= −

∫ T

0
Xs

√
Ys dBs∫ T

0
X2

sYs ds
·

1
T

∫ T

0
X2

sYs ds

1
T

∫ T

0
X2

s ds
.(6.1)

By Theorem 2.5, we have

P

(
lim

T→∞

1

T

∫ T

0

X2
sYs ds = E

(
X2

∞Y∞
))

= 1 and P

(
lim

T→∞

1

T

∫ T

0

X2
s ds = E

(
X2

∞
))

= 1.(6.2)

We note that E(X2
∞Y∞) and E(X2

∞) are calculated explicitly in Theorem 2.5. Note also that E(X2
∞Y∞) is

positive (due to that X2
∞Y∞ is non-negative and absolutely continuous), and hence we also have

P

(
lim

T→∞

∫ T

0

X2
sYs ds = ∞

)
= 1.

Then, by a strong law of large numbers for continuous local martingales (see, e.g., Theorem 2.6), we get

P

(
lim

T→∞

∫ T

0
Xs

√
Ys dBs∫ T

0
X2

sYs ds
= 0

)
= 1,

and hence (6.1) yields the assertion. 2

6.2 Theorem. If a > 0, b > 0, m ∈ R, θ > 0, and P(Y0 > 0) = 1, then the LSE of (m, θ) is strongly

consistent: P
(
limT→∞(m̂LSE

T , θ̂LSET ) = (m, θ)
)
= 1.
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Proof. By Lemma 4.3, there exists a unique LSE (m̂LSE
T , θ̂LSET ) of (m, θ) which has the form given in (4.6)

and (4.7). By (4.9), we have

θ̂LSET − θ =
−

1
T

∫ T
0

X2
sYs ds

1
T

∫ T
0

X2
s ds

·
∫ T
0

Xs

√
Ys dBs∫ T

0
X2

sYs ds
+ 1

T

∫ T

0
Xs ds ·

1
T

∫ T
0

Ys ds
1
T

∫ T
0

X2
s ds

·
∫ T
0

√
Ys dBs∫ T

0
Ys ds

1− ( 1
T

∫ T
0

Xs ds)
2

1
T

∫ T
0

X2
s ds

a.s.

due to (4.11). Using (5.8), (6.2) and that

P

(
lim

T→∞

1

T

∫ T

0

Xs ds = E(X∞)

)
= 1,(6.3)

similarly to the proof of Theorem 5.2, we get

lim
T→∞

(θ̂LSET − θ) =
−E(X2

∞Y∞)
E(X2

∞) · 0 + E(X∞) · E(Y∞)
E(X2

∞) · 0

1− (E(X∞))2

E(X2
∞)

= 0 a.s.,

where for the last step we also used that (E(X∞))2 < E(X2
∞) (which holds since there does not exist a constant

c ∈ R such that P(X∞ = c) = 1 due to the fact that X∞ is absolutely continuous).

Similarly, by (4.8),

lim
T→∞

(m̂LSE
T −m) = lim

T→∞

− 1
T

∫ T

0
Xs ds ·

1
T

∫ T
0

X2
sYs ds

1
T

∫ T
0

X2
s ds

·
∫ T
0

Xs

√
Ys dBs∫ T

0
X2

sYs ds
+ 1

T

∫ T

0
Ys ds ·

∫ T
0

√
Ys dBs∫ T

0
Ys ds

1− ( 1
T

∫ T
0

Xs ds)
2

1
T

∫ T
0

X2
s ds

=
−E(X∞) · E(X2

∞Y∞)
E(X2

∞) · 0 + E(Y∞) · 0

1− (E(X∞))2

E(X2
∞)

= 0 a.s.

Using that the intersection of two events with probability one is an event with probability one, we have the
assertion. 2

7 Asymptotic behaviour of maximum likelihood estimator

7.1 Theorem. If a > 1/2, b > 0, m ∈ R, θ > 0, and P(Y0 > 0) = 1, then the MLE of θ is asymptotically
normal, i.e.,

√
T (θ̃MLE

T − θ)
L−→ N

0,
1

E
(

X2
∞

Y∞

)
 as T → ∞,

where E
(
X2

∞/Y∞
)

is positive and finite.

Proof. First note that, by (3.3),

√
T (θ̃MLE

T − θ) = −
1√
T

∫ T

0
Xs√
Ys

dBs

1
T

∫ T

0
X2

s

Ys
ds

a.s.(7.1)

due to (3.13). Recall that, by (5.2), P
(
limT→∞

∫ T

0
X2

s

Ys
ds = +∞

)
= 1. Using Theorem 2.7 with the following

choices

d := 1, Mt :=

∫ t

0

Xs√
Ys

dBs, t > 0, (Ft)t>0 given in Remark 2.2,

Q(t) :=
1√
t
, t > 0, η :=

√
E
(
X2

∞
Y∞

)
,
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we have

1√
T

∫ T

0

Xs√
Ys

dBs
L−→

√
E
(
X2

∞
Y∞

)
ξ as T → ∞,

where ξ is a standard normally distributed random variable. Then Slutsky’s lemma, (5.6) and (7.1) yield the
assertion. 2

7.2 Theorem. If a > 1/2, b > 0, m ∈ R, θ > 0, and P(Y0 > 0) = 1, then the MLE of (a, b,m, θ) is
asymptotically normal, i.e.,

√
T


âMLE
T − a

b̂MLE
T − b

m̂MLE
T −m

θ̂MLE
T − θ

 L−→ N4

(
0,ΣMLE

)
as T → ∞,

where N4

(
0,ΣMLE

)
denotes a 4-dimensional normally distribution with mean vector 0 ∈ R4 and with

covariance matrix ΣMLE := diag(ΣMLE
1 ,ΣMLE

2 ) with blockdiagonals given by

ΣMLE
1 :=

1

E
(

1
Y∞

)
E(Y∞)− 1

D1, D1 :=

[
E(Y∞) 1

1 E
(

1
Y∞

)] ,

ΣMLE
2 :=

1

E
(

1
Y∞

)
E
(

X2
∞

Y∞

)
−
(
E
(

X∞
Y∞

))2D2, D2 :=

E(X2
∞

Y∞

)
E
(

X∞
Y∞

)
E
(

X∞
Y∞

)
E
(

1
Y∞

) .

Proof. By (3.8), (3.9), (3.10) and (3.11), we have

√
T (âMLE

T − a) =

1
T

∫ T

0
Ys ds · 1√

T

∫ T

0
1√
Ys

dLs − 1√
T

∫ T

0

√
Ys dLs

1
T

∫ T

0
Ys ds · 1

T

∫ T

0
1
Ys

ds− 1
a.s.,

√
T (̂bMLE

T − b) =

1√
T

∫ T

0
1√
Ys

dLs − 1
T

∫ T

0
1
Ys

ds · 1√
T

∫ T

0

√
Ys dLs

1
T

∫ T

0
Ys ds · 1

T

∫ T

0
1
Ys

ds− 1
a.s.,

√
T (m̂MLE

T −m) =

1
T

∫ T

0
X2

s

Ys
ds · 1√

T

∫ T

0
1√
Ys

dBs − 1
T

∫ T

0
Xs

Ys
ds · 1√

T

∫ T

0
Xs√
Ys

dBs

1
T

∫ T

0
X2

s

Ys
ds · 1

T

∫ T

0
1
Ys

ds−
(

1
T

∫ T

0
Xs

Ys
ds
)2 a.s.,

√
T (θ̂MLE

T − θ) =

1
T

∫ T

0
Xs

Ys
ds · 1√

T

∫ T

0
1√
Ys

dBs − 1
T

∫ T

0
1
Ys

ds · 1√
T

∫ T

0
Xs√
Ys

dBs

1
T

∫ T

0
X2

s

Ys
ds · 1

T

∫ T

0
1
Ys

ds−
(

1
T

∫ T

0
Xs

Ys
ds
)2 a.s.,

due to (3.14) and (3.15). Next, we show that

1√
T
MT :=

1√
T


∫ T

0

√
Ys dLs∫ T

0
1√
Ys

dLs∫ T

0
Xs√
Ys

dBs∫ T

0
1√
Ys

dBs

 L−→ ηZ, as T → ∞,(7.2)

where Z is a 4-dimensional standard normally distributed random variable and η is a non-random 4 × 4
matrix such that

ηη⊤ = diag(D1, D2).

Here the matrices D1 and D2 are positive definite, since their principal minors are positive, and η denotes
the unique symmetric positive definite square root of diag(D1, D2) (see, e.g., Horn and Johnson [16, Theorem
7.2.6]). Indeed, by the absolutely continuity of (Y∞, X∞) (see Theorem 2.5), there does not exist constants
c, d ∈ R+ such that P(Y 2

∞ = c) = 1 and P(X2
∞ = d) = 1, and, by Cauchy-Schwarz’s inequality,

E
(

1

Y∞

)
E(Y∞)− 1 > 0 and E

(
X2

∞
Y∞

)
E
(

1

Y∞

)
−
(
E
(
X∞

Y∞

))2

> 0,
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where equalities would hold if and only if P(Y 2
∞ = c) = 1 and P(X2

∞ = d) = 1 with some constants c, d ∈ R+,
respectively. Note also that the quantity E(1/Y∞)E(Y∞)− 1 could have been calculated explicitly, since Y∞
has Gamma distribution with parameters 2a and 2b.

Let us use Theorem 2.7 with the choices d = 4, Mt, t > 0, defined in (7.2), (Ft)t>0 given in Remark
2.2, and Q(t) := diag(t−1/2, t−1/2, t−1/2, t−1/2), t > 0. We have

⟨M⟩t =


∫ t

0
Ys ds t 0 0

t
∫ t

0
1
Ys

ds 0 0

0 0
∫ t

0
X2

s

Ys
ds

∫ t

0
Xs

Ys
ds

0 0
∫ t

0
Xs

Ys
ds

∫ t

0
1
Ys

ds

 , t > 0,

where we used the independence of (Lt)t>0 and (Bt)t>0. Recall that (under the conditions of the theorem)
in the proof of Theorem 5.2 it was shown that E(Y∞) < ∞, E(1/Y∞) < ∞, E(X∞/Y∞) < ∞, and
E(X2

∞/Y∞) < ∞, and, hence by Theorem 2.5, we have

Q(t)⟨M⟩tQ(t)⊤ → diag(D1, D2) as t → ∞ a.s.

Hence, Theorem 2.7 yields (7.2). Then Slutsky’s lemma and the continuous mapping theorem yield that

√
T


âMLE
T − a

b̂MLE
T − b

m̂MLE
T −m

θ̂MLE
T − θ

 L−→ diag(A1, A2)ηZ as T → ∞,

where

A1 :=
1

E
(

1
Y∞

)
E(Y∞)− 1

B1, B1 :=

[
−1 E(Y∞)

−E
(

1
Y∞

)
1

]
,

A2 :=
1

E
(

1
Y∞

)
E
(

X2
∞

Y∞

)
−
(
E
(

X∞
Y∞

))2B2, B2 :=

−E
(

X∞
Y∞

)
E
(

X2
∞

Y∞

)
−E

(
1

Y∞

)
E
(

X∞
Y∞

) .

Using that ηZ is a 4-dimensional normally distributed random variable with mean vector zero and with
covariance matrix ηη⊤ = diag(D1, D2), the covariance matrix of diag(A1, A2)ηZ takes the form

diag(A1, A2) diag(D1, D2) diag(A
⊤
1 , A

⊤
2 ) = diag(A1D1A

⊤
1 , A2D2A

⊤
2 ),

which yields the assertion. Indeed,

B1D1B
⊤
1 =

(
E
(

1

Y∞

)
E(Y∞)− 1

)
D1,

and

B2D2B
⊤
2 =

(
E
(
X2

∞
Y∞

)
E
(

1

Y∞

)
−
(
E
(
X∞

Y∞

))2
)
D2.

2

7.3 Remark. The asymptotic variance 1/E
(
X2

∞/Y∞
)

of θ̃MLE
T in Theorem 7.1 is less than the asymptotic

variance
E
(

1
Y∞

)
E
(

1
Y∞

)
E
(

X2
∞

Y∞

)
−
(
E
(

X∞
Y∞

))2
of θ̂MLE

T in Theorem 7.2. This is in accordance with the fact that θ̃MLE
T is the MLE of θ provided that

the value of the parameter m is known, which gives extra information, so the MLE estimator of θ becomes
better. 2
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8 Asymptotic behaviour of least squares estimator

8.1 Theorem. If a > 0, b > 0, m ∈ R, θ > 0, and P(Y0 > 0) = 1, then the LSE of θ is asymptotically
normal, i.e.,

√
T (θ̃LSET − θ)

L−→ N
(
0,

E(X2
∞Y∞)

(E(X2
∞))2

)
as T → ∞,

where E(X2
∞Y∞) and E(X2

∞) are given explicitly in Theorem 2.5.

Proof. First note that, by (4.3),

√
T (θ̃LSET − θ) = −

1√
T

∫ T

0
Xs

√
Ys dBs

1
T

∫ T

0
X2

s ds
a.s.(8.1)

due to (4.10). Using that E(X2
∞Y∞) is positive (since X2

∞Y∞ is non-negative and absolutely continuous), by
(6.2), we have

P

(
lim

T→∞

∫ T

0

X2
sYs ds = +∞

)
= 1.

Further, an application of Theorem 2.7 with the following choices

d := 1, Mt :=

∫ t

0

Xs

√
Ys dBs, t > 0, (Ft)t>0 given in Remark 2.2,

Q(t) :=
1√
t
, t > 0, η :=

√
E(X2

∞Y∞),

yields that

1√
T

∫ T

0

Xs

√
Ys dBs

L−→
√
E(X2

∞Y∞)ξ as T → ∞,

where ξ is a standard normally distributed random variable. Using again (6.2), Slutsky’s lemma and (8.1), we
get the assertion. 2

8.2 Remark. The asymptotic variance E(X2
∞Y∞)/(E(X2

∞))2 of the LSE θ̃LSET in Theorem 8.1 is greater than

the asymptotic variance 1/E
(
X2

∞/Y∞
)

of the MLE θ̃MLE
T in Theorem 7.1, since, by Cauchy and Schwarz’s

inequality,

(E(X2
∞))2 =

(
E
(

X∞√
Y∞

X∞
√

Y∞

))2

< E
(
X2

∞
Y∞

)
E
(
X2

∞Y∞
)
.

Note also that using the limit theorem for θ̃LSET given in Theorem 8.1, one can not give asymptotic confidence
intervals for θ, since the variance of the limit normal distribution depends on the unknown parameters a and
b as well. 2

8.3 Theorem. If a > 0, b > 0, m ∈ R, θ > 0, and P(Y0 > 0) = 1, then the LSE of (m, θ) is
asymptotically normal, i.e.,

√
T

[
m̂LSE

T −m

θ̂LSET − θ

]
L−→ N2

(
0,ΣLSE

)
as T → ∞,

where N2

(
0,ΣLSE

)
denotes a 2-dimensional normally distribution with mean vector 0 ∈ R2 and with

covariance matrix ΣLSE = (ΣLSE
i,j )2i,j=1, where

ΣLSE
1,1 :=

(E(X∞))2 E(X2
∞Y∞)− 2E(X∞)E(X2

∞)E(X∞Y∞) + (E(X2
∞))2 E(Y∞)

(E(X2
∞)− (E(X∞))2)2

,

ΣLSE
1,2 = ΣLSE

2,1 :=
E(X∞)

(
E(X2

∞Y∞) + E(X2
∞)E(Y∞)

)
− E(X∞Y∞)

(
E(X2

∞) + (E(X∞))2
)

(E(X2
∞)− (E(X∞))2)2

,

ΣLSE
2,2 :=

E(X2
∞Y∞)− 2E(X∞)E(X∞Y∞) + (E(X∞))2 E(Y∞)

(E(X2
∞)− (E(X∞))2)2

.
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Proof. By (4.9) and (4.8), we have

√
T (m̂LSE

T −m) =
− 1

T

∫ T

0
Xs ds

1√
T

∫ T

0
Xs

√
Ys dBs +

1
T

∫ T

0
X2

s ds
1√
T

∫ T

0

√
Ys dBs

1
T

∫ T

0
X2

s ds−
(

1
T

∫ T

0
Xs ds

)2 a.s.

and

√
T (θ̂LSET − θ) =

− 1√
T

∫ T

0
Xs

√
Ys dBs +

1
T

∫ T

0
Xs ds

1√
T

∫ T

0

√
Ys dBs

1
T

∫ T

0
X2

s ds−
(

1
T

∫ T

0
Xs ds

)2 a.s.

due to (4.11). Next we show that(
1√
T

∫ T

0

Xs

√
Ys dBs,

1√
T

∫ T

0

√
Ys dBs

)
L−→
(
(ηZ)1, (ηZ)2

)
as T → ∞,(8.2)

where Z is a 2-dimensional standard normally distributed random variable and η is a non-random 2 × 2
matrix such that

ηη⊤ =

[
E(X2

∞Y∞) E(X∞Y∞)

E(X∞Y∞) E(Y∞)

]
.

Here the matrix [
E(X2

∞Y∞) E(X∞Y∞)

E(X∞Y∞) E(Y∞)

]
is positive definite, since its principal minors are positive, and η denotes its unique symmetric positive definite
square root. Indeed, by the absolutely continuity of (Y∞, X∞) (see Theorem 2.5), we have P(X2

∞Y∞ = 0) = 0

and, by Cauchy-Schwarz’s inequality, E(X2
∞Y∞)E(Y∞)− (E(X∞Y∞))

2 > 0, where equality would hold if and
only if P(KX2

∞Y∞ = LY∞) = 1 with some constant K,L ∈ R+ such that K2 + L2 > 0 or equivalently
(using that P(Y∞ > 0) = 1 since Y∞ has Gamma distribution) if and only if P(X2

∞ = L/K) = 1, which
leads us to a contradiction refereeing to the absolutely continuity of X∞.

Let us use Theorem 2.7 with the following choices

d := 2, (Ft)t>0 given in Remark 2.2,

Mt :=

[∫ t

0
Xs

√
Ys dBs∫ t

0

√
Ys dBs

]
, t > 0, Q(t) :=

[
1√
t

0

0 1√
t

]
, t > 0.

Then

⟨M⟩t =

[∫ t

0
X2

sYs ds
∫ t

0
XsYs ds∫ t

0
XsYs ds

∫ t

0
Ys ds

]
, t > 0,

and hence, by Theorem 2.5 (similarly as detailed in the proof of Theorem 7.2),

Q(t)⟨M⟩tQ(t)⊤ =

[
1
t

∫ t

0
X2

sYs ds
1
t

∫ t

0
XsYs ds

1
t

∫ t

0
XsYs ds

1
t

∫ t

0
Ys ds

]
→

[
E(X2

∞Y∞) E(X∞Y∞)

E(X∞Y∞) E(Y∞)

]
as t → ∞ a.s.

By (5.8), (6.2), Slutsky’s lemma and the continuous mapping theorem, we get

√
T

[
m̂LSE

T − θ

θ̂LSET − θ

]
L−→ 1

E(X2
∞)− (E(X∞))2

[
−E(X∞) E(X2

∞)

−1 E(X∞)

]
ηZ as T → ∞.

Using that ηZ is a 2-dimensional normally distributed random variable with mean vector zero and with
covariance matrix

ηη⊤ =

[
E(X2

∞Y∞) E(X∞Y∞)

E(X∞Y∞) E(Y∞)

]
,

the covariance matrix of [
−E(X∞) E(X2

∞)

−1 E(X∞)

]
ηZ
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takes the form[
−E(X∞) E(X2

∞)

−1 E(X∞)

]
η E(ZZ⊤)η⊤

[
−E(X∞) −1

E(X2
∞) E(X∞)

]

=

[
−E(X∞) E(X2

∞)

−1 E(X∞)

][
E(X2

∞Y∞) E(X∞Y∞)

E(X∞Y∞) E(Y∞)

][
−E(X∞) −1

E(X2
∞) E(X∞)

]

=

[
E(X2

∞)E(X∞Y∞)− E(X∞)E(X2
∞Y∞) E(X2

∞)E(Y∞)− E(X∞)E(X∞Y∞)

E(X∞)E(X∞Y∞)− E(X2
∞Y∞) E(X∞)E(Y∞)− E(X∞Y∞)

]

×

[
−E(X∞) −1

E(X2
∞) E(X∞)

]
,

which yields the assertion. 2

8.4 Remark. Using the explicit forms of the mixed moments given in (iii) of Theorem 2.5, one can check that

the asymptotic variance E(X2
∞Y∞)/(E(X2

∞))2 of θ̃LSET in Theorem 8.1 is less than the asymptotic variance

ΣLSE
1,1 of θ̂LSET in Theorem 8.3. This can be interpreted similarly as in Remark 7.3. Note also that using

the limit theorem for (m̂LSE
T , θ̂LSET ) given in Theorem 8.3, one can not give asymptotic confidence regions for

(m, θ), since the variance matrix of the limit normal distribution depends on the unknown parameters a and
b as well. 2

Appendix

A Radon-Nykodim derivatives for certain diffusions

We consider the SDEs

dξt = (Aξt + a) dt+ σ(ξt) dWt, t ∈ R+,(A.1)

dηt = (Bηt + b) dt+ σ(ηt) dWt, t ∈ R+,(A.2)

with the same initial values ξ0 = η0, where A,B ∈ R2×2, a, b ∈ R2, σ : R2 → R2×2 is a Borel measurable
function, and (Wt)t∈R+ is a two-dimensional standard Wiener process. Suppose that the SDEs (A.1) and
(A.2) admit pathwise unique strong solutions. Let P(A,a) and P(B,b) denote the probability measures on the
measurable space (C(R+,R2),B(C(R+,R2))) induced by the processes (ξt)t∈R+ and (ηt)t∈R+ , respectively.
Here C(R+,R2) denotes the set of continuous R2-valued functions defined on R+, B(C(R+,R2)) is the
Borel σ-algebra on it, and we suppose that the space (C(R+,R2),B(C(R+,R2))) is endowed with the natural
filtration (At)t∈R+ , given by At := φ−1

t (B(C(R+,R2))), where φt : C(R+,R2) → C(R+,R2) is the mapping
φt(f)(s) := f(t ∧ s), s ∈ R+. For all T > 0, let P(A,a),T := P(A,a) |AT

and P(B,b),T := P(B,b) |AT
be the

restrictions of P(A,a) and P(B,b) to AT , respectively.

From the very general result in Section 7.6.4 of Liptser and Shiryaev [26], one can deduce the following
lemma.

A.1 Lemma. Let A,B ∈ R2×2, a, b ∈ R2, and let σ : R2 → R2×2 be a Borel measurable function. Suppose
that the SDEs (A.1) and (A.2) admit pathwise unique strong solutions. Let P(A,a) and P(B,b) denote the
probability measures induced by the unique strong solutions of the SDEs (A.1) and (A.2) with the same initial
value ξ0 = η0, respectively. Suppose that P(∃σ(ξt)−1) = 1 and P(∃σ(ηt)−1) = 1 for all t ∈ R+, and

P
(∫ t

0

[
(Aξs + a)⊤(σ(ξs)σ(ξs)

⊤)−1(Aξs + a)⊤ + (Bξs + b)⊤(σ(ξs)σ(ξs)
⊤)−1(Bξs + b)⊤

]
ds < ∞

)
= 1

and

P
(∫ t

0

[
(Aηs + a)⊤(σ(ηs)σ(ηs)

⊤)−1(Aηs + a)⊤ + (Bηs + b)⊤(σ(ηs)σ(ηs)
⊤)−1(Bηs + b)⊤

]
ds < ∞

)
= 1
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for all t ∈ R+. Then for all T > 0, the probability measures P(A,a),T and P(B,b),T are absolutely continuous
with respect to each other, and the Radon-Nykodim derivative of P(A,a),T with respect to P(B,b),T (so called
likelihood ratio) takes the form

L
(A,a),(B,b)
T ((ξs)s∈[0,T ]) = exp

{∫ T

0

(Aξs + a−Bξs − b)⊤(σ(ξs)σ(ξs)
⊤)−1 dξs

− 1

2

∫ T

0

(Aξs + a−Bξs − b)⊤(σ(ξs)σ(ξs)
⊤)−1(Aξs + a+Bξs + b)⊤ds

}
.

We call the attention that conditions (4.110) and (4.111) are also required for Section 7.6.4 in Liptser and
Shiryaev [26], but the Lipschitz condition (4.110) in Liptser and Shiryaev [26] does not hold in general for the
SDEs (A.1) and (A.2). However, we can use formula (7.139) in Liptser and Shiryaev [26], since they use their
conditions (4.110) and (4.111) only in order to ensure the SDE they consider in Section 7.6.4 has a pathwise
unique strong solution (see, the proof of Theorem 7.19 in Liptser and Shiryaev [26]), which is supposed in
Theorem A.1.
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