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On parameter estimation for critical affine processes

Mátyás Barczy∗, Leif Döring, Zenghu Li, Gyula Pap

Abstract

First we provide a simple set of sufficient conditions for the weak convergence of scaled affine

processes with state space R+ × Rd. We specialize our result to one-dimensional continuous state

branching processes with immigration. As an application, we study the asymptotic behavior of

least squares estimators of some parameters of a two-dimensional critical affine diffusion process.

1 Introduction

In recent years quickly growing interest in pricing of credit-risky securities (e.g., defaultable bonds)

has been seen in the mathematical finance literature. One of the basic models (for applications see

for instance Chen and Joslin [8]) is the following two-dimensional affine diffusion process:{
dYt = (a− bYt) dt+

√
Yt dWt,

dXt = (m− θXt) dt+
√
Yt dBt,

t > 0,(1.1)

where a, b, θ and m are real parameters such that a > 0 and B and W are independent

standard Wiener processes. Note that Y is a Cox-Ingersol-Ross (CIR) process. For practical use, it

is important to estimate the appearing parameters from some discretely observed real data set. In the

case of the one-dimensional CIR process, the parameter estimation of a and b goes back to Overbeck

and Rydén [30], Overbeck [31], and see also the very recent papers of Ben Alaya and Kebaier [5, 6].

For asymptotic results on discrete time critical branching processes with immigration, one may refer

to Wei and Winnicki [34] and [35].

The process (Y,X) given by (1.1) is a very special affine process. The set of affine processes

contains a large class of important Markov processes such as continuous state branching processes and

Orstein-Uhlenbeck processes. Further, a lot of models in financial mathematics are also special affine

processes such as the Heston model [17], the model due to Barndorff-Nielsen and Shephard [4] or the

model due to Carr and Wu [7]. A precise mathematical formulation and complete characterization of

regular affine processes are due to Duffie et al. [11]. Later several authors have contributed to the

study of properties of general affine processes: to name a few, Andersen and Piterbarg [1] (moment
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explosions in stochastic volatility models), Dawson and Li [10] (jump-type SDE representation for

two-dimensional affine processes), Filipović and Mayerhofer [13] (applications to the pricing of bond

and stock options), Glasserman and Kim [15] (the range of finite exponential moments and the con-

vergence to stationarity in affine diffusion models), Jena et al. [23] (long-term and blow-up behaviors

of exponential moments in multi-dimensional affine diffusions), Keller-Ressel et al. [25, 26] (stochasti-

cally continuous, time-homogeneous affine processes with state space Rn+ ×Rd or more general ones

are regular). We also refer to the overview articles Cuchiero et al. [9] and Friz and Keller-Ressel [14].

To the best knowledge of the authors the parameter estimation problem for multi-dimensional affine

processes has not been tackled so far. Since affine processes are being used in financial mathematics

very frequently, the question of parameter estimation for them is of high importance. Our aim is to

start the discussion with a simple non-trivial example: the two-dimensional affine diffusion process

given by (1.1).

The article is divided into two parts and there are two appendices. In Section 2 we recall some

notations, the definition of affine processes and some of their basic properties, and then a simple

set of sufficient conditions for the weak convergence of scaled affine processes is presented. Roughly

speaking, given a family of affine processes (Y (θ)(t), X(θ)(t))t>0, θ > 0, such that the correspond-

ing admissible parameters converge in an appropriate way (see Theorem 2.9), the scaled process(
θ−1Y (θ)(θt), θ−1X(θ)(θt)

)
t>0

converge weakly towards an affine diffusion process as θ → ∞. We

specialize our result for one-dimensional continuous state branching processes with immigration which

generalizes Theorem 2.3 in Huang et al. [20]. The scaling Theorem 2.9 is proved for quite general affine

processes since it might have applications elsewhere later on. In Section 3 the scaling Theorem 2.9 is

applied to study the asymptotic behavior of least squares and conditional least squares estimators of

some parameters of a critical two-dimensional affine diffusion process given by (1.1), see Theorems 3.5,

3.8 and 3.11. In Appendix A we check that some integrals in the form of the infinitesimal generator of

an affine process that we use are well-defined. Appendix B is devoted to show that the least squares

estimator of m cannot be asymptotically weakly consistent.

2 A scaling theorem for affine processes

Let N, Z+, R, R+, R−, R++, and C denote the sets of positive integers, non-negative

integers, real numbers, non-negative real numbers, non-positive real numbers, positive real numbers

and complex numbers, respectively. For x, y ∈ R, we will use the notations x ∧ y := min(x, y)

and x ∨ y := max(x, y). For x, y ∈ Ck, k ∈ N, we write ⟨x, y⟩ :=
∑k

i=1 xiyi (notice that

this is not the scalar product on Ck, however for x ∈ Ck and y ∈ Rk, ⟨x, y⟩ coincides with

the usual scalar product of x and y). By ∥x∥ and ∥A∥ we denote the Euclidean norm of a

vector x ∈ Rp and the induced matrix norm of a matrix A ∈ Rp×p, respectively. Further, let

U := {z1 + iz2 : z1 ∈ R−, z2 ∈ R} × (iRd). By C2
c (R+ × Rd) (C∞

c (R+ × Rd)) we denote the set

of twice (infinitely) continuously differentiable complex-valued functions on R+ × Rd with compact

support, where d ∈ N. The set of càdlàg functions from R+ to R+ × Rd will be denoted by

D(R+,R+ × Rd). For a bounded function g : R+ × Rd → Rp, let ∥g∥∞ := supx∈R+×Rd ∥g(x)∥.
Convergence in distribution, in probability and almost sure convergence will be denoted by

L−→,
P−→

and
a.s.−→, respectively.
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Next we briefly recall the definition of affine processes with state space R+ ×Rd based on Duffie

et al. [11].

2.1 Definition. A transition semigroup (Pt)t∈R+ with state space R+ × Rd is called a (general)

affine semigroup if its characteristic function has the representation∫
R+×Rd

e⟨u,ξ⟩Pt(x,dξ) = e⟨x,ψ(t,u)⟩+ϕ(t,u)(2.1)

for x ∈ R+ × Rd, u ∈ U and t ∈ R+, where ψ(t, ·) = (ψ1(t, ·), ψ2(t, ·)) ∈ C× Cd is a continuous

C1+d-valued function on U and ϕ(t, ·) is a continuous C-valued function on U satisfying ϕ(t, 0) = 0.

The affine semigroup (Pt)t∈R+ defined by (2.1) is called regular if it is stochastically continuous

(equivalently, for all u ∈ U , the functions R+ ∋ t 7→ Ψ(t, u) and R+ ∋ t 7→ ϕ(t, u) are continuous)

and ∂1ψ(0, u) and ∂1ϕ(0, u) exist for all u ∈ U and are continuous at u = 0 (where ∂1ψ and

∂1ϕ denote the partial derivatives of ψ and ϕ, respectively, with respect to the first variable).

2.2 Remark. We call the attention that Duffie et al. [11] in their Definition 2.1 assume only that

Equation (2.1) hold for x ∈ R+ × Rd, u ∈ ∂U = iR1+d, t ∈ R+, i.e., instead of u ∈ U they only

require that u should be an element of the boundary ∂U of U . However, by Proposition 6.4 in

Duffie et al. [11], one can formulate the definition of a regular affine process as we did. Note also that

this kind of definition was already given by Dawson and Li [10, Definitions 2.1 and 3.3]. Finally, we

remark that every stochastically continuous affine semigroup is regular due to Keller-Ressel et al. [25,

Theorem 5.1]. 2

2.3 Definition. A set of parameters (a, α, b, β,m, µ) is called admissible if

(i) a = (ai,j)
1+d
i,j=1 ∈ R(1+d)×(1+d) is a symmetric positive semidefinite matrix with a1,1 = 0 (hence

a1,k = ak,1 = 0 for all k ∈ {2, . . . , 1 + d}),

(ii) α = (αi,j)
1+d
i,j=1 ∈ R(1+d)×(1+d) is a symmetric positive semidefinite matrix,

(iii) b = (bi)
1+d
i=1 ∈ R+ × Rd,

(iv) β = (βi,j)
1+d
i,j=1 ∈ R(1+d)×(1+d) with β1,j = 0 for all j ∈ {2, . . . , 1 + d},

(v) m(dξ) = m(dξ1,dξ2) is a σ-finite measure on R+ × Rd supported by (R+ × Rd) \ {(0, 0)}
such that ∫

R+×Rd

[
ξ1 + (∥ξ2∥ ∧ ∥ξ2∥2)

]
m(dξ) <∞,

(vi) µ(dξ) = µ(dξ1,dξ2) is a σ-finite measure on R+ ×Rd supported by (R+ ×Rd) \ {(0, 0)} such

that ∫
R+×Rd

∥ξ∥ ∧ ∥ξ∥2µ(dξ) <∞.

2.4 Remark. Note that our Definition 2.3 of the set of admissible parameters is not so general as

Definition 2.6 in Duffie et al. [11]. Firstly, the set of admissible parameters is defined only for affine

process with state space R+ × Rd, while Duffie et al. [11] consider affine processes with state space

Rn+ × Rd. We restrict ourselves to this special case, since our scaling Theorem 2.9 is valid only in
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this case. Secondly, our conditions (v) and (vi) of Definition 2.3 are stronger than that of (2.10) and

(2.11) of Definition 2.6 in Duffie et al. [11]. Thirdly, according to our definition, a set of admissible

parameters does not contain parameters corresponding to killing, while in Definition 2.6 in Duffie et

al. [11] such parameters are included. Our definition of admissible parameters can be considered as a

(1 + d)-dimensional version of Definition 6.1 in Dawson and Li [10]. The reason for this definition is

to have a more pleasant form of the infinitesimal generator of an affine process compared to that of

Duffie et al. [11, formula (2.12)]. For more details, see Remark 2.6. 2

2.5 Theorem. (Duffie et al. [11, Theorem 2.7]) Let (a, α, b, β,m, µ) be a set of admissible param-

eters. Then there exists a unique regular affine semigroup (Pt)t∈R+ with infinitesimal generator

(Af)(x) =
1+d∑
i,j=1

(ai,j + αi,jx1)f
′′
i,j(x) + ⟨f ′(x), b+ βx⟩

+

∫
R+×Rd

(f(x+ ξ)− f(x)− ⟨f ′(2)(x), ξ2⟩)m(dξ)

+

∫
R+×Rd

(f(x+ ξ)− f(x)− ⟨f ′(x), ξ⟩)x1 µ(dξ)

(2.2)

for x = (x1, x2) ∈ R+ × Rd and f ∈ C2
c (R+ × Rd), where f ′i , i ∈ {1, . . . , 1 + d}, and f ′′i,j,

i, j ∈ {1, . . . , 1 + d}, denote the first and second order partial derivatives of f with respect to its i-th

and i-th and j-th variables, and f ′(x) := (f ′1(x), . . . , f
′
1+d(x))

⊤, f ′(2)(x) := (f ′2(x), . . . , f
′
1+d(x))

⊤.

Further, C∞
c (R+ × Rd) is a core of A.

2.6 Remark. Note that the form of the infinitesimal generator A in Theorem 2.5 is slightly different

from the one given in (2.12) in Duffie et al. [11]. Our formula (2.2) is in the spirit of Dawson and Li

[10, formula (6.5)]. On the one hand, the point is that under the conditions (v) and (vi) of Definition

2.3, one can rewrite (2.12) in Duffie et al. [11] into the form (2.2), by changing the 2-nd, . . ., (1+d)-th

coordinates of b ∈ R+ × Rd and the first column of β ∈ R(1+d)×(1+d), respectively, in appropriate

ways (see Appendix A). To see this, it is enough to check that the integrals in (2.2) are well-defined

(i.e., elements of C) under the conditions (v) and (vi) of Definition 2.3. For further details, see also

Appendix A. On the other hand, the killing rate (see page 995 in Duffie et al. [11]) of the affine

semigroup (Pt)t∈R+ in Theorem 2.5 is identically zero. This also implies that the affine processes

that we will consider later on will have lifetime infinity. 2

2.7 Remark. In dimension 2 (i.e., if d = 1), by Theorem 6.2 in Dawson and Li [10] and Theorem

2.7 in Duffie et al. [11] (see also Theorem 2.5), for an infinitesimal generator A given by (2.2)

with d = 1 one can construct a two-dimensional system of jump type SDEs of which there exists a

pathwise unique strong solution (Y (t), X(t))t∈R+ which is a regular affine Markov process with the

given infinitesimal generator A. 2

The next lemma is simple but very useful.

2.8 Lemma. Let (Z(t))t∈R+ be a time-homogeneous Markov process with state space R+×Rd and

let us denote its infinitesimal generator by AZ . Suppose that C2
c (R+×Rd) is a subset of the domain
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of AZ . Then for all θ ∈ R++, the time-homogeneous Markov process (Zθ(t))t∈R+ := (θ−1Z(θt))t∈R+

has infinitesimal generator

(AZθ
f)(x) = θ(AZfθ)(θx), x ∈ R+ × Rd, f ∈ C2

c (R+ × Rd),

where fθ(x) := f(θ−1x), x ∈ R+ × Rd.

Proof. By definition, the infinitesimal generator of (Zθ(t))t∈R+ takes the form

(AZθ
f)(x) = lim

t↓0

E(f(θ−1Z(θt)) | θ−1Z(0) = x)− f(x)

t

= lim
t↓0

θE(fθ(Z(θt)) |Z(0) = θx)− θfθ(θx)

θt

= θ lim
t′↓0

E(fθ(Z(t′)) |Z(0) = θx)− fθ(θx)

t′
= θ(AZfθ)(θx)

for all x ∈ R+ × Rd and f ∈ C2
c (R+ × Rd). 2

2.9 Theorem. For all θ ∈ R++, let (Y (θ)(t), X(θ)(t))t∈R+ be a (1 + d)-dimensional affine process

with state space R+ × Rd and with admissible parameters (a(θ), α(θ), b(θ), β(θ),m, µ) such that

additionally ∫
R+×Rd

∥ξ∥m(dξ) <∞ and

∫
R+×Rd

∥ξ∥2 µ(dξ) <∞.(2.3)

Let a, α, β ∈ R(1+d)×(1+d), b ∈ R+ × Rd, and let (Y (t), X(t))t∈R+ be a (1 + d)-dimensional affine

process with state space R+ × Rd and with the set of admissible parameters (a, α̃, b̃, β, 0, 0), where

α̃ := α+
1

2

∫
R+×Rd

ξξ⊤ µ(dξ),

and b̃ = (̃bi)
1+d
i=1 with b̃i := bi for i ∈ {2, . . . , 1 + d} and

b̃1 := b1 +

∫
R+×Rd

ξ1m(dξ).

If

θ−1a(θ) → a, α(θ) → α, b(θ) → b, θβ(θ) → β,

θ−1(Y (θ)(0), X(θ)(0))
L−→ (Y (0), X(0))

as θ → ∞, then(
Y

(θ)
θ (t), X

(θ)
θ (t)

)
t∈R+

=
(
θ−1Y (θ)(θt), θ−1X(θ)(θt)

)
t∈R+

L−→ (Y (t), X(t))t∈R+

in D(R+,R+ × Rd) as θ → ∞.
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2.10 Remark. (i) Note that the limit process (Y (t), X(t))t∈R+ in Theorem 2.9 has continuous

sample paths almost surely. However, this is not a big surprise, since in condition (2.3) of Theorem

2.9 we require finite second moment for the measure µ.

(ii) Note also that the matrix α̃ ∈ R(1+d)×(1+d) given in Theorem 2.9 is symmetric and positive

semidefinite, since α is symmetric and positive semidefinite, and for all z ∈ R1+d,⟨∫
R+×Rd

ξξ⊤ µ(dξ)z, z

⟩
=

∫
R+×Rd

(z⊤ξ)2 µ(dξ) > 0.

2

Proof of Theorem 2.9. By Duffie et al. [11, Theorem 2.7], C∞
c (R+ × Rd) is a core of the

infinitesimal generator A(Y,X) of the process (Y (t), X(t))t∈R+ , and hence {(f,A(Y,X)f) : f ∈
D(A(Y,X))} coincides with the closure of {(f,A(Y,X)f) : f ∈ C∞

c (R+ × Rd)}, where D(A(Y,X))

denotes the domain of A(Y,X), see, e.g., Ethier and Kurtz [12, page 17]. In other words, the closure

of {(f,A(Y,X)f) : f ∈ C∞
c (R+ × Rd)} generates the affine semigroup corresponding to A(Y,X).

Next we show that for all f ∈ C∞
c (R+ × Rd), we have

lim
θ→∞

sup
x∈R+×Rd

∣∣∣(A
(Y

(θ)
θ ,X

(θ)
θ )

f)(x)− (A(Y,X)f)(x)
∣∣∣ = 0.(2.4)

First note that it is enough to prove (2.4) for real-valued functions f ∈ C∞
c (R+ × Rd), since if (2.4)

holds for for real-valued functions f ∈ C∞
c (R+×Rd), then, by decomposing f into real and imaginary

parts, the linearity of the infinitesimal generators in question and triangular inequality yield (2.4) for

complex-valued functions f ∈ C∞
c (R+ ×Rd). Hence in what follows without loss of generality we can

assume that f ∈ C∞
c (R+ × Rd) is real-valued.

For all f ∈ C∞
c (R+ × Rd), θ ∈ R++, and x ∈ R+ × Rd, we have

fθ(x) = f(θ−1x),

(fθ)
′
i(x) = θ−1f ′i(θ

−1x), i ∈ {1, . . . , 1 + d},

(fθ)
′′
i,j(x) = θ−2f ′′i,j(θ

−1x), i, j ∈ {1, . . . , 1 + d}.

(2.5)

Then, by Lemma 2.8, (2.2) and (2.5),

(A
(Y

(θ)
θ ,X

(θ)
θ )

f)(x) = θ(A(Y (θ),X(θ))fθ)(θx)

= θ

[
1+d∑
i,j=1

(a
(θ)
i,j + α

(θ)
i,j θx1)θ

−2f ′′i,j(θ
−1θx) + ⟨θ−1f ′(θ−1θx), b(θ) + β(θ)θx⟩

+

∫
R+×Rd

(f(θ−1(θx+ ξ))− f(θ−1θx)− ⟨θ−1f ′(2)(θ
−1θx), ξ2⟩)m(dξ)

+

∫
R+×Rd

(f(θ−1(θx+ ξ))− f(θ−1θx)− ⟨θ−1f ′(θ−1θx), ξ⟩)θx1 µ(dξ)

]

=
1+d∑
i,j=1

(θ−1a
(θ)
i,j + α

(θ)
i,j x1)f

′′
i,j(x) + ⟨f ′(x), b(θ) + θβ(θ)x⟩
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+

∫
R+×Rd

(f(x+ θ−1ξ)− f(x)− ⟨f ′(2)(x), θ
−1ξ2⟩)θm(dξ)

+ x1

∫
R+×Rd

(f(x+ θ−1ξ)− f(x)− ⟨f ′(x), θ−1ξ⟩)θ2 µ(dξ)

for f ∈ C∞
c (R+×Rd) and x ∈ R+×Rd. Hence, for all x = (x1, x2) ∈ R+×Rd, using the triangular

inequality and that |⟨u, v⟩| 6 ∥u∥∥v∥, u, v ∈ Rp, we have∣∣∣(A
(Y

(θ)
θ ,X

(θ)
θ )

f)(x)− (A(Y,X)f)(x)
∣∣∣

6
1+d∑
i,j=1

(|θ−1a
(θ)
i,j − ai,j |+ |α(θ)

i,j − αi,j |x1)|f ′′i,j(x)|

+ (∥b(θ) − b∥+ ∥θβ(θ) − β∥∥x∥)∥f ′(x)∥

+

∣∣∣∣∫
R+×Rd

(
f(x+ θ−1ξ)− f(x)− θ−1⟨f ′(x), ξ⟩

)
θm(dξ)

∣∣∣∣
+ x1

∣∣∣∣∣
∫
R+×Rd

(
f(x+ θ−1ξ)− f(x)− θ−1⟨f ′(x), ξ⟩ − 1

2
θ−2⟨f ′′(x)ξ, ξ⟩

)
θ2 µ(dξ)

∣∣∣∣∣,
where

f ′′(x) :=


f ′′1,1(x) · · · f ′′1,1+d(x)

...
. . .

...

f ′′1+d,1(x) · · · f ′′1+d,1+d(x)

 .
Since f ∈ C∞

c (R+ × Rd), we have

sup
x∈R+×Rd

x1|f ′′i,j(x)| <∞, sup
x∈R+×Rd

|f ′′i,j(x)| <∞, ∀ i, j ∈ {1, . . . , 1 + d},

sup
x∈R+×Rd

∥x∥∥f ′(x)∥ <∞, sup
x∈R+×Rd

∥f ′(x)∥ <∞,

and hence, by our assumptions, in order to prove (2.4) it is enough to check that

lim
θ→∞

sup
x∈R+×Rd

∣∣∣∣∫
R+×Rd

(
f(x+ θ−1ξ)− f(x)− θ−1⟨f ′(x), ξ⟩

)
θm(dξ)

∣∣∣∣ = 0,(2.6)

and

lim
θ→∞

sup
x∈R+×Rd

x1

∣∣∣∣∫
R+×Rd

(
f(x+ θ−1ξ)− f(x)− θ−1⟨f ′(x), ξ⟩

−1

2
θ−2⟨f ′′(x)ξ, ξ⟩

)
θ2 µ(dξ)

∣∣∣∣ = 0.

(2.7)

First we consider (2.6). Let ε ∈ R++ be fixed. Let us choose an M ∈ R++ such that

2∥f ′∥∞
∫
(R+×Rd)\([0,M ]×[−M,M ]d)

∥ξ∥m(dξ) <
ε

2
.(2.8)
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In what follows, for abbreviation, [0,M ]× [−M,M ]d will be denoted by DM . Such an M can be

chosen, since f ∈ C∞
c (R+×Rd) yields ∥f ′∥∞ <∞ and, by assumption (2.3),

∫
R+×Rd ∥ξ∥m(dξ) <∞.

By Taylor’s theorem, for all θ ∈ R++, x ∈ R+×Rd and ξ ∈ DM there exists some τ = τ(θ, x, ξ) ∈
[0, 1] such that

f(x+ θ−1ξ)− f(x) = ⟨f ′(x+ θ−1τξ), θ−1ξ⟩.(2.9)

Then∣∣∣∣∫
R+×Rd

(
f(x+ θ−1ξ)− f(x)− θ−1⟨f ′(x), ξ⟩

)
θm(dξ)

∣∣∣∣
6
∫
R+×Rd

∣∣⟨f ′(x+ θ−1τξ), ξ⟩ − ⟨f ′(x), ξ⟩
∣∣m(dξ) 6 A

(1)
θ,M (x) +A

(2)
θ,M (x)

for all x ∈ R+ × Rd, where

A
(1)
θ,M (x) :=

∫
DM

|⟨f ′(x+ θ−1τξ)− f ′(x), ξ⟩|m(dξ),

A
(2)
θ,M (x) :=

∫
(R+×Rd)\DM

(
|⟨f ′(x+ θ−1τξ), ξ⟩|+ |⟨f ′(x), ξ⟩|

)
m(dξ).

Here

A
(1)
θ,M (x) 6

∫
DM

∥f ′(x+ θ−1τξ)− f ′(x)∥∥ξ∥m(dξ)

6 sup
ξ∈DM

∥f ′(x+ θ−1τξ)− f ′(x)∥
∫
R+×Rd

∥ξ∥m(dξ).

The convexity of DM implies τξ = τ(θ, x, ξ)ξ ∈ DM for all θ ∈ R++, x ∈ R+ ×Rd and ξ ∈ DM ,

and, hence,

sup
ξ∈DM

∥f ′(x+ θ−1τξ)− f ′(x)∥ 6 sup
ξ̃∈DM

∥f ′(x+ θ−1ξ̃)− f ′(x)∥.

Since f ′ is uniformly continuous on R+ ×Rd (which follows by mean value theorem using also that

∥f ′′∥∞ <∞), there exists a θ0 ∈ R++ (depending on ε and M) such that

sup
ξ̃∈DM

∥f ′(x+ θ−1ξ̃)− f ′(x)∥
∫
R+×Rd

∥ξ∥m(dξ) <
ε

2

for all x ∈ R+ × Rd and θ ∈ [θ0,∞). Further, by (2.8), we have

A
(2)
θ,M (x) 6 2∥f ′∥∞

∫
(R+×Rd)\DM

∥ξ∥m(dξ) <
ε

2

for all x ∈ R+ × Rd and θ ∈ R++. Putting the pieces together we have (2.6).

Now we turn to prove (2.7) in a similar way. Let ε ∈ R++ be fixed again. Let us now choose an

M ∈ R++ such that

2 sup
x∈R+×Rd

x1∥f ′′(x)∥
∫
(R+×Rd)\DM

∥ξ∥2 µ(dξ) < ε

2
.(2.10)
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Such an M can be chosen, since supx∈R+×Rd x1∥f ′′(x)∥ < ∞ for all f ∈ C∞
c (R+ × Rd) and, by

assumption (2.3),
∫
R+×Rd ∥ξ∥2 µ(dξ) <∞. By Taylor’s theorem, for all θ ∈ R++, x ∈ R+×Rd and

ξ ∈ DM there exists some τ = τ(θ, x, ξ) ∈ [0, 1] such that

f(x+ θ−1ξ)− f(x)− ⟨f ′(x), θ−1ξ⟩ = 1

2
⟨f ′′(x+ θ−1τξ)θ−1ξ, θ−1ξ⟩.(2.11)

Then

x1

∣∣∣∣∫
R+×Rd

(
f(x+ θ−1ξ)− f(x)− θ−1⟨f ′(x), ξ⟩ − 1

2
θ−2⟨f ′′(x)ξ, ξ⟩

)
θ2 µ(dξ)

∣∣∣∣
6 1

2
x1

∫
R+×Rd

∣∣⟨f ′′(x+ θ−1τξ)ξ, ξ⟩ − ⟨f ′′(x)ξ, ξ⟩
∣∣µ(dξ)

6 1

2
(B

(1)
θ,M (x) +B

(2)
θ,M (x))

for all x ∈ R+ × Rd, where

B
(1)
θ,M (x) := x1

∫
DM

|⟨(f ′′(x+ θ−1τξ)− f ′′(x))ξ, ξ⟩|µ(dξ),

B
(2)
θ,M (x) := x1

∫
(R+×Rd)\DM

(
|⟨f ′′(x+ θ−1τξ)ξ, ξ⟩|+ |⟨f ′′(x)ξ, ξ⟩|

)
µ(dξ).

Here

B
(1)
θ,M (x) 6 x1

∫
DM

∥f ′′(x+ θ−1τξ)− f ′′(x)∥∥ξ∥2 µ(dξ)

6 sup
ξ∈DM

x1∥f ′′(x+ θ−1τξ)− f ′′(x)∥
∫
R+×Rd

∥ξ∥2 µ(dξ),

and note that ∥A−B∥ > ∥A∥ − ∥B∥, A,B ∈ Rp×p, yields that

x1∥f ′′(x+ θ−1τξ)− f ′′(x)∥ 6 ∥(x1 + θ−1τξ1)f
′′(x+ θ−1τξ)− x1f

′′(x)∥+ θ−1τξ1∥f ′′(x+ θ−1τξ)∥.

Further, we have again

{τξ = τ(θ, x, ξ)ξ : θ ∈ R++, x ∈ R+ × Rd and ξ ∈ DM} ⊂ DM ,

and hence

sup
ξ∈DM

∥(x1 + θ−1τξ1)f
′′(x+ θ−1τξ)− x1f

′′(x)∥

6 sup
ξ̃∈DM

∥(x1 + θ−1ξ̃1)f
′′(x+ θ−1ξ̃)− x1f

′′(x)∥.

Since the function x 7→ x1f
′′(x) is uniformly continuous on R+ × Rd, there exists a θ1 ∈ R++

(depending on ε and M) such that

sup
ξ̃∈DM

∥(x1 + θ−1ξ̃1)f
′′(x+ θ−1ξ̃)− x1f

′′(x)∥
∫
R+×Rd

∥ξ∥2 µ(dξ) < ε

4
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for all x ∈ R+ × Rd and θ ∈ [θ1,∞). Moreover, there exists a θ2 ∈ R++ (depending on ε and

M) such that

θ−1 sup
ξ∈DM

τξ1∥f ′′(x+ θ−1τξ)∥
∫
R+×Rd

∥ξ∥2 µ(dξ)

6 θ−1∥f ′′∥∞ sup
ξ∈DM

ξ1

∫
R+×Rd

∥ξ∥2 µ(dξ) < ε

4

for all x ∈ R+ × Rd and θ ∈ [θ2,∞). Consequently, B
(1)
θ,M (x) < ε

2 for all x ∈ R+ × Rd and

θ ∈ [θ1 + θ2,∞). Further,

B
(2)
θ,M (x) 6 x1

∫
(R+×Rd)\DM

(
∥f ′′(x+ θ−1τξ)∥+ ∥f ′′(x)∥

)
∥ξ∥2 µ(dξ)

6 sup
ξ∈R+×Rd

x1
(
∥f ′′(x+ θ−1τξ)∥+ ∥f ′′(x)∥

) ∫
(R+×Rd)\DM

∥ξ∥2 µ(dξ).

Here

x1
(
∥f ′′(x+ θ−1τξ)∥+ ∥f ′′(x)∥

)
6 (x1 + θ−1τξ1)∥f ′′(x+ θ−1τξ)∥+ x1∥f ′′(x)∥,

hence

sup
ξ∈R+×Rd

x1
(
∥f ′′(x+ θ−1τξ)∥+ ∥f ′′(x)∥

)
6 2 sup

x∈R+×Rd

x1∥f ′′(x)∥.

Consequently, by (2.10), we have

B
(2)
θ,M (x) 6 2 sup

x∈R+×Rd

x1∥f ′′(x)∥
∫
(R+×Rd)\DM

∥ξ∥2 µ(dξ) < ε

2

for all x ∈ R+ × Rd and θ ∈ R++. Putting the pieces together we have (2.7).

Finally, Ethier and Kurtz [12, Corollary 8.7 on page 232] yields our assertion. Namely, with the

notations of part (f) of this corollary (but replacing n by θ), let

• Gθ := Eθ := E := R+ × Rd for all θ ∈ R++,

• Ca := C∞
c (R+ ×Rd) which strongly separates points in R+ ×Rd (indeed, for every (x1, x2) ∈

R+ × Rd and δ ∈ R++, the bump function defined by h1(u1, u2) := exp
{
− 1

1−(u1−x1)2 −
1

1−∥u2−x2∥2
}

if |u1−x1| < 1 and ∥u2−x2∥ < 1 with (u1, u2) ∈ R+×Rd, and h1(u1, u2) := 0

otherwise, satisfies (4.7) on page 113 in Ethier and Kurtz [12]),

• ηθ : Eθ → E with ηθ(x1, x2) := (x1, x2), (x1, x2) ∈ Eθ for all θ ∈ R++,

• πθ : E → Eθ with πθ(x1, x2) := (x1, x2), (x1, x2) ∈ E for all θ ∈ R++,

• for each f ∈ C∞
c (R+ × Rd) one can choose fθ := f and gθ := A

(Y
(θ)
θ ,X

(θ)
θ )

f for all θ ∈ R++

(and hence (fθ, gθ) ∈ Â
(Y

(θ)
θ ,X

(θ)
θ )

defined on page 24 in Ethier and Kurtz [12] by part (c) of

Proposition 1.5 on page 9 in Ethier and Kurtz [12]),

• (Gθt )t∈R+ := (F (Y
(θ)
θ ,X

(θ)
θ )

t )t∈R+ , where F (Y
(θ)
θ ,X

(θ)
θ )

t denotes the σ-algebra generated by

{(Y (θ)
θ (s), X

(θ)
θ (s)), s ∈ [0, t]}.
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Then, by our assumptions, convergence of the initial distributions holds, condition (8.35) on page 232

in Ethier and Kurtz [12] is automatically satisfied, and (2.4) shows the validity of condition (8.36) on

page 232 in Ethier and Kurtz [12]. 2

2.11 Remark. By giving an example, we shed some light on why we consider only (1+d)-dimensional

affine processes with state space R+ × Rd in Theorem 2.9 instead of (n+ d)-dimensional ones with

state space Rn+×Rd, n ∈ N. Let (Yt)t∈R+ be a two-dimensional continuous state branching process

with infinitesimal generator

(AY f)(y) =
2∑
i=1

yi

∫
R2
+\{0}

(
f(y + u)− f(y)− f ′i(y)ui

)
pi(du),

for f ∈ C2
c (R2

+) and y = (y1, y2) ∈ R2
+, where pi, i = 1, 2, are σ-finite measures on R2

+ \ {0} such

that ∫
R2
+\{0}

(u1 + ∥u∥2)p2(du) <∞ and

∫
R2
+\{0}

(u2 + ∥u∥2)p1(du) <∞,(2.12)

see, e.g., Duffie et al. [11, Theorem 2.7]. Note that Y can be considered as a two-dimensional affine

process with state space R2
+ (formally with d = 0). Then, by a simple modification of Lemma 2.8,

for all θ > 0, f ∈ C2
c (R2

+) and y = (y1, y2) ∈ R2
+,

(AYθf)(y) = θ(AY fθ)(θy)

= θ

2∑
i=1

θyi

∫
R2
+\{0}

(
f(θ−1(θy + u))− f(θ−1θy)− θ−1f ′i(θ

−1θy)ui

)
pi(du)

= θ2
2∑
i=1

yi

∫
R2
+\{0}

(
f(y + θ−1u)− f(y)− ⟨f ′(y), θ−1u⟩

)
pi(du)

+ θ
2∑
i=1

yif
′
3−i(y)

∫
R2
+\{0}

u3−i pi(du),

where the last equality follows by (2.12). Supposing that f is real-valued, by Taylor’s theorem,

f(y + θ−1u)− f(y)− ⟨f ′(y), θ−1u⟩ = 1

2
⟨f ′′(y + τθ−1u)θ−1u, θ−1u⟩ = θ−2

2
⟨f ′′(y + τθ−1u)u, u⟩

with some τ = τ(u, y) ∈ [0, 1]. Hence, similarly to the proof of (2.7), we get

lim
θ→∞

θ2
2∑
i=1

yi

∫
R2
+\{0}

(
f(y + θ−1u)− f(y)− ⟨f ′(y), θ−1u⟩

)
pi(du)

=
1

2

2∑
i=1

yi

∫
R2
+\{0}

⟨f ′′(y)u, u⟩pi(du)

for real-valued f ∈ C2
c (R2

+) and y = (y1, y2) ∈ R2
+. However, (AYθf)(y) does not converge as

θ → ∞ provided that
2∑
i=1

yif
′
3−i(y)

∫
R2
+\{0}

u3−i pi(du) ̸= 0.

We also note that this phenomena is somewhat similar to that of Remark 2.1 in Ma [28]. 2
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In the next remark we formulate some special cases of Theorem 2.9.

2.12 Remark. (i) If (Y (t), X(t))t∈R+ is a (1 + d)-dimensional affine process on R+ × Rd with

admissible parameters (a, α, b, 0,m, µ) such that condition (2.3) is satisfied, then the conditions of

Theorem 2.9 are satisfied for (Y (θ)(t), X(θ)(t))t∈R+ := (Y (t), X(t))t∈R+ , θ ∈ R++, and hence(
θ−1Y (θt), θ−1X(θt)

)
t∈R+

L−→ (Y(t),X (t))t∈R+ as θ → ∞

in D(R+,R+ × Rd), where (Y(t),X (t))t∈R+ is a (1 + d)-dimensional affine process on R+ × Rd

with admissible parameters (0, α̃, b̃, 0, 0, 0), where α̃ and b̃ are given in Theorem 2.9.

(ii) If (Y (t), X(t))t∈R+ is a (1+ d)-dimensional affine process on R+×Rd with (Y (0), X(0)) =

(0, 0) and with admissible parameters (0, α, b, 0, 0, 0), then(
θ−1Y (θt), θ−1X(θt)

)
t∈R+

L
= (Y (t), X(t))t∈R+ for all θ ∈ R++,

where
L
= denotes equality in distribution. Indeed, by Proposition 1.6 on page 161 in Ethier and Kurtz

[12], it is enough to check that the semigroups (on the Banach space of bounded Borel measurable

functions on R+ × Rd) corresponding to the processes in question coincide. By the definition of a

core, this follows from the equality of the infinitesimal generators of the processes in question on the

core C∞
c (R+ × Rd), which has been shown in the proof of Theorem 2.9. 2

Next we present a corollary of Theorem 2.9 which states weak convergence of appropriately normal-

ized one-dimensional continuous state branching processes with immigration. Our corollary generalizes

Theorem 2.3 in Huang et al. [20] in the sense that we do not have to suppose that
∫∞
1 ξ2m(dξ) <∞,

only that
∫∞
1 ξ m(dξ) <∞ (with the notations of Huang et al. [20]), and our proof defers from that

of Huang et al. [20].

2.13 Corollary. For all θ ∈ R++, let (Y (θ)(t))t∈R+ be a one-dimensional continuous state branch-

ing process with immigration on R+ with branching mechanism

R(θ)(z) := β(θ)z + α(θ)z2 +

∫
R+

(e−zu − 1 + zu) p(du), z ∈ R+,

and with immigration mechanism

F (θ)(z) := b(θ)z +

∫
R+

(1− e−zu)n(du), z ∈ R+,

where α(θ) > 0, b(θ) > 0, β(θ) ∈ R and n and p are measures on (0,∞) such that∫
R+

un(du) <∞ and

∫
R+

u2 p(du) <∞.

Let α, b, β ∈ R, and let (Y (t))t∈R+ be a one-dimensional continuous state branching process with

immigration on R+ with branching mechanism

R(z) := −βz +
(
α+

1

2

∫
R+

u2 p(du)

)
z2, z ∈ R+,
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and with immigration mechanism

F (z) :=

(
b+

∫
R+

un(du)

)
z, z ∈ R+.

If

lim
θ→∞

α(θ) = α, lim
θ→∞

b(θ) = b, lim
θ→∞

θβ(θ) = β, Y (θ)(0)
L−→ Y (0)

as θ → ∞, then (
θ−1Y (θ)(θt)

)
t∈R+

L−→ (Y (t))t∈R+ as θ → ∞

in D(R+,R+).

Proof. For each θ ∈ R++ and t ∈ R+, let X(θ)(t) := 0. Then for each θ ∈ R++,

the process (Y (θ)(t), X(θ)(t))t∈R+ is a two-dimensional affine process with admissible parameters

(0, α(θ), b
(θ)
, β

(θ)
,m, µ), where

α(θ) :=

[
α(θ) 0

0 0

]
, b

(θ)
:=

[
b(θ)

0

]
, β

(θ)
:=

[
β(θ) 0

0 0

]
,

µ(dξ) = µ(dξ1,dξ2) := p(dξ1)× δ0(dξ2),

m(dξ) = m(dξ1,dξ2) := n(dξ1)× δ0(dξ2),

where δ0 denotes the Dirac measure concentrated on 0 ∈ R. Then, by Theorem 2.9, for the

two-dimensional affine processes (Y (θ)(t), X(θ)(t))t∈R+ , θ ∈ R++, we have(
θ−1Y (θ)(θt), θ−1X(θ)(θt)

)
t∈R+

L−→ (Y (t), X(t))t∈R+ as θ → ∞

in D(R+,R+ × R), where (Y (t), X(t))t∈R+ is a two-dimensional affine process on R+ × R with

infinitesimal generator

(A(Y,X)f)(x) =

(
α+

1

2

∫
R+

u2 p(du)

)
x1f

′′
1,1(x) +

(
b+ βx1 +

∫
R+

un(du)

)
f ′1(x),

for x = (x1, x2) ∈ R+×R and f ∈ C2
c (R+×R). Note that in fact X is the identically zero process.

Finally, Theorem 9.30 in Li [27] yields the assertion. 2

3 Least squares estimator for a critical two-dimensional affine dif-

fusion process

In this section continuous time stochastic processes will be written as (ξt)t∈R+ instead of (ξ(t))t∈R+ .

Let (Ω,F , (Ft)t∈R+ ,P) be a filtered probability space satisfying the usual conditions, i.e., (Ω,F ,P)
is complete, the filtration (Ft)t∈R+ is right-continuous and F0 contains all the P-null sets in F .

Let (Wt)t∈R+ and (Bt)t∈R+ be independent standard (Ft)t∈R+-Wiener processes. Let us consider

the following two-dimensional diffusion process given by the SDE{
dYt = (a− bYt) dt+

√
Yt dWt,

dXt = (m− θXt) dt+
√
Yt dBt,

t ∈ R+,(3.1)

where a ∈ R++ and b, θ,m ∈ R.
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3.1 Preparations and (sub)(super)criticality

The next proposition is about the existence and uniqueness of a strong solution of the SDE (3.1).

3.1 Proposition. Let (η, ζ) be a random vector independent of (Wt, Bt)t∈R+ satisfying P(η > 0) =

1. Then, for all a ∈ R++ and b,m, θ ∈ R, there is a (pathwise) unique strong solution (Yt, Xt)t∈R+

of the SDE (3.1) such that P((Y0, X0) = (η, ζ)) = 1 and P(Yt > 0 for all t ∈ R+) = 1. Further,

for all 0 6 s 6 t,

Yt = e−b(t−s)
(
Ys + a

∫ t

s
e−b(s−u) du+

∫ t

s
e−b(s−u)

√
Yu dWu

)
,(3.2)

and

Xt = e−θ(t−s)
(
Xs +m

∫ t

s
e−θ(s−u) du+

∫ t

s
e−θ(s−u)

√
Yu dBu

)
.(3.3)

Proof. By Ikeda and Watanabe [21, Example 8.2, page 221], there is a pathwise unique non-negative

strong solution (Yt)t∈R+ of the first equation in (3.1) with any initial value η satisfying P(η > 0) = 1.

Next, by applications of the Itô’s formula to the processes (ebtYt)t∈R+ and (eθtXt)t∈R+ , respectively,

we have

d(ebtYt) = bebtYt dt+ ebtdYt = bebtYt dt+ ebt
(
(a− bYt) dt+

√
Yt dWt

)
= aebt dt+ ebt

√
Yt dWt, t ∈ R+,

and

d(eθtXt) = θeθtXt dt+ eθtdXt = θeθtXt dt+ eθt
(
(m− θXt) dt+

√
Yt dBt

)
= meθt dt+ eθt

√
Yt dBt, t ∈ R+,

which imply (3.2) and (3.3) in case of s = 0. If 0 6 s 6 t, then, by

ebtYt = ebsYs + a

∫ t

s
ebu du+

∫ t

s
ebu
√
Yu dBu,

and

eθtXt = eθsXs +m

∫ t

s
eθu du+

∫ t

s
eθu
√
Yu dBu,

we have (3.2) and (3.3). Finally, we note that the existence of a pathwise unique strong solution

(Yt, Xt)t∈R+ of the SDE (3.1) with P(Yt > 0 for all t ∈ R+) = 1 follows also by a general result of

Dawson and Li [10, Theorem 6.2]. 2

Note that it is the assumption a ∈ R++ that ensures P(Yt> 0, ∀ t∈R+)= 1.

Next we present a result about the first moment of (Yt, Xt)t∈R+ .

3.2 Proposition. Let (Yt, Xt)t∈R+ be a strong solution of the SDE (3.1) satisfying P(Y0 > 0) = 1,

E(Y0) <∞, and E(X0) <∞. Then[
E(Yt)
E(Xt)

]
=

[
e−bt 0

0 e−θt

][
E(Y0)
E(X0)

]
+

[∫ t
0 e

−bs ds 0

0
∫ t
0 e

−θs ds

][
a

m

]
, t ∈ R+,
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Proof. By Proposition 3.1, we have

Yt = e−bt
(
Y0 + a

∫ t

0
ebu du+

∫ t

0
ebu
√
Yu dWu

)
, t ∈ R+,

Xt = e−θt
(
X0 +m

∫ t

0
eθu du+

∫ t

0
eθu
√
Yu dBu

)
, t ∈ R+,

and so, taking expectations of both sides,

E(Yt) = e−bt E(Y0) + ae−bt
∫ t

0
ebu du = e−bt E(Y0) + a

∫ t

0
e−bu du, t ∈ R+,

E(Xt) = e−θt E(X0) +me−θt
∫ t

0
eθu du = e−θt E(X0) +m

∫ t

0
e−θu du, t ∈ R+,

where we used that the processes(∫ t

0
ebu
√
Yu dWu

)
t∈R+

and

(∫ t

0
eθu
√
Yu dBu

)
t∈R+

are martingales which can be checked as follows. First we check that they are local martingales

with respect to the filtration (Ft)t∈R+ . Let us define the increasing sequence of stopping times by

δn := inf{t > 0 : Yt > n}, n ∈ N. Since Y has continuous trajectories almost surely, we have

P(limn→∞ δn = ∞) = 1. Using (δn)n∈N as a localizing sequence, we have

E
(∫ t∧δn

0
e2buYu du

)
6 ntmax(1, e2bt), t ∈ R+, n ∈ N.

The local martingale property of
(∫ t

0 e
bu
√
Yu dWu

)
t∈R+

follows by Ikeda and Watanabe [21, page 57].

Hence, using (3.2) and that a ∈ R++, we find that

E(eb(t∧δn)Yt∧δn) = E(Y0) + aE
(∫ t∧δn

0
ebu du

)
6 E(Y0) + atmax(1, ebt)

for all t ∈ R+ and n ∈ N, and then, by Fatou’s lemma,

E(ebtYt) 6 lim inf
n→∞

E(eb(t∧δn)Yt∧δn) 6 E(Y0) + atmax(1, ebt), t ∈ R+.(3.4)

Next, we can deduce that
(∫ t

0 e
bu
√
Yu dWu

)
t∈R+

is indeed a martingale.

First, we note that a local martingale M is a square integrable martingale if E([M,M ]t) < ∞
for all t ∈ R+, where ([M,M ]t)t∈R+ denotes the quadratic variation process of M , see, e.g.,

Corollary 3 on page 73 in Protter [32]. Here the quadratic variation process of
(∫ t

0 e
bu
√
Yu dWu

)
t∈R+

takes the form

E

(∫ t

0
e2buYu du

)
<∞, t ∈ R+,

where, for the inequality, we used Fubini’s theorem, (3.4) and our assumption E(Y0) <∞. Replacing

b by θ, we have the desired martingale property of
(∫ t

0 e
θu
√
Yu dBu

)
t∈R+

, too. 2

Next we show that the process (Yt, Xt)t∈R+ given by the SDE (3.1) is an affine process.
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3.3 Proposition. Let (Yt, Xt)t∈R+ be a strong solution of the SDE (3.1) satisfying P(Y0 > 0) = 1.

Then (Yt, Xt)t∈R+ is an affine process with infinitesimal generator

(A(Y,X)f)(x) = (a− bx1)f
′
1(x) + (m− θx2)f

′
2(x) +

1

2
x1(f

′′
1,1(x) + f ′′2,2(x))(3.5)

for x = (x1, x2) ∈ R+ × R and f ∈ C2
c (R+ × R).

Proof. For calculating the infinitesimal generator of (Yt, Xt)t∈R+ , without loss of generality, we

may suppose that P((Y0, X0) = (y0, x0)) = 1, where (y0, x0) ∈ R+ × R. By Itô’s formula, for all

real-valued functions f ∈ C2
c (R+ × R) we have

f(Yt, Xt) = f(y0, x0) +

∫ t

0
f ′1(Ys, Xs)

√
Ys dWs +

∫ t

0
f ′2(Ys, Xs)

√
Ys dBs

+

∫ t

0
f ′1(Ys, Xs)(a− bYs) ds+

∫ t

0
f ′2(Ys, Xs)(m− θXs) ds

+
1

2

(∫ t

0
f ′′1,1(Ys, Xs)Ys ds+

∫ t

0
f ′′2,2(Ys, Xs)Ys ds

)

= f(y0, x0) +

∫ t

0
(A(Y,X)f)(Ys, Xs) ds+Mt(f), t ∈ R+,

where

Mt(f) :=

∫ t

0
f ′1(Ys, Xs)

√
Ys dWs +

∫ t

0
f ′2(Ys, Xs)

√
Ys dBs, t ∈ R+,

and A(Y,X)f is given by (3.5). Here (Mt(f))t∈R+ is a square integrable martingale with respect to

the filtration (Ft)t∈R+ , since∫ t

0
E((f ′1(Ys, Xs))

2Ys) ds 6 C1

∫ t

0
E(Ys) ds <∞, t ∈ R+,∫ t

0
E((f ′2(Ys, Xs))

2Ys) ds 6 C2

∫ t

0
E(Ys) ds <∞, t ∈ R+,

with some constants C1 > 0 and C2 > 0, where the finiteness of the integrals follow by Proposition

3.2. Finally, if f ∈ C2
c (R+ ×R) is complex valued, then, by decomposing f into real and imaginary

parts, one can argue in the same way as above. 2

By Proposition 3.3, the process (Yt, Xt)t∈R+ given by (3.1) is a two-dimensional affine process

with admissible parameters([
0 0

0 0

]
,
1

2

[
1 0

0 1

]
,

[
a

m

]
,

[
−b 0

0 −θ

]
, 0, 0

)
.

In what follows we define and study criticality of the affine process given by the SDE (3.1).

3.4 Definition. Let (Yt, Xt)t∈R+ be an affine diffusion process given by the SDE (3.1) satisfying

P(Y0 > 0) = 1. We call (Yt, Xt)t∈R+ subcritical, critical or supercritical if the spectral radius of the

matrix (
e−bt 0

0 e−θt

)
is less than 1, equal to 1 or greater than 1, respectively.
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Note that, since the spectral radius of the matrix given in Definition 3.4 is max(e−bt, e−θt), the

affine process given in Definition 3.4 is

subcritical if b > 0 and θ > 0,

critical if b = 0, θ > 0 or b > 0, θ = 0,

supercritical if b < 0 or θ < 0.

Definition 3.4 of criticality is in accordance with the corresponding definition for one-dimensional

continuous state branching processes, see, e.g., Li [27, page 58].

In this section we will always suppose that

Condition (C): (b, θ) = (0, 0), P(Y0 > 0) = 1,

E(Y0) <∞, and E(X2
0 ) <∞.

For some explanations why we study only this special case, see Remarks 3.6, 3.7 and 3.9. In the next

sections under Condition (C) we will study asymptotic behaviour of least squares estimator of θ and

(θ,m), respectively. Before doing so we recall some critical models both in discrete and continuous

time.

In general, parameter estimation for critical models has a long history. A common feature of

the estimators for parameters of critical models is that one may prove weak limit theorems for them

by using norming factors that are usually different from the norming factors for the subcritical and

supercritical models. Further, it may happen that one has to use different norming factors for two

different critical cases.

We recall some discrete time critical models. If (ξk)k∈Z+ is an AR(1) process, i.e., ξk = ϱξk−1+ζk,

k ∈ N, with ξ0 = 0 and an i.i.d. sequence (ζk)k∈N having mean 0 and positive variance, then

the (ordinary) least squares estimator of the so-called stability parameter ϱ based on the sample

ξ1, . . . , ξn takes the form

ϱ̃n =

∑n
k=1 ξk−1ξk∑n
k=1 ξ

2
k

, n ∈ N,

see, e.g., Hamilton [16, 17.4.2]. In the critical case, i.e., when ϱ = 1, by Hamilton [16, 17.4.7],

n(ϱ̃n − 1)
L−→
∫ 1
0 Wt dWt∫ 1
0 W2

t dt
as n→ ∞,

where (Wt)t∈R+ is a standard Wiener process and
L−→ denotes convergence in distribution. Here

n(ϱ̃n − 1) is known as the Dickey-Fuller statistics. We emphasize that the asymptotic behaviour of

ϱ̃n is completely different in the subcritical (|ρ| < 1) and supercritical (|ρ| > 1) cases, where

it is asymptotically normal and asymptotically Cauchy, respectively, see, e.g., Mann and Wald [29],

Anderson [2] and White [36].

For continuous time critical models, we recall that Huang et al. [20, Theorem 2.4] studied asymp-

totic behaviour of weighted conditional least squares estimator of the drift parameters for discretely

observed continuous time critical branching processes with immigration given by

Ỹt = Ỹ0 +

∫ t

0
(a+ bỸs) ds+ σ

∫ t

0

√
Ỹs dWs +

∫ t

0

∫
[0,∞)

ξN0(ds,dξ)
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+

∫ t

0

∫ Ỹs−

0

∫
[0,∞)

ξ (N1(ds,du,dξ)− dsdu p(dξ)), t ∈ R+,

where Ỹ0 > 0, a > 0, b ∈ R, σ > 0, W is a standard Wiener process, N0(ds, dξ) is a Poisson

random measure on (0,∞) × [0,∞) with intensity ds n(dξ), N1(ds, du,dξ) is a Poisson random

measure on (0,∞)× (0,∞)× [0,∞) with intensity dsdu p(dξ) such that the σ-finite measures n

and p are supported by (0,∞) and∫ ∞

0
ξ n(dξ) +

∫ ∞

0
ξ ∧ ξ2 p(dξ) <∞.

Our technique differs from that of Huang et al. [20] and for completeness we note that the limit

distribution and some parts of the proof of their Theorem 2.4 suffer from some misprints. Furthermore,

Hu and Long [19] studied the problem of parameter estimation for critical mean-reverting α-stable

motions

dX̃t = (m− θX̃t) dt+ dZt, t ∈ R+,

where Z is an α-stable Lévy motion with α ∈ (0, 2)) observed at discrete instants. A least squares

estimator is obtained and its asymptotics is discussed in the singular case (m, θ) = (0, 0). We

note that the forms of the limit distributions of least squares estimators for critical two-dimensional

affine diffusion processes in our Theorems 3.5 and 3.8 are the same as that of the limit distributions

in Theorems 3.2 and 4.1 in Hu and Long [19], respectively. We also recall that Hu and Long [18]

considered the problem of parameter estimation not only for critical mean-reverting α-stable motions,

but also for some subcritical ones (m = 0 and θ > 0) by proving limit theorems for the least

squares estimators that are completely different from the ones in the critical case. Huang et al.

[20] investigated the asymptotic behaviour of weighted conditional least squares estimator of the drift

parameters not only for critical continuous time branching processes with immigration, but also for

subcritical and supercritical ones.

Using our scaling Theorem 2.9 we can only handle a special critical affine diffusion model given

by (1.1) (for a more detailed discussion, see Remark 3.7). The other critical and non-critical cases are

under investigation but different techniques are needed.

3.2 Least squares estimator of θ when m is known

The least squares estimator (LSE) of θ based on the observations Xi, i = 0, 1, . . . , n, can be obtained

by solving the extremum problem

θ̃LSEn := argmin
θ∈R

n∑
i=1

(Xi −Xi−1 − (m− θXi−1))
2.

This definition of LSE of θ can be considered as the counterpart of the one given in Hu and Long

[18, formula (1.2)] for generalized Ornstein-Uhlenbeck processes driven by α-stable motions, see also

Hu and Long [19, formulas (3.1) and (4.1)]. For a mathematical motivation of the definition of the

LSE of θ, see later on Remark 3.10. With the notation f(θ) :=
∑n

i=1(Xi −Xi−1 − (m− θXi−1))
2,

θ ∈ R, the equation f ′(θ) = 0 takes the form:

2
n∑
i=1

(Xi −Xi−1 − (m− θXi−1))Xi−1 = 0.
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Hence (
n∑
i=1

X2
i−1

)
θ = −

n∑
i=1

(Xi −Xi−1 −m)Xi−1,

i.e.,

θ̃LSEn = −
∑n

i=1(Xi −Xi−1 −m)Xi−1∑n
i=1X

2
i−1

= −
∑n

i=1(Xi −Xi−1)Xi−1 − (
∑n

i=1Xi−1)m∑n
i=1X

2
i−1

(3.6)

provided that
∑n

i=1X
2
i−1 > 0. Since f ′′(θ) = 2

∑n
i=1X

2
i−1, θ ∈ R, we have θ̃LSEn is indeed the

solution of the extremum problem provided that
∑n

i=1X
2
i−1 > 0.

3.5 Theorem. Let us assume that Condition (C) holds. Then P(
∑n

i=1X
2
i−1 > 0) = 1 for all n > 2,

and there exists a unique LSE θ̃LSEn which has the form given in (3.6). Further,

nθ̃LSEn
L−→ −

∫ 1
0 Xt dXt −m

∫ 1
0 Xt dt∫ 1

0 X 2
t dt

as n→ ∞,(3.7)

where (Xt)t∈R+ is the second coordinate of a two-dimensional affine process (Yt,Xt)t∈R+ given by

the unique strong solution of the SDEdYt = adt+
√
Yt dWt,

dXt = mdt+
√
Yt dBt,

t ∈ R+,(3.8)

with initial value (Y0,X0) = (0, 0), where (Wt)t∈R+ and (Bt)t∈R+ are independent standard Wiener

processes.

3.6 Remark. (i) The limit distributions in Theorem 3.5 have the same forms as those of the limit

distributions in Theorem 3.2 in Hu and Long [19].

(ii) The limit distribution of nθ̃LSEn as n→ ∞ in Theorem 3.5 can be written also in the form

−
∫ 1
0 Xt d(Xt −mt)∫ 1

0 X 2
t dt

= −
∫ 1
0 Xt

√
Yt dBt∫ 1

0 X 2
t dt

.

(iii) By Proposition 3.3, the affine process (Yt,Xt)t∈R+ given in Theorem 3.5 has infinitesimal gen-

erator

(A(Y,X )f)(x) =
1

2
x1f

′′
1,1(x) +

1

2
x1f

′′
2,2(x) + af ′1(x) +mf ′2(x)

where x = (x1, x2) ∈ R+ × R and f ∈ C2
c (R+ × R).

(iv) Under the Condition (C), by Theorem 3.5 and Slutsky’s lemma, we get θ̃LSEn converges stochas-

tically to the parameter θ = 0 as n→ ∞. 2

Proof of Theorem 3.5. By (3.3), we have

Xt = X0 +mt+

∫ t

0

√
Ys dBs, t ∈ R+.
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Hence for all t ∈ R++, the conditional distribution of Xt given X0 and (Ys)s∈[0,t] is a normal

distribution with mean X0 +mt and with variance
∫ t
0 Ys ds. Here the variance

∫ t
0 Ys ds is positive

almost surely for all t ∈ R++. Indeed, let At := {ω ∈ Ω : s 7→ Ys(ω) is continuous on [0, t]}. Then

P(At) = 1, and, since P(Y0 > 0) = 1, for all ω ∈ At,
∫ t
0 Ys(ω) ds = 0 if and only if Ys(ω) = 0 for

all s ∈ [0, t]. By (3.1), we have

Ys = Y0 + as+

∫ s

0

√
Yu dWu, s ∈ R+.

The stochastic integral on the right hand side can be approximated as

sup
s∈[0,t]

∣∣∣∣∣∣
⌊ns⌋∑
i=1

√
Y(i−1)/n(Wi/n −W(i−1)/n)−

∫ s

0
Yu dWu

∣∣∣∣∣∣ P−→ 0 as n→ ∞

for all t ∈ R+, by Jacod and Shiryaev [22, Theorem I.4.44]. Hence there exists a sequence (nk)k∈N
of positive integers such that

sup
s∈[0,t]

∣∣∣∣∣∣
⌊nkt⌋∑
i=1

√
Y(i−1)/nk

(Wi/nk
−W(i−1)/nk

)−
∫ s

0
Yu dWu

∣∣∣∣∣∣ a.s.−→ 0 as k → ∞

for all t ∈ R+. Consequently, with the notation

Ãt :=

{
ω ∈ Ω :

∫ t

0
Ys(ω) ds = 0

}
,

we have

Ãt ∩At ⊂
{
Ãt
∩{∫ s

0
Yu dWu = 0 for all s ∈ [0, t]

}}
⊂
{
Ãt ∩ {Ys = Y0 + as for all s ∈ [0, t]}

}
=
{
Ãt ∩

{
Y0s+ as2/2 = 0 for all s ∈ [0, t]

}}
=
{
Ãt ∩ {Y0 = −as/2 for all s ∈ [0, t]}

}
= ∅,

implying P
(∫ t

0 Ys ds = 0
)
= 0, and hence P

(∫ t
0 Ys ds > 0

)
= 1. It yields that

P(Xt = 0) = E
(
P(Xt = 0 |X0, (Ys)s∈[0,t])

)
= 0, t ∈ R++,(3.9)

and hence P(
∑n

i=1X
2
i−1 > 0) = 1 for all n > 2.

Now we turn to prove (3.7). By Itô’s formula, we have d(X 2
t ) = 2XtdXt + Yt dt, t ∈ R+, and

hence, using also X0 = 0, we have∫ 1

0
Xs dXs =

1

2

(
X 2
1 −

∫ 1

0
Ys ds

)
.(3.10)

For the process (Xt)t∈R+ , a discrete version

n∑
i=1

(Xi −Xi−1)Xi−1 =
1

2

(
X2
n −X2

0 −
n∑
i=1

(Xi −Xi−1)
2

)
(3.11)
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of the identity (3.10) can be easily checked. The aim of the following discussion is to prove(
1

n2

n∑
i=1

Xi−1,
1

n3

n∑
i=1

X2
i−1,

1

n
Xn,

1

n
X0,

1

n2

n∑
i=1

(Xi −Xi−1)
2

)
L−→
(∫ 1

0
Xt dt,

∫ 1

0
X 2
t dt,X1, 0,

∫ 1

0
Yt dt

)
as n→ ∞.

(3.12)

Let us consider the unique strong solution of the SDE
dỸt = adt+

√
Ỹt dWt,

dX̃t = m dt+

√
Ỹt dBt,

t ∈ R+,(3.13)

with initial value (Ỹ0, X̃0) = (0, 0), where (Wt)t∈R+ and (Bt)t∈R+ are the independent standard

(Ft)t∈R+-Wiener processes appearing in the SDE (3.1). First note that (Ỹt, X̃t)t∈R+

L
= (Yt,Xt)t∈R+ ,

and, by Proposition 3.3, it is an affine process having admissible parameters([
0 0

0 0

]
,
1

2

[
1 0

0 1

]
,

[
a

m

]
,

[
0 0

0 0

]
, 0, 0

)
,

and condition (2.3) is trivially fulfilled. Hence, by part (ii) of Remark 2.12, we have(
n−1Ỹnt, n

−1X̃nt

)
t∈R+

L
= (Yt,Xt)t∈R+ for all n ∈ N.(3.14)

Consequently, for all n ∈ N, we have(
1

n2

n∑
i=1

X̃i−1,
1

n3

n∑
i=1

X̃2
i−1,

1

n
X̃n,

1

n
X̃0,

1

n2

n∑
i=1

(X̃i − X̃i−1)
2

)
L
= (An, Bn, Cn, Dn, En),

where

An :=
1

n

n∑
i=1

X(i−1)/n
a.s.−→

∫ 1

0
Xt dt, as n→ ∞,

Bn :=
1

n

n∑
i=1

X 2
(i−1)/n

a.s.−→
∫ 1

0
X 2
t dt, as n→ ∞,

Cn := X1,

Dn := X0,

En :=

n∑
i=1

(Xi/n −X(i−1)/n)
2 P−→

∫ 1

0
Yt dt, as n→ ∞.(3.15)

Here the first two convergences are consequences of the definition of the Riemann integral using also

that (Xt)t∈R+ has continuous sample paths almost surely. The convergence (3.15) can be checked as

follows. With the notations of Jacod and Shiryaev [22],
(
τn :=

(
i
n ∧1

)
i∈N
)
n∈N is a Riemann sequence
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of (adapted) subdivisions and hence, by Jacod and Shiryaev [22, Theorem I.4.47], the sequence of

processes (
n∑
i=1

(
X
(
i

n
∧ 1 ∧ t

)
−X

(
i− 1

n
∧ 1 ∧ t

))2
)
t∈R+

, n ∈ N,

converges to the quadratic variation process of X in probability, uniformly on every compact interval.

Especially, with t = 1, using also the SDE (3.8), we have (3.15). Hence, in order to prove (3.12), it

suffices to show convergences

1

n2

n−1∑
i=0

Xi −
1

n2

n−1∑
i=0

X̃i
P−→ 0,(3.16)

1

n3

n−1∑
i=0

X2
i −

1

n3

n−1∑
i=0

X̃2
i

P−→ 0,(3.17)

1

n
Xn −

1

n
X̃n

P−→ 0,(3.18)

1

n
X0 −

1

n
X̃0

P−→ 0,(3.19)

1

n2

n∑
i=1

(Xi −Xi−1)
2 − 1

n2

n∑
i=1

(X̃i − X̃i−1)
2 P−→ 0,(3.20)

as n → ∞. Indeed, one can refer to Slutsky’s lemma using also that for any random vectors Un,

Vn, n ∈ N, U , V such that Un
P−→ U and Vn

P−→ V as n → ∞, we have (Un, Vn)
P−→ (U, V )

as n→ ∞, see, e.g., van der Vaart [33, Theorem 2.7, part (vi)].

The convergence (3.19) is trivial. Next we show

(3.21) E(|Yt − Ỹt|) 6 E(Y0), t ∈ R+.

By (3.1) and (3.13), we have

Yt − Ỹt = Y0 +

∫ t

0
(
√
Ys −

√
Ỹs) dWs, t ∈ R+.

For each n ∈ N, there exists an even and twice continuously differentiable function ψn : R → R+

with |ψn(x)| 6 |x|, |ψ′
n(x)| 6 1, ψn(x) ↑ |x| as n→ ∞ for all x ∈ R, and

ψ′′
n(x− y)(

√
x−√

y)2 6 2(
√
x−√

y)2

n|x− y|
6 2

n

for all n ∈ N and x, y ∈ R+, see, e.g., in Karatzas and Shreve [24, Proof of Proposition 5.2.13]. By

Itô’s formula,

ψn(Yt − Ỹt) = ψn(Y0) +
1

2

∫ t

0
ψ′′
n(Ys − Ỹs)

(√
Ys −

√
Ỹs

)2

ds

+

∫ t

0
ψ′
n(Ys − Ỹs)

(√
Ys −

√
Ỹs

)
dWs

(3.22)
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for all t ∈ R+ and n ∈ N. The last term is an (Ft)t∈R+-martingale, since

E

(∫ t

0
|ψ′
n(Ys − Ỹs)|

(√
Ys −

√
Ỹs

)2

ds

)
6 E

(∫ t

0
|Ys − Ỹs|ds

)

6
∫ t

0
(E(Ys) + E(Ỹs)) ds <∞,

where the last inequality follows by Lemma 3.2. Thus the expectation of the last term on the right

hand side of (3.22) is zero, whereas the expectation of the second integral is bounded by 2t/n. We

conclude

E(ψn(Yt − Ỹt)) 6 E(ψn(Y0)) +
t

n
, t ∈ R+, n ∈ N.

By monotone convergence theorem, we have

E(|Yt − Ỹt|) = E( lim
n→∞

ψn(Yt − Ỹt)) = lim
n→∞

E(ψn(Yt − Ỹt))

6 lim inf
n→∞

(
E(ψn(Y0)) +

t

n

)
= lim

n→∞
E(ψn(Y0)) = E( lim

n→∞
ψn(Y0)) = E(|Y0|),

which yields (3.21).

Next, we derive

(3.23) E(|Xt − X̃t|) 6 E(|X0|) +
√
tE(Y0), t ∈ R+.

Again by (3.1) and (3.13), we have

Xt − X̃t = X0 +

∫ t

0

(√
Ys −

√
Ỹs

)
dBs, t ∈ R+,(3.24)

hence

E(|Xt − X̃t|) 6 E(|X0|) +

√√√√E

((∫ t

0
(
√
Ys −

√
Ỹs) dBs

)2
)

= E(|X0|) +

√√√√E

(∫ t

0

(√
Ys −

√
Ỹs

)2

ds

)

6 E(|X0|) +

√
E
(∫ t

0
|Ys − Ỹs|ds

)

= E(|X0|) +

√∫ t

0
E(|Ys − Ỹs|) ds,

which yields (3.23) by (3.21).

By (3.23), we have

E
(∣∣∣∣ 1nXn −

1

n
X̃n

∣∣∣∣) 6 1

n

(
E(|X0|) +

√
nE(Y0)

)
→ 0 as n→ ∞,
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hence we obtain (3.18). In a similar way,

E

(∣∣∣∣∣ 1n2
n−1∑
i=0

Xi −
1

n2

n−1∑
i=0

X̃i

∣∣∣∣∣
)

6 1

n2

n−1∑
i=0

(
E(|X0|) +

√
iE(Y0)

)
→ 0

as n→ ∞, hence we obtain (3.16).

We also have

(3.25) E
(
(Xt − X̃t)

2
)
6 2E(X2

0 ) + 2tE(Y0), t ∈ R+.

Indeed, by (3.24), using Minkowski inequality, we have

√
E
(
(Xt − X̃t)2

)
6
√

E(X2
0 ) +

√√√√E

((∫ t

0
(
√
Ys −

√
Ỹs) dBs

)2
)

=
√

E(X2
0 ) +

√√√√E

(∫ t

0

(√
Ys −

√
Ỹs

)2

ds

)

6
√

E(X2
0 ) +

√
E
(∫ t

0
|Ys − Ỹs|ds

)

=
√

E(X2
0 ) +

√∫ t

0
E(|Ys − Ỹs|) ds 6

√
E(X2

0 ) +
√
tE(Y0)

by (3.21), which yields (3.25). In a similar way,

(3.26) E(X2
t ) 6 3E(X2

0 ) + 3m2t2 + 3tE(Y0) + 3at2/2, t ∈ R+.

since, by (3.1) and (3.2),

√
E(X2

t ) 6
√

E(X2
0 ) + |m|t+

√√√√E

((∫ t

0

√
Ys dBs

)2
)

=
√

E(X2
0 ) + |m|t+

√
E
(∫ t

0
Ys ds

)

=
√

E(X2
0 ) + |m|t+

√∫ t

0
(E(Y0) + as) ds

=
√

E(X2
0 ) + |m|t+

√
tE(Y0) + at2/2

for t ∈ R+, which yields (3.26). Clearly, (3.26) implies also E(X̃2
t ) 6 3m2t2+3at2/2 for all t ∈ R+,

and hence, together with (3.25) and (3.26), we conclude

E

(∣∣∣∣∣ 1n3
n−1∑
i=0

X2
i −

1

n3

n−1∑
i=0

X̃2
i

∣∣∣∣∣
)

6 1

n3

n−1∑
i=0

E
(
|(Xi − X̃i)(Xi + X̃i)|

)
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6 1

n3

n−1∑
i=0

√
E((Xi − X̃i)2)E((Xi + X̃i)2)

6 1

n3

n−1∑
i=0

√
2E((Xi − X̃i)2)(E(X2

i ) + E(X̃2
i ))

6 1

n3

n−1∑
i=0

√
12(E(X2

0 ) + iE(Y0))
(
E(X2

0 ) + (E(Y0))i+ (2m2 + a)i2
)
→ 0

as n→ ∞, hence we obtain (3.17).

Next, we show (3.20). Again by (3.1) and (3.13), we have

Xi −Xi−1 = m+

∫ i

i−1

√
Ys dBs, X̃i − X̃i−1 = m+

∫ i

i−1

√
Ỹs dBs, i ∈ N,

and hence

1

n2

n∑
i=1

(Xi −Xi−1)
2 − 1

n2

n∑
i=1

(X̃i − X̃i−1)
2

=
2m

n2

∫ n

0

(√
Ys −

√
Ỹs

)
dBs

+
1

n2

n∑
i=1

[(∫ i

i−1

√
Ys dBs

)2

−
(∫ i

i−1

√
Ỹs dBs

)2
]

=: 2mRn + Sn.

Here, by (3.21),

E(R2
n) =

1

n4
E

((∫ n

0

(√
Ys −

√
Ỹs

)
dBs

)2
)

=
1

n4
E

(∫ n

0

(√
Ys −

√
Ỹs

)2

ds

)
6 1

n4
E
(∫ n

0
|Ys − Ỹs|ds

)

=
1

n4

∫ n

0
E(|Ys − Ỹs|) ds 6

E(Y0)
n3

→ 0 as n→ ∞,

hence Rn
P−→ 0 as n→ ∞. Further, by (3.21),

E(|Sn|) = E

(∣∣∣∣∣ 1n2
n∑
i=1

∫ i

i−1

(√
Ys −

√
Ỹs

)
dBs

∫ i

i−1

(√
Ys +

√
Ỹs

)
dBs

∣∣∣∣∣
)

6 1

n2

n∑
i=1

E
(∣∣∣∣∫ i

i−1

(√
Ys −

√
Ỹs

)
dBs

∫ i

i−1

(√
Ys +

√
Ỹs

)
dBs

∣∣∣∣)

6 1

n2

n∑
i=1

√√√√E

((∫ i

i−1
(
√
Ys −

√
Ỹs) dBs

)2
)
E

((∫ i

i−1
(
√
Ys +

√
Ỹs) dBs

)2
)
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=
1

n2

n∑
i=1

√∫ i

i−1
E
(
(
√
Ys −

√
Ỹs)2

)
ds

∫ i

i−1
E
(
(
√
Ys +

√
Ỹs)2

)
ds

6 1

n2

n∑
i=1

√∫ i

i−1
E(|Ys − Ỹs|) ds

∫ i

i−1
2(E(Ys) + E(Ỹs)) ds

6 1

n2

n∑
i=1

√
E(Y0)

∫ i

i−1
2(E(Y0) + 2as) ds

=
1

n2

n∑
i=1

√
2E(Y0)(E(Y0) + (2i− 1)a) → 0 as n→ ∞,

thus Sn
P−→ 0 as n→ ∞, and we obtain (3.20), and hence (3.12).

Finally, by (3.12) and the continuous mapping theorem, and using that

nθ̃LSEn =
m
n2

∑n
i=1Xi−1 − 1

2n2X
2
n +

1
2n2X

2
0 + 1

2n2

∑n
i=1(Xi −Xi−1)

2

1
n3

∑n
i=1X

2
i−1

,

we have the assertion. Indeed, the function g : R5 → R, defined by

g(x, y, z, u, v) :=

{
mx−(z2−u2−v)/2

y if y ̸= 0,

0 if y = 0,

is continuous on the set {(x, y, z, u, v) ∈ R5 : y ̸= 0}, and the limit distribution in (3.12) is con-

centrated on this set since P
(∫ 1

0 X 2
t dt > 0

)
= 1. Indeed, if P(

∫ 1
0 X 2

t dt = 0) > 0 held, then, by

the almost sure continuity of the sample paths of X , we would have P(Xt = 0, ∀ t ∈ [0, 1]) > 0.

Hence on the event {ω ∈ Ω : Xt(ω) = 0, ∀ t ∈ [0, 1]}, the quadratic variation of X would be

identically zero. Since dXt = mdt +
√
Yt dBt, t ∈ R+, the quadratic variation of X is the process(∫ t

0 Yu du
)
t∈R+

, and then we would have∫ t

0
Yu du = 0 for all t ∈ [0, 1]

on the event {ω ∈ Ω : Xt(ω) = 0, ∀ t ∈ [0, 1]}. This yields us to a contradiction similarly as at

the beginning of the proof due to that a ∈ R++ and dYt = adt +
√
Yt dWt, t ∈ R+. Hence the

continuous mapping theorem (see, e.g., Theorem 2.3 in van der Vaart [33]) yields

g

(
1

n2

n∑
i=1

Xi−1,
1

n3

n∑
i=1

X2
i−1,

1

n
Xn,

1

n
X0,

1

n2

n∑
i=1

(Xi −Xi−1)
2

)

L−→ g

(∫ 1

0
Xt dt,

∫ 1

0
X 2
t dt,X1, 0,

∫ 1

0
Yt dt

)
as n→ ∞.

Since

P

(
nθ̃LSEn = g

(
1

n2

n∑
i=1

Xi−1,
1

n3

n∑
i=1

X2
i−1,

1

n
Xn,

1

n
X0,

1

n2

n∑
i=1

(Xi −Xi−1)
2

))
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> P

(
n∑
i=1

X2
i−1 > 0

)
= 1

for all n > 2, the assertion follows using (3.10) and that if ξn, ηn, n ∈ N, and ξ are random

variables such that ξn
L−→ ξ as n → ∞ and limn→∞ P(ξn = ηn) = 1, then ηn

L−→ ξ as n → ∞,

see, e.g., Barczy et al. [3, Lemma 3.1]. 2

3.7 Remark. If the affine diffusion process given by the SDE (3.1) is critical but (b, θ) ̸= (0, 0) (i.e.,

b = 0, θ > 0 or b > 0, θ = 0), then the asymptotic behaviour of the LSE θ̃LSEn cannot be studied

using Theorem 2.9 since its condition limθ→∞ θβ(θ) = β is not satisfied. 2

3.3 Least squares estimator of (θ,m)

The LSE of (θ,m) based on the observations Xi, i = 0, 1, . . . , n, can be obtained by solving the

extremum problem

(θ̂LSEn , m̂LSE
n ) := argmin

(θ,m)∈R2

n∑
i=1

(Xi −Xi−1 − (m− θXi−1))
2.

We need to solve the following system of equations with respect to (θ,m):

2

n∑
i=1

(Xi −Xi−1 − (m− θXi−1))Xi−1 = 0,

2
n∑
i=1

(Xi −Xi−1 − (m− θXi−1)) = 0,

which can be written also in the form[ ∑n
i=1X

2
i−1 −

∑n
i=1Xi−1

−
∑n

i=1Xi−1 n

][
θ

m

]
=

[
−
∑n

i=1(Xi −Xi−1)Xi−1∑n
i=1(Xi −Xi−1)

]
.

Then one can check that

θ̂LSEn = −
n
∑n

i=1(Xi −Xi−1)Xi−1 −
∑n

i=1Xi−1
∑n

i=1(Xi −Xi−1)

n
∑n

i=1X
2
i−1 − (

∑n
i=1Xi−1)

2 ,(3.27)

and

m̂LSE
n =

∑n
i=1X

2
i−1

∑n
i=1(Xi −Xi−1)−

∑n
i=1Xi−1

∑n
i=1(Xi −Xi−1)Xi−1

n
∑n

i=1X
2
i−1 − (

∑n
i=1Xi−1)

2(3.28)

provided that n
∑n

i=1X
2
i−1 − (

∑n
i=1Xi−1)

2 > 0. Since the matrix[
2
∑n

i=1X
2
i−1 −2

∑n
i=1Xi−1

−2
∑n

i=1Xi−1 2n

]

which consists of the second order partial derivatives of the function R2 ∋ (θ,m) 7→
∑n

i=1(Xi −
Xi−1 − (m − θXi−1))

2 is positive definite provided that n
∑n

i=1X
2
i−1 − (

∑n
i=1Xi−1)

2 > 0, we

have (θ̂LSEn , m̂LSE
n ) is indeed the solution of the extremum problem provided that n

∑n
i=1X

2
i−1 −

(
∑n

i=1Xi−1)
2 > 0.
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3.8 Theorem. Let us assume that Condition (C) holds. Then

P

n n∑
i=1

X2
i−1 −

(
n∑
i=1

Xi−1

)2

> 0

 = 1 for all n > 2,(3.29)

and there exists a unique LSE (θ̂LSEn , m̂LSE
n ) which has the form given in (3.27) and (3.28). Further,

nθ̂LSEn
L−→ −

∫ 1
0 Xt dXt −X1

∫ 1
0 Xt dt∫ 1

0 X 2
t dt−

(∫ 1
0 Xt dt

)2 as n→ ∞,

and

m̂LSE
n

L−→
X1

∫ 1
0 X 2

t dt−
∫ 1
0 Xt dt

∫ 1
0 Xt dXt∫ 1

0 X 2
t dt−

(∫ 1
0 Xt dt

)2 as n→ ∞,

where (Xt)t∈R+ is the second coordinate of a two-dimensional affine process (Yt,Xt)t∈R+ given by

the unique strong solution of the SDEdYt = adt+
√
Yt dWt,

dXt = mdt+
√
Yt dBt,

t ∈ R+,

with initial value (Y0,X0) = (0, 0), where (Wt)t∈R+ and (Bt)t∈R+ are independent standard Wiener

processes.

3.9 Remark. (i) The limit distributions in Theorem 3.8 have the same forms as those of the limit

distributions in Theorem 4.1 in Hu and Long [19].

(ii) By Proposition 3.3, the affine process (Yt,Xt)t∈R+ given in Theorem 3.8 has infinitesimal generator

(A(Y,X )f)(x) =
1

2
x1f

′′
1,1(x) +

1

2
x1f

′′
2,2(x) + af ′1(x) +mf ′2(x),

where x = (x1, x2) ∈ R+ × R and f ∈ C2
c (R+ × R).

(iii) Under the Condition (C), by Theorem 3.8 and Slutsky’s lemma, we get θ̂LSEn converges stochas-

tically to the parameter θ = 0 as n → ∞, and one can show that m̂LSE
n does not converge

stochastically to the parameter m as n→ ∞, see Appendix B. 2

Proof of Theorem 3.8. By an easy calculation,

n

n∑
i=1

X2
i−1 −

(
n∑
i=1

Xi−1

)2

= n

n∑
i=1

Xi−1 −
1

n

n∑
j=1

Xj−1

2

> 0,

and equality holds if and only if

Xi−1 =
1

n

n∑
j=1

Xj−1, i = 1, . . . , n ⇐⇒ X0 = X1 = · · · = Xn−1.
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By (3.3), for all n > 2,

P(X0 = X1 = · · · = Xn−1) 6 P(X0 = X1) = P
(∫ 1

0

√
Ys dBs = m

)

= E
(
P
(∫ 1

0

√
Ys dBs = m

∣∣∣ (Ys)s∈[0,1])) = 0,

where we used that the conditional distribution of
∫ 1
0

√
Ys dBs given (Ys)s∈[0,1] is a normal distribu-

tion with mean 0 and with variance
∫ 1
0 Ys ds. Here the variance

∫ 1
0 Ys ds is positive almost surely,

see the proof of Theorem 3.5. This yields (3.29).

By (3.27) and (3.28), we have

nθ̂LSEn = −
1
n2

∑n
i=1(Xi −Xi−1)Xi−1 − 1

n2

∑n
i=1Xi−1

1
n(Xn −X0)

1
n3

∑n
i=1X

2
i−1 −

(
1
n2

∑n
i=1Xi−1

)2 ,

m̂LSE
n =

1
n3

∑n
i=1X

2
i−1

1
n(Xn −X0)− 1

n2

∑n
i=1Xi−1

1
n2

∑n
i=1(Xi −Xi−1)

1
n3

∑n
i=1X

2
i−1 −

(
1
n2

∑n
i=1Xi−1

)2 ,

and using (3.11) and (3.12), as in the proof of Theorem 3.5, the continuous mapping theorem yields

the assertion. We only remark that

P

(∫ 1

0
X 2
t dt−

(∫ 1

0
Xt dt

)2

> 0

)
= 1.(3.30)

Indeed, ∫ 1

0
X 2
t dt−

(∫ 1

0
Xt dt

)2

=

∫ 1

0

(
Xt −

∫ 1

0
Xs ds

)2

> 0,

and equality holds if and only if

Xt =
∫ 1

0
Xs ds a.e. t ∈ [0, 1].

Since X has continuous sample paths almost surely,

P

(∫ 1

0
X 2
t dt−

(∫ 1

0
Xt dt

)2

= 0

)
> 0(3.31)

holds if and only if

P
(
Xt =

∫ 1

0
Xs ds, ∀ t ∈ [0, 1]

)
> 0.

Hence, since X0 = 0, we have (3.31) holds if and only if P(Xt = 0, ∀ t ∈ [0, 1]) > 0, which is a

contradiction due to our assumption a ∈ R++ (for more details, see the proof of Theorem 3.5). 2
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3.4 Conditional least squares estimator of (θ,m)

For all t ∈ R+, let F (Y,X)
t be the σ-algebra generated by (Ys, Xs)s∈[0,t]. The conditional least

squares estimator (CLSE) of (θ,m) based on the observations Xi, i = 0, 1, . . . , n, can be obtained

by solving the extremum problem

(θ̂CLSE
n , m̂CLSE

n ) := argmin
(θ,m)∈R2

n∑
i=1

(
Xi − E(Xi | F (Y,X)

i−1 )
)2
.

By (3.3), for all (y0, x0) ∈ R+ × R, we have

E
(
Xt | (Y0, X0) = (y0, x0)

)
= e−θtx0 +m

∫ t

0
e−θ(t−u) du, t > 0,

where we used that
(∫ t

0 e
θu
√
Yu dBu

)
t∈R+

is a martingale (which follows by the proof of Proposition

3.2). Using that (Yt, Xt)t∈R+ is a time-homogeneous Markov process, we have

E(Xt | F (Y,X)
s ) = E(Xt | (Ys, Xs)) = e−θ(t−s)Xs +m

∫ t

s
e−θ(t−u) du

for 0 6 s 6 t. Then

Xi − E(Xi | F (Y,X)
i−1 ) = Xi − e−θXi−1 −m

∫ i

i−1
e−θ(i−u) du

= Xi − e−θXi−1 −m

∫ 1

0
e−θv dv

= Xi − γXi−1 − δ, i = 1, . . . , n,

where

γ := e−θ and δ := m

∫ 1

0
e−θv dv =

{
m1−e−θ

θ if θ ̸= 0,

m if θ = 0.

Hence for all n ∈ N,

γ̂CLSE
n = e−θ̂

CLSE
n ,

δ̂CLSE
n = m̂CLSE

n

∫ 1

0
e−θ̂

CLSE
n v dv,

(3.32)

where (γ̂CLSE
n , δ̂CLSE

n ) is a CLSE of (γ, δ) based on the observations Xi, i = 0, 1, . . . , n, which can

be obtained by solving the extremum problem

(γ̂CLSE
n , δ̂CLSE

n ) := argmin
(γ,δ)∈R2

n∑
i=1

(Xi − γXi−1 − δ)2.(3.33)

Indeed, the function A : R2 → R2,

R2 ∋ (θ′,m′) 7→ A(θ′,m′) :=

[
γ′

δ′

]
=:

[
e−θ

′

m′ ∫ 1
0 e−θ

′v dv

]
∈ R+ × R

is bijective and measurable, and then there is a bijection between the set of CLSEs of the parameters

(θ,m) and the set of CLSEs of the parameters A(θ,m). This follows easily, since for all n ∈ N,
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(x0, x1, . . . , xn) ∈ Rn+1 and (γ′, δ′) ∈ R+ × R,

n∑
i=1

(xi − γ′xi−1 − δ′)2 =
n∑
i=1

xi − [γ′
δ′

]⊤ [
xi−1

1

]2

=
n∑
i=1

(
xi −

(
A(θ′,m′)

)⊤ [xi−1

1

])2

,

hence (θ̂CLSE
n , m̂CLSE

n ) is a CLSE of (θ,m) if and only if A(θ̂CLSE
n , m̂CLSE

n ) is a CLSE of A(θ,m).

For the extremum problem (3.33), we need to solve the following system of equations with respect

to (γ, δ):

2
n∑
i=1

(Xi − γXi−1 − δ)Xi−1 = 0,

2
n∑
i=1

(Xi − γXi−1 − δ) = 0,

which can be written also in the form[∑n
i=1X

2
i−1

∑n
i=1Xi−1∑n

i=1Xi−1 n

][
γ

δ

]
=

[∑n
i=1Xi−1Xi∑n

i=1Xi

]
.

Then

γ̂CLSE
n =

n
∑n

i=1Xi−1Xi −
∑n

i=1Xi−1
∑n

i=1Xi

n
∑n

i=1X
2
i−1 − (

∑n
i=1Xi−1)

2 ,(3.34)

and

δ̂CLSE
n =

∑n
i=1X

2
i−1

∑n
i=1Xi −

∑n
i=1Xi−1

∑n
i=1Xi−1Xi

n
∑n

i=1X
2
i−1 − (

∑n
i=1Xi−1)

2 ,(3.35)

provided that n
∑n

i=1X
2
i−1 − (

∑n
i=1Xi−1)

2 ̸= 0. Since the matrix[
2
∑n

i=1X
2
i−1 2

∑n
i=1Xi−1

2
∑n

i=1Xi−1 2n

]

consisting of the second order partial derivatives of the function R2 ∋ (γ, δ) 7→
∑n

i=1(Xi−γXi−1−δ)2

is positive definite provided that n
∑n

i=1X
2
i−1−(

∑n
i=1Xi−1)

2 > 0, we have (γ̂CLSE
n , δ̂CLSE

n ) is indeed

the solution of the extremum problem provided that n
∑n

i=1X
2
i−1 − (

∑n
i=1Xi−1)

2 > 0.

3.10 Remark. Using the definition of CLSE of (θ,m) we give a mathematical motivation of the

definition of the LSE θ̃n of θ introduced in Section 3.2. Note that if θ = 0, then

Xi − E(Xi | F (Y,X)
i−1 ) = Xi −Xi−1 −m, i = 1, . . . , n.

If θ ̸= 0, then, by Taylor’s theorem, 1− e−θ = e−τθθ with some τ = τ(θ) ∈ [0, 1], and hence

Xi − E(Xi | F (Y,X)
i−1 ) = Xi − e−θXi−1 −m

∫ 1

0
e−θv dv
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= Xi −Xi−1 + e−τθθXi−1 −me−τθ

for i = 1, . . . , n − 1. Hence for small values of θ one can approximate Xi − E(Xi | F (Y,X)
i−1 ) by

Xi −Xi−1 + θXi−1 −m = Xi −Xi−1 − (m− θXi−1), i = 1, . . . , n. Based on this, for small values of

θ, in the definition of the LSE of θ, the sum
∑n

i=1(Xi−Xi−1− (m− θXi−1))
2 can be considered as

an approximation of the sum
∑n

i=1(Xi−E(Xi | F (Y,X)
i−1 ))2 in the definition of the CLSE of (θ,m). 2

3.11 Theorem. Let us assume that Condition (C) holds. Then

P

n n∑
i=1

X2
i−1 −

(
n∑
i=1

Xi−1

)2

> 0

 = 1 for all n > 2,(3.36)

and there exists a unique CLSE (θ̂CLSE
n , m̂CLSE

n ) which has the form given in (3.32). Further,

nθ̂CLSE
n

L−→ −
∫ 1
0 Xt dXt −X1

∫ 1
0 Xt dt∫ 1

0 X 2
t dt−

(∫ 1
0 Xt dt

)2 as n→ ∞,(3.37)

and

m̂CLSE
n

L−→
X1

∫ 1
0 X 2

t dt−
∫ 1
0 Xt dt

∫ 1
0 Xt dXt∫ 1

0 X 2
t dt−

(∫ 1
0 Xt dt

)2 as n→ ∞,(3.38)

where (Xt)t∈R+ is the second coordinate of a two-dimensional affine process (Yt,Xt)t∈R+ given by

the unique strong solution of the SDEdYt = adt+
√
Yt dWt,

dXt = mdt+
√
Yt dBt,

t ∈ R+,

with initial value (Y0,X0) = (0, 0), where (Wt)t∈R+ and (Bt)t∈R+ are independent standard Wiener

processes.

Proof. By the proof of Theorem 3.8, we have (3.36). By (3.34) and (3.35), for all n > 2 we have

γ̂CLSE
n − 1 =

n
∑n

i=1(Xi −Xi−1)Xi−1 −Xn
∑n

i=1Xi−1

n
∑n

i=1X
2
i−1 − (

∑n
i=1Xi−1)

2 ,

and

δ̂CLSE
n =

Xn
∑n

i=1X
2
i−1 −

∑n
i=1Xi−1

∑n
i=1(Xi −Xi−1)Xi−1

n
∑n

i=1X
2
i−1 − (

∑n
i=1Xi−1)

2 .

Using (3.11) and (3.12), the continuous mapping theorem, by the same technique as in the proof of

Theorem 3.8, we get

n(γ̂CLSE
n − 1)

L−→
∫ 1
0 Xt dXt −X1

∫ 1
0 Xt dt∫ 1

0 X 2
t dt−

(∫ 1
0 Xt dt

)2 as n→ ∞,(3.39)
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and

δ̂CLSE
n

L−→
X1

∫ 1
0 X 2

t dt−
∫ 1
0 Xt dt

∫ 1
0 Xt dXt∫ 1

0 X 2
t dt−

(∫ 1
0 Xt dt

)2 as n→ ∞.(3.40)

By Slutsky’s lemma, we also have γ̂CLSE
n

P−→ 1 as n → ∞. Hence, by Taylor’s theorem using also

that γ̂CLSE
n > 0, n ∈ N (due to its definition given in (3.32)), we have

θ̂CLSE
n = − log(γ̂CLSE

n ) = − log(γ̂CLSE
n )− log(1) = − 1

ξn
(γ̂CLSE
n − 1),(3.41)

where ξn is in the interval with endpoints 1 and γ̂CLSE
n . Since γ̂CLSE

n
P−→ 1 as n→ ∞, we have

ξn
P−→ 1 as n→ ∞, and hence using the decomposition

nθ̂CLSE
n = − 1

ξn
n(γ̂CLSE

n − 1), n ∈ N,

Slutsky’s lemma and (3.39), we get (3.37).

Next we turn to prove (3.38). For this, by (3.32), (3.40) and by Slutsky’s lemma, it is enough to

check that ∫ 1

0
e−θ̂

CLSE
n v dv

P−→ 1 as n→ ∞.

Since ∫ 1

0
e−θ̂

CLSE
n v dv =

1−e−θ̂CLSE
n

θ̂CLSE
n

if θ̂CLSE
n ̸= 0,

1 if θ̂CLSE
n = 0,

by (3.41), for all ε > 0 we have

P
(∣∣∣∣∫ 1

0
e−θ̂

CLSE
n v dv − 1

∣∣∣∣ > ε

)
= P

(∣∣∣∣∣1− γ̂CLSE
n

θ̂CLSE
n

− 1

∣∣∣∣∣ > ε
∣∣∣ θ̂CLSE
n ̸= 0

)
P(θ̂CLSE

n ̸= 0)

+ P
(
|1− 1| > ε

∣∣ θ̂CLSE
n = 0

)
P(θ̂CLSE

n = 0)

= P
(
|ξn − 1| > ε

∣∣ θ̂CLSE
n ̸= 0

)
P(θ̂CLSE

n ̸= 0)
P−→ 0,

since ξn
P−→ 0 as n→ ∞. 2

3.12 Remark. (i) We do not consider the CLSE of θ supposing that m is known since the

corresponding extremum problem is rather complicated, and from statistical point of view it has less

importance.

(ii) Under the Condition (C), by Theorem 3.11 and Slutsky’s lemma, we get θ̂CLSE
n converges stochas-

tically to the parameter θ = 0 as n → ∞, and one can show that m̂CLSE
n does not converge

stochastically to the parameter m as n→ ∞, see Appendix B. 2
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A The integrals in (2.2)

We check that the integrals in (2.2) are well-defined, i.e., elements of C, under the conditions (v)

and (vi) of Definition 2.3. For this, by decomposing a complex-valued function to real and imaginary

parts, it is enough to verify that∫
R+×Rd

(
f(x+ ξ)− f(x)− ⟨f ′(x), ξ⟩

)
x1 µ(dξ) <∞,(A.1)

∫
R+×Rd

(f(x+ ξ)− f(x)− ⟨f ′(2)(x), ξ2⟩)m(dξ) <∞(A.2)

for all x = (x1, x2) ∈ R+ × Rd and real-valued f ∈ C2
c (R+ × Rd).

First we check (A.1). If x = (x1, x2) ∈ R+×Rd and ξ ∈ R+×Rd with ∥ξ∥ 6 1, then, by (2.11)

with θ = 1,

|f(x+ ξ)− f(x)− ⟨f ′(x), ξ⟩| = 1

2
|⟨f ′′(x+ τξ)ξ, ξ⟩| 6 1

2
∥f ′′∥∞∥ξ∥2,

where τ = τ(x, ξ) ∈ [0, 1]. If x = (x1, x2) ∈ R+ × Rd and ξ ∈ R+ × Rd with ∥ξ∥ > 1, then, by

(2.9) with θ = 1,

|f(x+ ξ)− f(x)− ⟨f ′(x), ξ⟩| 6 |f(x+ ξ)− f(x)|+ |⟨f ′(x), ξ⟩| = |⟨f ′(x+ τξ), ξ⟩|+ |⟨f ′(x), ξ⟩|

6 2∥f ′∥∞∥ξ∥,

where τ = τ(x, ξ) ∈ [0, 1]. Hence∣∣∣∣∫
R+×Rd

(
f(x+ ξ)− f(x)− ⟨f ′(x), ξ⟩

)
x1 µ(dξ)

∣∣∣∣
6
∫
{ξ∈R+×Rd : ∥ξ∥61}

|(f(x+ ξ)− f(x)− ⟨f ′(x), ξ⟩|x1 µ(dξ)

+

∫
{ξ∈R+×Rd : ∥ξ∥>1}

|(f(x+ ξ)− f(x)− ⟨f ′(x), ξ⟩|x1 µ(dξ)

6 1

2
∥f ′′∥∞x1

∫
{ξ∈R+×Rd : ∥ξ∥61}

∥ξ∥2 µ(dξ)

+ 2∥f ′∥∞x1
∫
{ξ∈R+×Rd : ∥ξ∥>1}

∥ξ∥µ(dξ) <∞,

where the last inequality follows by assumption (vi) of Definition 2.3.

Next we check (A.2). If x = (x1, x2) ∈ R+ × Rd and ξ ∈ R+ × Rd with ∥ξ2∥ 6 1, then, by

(2.11) with θ = 1,

|f(x+ ξ)− f(x)− ⟨f ′(2)(x), ξ2⟩| = |f(x+ ξ)− f(x)− ⟨f ′(x), ξ⟩+ ⟨f ′1(x), ξ1⟩|

6 1

2
|⟨f ′′(x+ τξ)ξ, ξ⟩|+ |⟨f ′1(x), ξ1⟩|

6 1

2
∥f ′′∥∞∥ξ∥2 + ∥f ′′1 ∥∞ξ1,
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where τ = τ(x, ξ) ∈ [0, 1]. If x = (x1, x2) ∈ R+ × Rd and ξ ∈ R+ × Rd with ∥ξ2∥ > 1, then, by

(2.9) with θ = 1,

|f(x+ ξ)− f(x)− ⟨f ′(2)(x), ξ2⟩| = |⟨f ′(x+ τξ), ξ⟩ − ⟨f ′(2)(x), ξ2⟩|

= |⟨f ′1(x+ τξ), ξ1⟩+ ⟨f ′(2)(x+ τξ), ξ2⟩ − ⟨f ′(2)(x), ξ2⟩|

6 ∥f ′′1 ∥∞ξ1 + |⟨f ′(2)(x+ τξ)− f ′(2)(x), ξ2⟩|

6 ∥f ′′1 ∥∞ξ1 + 2∥f ′(2)∥∥ξ2∥,

where τ = τ(x, ξ) ∈ [0, 1]. Using assumption (v) of Definition 2.3, the finiteness of the integral in

(A.2) follows as for the integral in (A.1).

Having proved that the integrals in (2.2) are well-defined, we check that under the conditions (v)

and (vi) of Definition 2.3, one can rewrite (2.12) in Duffie et al. [11] into the form (2.2), by changing

the 2-nd, . . ., (1 + d)-th coordinates of b ∈ R+ × Rd and the first column of β ∈ R(1+d)×(1+d),

respectively. More precisely, with the notations

χ(ξ) := (χ1(ξ), . . . , χ1+d(ξ)) and χ(2)(ξ) := (χ2(ξ), . . . , χ1+d(ξ))

for ξ ∈ R1+d, where

χk(ξ) :=

{
(1 ∧ |ξk|) ξk|ξk| if ξk ̸= 0,

0 if ξk = 0,
k = 1, . . . , 1 + d,

for all x = (x1, x2) ∈ R+ × Rd and f ∈ C2
c (R+ × Rd), we have

(Af)(x) =
1+d∑
i,j=1

(ai,j + αi,jx1)f
′′
i,j(x) + ⟨f ′(x), b+ βx⟩

+

∫
R+×Rd

(f(x+ ξ)− f(x)− ⟨f ′(2)(x), ξ2⟩)m(dξ)

+

∫
R+×Rd

(f(x+ ξ)− f(x)− ⟨f ′(x), ξ⟩)x1 µ(dξ)

=
1+d∑
i,j=1

(ai,j + αi,jx1)f
′′
i,j(x) + ⟨f ′(x), b̃+ β̃x⟩

+

∫
R+×Rd

(f(x+ ξ)− f(x)− ⟨f ′(2)(x), χ(2)(ξ)⟩)m(dξ)

+

∫
R+×Rd

(f(x+ ξ)− f(x)− ⟨f ′(x), χ(ξ)⟩)x1 µ(dξ),

where b̃ = (̃b1, b̃2) ∈ R+ × Rd and β̃ = (β̃i,j)
1+d
i,j=1 ∈ R(1+d)×(1+d) with

b̃1 := b1,

b̃2 := b2 +

∫
R+×Rd

(χ(2)(ξ)− ξ2)m(dξ),
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(β̃i,1)
1+d
i=1 := (βi,1)

1+d
i=1 +

∫
R+×Rd

(χ(ξ)− ξ)µ(dξ),

(β̃i,j)
j=2,...,1+d
i=1,...,1+d := (βi,1)

j=2,...,1+d
i=1,...,1+d .

Note also that there is another way for checking that the integrals in (2.2) are well-defined under

the conditions (v) and (vi) of Definition 2.3. Namely, using that the integrals in (2.12) in Duffie et al.

[11] are well-defined, the assertion follows since∥∥∥∥∫
R+×Rd

(χ(2)(ξ)− ξ2)m(dξ)

∥∥∥∥ =

(
1+d∑
i=2

(∫
R+×Rd

(χi(ξ)− ξi)m(dξ)

)2
)1/2

=

(
1+d∑
i=2

(∫
R+×Rd

|ξi|1{|ξi|>1}m(dξ)

)2
)1/2

6
√
d

∫
R+×Rd

∥ξ∥1{∥ξ∥>1}m(dξ) <∞,

and similarly ∥∥∥∥∫
R+×Rd

(χ(ξ)− ξ)µ(dξ)

∥∥∥∥ <∞.

B On consistency properties of the LSE and CLSE of (θ,m)

Let us suppose that Condition (C) holds. Using Slutsky’s lemma and Theorems 3.8 and 3.11 we get

θ̂LSEn and θ̂CLSE
n converge stochastically to the parameter θ = 0 as n → ∞, respectively, and in

what follows we show that m̂LSE
n and m̂CLSE

n do not converge stochastically to the parameter m

as n → ∞, respectively. For this it is enough to check that the weak limits of m̂LSE
n and m̂CLSE

n

given in Theorems 3.8 and 3.11 do not equal to m almost surely, respectively. Since the weak limits

in question are the same, we can give a common proof. First note that

X1

∫ 1
0 X 2

t dt−
∫ 1
0 Xt dt

∫ 1
0 Xt dXt∫ 1

0 X 2
t dt−

(∫ 1
0 Xt dt

)2 −m

=
(X1 −m)

∫ 1
0 X 2

t dt−
∫ 1
0 Xt dt

(∫ 1
0 Xt dXt −m

∫ 1
0 Xt dt

)
∫ 1
0 X 2

t dt−
(∫ 1

0 Xt dt
)2

=

∫ 1
0 X 2

t dt
∫ 1
0 d[Xt −mt]−

∫ 1
0 Xt dt

∫ 1
0 Xt d[Xt −mt]∫ 1

0 X 2
t dt−

(∫ 1
0 Xt dt

)2 ,

and hence
X1

∫ 1
0 X 2

t dt−
∫ 1
0 Xt dt

∫ 1
0 Xt dXt∫ 1

0 X 2
t dt−

(∫ 1
0 Xt dt

)2 a.s.
= m

if and only if

J :=

∫ 1

0
X 2
t dt

∫ 1

0
d[Xt −mt]−

∫ 1

0
Xt dt

∫ 1

0
Xt d[Xt −mt]

a.s.
= 0,
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where
a.s.
= denotes equality almost surely. Here J can be written in the form

J =

∫ 1

0
X 2
s

(∫ 1

0
d[Xt −mt]

)
ds−

∫ 1

0
Xs
(∫ 1

0
Xt d[Xt −mt]

)
ds,

and hence E(J) takes the following form∫ 1

0
E
(
X 2
s

∫ 1

0
d[Xt −mt]

)
ds−

∫ 1

0
E
(
Xs
∫ 1

0
Xt d[Xt −mt]

)
ds.

Here (Xt−mt)t∈R+ =
(∫ t

0

√
Yu dBu

)
t∈R+

is a square integrable martingale (see the proof of Proposition

3.2) and Xs = ms+
∫ s
0

√
Yu dBu for s ∈ R+, thus, for all s ∈ [0, 1], we have

E

(
X 2
s

∫ 1

0
d[Xt −mt]

∣∣∣∣∣FY
1

)

= m2s2 E

(∫ 1

0

√
Yt dBt

∣∣∣∣∣FY
1

)
+ 2msE

(∫ s

0

√
Yu dBu

∫ 1

0

√
Yt dBt

∣∣∣∣∣FY
1

)

+ E

((∫ s

0

√
Yu dBu

)2 ∫ 1

0

√
Yt dBt

∣∣∣∣∣FY
1

)

= 2ms

∫ s

0
Yu du,

where FY
1 denotes the σ-algebra generated by (Yu)u∈[0,1]. For the last equality above, we used that

conditionally on the σ-algebra FY
1 , the stochastic process

(∫ t
0

√
Yu dBu

)
t∈[0,1] is a Gauss process

with mean function identically 0 and with covariance function

E

(∫ s

0

√
Yu dBu

∫ t

0

√
Yu dBu

∣∣∣∣∣FY
1

)
=

∫ s∧t

0
Yu du, s, t ∈ [0, 1],

(for the mean and covariation function, see Karatzas and Shreve [24, formulas (3.2.21) and (3.2.23)]),

and we also used that the third moment of a centered normally distributed random variable is 0.

Similarly, for all s ∈ [0, 1], we have

E

(
Xs
∫ 1

0
Xt d[Xt −mt]

∣∣∣∣∣FY
1

)

= msE

(∫ 1

0
Xt
√

Yt dBt

∣∣∣∣∣FY
1

)
+ E

(∫ s

0

√
Yu dBu

∫ 1

0
Xt
√

Yt dBt

∣∣∣∣∣FY
1

)

= E

(∫ s

0
XuYu du

∣∣∣∣∣FY
1

)
=

∫ s

0
E
(
XuYu | FY

1

)
du = m

∫ s

0
uYu du.

Thus

E
(
X 2
s

∫ 1

0
d[Xt −mt]

)
= 2ms

∫ s

0
E(Yu) du,

E
(
Xs
∫ 1

0
Xt d[Xt −mt]

)
= m

∫ s

0
uE(Yu) du.
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Consequently,

E(J) = 2m

∫ 1

0
s

(∫ s

0
E(Yu) du

)
ds−m

∫ 1

0

(∫ s

0
uE(Yu) du

)
ds

= 2m

∫ 1

0

(∫ 1

u
sds

)
E(Yu) ds−m

∫ 1

0

(∫ 1

u
ds

)
uE(Yu) du

= m

∫ 1

0
(1− u)E(Yu) du = ma

∫ 1

0
(1− u)u du.

Hence if m ̸= 0, then E(J) ̸= 0, which clearly yields that J
a.s.
= 0 is impossible.

If m = 0, then E(J) = 0, and hence for proving P(J = 0) < 1, it is enough to show that

E(J2) > 0. Now J can be written in the form J = J1 − J2 with

J1 :=

∫ 1

0
X 2
s ds

∫ 1

0
dXt, J2 :=

∫ 1

0
Xs ds

∫ 1

0
Xt dXt.

Clearly, E(J2) = E(J2
1 )− 2E(J1J2) + E(J2

2 ). Here J1J2 can be written in the form

J1J2 =

∫ 1

0

∫ 1

0
X 2
s1Xs2

(∫ 1

0
dXt

)(∫ 1

0
Xt dXt

)
ds1 ds2,

hence

E(J1J2) =
∫ 1

0

∫ 1

0
E
(
X 2
s1Xs2

(∫ 1

0
dXt

)(∫ 1

0
Xt dXt

))
ds1 ds2.

If s1, s2 ∈ [0, 1], then, by (3.10),

E
(
X 2
s1Xs2

(∫ 1

0
dXt

)(∫ 1

0
Xt dXt

) ∣∣∣∣FY
1

)

=
1

2
E
(
X 2
s1Xs2X1

(
X 2
1 −

∫ 1

0
Ys ds

) ∣∣∣∣FY
1

)

=
1

2
E
(
X 2
s1Xs2X

3
1

∣∣∣∣FY
1

)
− 1

2
E
(
X 2
s1Xs2X1

∫ 1

0
Ys ds

∣∣∣∣FY
1

)

=
1

2
E
(
X 2
s1Xs2X

3
1

∣∣∣∣FY
1

)
− 1

2

(∫ 1

0
Ys ds

)
E
(
X 2
s1Xs2X1

∣∣∣∣FY
1

)
.

Similarly to the proof of Proposition 3.1 one can check that conditionally of FY
1 , the process (Xt)t∈[0,1]

is a centered Gauss process (especially having independent increments). Hence if s1, s2 ∈ [0, 1] with

s1 6 s2, then

E
(
X 2
s1Xs2X

3
1

∣∣∣∣FY
1

)

= E
(
X 6
s1

∣∣∣∣FY
1

)
+ 4E

(
X 3
s1(Xs2 −Xs1)3

∣∣∣∣FY
1

)
+ E

(
X 3
s1(X1 −Xs2)3

∣∣∣∣FY
1

)

+ 4E
(
X 5
s1(Xs2 −Xs1)

∣∣∣∣FY
1

)
+ 3E

(
X 5
s1(X1 −Xs2)

∣∣∣∣FY
1

)
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+ 6E
(
X 4
s1(Xs2 −Xs1)2

∣∣∣∣FY
1

)
+ 3E

(
X 4
s1(X1 −Xs2)2

∣∣∣∣FY
1

)

+ 6E
(
X 3
s1(Xs2 −Xs1)(X1 −Xs2)2

∣∣∣∣FY
1

)

+ 3E
(
X 3
s1(Xs2 −Xs1)2(X1 −Xs2)

∣∣∣∣FY
1

)

+ 9E
(
X 4
s1(Xs2 −Xs1)(X1 −Xs2)

∣∣∣∣FY
1

)
+ E

(
X 2
s1(Xs2 −Xs1)4

∣∣∣∣FY
1

)

+ E
(
X 2
s1(Xs2 −Xs1)(X1 −Xs2)3

∣∣∣∣FY
1

)

+ 3E
(
X 2
s1(Xs2 −Xs1)2(X1 −Xs2)2

∣∣∣∣FY
1

)

+ 3E
(
X 2
s1(Xs2 −Xs1)3(X1 −Xs2)

∣∣∣∣FY
1

)

+ 6E
(
X 3
s1(Xs2 −Xs1)2(X1 −Xs2)

∣∣∣∣FY
1

)
.

Using that X has independent increments and that the odd moments of a centered normally dis-

tributed random variable are 0, if s1, s2 ∈ [0, 1] with s1 6 s2, then

E
(
X 2
s1Xs2X

3
1

∣∣∣∣FY
1

)

= E
(
X 6
s1

∣∣∣∣FY
1

)
+ 6E

(
X 4
s1

∣∣∣∣FY
1

)
E
(
(Xs2 −Xs1)2

∣∣∣∣FY
1

)

+ 3E
(
X 4
s1

∣∣∣∣FY
1

)
E
(
(X1 −Xs2)2

∣∣∣∣FY
1

)

+ E
(
X 2
s1

∣∣∣∣FY
1

)
E
(
(Xs2 −Xs1)4

∣∣∣∣FY
1

)

+ 3E
(
X 2
s1

∣∣∣∣FY
1

)
E
(
(Xs2 −Xs1)2

∣∣∣∣FY
1

)
E
(
(X1 −Xs2)2

∣∣∣∣FY
1

)

= 15

(∫ s1

0
Yu du

)3

+ 18

(∫ s1

0
Yu du

)2(∫ s2

s1

Yu du
)

+ 9

(∫ s1

0
Yu du

)2(∫ 1

s2

Yu du
)
+ 3

(∫ s1

0
Yu du

)(∫ s2

s1

Yu du
)2

+ 3

(∫ s1

0
Yu du

)(∫ s2

s1

Yu du
)(∫ 1

s2

Yu du
)
.

One can also check that if s1, s2 ∈ [0, 1] with s1 6 s2, then

E
(
X 2
s1Xs2X1

∣∣∣∣FY
1

)
= E

(
X 4
s1

∣∣∣∣FY
1

)
+ E

(
X 2
s1(Xs2 −Xs1)2

∣∣∣∣FY
1

)
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= 3

(∫ s1

0
Yu du

)2

+

(∫ s1

0
Yu du

)(∫ s2

s1

Yu du
)
.

Hence if s1, s2 ∈ [0, 1] with s1 6 s2, then

E
(
X 2
s1Xs2

(∫ 1

0
dXt

)(∫ 1

0
Xt dXt

) ∣∣∣∣FY
1

)

= 6

(∫ s1

0
Yu du

)3

+ 7

(∫ s1

0
Yu du

)2(∫ s2

s1

Yu du
)

+ 3

(∫ s1

0
Yu du

)2(∫ 1

s2

Yu du
)
+

(∫ s1

0
Yu du

)(∫ s2

s1

Yu du
)2

+

(∫ s1

0
Yu du

)(∫ s2

s1

Yu du
)(∫ 1

s2

Yu du
)
.

Similar expression hold in case of s1, s2 ∈ [0, 1] with s1 > s2, we have to change s1 by s2.

Moreover, J2
1 can be written in the form

J2
1 =

∫ 1

0

∫ 1

0
X 2
s1X

2
s2

(∫ 1

0
dXt

)2

ds1 ds2,

hence

E(J2
1 ) =

∫ 1

0

∫ 1

0
E

(
X 2
s1X

2
s2

(∫ 1

0
dXt

)2
)
ds1 ds2.

If s1, s2 ∈ [0, 1] with s1 6 s2, then

E

(
X 2
s1X

2
s2

(∫ 1

0
dXt

)2 ∣∣∣∣FY
1

)

= E
(
X 2
s1X

2
s2X

2
1

∣∣FY
1

)
= E

(
X 6
s1

∣∣FY
1

)
+ E

(
X 4
s1

∣∣FY
1

)
E
(
(X1 −Xs2)

2
∣∣FY

1

)
+ 6E

(
X 4
s1

∣∣FY
1

)
E
(
(Xs2 −Xs1)

2
∣∣FY

1

)
+ E

(
X 2
s1

∣∣FY
1

)
E
(
(Xs2 −Xs1)

4
∣∣FY

1

)
+ E

(
X 2
s1

∣∣FY
1

)
E
(
(Xs2 −Xs1)

2
∣∣FY

1

)
E
(
(X1 −Xs2)

2
∣∣FY

1

)
= 15

(∫ s1

0
Yu du

)3

+ 3

(∫ s1

0
Yu du

)2(∫ 1

s2

Yu du
)

+ 18

(∫ s1

0
Yu du

)2(∫ s2

s1

Yu du
)
+ 3

(∫ s1

0
Yu du

)(∫ s2

s1

Yu du
)2

+

(∫ s1

0
Yu du

)(∫ s2

s1

Yu du
)(∫ 1

s2

Yu du
)
.
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Similar expression hold in case of s1, s2 ∈ [0, 1] with s1 > s2, we have to change s1 by s2.

Furthermore, using (3.10), J2
2 can be written in the form

J2
2 =

1

4

∫ 1

0

∫ 1

0
Xs1Xs2

(
X 2
1 −

∫ 1

0
Yu du

)2

ds1 ds2,

hence

E(J2
2 ) =

1

4

∫ 1

0

∫ 1

0
E

(
Xs1Xs2

(
X 2
1 −

∫ 1

0
Yu du

)2
)
ds1 ds2.

Here if s1, s2 ∈ [0, 1] with s1 6 s2, then we have

E

(
Xs1Xs2

(
X 2
1 −

∫ 1

0
Yu du

)2 ∣∣∣∣FY
1

)

= E
(
Xs1Xs2X 4

1

∣∣∣∣FY
1

)
− 2

(∫ 1

0
Yu du

)
E
(
Xs1Xs2X 2

1

∣∣∣∣FY
1

)

+

(∫ 1

0
Yu du

)2

E
(
Xs1Xs2

∣∣∣∣FY
1

)
,

where, using the arguments as above, one can check that

E
(
Xs1Xs2X 4

1

∣∣∣∣FY
1

)

= E
(
X 6
s1

∣∣∣∣FY
1

)
+ 5E

(
X 2
s1(Xs2 −Xs1)4
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1
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+ E
(
X 2
s1(X1 −Xs2)4
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1

)
+ 10E

(
X 4
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1
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+ 6E
(
X 4
s1(X1 −Xs2)2

∣∣∣∣FY
1

)
+ 18E

(
X 2
s1(Xs2 −Xs1)2(X1 −Xs2)2

∣∣∣∣FY
1

)

= 15
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Yu du

)3
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)2
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0
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s2

Yu du
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+ 30

(∫ s1
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s1
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)
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0
Yu du

)2(∫ 1

s2

Yu du
)

+ 18

(∫ s1

0
Yu du

)(∫ s2

s1
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)(∫ 1

s2
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)
,

and

E
(
Xs1Xs2X 2

1

∣∣∣∣FY
1

)
= E

(
X 4
s1

∣∣∣∣FY
1

)
+ 3E

(
X 2
s1(Xs2 −Xs1)2
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1

)

+ E
(
X 2
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= 3

(∫ s1

0
Yu du

)2

+ 3

(∫ s1

0
Yu du

)(∫ s2

s1

Yu du
)

+

(∫ s1

0
Yu du

)(∫ 1

s2

Yu du
)
,

and

E
(
Xs1Xs2

∣∣∣∣FY
1

)
= E

(
X 2
s1

∣∣∣∣FY
1

)
=

∫ s1

0
Yu du.

Hence, by an easy calculation, if s1, s2 ∈ [0, 1] with s1 6 s2, then

E

(
Xs1Xs2

(
X 2
1 −

∫ 1

0
Yu du

)2 ∣∣∣∣FY
1

)

= 10

(∫ s1

0
Yu du

)3

+ 10

(∫ s1

0
Yu du

)(∫ s2

s1

Yu du
)2
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(∫ s1

0
Yu du

)2(∫ s2

s1

Yu du
)

+ 12

(∫ s1

0
Yu du

)2(∫ 1

s2

Yu du
)

+ 2

(∫ s1

0
Yu du

)(∫ 1

s2

Yu du
)2

+ 12

(∫ s1

0
Yu du

)(∫ s2

s1

Yu du
)(∫ 1

s2

Yu du
)
.

Similar expression hold in case of s1, s2 ∈ [0, 1] with s1 > s2, we have to change s1 by s2.

Hence if s1, s2 ∈ [0, 1] with s1 6 s2, then we have

E

(
X 2
s1X

2
s2

(∫ 1

0
dXt

)2

− 2X 2
s1Xs2

(∫ 1

0
dXt

)(∫ 1

0
Xt dXt

)

+
1

4
Xs1Xs2

(
X 2
1 −

∫ 1

0
Yu du

)2 ∣∣∣∣FY
1

)

=
11

2

(∫ s1

0
Yu du

)3

+ 9

(∫ s1

0
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)2(∫ s2

s1

Yu du
)

+
7

2

(∫ s1

0
Yu du

)(∫ s2

s1

Yu du
)2

+
1

2

(∫ s1

0
Yu du

)(∫ 1

s2

Yu du
)2

+ 2

(∫ s1

0
Yu du

)(∫ s2

s1

Yu du
)(∫ 1

s2

Yu du
)
,

and a similar expression hold in case of s1, s2 ∈ [0, 1] with s1 > s2, we have to change s1 by s2.

Then E(J2) = E(J2
1 )− 2E(J1J2) + E(J2

2 ) takes the form∫ 1

0

∫ 1

0
E

(
11

2

(∫ s1∧s2

0
Yu du

)3

+ 9

(∫ s1∧s2

0
Yu du

)2(∫ s1∨s2

s1∧s2
Yu du

)
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+
7

2

(∫ s1∧s2

0
Yu du

)(∫ s1∨s2

s1∧s2
Yu du

)2

+
1

2

(∫ s1∧s2

0
Yu du

)(∫ 1

s1∨s2
Yu du

)2

+ 2

(∫ s1∧s2

0
Yu du

)(∫ s1∨s2

s1∧s2
Yu du

)(∫ 1

s1∨s2
Yu du

))
ds1ds2 > 0,

where for the last inequality we used that

E

((∫ s1∧s2

0
Yu du

)i(∫ s1∨s2

s1∧s2
Yu du

)j (∫ 1

s1∨s2
Yu du

)k)
> 0

for i, j, k ∈ {0, 1, 2, 3}, which follows by a ∈ R++ and that P(Yt > 0 for all t ∈ R+) = 1.

Consequently, we conclude E(J2) > 0, which clearly yields that J
a.s.
= 0 is impossible.
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