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Abstract: We first prove some general results on pathwise uniqueness,
comparison property and existence of non-negative strong solutions of
stochastic equations driven by white noises and Poisson random mea-
sures. The results are then used to prove the strong existence of two
classes of stochastic flows associated with coalescents with multiple col-
lisions, that is, generalized Fleming–Viot flows and flows of continuous-
state branching processes with immigration. One of them unifies the
different treatments of three kinds of flows in Bertoin and Le Gall [Ann.
Inst. H. Poincaré Probab. Statist. 41 (2005), 307–333]. Two scaling
limit theorems for the generalized Fleming–Viot flows are proved, which
lead to sub-critical branching immigration superprocesses. From those
theorems we derive easily a generalization of the limit theorem for finite
point motions of the flows in Bertoin and Le Gall [Illinois J. Math. 50
(2006), 147–181].
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1 Introduction

A class of stochastic flows of bridges were introduced by Bertoin and Le Gall
(2003) to study the coalescent processes with multiple collisions of Pitman
(1999); see also Sagitov (1999). The law of such a coalescent process is de-
termined by a finite measure Λ(dz) on [0, 1]. The Kingman coalescent cor-
responds to Λ = δ0 and the Bolthausen–Sznitman coalescent corresponds to
Λ = Lebesgue measure on [0, 1]; see Bolthausen and Sznitman (1998) and
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Kingman (1982). In fact, Bertoin and Le Gall (2003) established a remarkable
connection between the coalescents with multiple collisions and the stochas-
tic flows of bridges. Based on this connection, they have developed a theory
of the coalescents and the flows in the series of papers; see Bertoin and Le
Gall (2003, 2005, 2006). We refer the reader to Le Jan and Raimond (2004),
Ma and Xiang (2001) and Xiang (2009) for the study of stochastic flows of
mappings and measures in abstract settings.

Let {Bs,t : −∞ < s ≤ t < ∞} be the stochastic flow of bridges associated
to a Λ-coalescent in the sense of Bertoin and Le Gall (2003). A number of
precise characterizations of the flow {B−t,0(v) : t ≥ 0, v ∈ [0, 1]} were given in
Bertoin and Le Gall (2003). For any t ≥ 0, the function v 7→ B−t,0(v) induces
a random probability measure ρt(dv) on [0, 1]. The process {ρt : t ≥ 0}
was characterized in Bertoin and Le Gall (2003) as the unique solution of a
martingale problem. In fact, this process is a measure-valued dual to the Λ-
coalescent process. It was also pointed out in Bertoin and Le Gall (2003) that
{ρt : t ≥ 0} can be regarded as a generalized Fleming–Viot process; see also
Donnelly and Kurtz (1999a, 1999b).

Let Λ(dz) be a finite measure on [0, 1] such that Λ({0}) = 0, and let
{M(ds, dz, du)} be a Poisson random measure on (0,∞)×(0, 1]2 with intensity
z−2dsΛ(dz)du. It was proved in Bertoin and Le Gall (2005) that there is weak
solution flow {Xt(v) : t ≥ 0, v ∈ [0, 1]} to the stochastic equation

Xt(v) = v +

∫ t

0

∫ 1

0

∫ 1

0
z[1{u≤Xs−(v)} −Xs−(v)]M(ds, dz, du). (1.1)

Moreover, Bertoin and Le Gall (2005) showed that for any 0 ≤ r1 < · · · <
rp ≤ 1 the p-point motion {(B−t,0(r1), · · · , B−t,0(rp)) : t ≥ 0} is equiv-
alent to {(Xt(r1), · · · , Xt(rp)) : t ≥ 0}. Therefore, the solutions of (1.1)
give a realization of the flow of bridges associated with the Λ-coalescent pro-
cess. A separate treatment for the Kingman coalescent flow was also given
in Bertoin and Le Gall (2005). In that case they showed the p-point motion
{(B−t,0(r1), · · · , B−t,0(rp)) : t ≥ 0} is a diffusion process in

Dp := {x = (x1, · · · , xp) ∈ Rp : 0 ≤ x1 ≤ · · · ≤ xp ≤ 1}

with generator A0 defined by

A0f(x) =
1

2

p∑
i,j=1

xi∧j(1− xi∨j)
∂2f

∂xi∂xj
(x). (1.2)

Given a Λ-coalescent flow {Bs,t : −∞ < s ≤ t < ∞}, we define the flow of
inverses by

B−1
s,t (v) = inf{u ∈ [0, 1] : Bs,t(u) > v}, v ∈ [0, 1)

2



and B−1
s,t (1) = B−1

s,t (1−). In the Kingman coalescent case, it was proved in

Bertoin and Le Gall (2005) that the p-point motion {(B−1
0,t (r1), · · · , B

−1
0,t (rp)) :

t ≥ 0} is a diffusion process in Dp with generator A1 given by

A1f(x) = A0f(x) +

p∑
i=1

(1
2
− xi

) ∂f
∂xi

(x), (1.3)

where A0 is given by (1.2). The analogous characterization for the Λ-coalescent
flow with Λ({0}) = 0 was also provided in Bertoin and Le Gall (2005). Those
results give deep insights into the structures of the stochastic flows associated
with the Λ-coalescents.

The asymptotic properties of Λ-coalescent flows were studied in Bertoin
and Le Gall (2006). For each integer k ≥ 1 let Λk(dx) be a finite measure
on [0, 1] with Λk({0}) = 0 and let {Xk(t, v) : t ≥ 0, v ∈ [0, 1]} be defined
by (1.1) from a Poisson random measure {Mk(ds, dz, du)} on (0,∞) × (0, 1]2

with intensity z−2dsΛk(dz)du. Suppose that z−2(z ∧ z2)Λk(k
−1dz) converges

weakly as k → ∞ to a finite measure on (0,∞) denoted by z−2(z ∧ z2)Λ(dz).
By a limit theorem of Bertoin and Le Gall (2006) the rescaled p-point motion
{(kXk(kt, r1/k), · · · , kXk(kt, rp/k)) : t ≥ 0} converges in distribution to those
of the weak solution flow of the stochastic equation

Yt(v) = v +

∫ t

0

∫ ∞

0

∫ ∞

0
x1{u≤Ys−(v)}Ñ(ds, dx, du), (1.4)

where Ñ(ds, dx, du) is a compensated Poisson random measure on [0,∞) ×
(0,∞)2 with intensity z−2dsΛ(dz)du. It was pointed out in Bertoin and Le
Gall (2006) that the solution of (1.4) is a special critical continuous-state
branching process (CB-process).

In this paper we study two classes of stochastic flows defined by stochastic
equations that generalize (1.1) and (1.4). We shall first treat the generaliza-
tion of (1.4) since it involves simpler structures. Suppose that σ ≥ 0 and
b are constants, v 7→ γ(v) is a non-negative and non-decreasing continuous
function on [0,∞), and (z ∧ z2)m(dz) is a finite measures on (0,∞). Let
{W (ds, du)} be a white noise on (0,∞)2 based on the Lebesgue measure dsdu.
Let {N(ds, dz, du)} be a Poisson random measure on (0,∞)3 with intensity
dsm(dz)du. Let {Ñ(ds, dz, du)} be the compensated measure of N(ds, dz, du).
We shall see that for any v ≥ 0 there is a pathwise unique non-negative solution
of the stochastic equation

Yt(v) = v + σ

∫ t

0

∫ Ys−(v)

0
W (ds, du) +

∫ t

0
[γ(v)− bYs−(v)]ds

+

∫ t

0

∫ ∞

0

∫ Ys−(v)

0
zÑ(ds, dz, du). (1.5)

It is not hard to show each solution Y (v) = {Yt(v) : t ≥ 0} is a continuous-
state branching process with immigration (CBI-process). Then it is natural to
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call the two-parameter process {Yt(v) : t ≥ 0, v ≥ 0} a flow of CBI-processes.
We prove that the flow has a version with the following properties:

(i) for each v ≥ 0, t 7→ Yt(v) is a càdlàg process on [0,∞) and solves (1.5);

(ii) for each t ≥ 0, v 7→ Yt(v) is a non-negative and non-decreasing càdlàg
process on [0,∞).

The proof of those properties is based on the observation that {Y (v) : v ≥ 0} is
a path-valued process with independent increments. For any t ≥ 0, the random
function v 7→ Yt(v) induces a random Radon measure Yt(dv) on [0,∞). We
shall see that {Yt : t ≥ 0} is actually an immigration superprocess in the sense
of Li (2011) with trivial underlying spatial motion. One could replace the
diffusion term in (1.5) by the stochastic integral σ

∫ t
0

√
Ys−(v)dW (s) using a

one-dimensional Brownian motion {W (t) : t ≥ 0} as in Dawson and Li (2006).
The resulted equation defines an equivalent CBI-process for any fixed v ≥ 0,
but it does not give an equivalent flow.

To describe our generalization of (1.1), let us assume that σ ≥ 0 and
b ≥ 0 are constants, v 7→ γ(v) is a non-decreasing continuous function on [0, 1]
such that 0 ≤ γ(v) ≤ 1 for all 0 ≤ v ≤ 1 and z2ν(dz) is a finite measure
on (0, 1]. Let {B(ds, du)} be a white noise on (0,∞) × (0, 1] based on dsdu
and let {M(ds, dz, du)} be a Poisson random measure on (0,∞)× (0, 1]2 with
intensity dsν(dz)du. We show that for any v ∈ [0, 1] there is a pathwise unique
solution X(v) = {Xt(v) : t ≥ 0} to the equation

Xt(v) = v + σ

∫ t

0

∫ 1

0
[1{u≤Xs−(v)} −Xs−(v)]B(ds, du)

+ b

∫ t

0
[γ(v)−Xs−(v)]ds

+

∫ t

0

∫ 1

0

∫ 1

0
z[1{u≤Xs−(v)} −Xs−(v)]M(ds, dz, du). (1.6)

Clearly, the above equation unifies and generalizes the flows described by (1.1),
(1.2) and (1.3). Here it is essential to use the white noise as the diffusion
driving force. We show there is a version of the random field {Xt(v) : t ≥
0, 0 ≤ v ≤ 1} with the following properties:

(i) for each v ∈ [0, 1], t 7→ Xt(v) is càdlàg on [0,∞) and solves (1.6);

(ii) for each t ≥ 0, v 7→ Xt(v) is non-decreasing and càdlàg on [0, 1] with
Xt(0) ≥ 0 and Xt(1) ≤ 1.

We refer to {Xt(v) : t ≥ 0, 0 ≤ v ≤ 1} as a generalized Fleming–Viot flow
following Bertoin and Le Gall (2003, 2005, 2006). In particular, our result
gives the strong existence of the flows associated with the coalescents with
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multiple collisions. The study of this flow is more involved than the one
defined by (1.5) as the path-valued process {X(v) : 0 ≤ v ≤ 1} does not have
independent increments. However, we shall see it is still an inhomogeneous
Markov process. From the random field {Xt(v) : t ≥ 0, 0 ≤ v ≤ 1} we can
define a càdlàg sub-probability-valued process {Xt : t ≥ 0} on [0, 1], which is
a counterpart of the generalized Fleming–Viot process of Bertoin and Le Gall
(2003). We prove two scaling limit theorems for the generalized Fleming–Viot
processes, which lead to a special form of the immigration superprocess defined
from (1.5). From the theorems we derive easily a generalization of the limit
theorem for the finite point motions in Bertoin and Le Gall (2006).

The techniques of this paper are mainly based on the strong solutions of
(1.5) and (1.6), which are different from those of Bertoin and Le Gall (2005,
2006). In Section 2 we give some general results for the pathwise unique-
ness, comparison property and existence of non-negative strong solutions of
stochastic equations driven by white noises and Poisson random measures.
Those extend the results in Fu and Li (2010) and provide the basis for the
investigation of the strong solution flows of (1.5) and (1.6). They should also
be of interest on their own right. In Section 3 we study the flows of CBI-
processes and their associated immigration superprocesses. The generalized
Fleming–Viot flows are discussed in Section 4. Finally, we prove the scaling
limit theorems in Section 5.

Notation. For a measure µ and a function f on a measurable space (E,E )
write ⟨µ, f⟩ =

∫
E fdµ if the integral exists. For any a ≥ 0 letM [0, a] be the set

of finite measures on [0, a] endowed with the topology of weak convergence. Let
M1[0, a] be the subspace ofM [0, a] consisting of sub-probability measures. Let
B[0, a] be the Banach space of bounded Borel functions on [0, a] endowed with
the supremum norm ∥ · ∥ and let C[0, a] denote its subspace of continuous
functions. We use B[0, a]+ and C[0, a]+ to denote the subclasses of non-
negative elements. Throughout this paper, we make the conventions∫ b

a
=

∫
(a,b]

and

∫ ∞

a
=

∫
(a,∞)

for any b ≥ a ≥ 0. Given a function f defined on a subset of R, we write

∆zf(x) = f(x+ z)− f(x) and Dzf(x) = ∆zf(x)− f ′(x)z

for x, z ∈ R if the right-hand side is meaningful. Let λ denote the Lebesgue
measure on [0,∞).

2 Strong solutions of stochastic equations

In this section, we prove some results on stochastic equations of one-dimensional
processes driven by white noises and Poisson random measures. The results
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extend those of Fu and Li (2010). Since our aim is to apply the results to
the generalized Fleming–Viot flows and the flows of CBI-processes, we only
discuss equations of non-negative processes. However, the arguments can be
modified to deal with general one-dimensional equations.

Let E, U0 and U1 be separable topological spaces whose topologies can
be defined by complete metrics. Suppose that π(dz), µ0(du) and µ1(du) are
σ-finite Borel measures on E, U0 and U1, respectively. We say the parameters
(σ, b, g0, g1) are admissible if:

• x 7→ b(x) is a continuous function on R+ satisfying b(0) ≥ 0;

• (x, u) 7→ σ(x, u) is a Borel function on R+ ×E satisfying σ(0, u) = 0 for
u ∈ E;

• (x, u) 7→ g0(x, u) is a Borel function on R+ × U0 satisfying g0(0, u) = 0
and g0(x, u) + x ≥ 0 for x > 0 and u ∈ U0;

• (x, u) 7→ g1(x, u) is a Borel function on R+×U1 satisfying g1(x, u)+x ≥ 0
for x ≥ 0 and u ∈ U1.

Let {W (ds, du)} be a white noise on (0,∞) × E with intensity dsπ(dz). Let
{N0(ds, du)} and {N1(ds, du)} be Poisson random measures on (0,∞) × U0

and (0,∞) × U1 with intensities dsµ0(du) and dsµ1(du), respectively. Sup-
pose that {W (ds, du)}, {N0(ds, du)} and {N1(ds, du)} are defined on some
complete probability space (Ω ,F ,P) and are independent of each other. Let
{Ñ0(ds, du)} denote the compensated measure of {N0(ds, du)}. A non-negative
càdlàg process {x(t) : t ≥ 0} is called a solution of

x(t) = x(0) +

∫ t

0

∫
E
σ(x(s−), u)W (ds, du)

+

∫ t

0
b(x(s−))ds+

∫ t

0

∫
U0

g0(x(s−), u)Ñ0(ds, du)

+

∫ t

0

∫
U1

g1(x(s−), u)N1(ds, du) (2.1)

if it satisfies the stochastic equation almost surely for every t ≥ 0. We say
{x(t) : t ≥ 0} is a strong solution if, in addition, it is adapted to the augmented
natural filtration generated by {W (ds, du)}, {N0(ds, du)} and {N1(ds, du)};
see, e.g., Situ (2005, page 76). Since x(s−) ̸= x(s) for at most countably many
s ≥ 0, we can also use x(s) instead of x(s−) in the integrals with respect to
W (ds, du) and ds on the right-hand side of (2.1). For the convenience of the
statements of the results, we write b(x) = b1(x) − b2(x), where x 7→ b1(x) is
continuous and x 7→ b2(x) is continuous and non-decreasing. Let us formulate
the following conditions:
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(2.a) there is a constant K ≥ 0 so that

b(x) +

∫
U1

|g1(x, u)|µ1(du) ≤ K(1 + x)

for every x ≥ 0;

(2.b) there is a non-decreasing function x 7→ L(x) on R+ and a Borel function
(x, u) 7→ ḡ0(x, u) on R+ × U0 so that sup0≤y≤x |g0(y, u)| ≤ ḡ0(x, u) and∫

E
σ(x, u)2π(du) +

∫
U0

[ḡ0(x, u) ∧ ḡ0(x, u)2]µ0(du) ≤ L(x)

for every x ≥ 0;

(2.c) for each m ≥ 1 there is a non-decreasing concave function z 7→ rm(z) on
R+ such that

∫
0+ rm(z)−1dz = ∞ and

|b1(x)− b1(y)|+
∫
U1

|g1(x, u)− g1(y, u)|µ1(du) ≤ rm(|x− y|)

for every 0 ≤ x, y ≤ m;

(2.d) for each m ≥ 1 there is a non-negative non-decreasing function z 7→
ρm(z) on R+ so that

∫
0+ ρm(z)−2dz = ∞,∫

E
|σ(x, u)− σ(y, u)|2π(du) ≤ ρm(|x− y|)2

and ∫
U0

µ0(du)

∫ 1

0

l0(x, y, u)
2(1− t)1{|l0(x,y,u)|≤n}

ρm(|(x− y) + tl0(x, y, u)|)2
dt ≤ c(m,n)

for every n ≥ 1 and 0 ≤ x, y ≤ m, where l0(x, y, u) = g0(x, u)− g0(y, u)
and c(m,n) ≥ 0 is a constant.

Theorem 2.1 Suppose that (σ, b, g0, g1) are admissible parameters satisfying
conditions (2.a,b,c,d). Then the pathwise uniqueness of solutions holds for
(2.1).

Proof. We first fix the integer m ≥ 1. Let a0 = 1 and choose ak → 0
decreasingly so that

∫ ak−1

ak
ρm(z)−2dz = k for k ≥ 1. Let x 7→ ψk(x) be a non-

negative continuous function on R which has support in (ak, ak−1) and satisfies∫ ak−1

ak
ψk(x)dx = 1 and 0 ≤ ψk(x) ≤ 2k−1ρm(x)−2 for ak < x < ak−1. For

each k ≥ 1 we define the non-negative and twice continuously differentiable
function

ϕk(z) =

∫ |z|

0
dy

∫ y

0
ψk(x)dx, z ∈ R. (2.2)
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It is easy to see that ϕk(z) → |z| non-decreasingly as k → ∞ and 0 ≤ ϕ′k(z) ≤ 1
for z ≥ 0 and −1 ≤ ϕ′k(z) ≤ 0 for z ≤ 0. By condition (2.d) and the choice of
x 7→ ψk(x),

ϕ′′k(x− y)

∫
E
|σ(x, u)− σ(y, u)|2π(du)

≤ ψk(|x− y|)ρm(|x− y|)2 ≤ 2

k
(2.3)

for 0 ≤ x, y ≤ m. Then the left-hand side tends to zero uniformly in 0 ≤
x, y ≤ m as k → ∞. For h, ζ ∈ R, by Taylor’s expansion we have

Dhϕk(ζ) =

∫ 1

0
h2ϕ′′k(ζ + th)(1− t)dt =

∫ 1

0
h2ψk(|ζ + th|)(1− t)dt.

It follows that

Dhϕk(ζ) ≤
2

k

∫ 1

0
h2ρm(|ζ + th|)−2(1− t)dt. (2.4)

Observe also that

Dhϕk(ζ) = ∆hϕk(ζ)− ϕ′k(ζ)h ≤ 2|h|. (2.5)

For 0 ≤ x, y ≤ m and n ≥ 1 we can use (2.4) and (2.5) to get∫
U0

Dl0(x,y,u)ϕk(x− y)µ0(du)

≤ 2

k

∫
U0

µ0(du)

∫ 1

0

l0(x, y, u)
2(1− t)1{|l0(x,y,u)|≤n}

ρm(|(x− y) + tl0(x, y, u)|)2
dt

+2

∫
U0

|l0(x, y, u)|1{|l0(x,y,u)|>n}µ0(du)

≤ 2

k
c(m,n) + 4

∫
U0

ḡ0(m,u)1{ḡ0(m,u)>n/2}µ0(du). (2.6)

By conditions (2.b,d) one sees the right-hand side tends to zero uniformly in
0 ≤ x, y ≤ m as k → ∞. Then the pathwise uniqueness for (2.1) follows by a
trivial modification of Theorem 3.1 in Fu and Li (2010). �

The key difference between the above theorem and Theorems 3.2 and 3.3 of
Fu and Li (2010) is that here we do not assume x 7→ g0(x, u) is non-decreasing.
This is essential for the applications to stochastic equations like (1.6).

Theorem 2.2 Let (σ, b′, g0, g
′
1) and (σ, b′′, g0, g

′′
1) be two sets of admissible pa-

rameters satisfying conditions (2.a,b,c,d). In addition, assume that

(i) for every u ∈ U1, x 7→ x+g′1(x, u) or x 7→ x+g′′1(x, u) is non-decreasing;
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(ii) b′(x) ≤ b′′(x) and g′1(x, u) ≤ g′′1(x, u) for every x ≥ 0 and u ∈ U1.

Suppose that {x′(t) : t ≥ 0} is a solution of (2.1) with (b, g1) = (b′, g′1) and
{x′′(t) : t ≥ 0} is a solution of the equation with (b, g1) = (b′′, g′′1). If x′(0) ≤
x′′(0), then P{x′(t) ≤ x′′(t) for all t ≥ 0} = 1.

Proof. Let ζ(t) = x′(t)− x′′(t) for t ≥ 0. Let x 7→ ψk(x) be defined as in the
proof of Theorem 2.1. Instead of (2.2), for each k ≥ 1 we now define

ϕk(z) =

∫ z

0
dy

∫ y

0
ψk(x)dx, z ∈ R. (2.7)

Then ϕk(z) → z+ := 0 ∨ z non-decreasingly as k → ∞. Let

l0(t, u) = g0(x
′(t), u)− g0(x

′′(t), u), t ≥ 0, u ∈ U0,

and

l1(t, u) = g′1(x
′(t), u)− g′′1(x

′′(t), u), t ≥ 0, u ∈ U1.

For ζ(s−) ≤ 0 we have ϕk(ζ(s−)) = ϕ′k(ζ(s−)) = 0. Since x 7→ x + f(x, u)
is non-decreasing for f = g′1 or g′′1 , for ζ(s−) = x′(s−) − x′′(s−) ≤ 0 we also
have

ζ(s−) + l1(s−, u) = x′(s−)− x′′(s−) + g′1(x
′(s−), u)− g′′1(x

′′(s−), u)
≤ x′(s−)− x′′(s−) + f(x′(s−), u)− f(x′′(s−), u) ≤ 0.

The latter implies

∆l1(s−,u)ϕk(ζ(s−)) = ϕk(ζ(s−) + l1(s−, u))− ϕk(ζ(s−)) = 0.

By Itô’s formula we have

ϕk(ζ(t)) = ϕk(ζ(0)) +
1

2

∫ t

0
ds

∫
E
ϕ′′k(ζ(s−))[σ(x′(s−), u)

−σ(x′′(s−), u)]2π(du)

+

∫ t

0
ϕ′k(ζ(s−))[b′(x′(s−))

− b′′(x′′(s−))]1{ζ(s−)>0}ds

+

∫ t

0
ds

∫
U1

∆l1(s−,u)ϕk(ζ(s−))1{ζ(s−)>0}µ1(du)

+

∫ t

0
ds

∫
U0

Dl0(s−,u)ϕk(ζ(s−))µ0(du) +Mm(t), (2.8)

where

Mm(t) =

∫ t

0

∫
E
ϕ′k(ζ(s−))[σ(x′(s−), u)
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−σ(x′′(s−), u)]W (ds, du)

+

∫ t

0

∫
U1

∆l1(s−,u)ϕk(ζ(s−))Ñ1(ds, du)

+

∫ t

0

∫
U0

∆l0(s−,u)ϕk(ζ(s−))Ñ0(ds, du).

Let τm = inf{t ≥ 0 : x′(t) ≥ m or x′′(t) ≥ m} for m ≥ 1. Under conditions
(2.b,c) it is easy to show that {Mm(t ∧ τm)} is a martingale. Recall that
b′(x) ≤ b′′(x) and b′(x) = b′1(x)−b′2(x) for a non-decreasing function x 7→ b′2(x).
Then under the restriction ζ(s−) > 0 we have

ϕ′k(ζ(s−))[b′(x′(s−))− b′′(x′′(s−))]
≤ ϕ′k(ζ(s−))[b′(x′(s−))− b′(x′′(s−))]
≤ ϕ′k(ζ(s−))[b′1(x

′(s−))− b′1(x
′′(s−))]

≤ |b′1(x′(s−))− b′1(x
′′(s−))|

and

∆l1(s−,u)ϕk(ζ(s−))
= ϕk(ζ(s−) + g′1(x

′(s−), u)− g′′1(x
′′(s−), u))− ϕk(ζ(s−))

≤ ϕk(ζ(s−) + g′1(x
′(s−), u)− g′1(x

′′(s−), u))− ϕk(ζ(s−))
≤ |g′1(x′(s−), u)− g′1(x

′′(s−), u)|.

The estimates (2.3) and (2.6) are still valid. If x′(0) ≤ x′′(0), we can take the
expectation in (2.8) and let k → ∞ to get

E[ζ(t ∧ τm)+] ≤ E

[ ∫ t∧τm

0
rm(|ζ(s−)|)1{ζ(s−)>0}ds

]
≤

∫ t

0
rm(E[ζ(s ∧ τm)+])ds,

where the second inequality holds by the concaveness of z 7→ rm(z). Then
E[ζ(t ∧ τm)+] = 0 for all t ≥ 0. Since τm → ∞ as m→ ∞, we get the desired
comparison property. �

We say the comparison property of solutions holds for (2.1) if for any two
solutions {x1(t) : t ≥ 0} and {x2(t) : t ≥ 0} satisfying x1(0) ≤ x2(0) we have
P{x1(t) ≤ x2(t) for all t ≥ 0} = 1. From Theorem 2.2 we get the following:

Theorem 2.3 Let (σ, b, g0, g1) be admissible parameters satisfying conditions
(2.a,b,c,d). In addition, assume that for every u ∈ U1 the function x 7→
x + g1(x, u) is non-decreasing. Then the comparison property holds for the
solutions of (2.1).

The monotonicity assumption on the function x 7→ x + g1(x, u) in The-
orem 2.3 is natural. To see this, suppose that {x1(t)} and {x2(t)} are two
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solutions of (2.1) and {(si, ui) : i ≥ 1} is the set of atoms of {N1(ds, du)}. The
assumption guarantees that x1(si−) ≤ x2(si−) implies

x1(si) = x1(si−) + g1(x1(si−), ui)
≤ x2(si−) + g1(x2(si−), ui) = x2(si).

A similar explanation can be given to Theorem 2.2. In some applications the
kernel x 7→ g0(x, u) may be non-decreasing. When this is true, we can replace
(2.d) by the following simpler condition:

(2.e) For each u ∈ U0 the function x 7→ g0(x, u) is non-decreasing, and for each
m ≥ 1 there is a non-negative and non-decreasing function z 7→ ρm(z)
on R+ so that

∫
0+ ρm(z)−2dz = ∞ and∫

E
|σ(x, u)− σ(y, u)|2π(du) +

∫
U0

|l0(x, y, u)| ∧ |l0(x, y, u)|2µ0(du)

≤ ρm(|x− y|)2

for all 0 ≤ x, y ≤ m, where l0(x, y, u) = g0(x, u)− g0(y, u).

Proposition 2.4 Let (σ, b, g0, g1) be admissible parameters. If (2.e) holds,
then (2.d) holds.

Proof. Since x 7→ g0(x, u) is non-decreasing, it is not hard to see |(x − y) +
tl0(x, y, u)| ≥ |x− y|. By condition (2.e) and the monotonicity of z 7→ ρ(z) we
have ∫ 1

0
dt

∫
U0

(1− t)l0(x, y, u)
21{|l0(x,y,u)|≤n}

ρm(|(x− y) + tl0(x, y, u)|)2
µ0(du)

≤ n

∫ 1

0
dt

∫
U0

[|l0(x, y, u)| ∧ l0(x, y, u)2]
ρm(|x− y|)2

µ0(du) ≤ n.

Then condition (2.d) is satisfied. �

Theorem 2.5 Suppose that (σ, b, g0, g1) are admissible parameters satisfying
conditions (2.a,c,e). Then there is a unique strong solution to (2.1).

Proof. We first note that (2.b) follows from (2.e). By Proposition 2.4, we also
have (2.d) from (2.e). Let {Vn} be a non-decreasing sequence of Borel subsets
of U0 so that ∪∞

n=1Vn = U0 and µ0(Vn) < ∞ for every n ≥ 1. For m,n ≥ 1
one can use (2.e) to see

x 7→ βm(x) :=

∫
U0

[g0(x, u)− g0(x, u) ∧m]µ0(du)

11



and

x 7→ γm,n(x) :=

∫
Vn

[g0(x, u) ∧m]µ0(du)

are continuous non-decreasing functions. By the results for continuous-type
stochastic equations as in Ikeda and Watanabe (1989, page 169), one can show
there is a non-negative weak solution to

x(t) = x(0) +

∫ t

0

∫
E
σ(x(s) ∧m,u)W (ds, du)

+

∫ t

0
bm(x(s) ∧m)ds−

∫ t

0
γm,n(x(s) ∧m)ds,

where bm(x) = b(x) − βm(x). The pathwise uniqueness holds for the above
equation by Theorem 2.1. Then it has a unique strong solution. Let {Wn} be
a non-decreasing sequence of Borel subsets of U1 so that ∪∞

n=1Wn = U1 and
µ1(Wn) < ∞ for every n ≥ 1. Following the proof of Proposition 2.2 of Fu
and Li (2010) one can show there is a unique strong solution {xm,n(t) : t ≥ 0}
to

x(t) = x(0) +

∫ t

0

∫
E
σ(x(s−) ∧m,u)W (ds, du)

+

∫ t

0
bm(x(s−) ∧m)ds−

∫ t

0
γm,n(x(s) ∧m)ds

+

∫ t

0

∫
Vn

[g0(x(s−) ∧m,u) ∧m]N0(ds, du)

+

∫ t

0

∫
Wn

[g1(x(s−) ∧m,u) ∧m]N1(ds, du).

We can rewrite the above equation into

x(t) = x(0) +

∫ t

0

∫
E
σ(x(s−) ∧m,u)W (ds, du)

+

∫ t

0
bm(x(s−) ∧m)ds

+

∫ t

0

∫
Vn

[g0(x(s−) ∧m,u) ∧m]Ñ0(ds, du)

+

∫ t

0

∫
Wn

[g1(x(s−) ∧m,u) ∧m]N1(ds, du).

As in the proof of Lemma 4.3 of Fu and Li (2010) one can see the sequence
{xm,n(t) : t ≥ 0}, n = 1, 2, · · · is tight in D([0,∞),R+). Following the proof of
Theorem 4.4 of Fu and Li (2010) it is easy to show that any weak limit point
{xm(t) : t ≥ 0} of the sequence is a non-negative weak solution to

x(t) = x(0) +

∫ t

0

∫
E
σ(x(s−) ∧m,u)W (ds, du)
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+

∫ t

0
bm(x(s−) ∧m)ds

+

∫ t

0

∫
U0

[g0(x(s−) ∧m,u) ∧m]Ñ0(ds, du)

+

∫ t

0

∫
U1

[g1(x(s−) ∧m,u) ∧m]N1(ds, du). (2.9)

By Theorem 2.1 the pathwise uniqueness holds for (2.9), so the equation has
a unique strong solution; see, e.g., Situ (2005, page 104). Then the result
follows by a simple modification of the proof of Proposition 2.4 of Fu and
Li (2010). See El Karoui and Méléard (1990) and Kurtz (2007, 2010) for
the general theory of stochastic equations driven by white noises and Poisson
random measures. �

3 Stochastic flows of CBI-processes

In this section, we give the constructions and characterizations of the flow
of CBI-processes and the associated immigration superprocess. Suppose that
σ ≥ 0 and b are constants and (u ∧ u2)m(du) is a finite measures on (0,∞).
Let ϕ be a function given by

ϕ(z) = bz +
1

2
σ2z2 +

∫ ∞

0
(e−zu − 1 + zu)m(du), z ≥ 0. (3.1)

A Markov process with state space R+ := [0,∞) is called a CB-process with
branching mechanism ϕ if it has transition semigroup (pt)t≥0 given by∫

R+

e−λypt(x, dy) = e−xvt(λ), λ ≥ 0, (3.2)

where (t, λ) 7→ vt(λ) is the unique locally bounded non-negative solution of

d

dt
vt(λ) = −ϕ(vt(λ)), v0(λ) = λ, t ≥ 0.

Given any β ≥ 0 we can also define a transition semigroup (qt)t≥0 on R+ by∫
R+

e−λyqt(x, dy) = exp

{
− xvt(λ)−

∫ t

0
βvs(λ)ds

}
. (3.3)

A non-negative real-valued Markov process with transition semigroup (qt)t≥0

is called a CBI-process with branching mechanism ϕ and immigration rate β.
It is easy to see that both (pt)t≥0 and (qt)t≥0 are Feller semigroups. See, for
example, Kawazu and Watanabe (1971) and Li (2011, Chapter 3).

Let {W (ds, du)} be a white noise on (0,∞)2 based on the Lebesgue mea-
sure dsdu and let {N(ds, dz, du)} be Poisson random measure on (0,∞)3 with
intensity dsm(dz)du. Let {Ñ(ds, dz, du)} be the compensated measure of
{N(ds, dz, du)}.
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Theorem 3.1 There is a unique non-negative strong solution of the stochastic
equation

Yt = Y0 + σ

∫ t

0

∫ Ys−

0
W (ds, du) +

∫ t

0
(β − bYs−)ds

+

∫ t

0

∫ ∞

0

∫ Ys−

0
zÑ(ds, dz, du).

Moreover, the solution {Yt : t ≥ 0} is a CBI-process with branching mechanism
ϕ and immigration rate β.

Proof. The existence and uniqueness of the strong solution follows by an
application of Theorem 2.5; see also Dawson and Li (2006). Using Itô’s formula
one can see that {Yt(v) : t ≥ 0} solves the martingale problem associated with
the generator L defined by

Lf(x) =
1

2
σ2xf ′′(x) + (β − bx)f ′(x) + x

∫ ∞

0
Dzf(x)m(dz). (3.4)

Then it is a CBI-process with branching mechanism ϕ and immigration rate
β; see Kawazu and Watanabe (1971) and Li (2011, Section 9.5). �

Let v 7→ γ(v) be a non-negative and non-decreasing continuous function on
[0,∞). We denote by γ(dv) the Radon measure on [0,∞) so that γ([0, v]) =
γ(v) for v ≥ 0. By Theorem 3.1 for each v ≥ 0 there is a pathwise unique
non-negative solution Y (v) = {Yt(v) : t ≥ 0} to the stochastic equation

Yt(v) = v + σ

∫ t

0

∫ Ys−(v)

0
W (ds, du) +

∫ t

0
[γ(v)− bYs−(v)]ds

+

∫ t

0

∫ ∞

0

∫ Ys−(v)

0
zÑ(ds, dz, du). (3.5)

Theorem 3.2 For any v2 ≥ v1 ≥ 0 we have P{Yt(v2) ≥ Yt(v1) for all t ≥
0} = 1 and {Yt(v2)−Yt(v1) : t ≥ 0} is a CBI-process with branching mechanism
ϕ and immigration rate β := γ(v2)− γ(v1) ≥ 0.

Proof. The comparison property follows by applying Theorem 2.2 and Propo-
sition 2.4 to (3.5). Let Zt = Yt(v2)− Yt(v1) for t ≥ 0. From (3.5) we have

Zt = v2 − v1 + σ

∫ t

0

∫ Ys−(v2)

Ys−(v1)
W (ds, du) +

∫ t

0
(β − bZs−)ds

+

∫ t

0

∫ ∞

0

∫ Ys−(v2)

Ys−(v1)
zÑ(ds, dz, du)

= v2 − v1 + σ

∫ t

0

∫ Zs−

0
W1(ds, du) +

∫ t

0
(β − bZs−)ds
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+

∫ t

0

∫ ∞

0

∫ Zs−

0
zÑ1(ds, dz, du), (3.6)

where

W1(ds, du) =W (ds, Ys−(v1) + du)

is a white noise with intensity dsdu and

N1(ds, dz, du) = N(ds, dz, Ys−(v1) + du)

is a Poisson random measure with intensity dsm(dz)du. That shows {Zt :
t ≥ 0} is a weak solution of (3.5). Then it a CBI-process with branching
mechanism ϕ and immigration rate β. �

Theorem 3.3 Let v2 ≥ v1 ≥ u2 ≥ u1 ≥ 0. Then {Yt(u2) − Yt(u1) : t ≥ 0}
and {Yt(v2)− Yt(v1) : t ≥ 0} are independent CBI-processes with immigration
rates α := γ(u2)− γ(u1) and β := γ(v2)− γ(v1), respectively.

Proof. Let Lα and Lβ denote the generators of the CBI-processes with im-
migration rates α and β, respectively. Let Xt = Yt(u2) − Yt(u1) and Zt =
Yt(v2)− Yt(v1). For any G ∈ C2(R2

+) one can use Itô’s formula to show

G(Xt, Zt) = G(X0, Z0) +

∫ t

0
LαG(Xs, Zs)ds

+

∫ t

0
LβG(Xs, Zs)ds+ local mart., (3.7)

where Lα and Lβ act on the first and second coordinates of G, respectively.
Then {Xt : t ≥ 0} and {Zt : t ≥ 0} are independent CBI-processes with
immigration rates α and β, respectively. �

Proposition 3.4 There is a locally bounded non-negative function t 7→ C(t)
on [0,∞) so that

E
{

sup
0≤s≤t

[Ys(v2)− Ys(v1)]
}

≤ C(t)
{
(v2 − v1) + [γ(v2)− γ(v1)]

+
√
v2 − v1 +

√
γ(v2)− γ(v1)

}
(3.8)

for t ≥ 0 and v2 ≥ v1 ≥ 0.

Proof. Let Zt = Yt(v2)− Yt(v1) for t ≥ 0. Taking the expectation in (3.6) we
have

E(Zt) = (v2 − v1) + t[γ(v2)− γ(v1)]− b

∫ t

0
E(Zs)ds.
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Solving the above integral equation gives

E(Zt) = (v2 − v1)e
−bt + [γ(v2)− γ(v1)]b

−1(1− e−bt) (3.9)

with b−1(1−e−bt) = t for b = 0 by convention. By (3.6) and Doob’s martingale
inequality,

E
{

sup
0≤s≤t

Zs

}
≤ (v2 − v1) + 2σE

1
2

{(∫ t

0

∫ Ys−(v2)

Ys−(v1)
W (ds, du)

)2}
+

∫ t

0
{[γ(v2)− γ(v1)] + |b|E(Zs)}ds

+2E
1
2

{(∫ t

0

∫ 1

0

∫ Ys−(v2)

Ys−(v1)
zÑ(ds, dz, du)

)2}
+E

[ ∫ t

0

∫ ∞

1

∫ Ys−(v2)

Ys−(v1)
zN(ds, dz, du)

]
≤ (v2 − v1) + t[γ(v2)− γ(v1)] + 2σ

[ ∫ t

0
E(Zs)ds

] 1
2

+2

[ ∫ 1

0
z2ν(dz)

] 1
2
[ ∫ t

0
E(Zs)ds

] 1
2

+

[
|b|+

∫ ∞

1
zν(dz)

] ∫ t

0
E(Zs)ds.

Then (3.8) follows by (3.9). �

Suppose that (E, ρ) is a complete metric space. Let F be a subset of [0,∞)
such that 0 ∈ F and let t 7→ x(t) be a path from F to E. For any ϵ > 0 the
number of ϵ-oscillations of this path on F is defined as

µ(ϵ) := sup{n ≥ 0 : there are 0 = t0 < t1 < · · · < tn ∈ F
so that ρ(x(ti−1), x(ti)) ≥ ϵ for all 1 ≤ i ≤ n}.

If F is dense in [0,∞), it is simple to show the limits y(t) := limF∋s→t+ x(s)
exist for all t ≥ 0 and constitute a càdlàg path t 7→ y(t) on [0,∞) if and only
if t 7→ x(t) has at most a finite number of ϵ-oscillations on F ∩ [0, T ] for every
ϵ > 0 and T ≥ 0.

Lemma 3.5 Suppose that (Ω ,G ,Gt,P) is a filtered probability space and {Xt :
t ≥ 0} is a (Gt)-Markov process with state space (E,E ) and transition semi-
group (Ps,t)t≥s. Suppose that ρ is a complete metric on E so that:

(i) for ϵ > 0 and 0 ≤ s, t ≤ u we have {ω ∈ Ω : ρ(Xs(ω), Xt(ω)) < ϵ} ∈ Gu;

(ii) for ϵ > 0 and x ∈ E we have Uϵ(x) := {y ∈ E : ρ(x, y) < ϵ} ∈ E and

αϵ(h) := sup
0≤t−s≤h

sup
x∈E

Ps,t(x,Uϵ(x)
c) → 0 (h→ 0). (3.10)
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Then {Xt : t ≥ 0} has a ρ-càdlàg modification.

Proof. Let F = {0, r1, r2, · · ·} be a countable dense subset of [0,∞) and
let Fn = {0, r1, · · · , rn}. For ϵ > 0 and a > 0 let νa(ϵ) and νan(ϵ) denote
respectively the numbers of ϵ-oscillations of t 7→ Xt on F ∩ [0, a] and Fn∩ [0, a].
Then νan(ϵ) → νa(ϵ) increasingly as n→ ∞. Let τ ϵn(0) = 0 and for k ≥ 0 define

τ ϵn(k + 1) = min{t ∈ Fn ∩ (τ ϵn(k),∞) : ρ(Xτϵn(k)
, Xt) ≥ ϵ}

if τ ϵn(k) < ∞ and τ ϵn(k + 1) = ∞ if τ ϵn(k) = ∞. Since Fn is discrete, for any
a ≥ 0 we have

{τ ϵn(k + 1) ≤ a} =
∪

s<t∈Fn∩[0,a]

({τ ϵn(k) = s} ∩ {ρ(Xs, Xt) ≥ ϵ}).

Using property (i) and the above relation it is easy to see successively that
each τ ϵn(k) is a stopping time. As in the proof of Lemma 9.1 of Wentzell (1981,
page 168) one can prove P{τ ϵn(1) ≤ h} ≤ 2αϵ/2(h) for ϵ > 0 and h > 0. Since
the strong Markov property of {Xt : t ≥ 0} holds at the discrete stopping
times τ ϵn(k), k = 1, 2, · · ·, one can inductively show

P{νhn(2ϵ) ≥ k} ≤ P{τ ϵn(k) ≤ h} ≤ [2αϵ/2(h)]
k.

It follows that

P{νh(2ϵ) ≥ k} = lim
n→∞

P{νhn(2ϵ) ≥ k} ≤ [2αϵ/2(h)]
k.

Choosing sufficiently small h = h(ϵ) ∈ F ∩ (0,∞) so that αϵ/2(h) < 1/2 and

letting k → ∞ we get P{νh(2ϵ) <∞} = 1. By repeating the above procedure
successively on the intervals [h, 2h], [2h, 3h], · · · we get P{νa(2ϵ) <∞} = 1 for
every a > 0. Let Ω1 = ∩∞

m=1{νm(1/m) < ∞}. Then Ω1 ∈ G and P(Ω1) = 1.
Moreover, for ω ∈ Ω1 we can define a ρ-càdlàg path t 7→ Yt(ω) on [0,∞) by
Yt(ω) := limF∋s→t+Xs(ω). Take x0 ∈ E and define Yt(ω) = x0 for t ≥ 0 and
ω ∈ Ω \ Ω1. By (3.10) one can see t 7→ Xt is right continuous in probability,
so Yt = Xt a.s. for every t ≥ 0. Then {Yt : t ≥ 0} is a ρ-càdlàg modification of
{Xt : t ≥ 0}. �

Let D[0,∞) be the space of non-negative càdlàg functions on [0,∞) and
let B(D[0,∞)) be its Borel σ-algebra generated by the Skorokhod topology.
Theorems 3.2 and 3.3 imply that {Y (v) : v ≥ 0} is a non-decreasing process
in (D[0,∞),B(D[0,∞))) with independent increments. Let ρ be the metric
on D[0,∞) defined by

ρ(ξ, ζ) =

∫ ∞

0
e−t sup

0≤s≤t
(|ξ(s)− ζ(s)| ∧ 1)dt. (3.11)

This metric corresponds to the topology of local uniform convergence, which
is strictly stronger than the Skorokhod topology.

17



Theorem 3.6 The path-valued process {Y (v) : v ≥ 0} has a ρ-càdlàg modifi-
cation. Consequently, there is a version of the solution flow {Yt(v) : t ≥ 0, v ≥
0} of (3.5) with the following properties:

(i) for each v ≥ 0, t 7→ Yt(v) is a càdlàg process on [0,∞) and solves (3.5);

(ii) for each t ≥ 0, v 7→ Yt(v) is a non-negative and non-decreasing càdlàg
process on [0,∞).

Proof. Step 1. For any T ≥ 0 let D[0, T ] be the space of non-negative càdlàg
functions on [0, T ] and let B(D[0, T ]) be its σ-algebra generated by the Sko-
rokhod topology. For v ≥ 0 let Y T (v) = {Yt(v) : 0 ≤ t ≤ T}. Theorem 3.3
implies that {Y T (v) : v ≥ 0} is a process in (D[0, T ],B(D[0, T ])) with inde-
pendent increments.

Step 2. Let FT = {T, r1, r2, · · ·} be a countable dense subset of [0, T ]. We
consider the metric ρT on D[0, T ] defined by

ρT (ξ, ζ) = sup
0≤s≤T

|ξ(s)− ζ(s)| = sup
r∈FT

|ξ(s)− ζ(s)|.

For any ϵ > 0 and ξ ∈ D[0, T ] we have

Ūϵ(ξ) := {ζ ∈ D[0, T ] : ρT (ξ, ζ) ≤ ϵ}
=

∩
r∈FT

{ζ ∈ D[0, T ] : |ξr − ζr| ≤ ϵ}.

Then the above set belongs to B(D[0, T ]); see, e.g., Ethier and Kurtz (1986,
page 127). It follows that

Uϵ(ξ) := {ζ ∈ D[0, T ] : ρT (ξ, ζ) < ϵ} =

∞∪
n=1

Ūϵ−1/n(ξ)

also belongs to B(D[0, T ]).

Step 3. Let (F T
v )v≥0 be the natural filtration of {Y T (v) : v ≥ 0}. For any

ϵ > 0 and 0 ≤ s, t ≤ v we have

ρT (Y
T (s), Y T (t)) = sup

r∈FT

|Yr(s)− Yr(t)|.

Then one can show {ω ∈ Ω : ρT (Y
T (ω, s), Y T (ω, t)) < ϵ} ∈ F T

v .

Step 4. Let (P T
u,v)v≥u denote the transition semigroup of {Y T (v) : v ≥ 0}.

By Proposition 3.4 for ϵ > 0 and ξ ∈ D[0,∞) we have

Pu,v(ξ, Uϵ(ξ)
c) = P

{
sup

0≤s≤T
[Ys(v)− Ys(u)] ≥ ϵ

}
≤ ϵ−1E

{
sup

0≤s≤T
[Ys(v)− Ys(u)]

}
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≤ ϵ−1C(t)
{
(v − u) + [γ(v)− γ(u)]

+
√
v − u+

√
γ(v)− γ(u)

}
.

Since v 7→ γ(v) is uniformly continuous on each bounded interval, Lemma 3.5
implies that {Y T (v) : v ≥ 0} has a ρT -càdlàg modification. That implies the
existence of a ρ-càdlàg modification of {Y (v) : v ≥ 0}. �

In the situation of Theorem 3.6 we call the solution {Yt(v) : t ≥ 0, v ≥ 0}
of (3.5) a flow of CBI-processes. Let F [0,∞) be the set of non-negative and
non-decreasing càdlàg functions on [0,∞). Given a finite stopping time τ and
a function µ ∈ F [0,∞) let {Y µ

τ,t(v) : t ≥ 0} be the solution of

Y µ
τ,t(v) = µ(v) + σ

∫ τ+t

τ

∫ Y µ
τ,s−(v)

0
W (ds, du)

+

∫ τ+t

τ
[γ(v)− bY µ

τ,s−(v)]ds

+

∫ τ+t

τ

∫ ∞

0

∫ Y µ
τ,s−(v)

0
zÑ(ds, dz, du), (3.12)

and write simply {Y µ
t (v) : t ≥ 0} instead of {Y µ

0,t(v) : t ≥ 0}. The pathwise
uniqueness for the above equation follows from that of (3.5) since {W (τ +
ds, du)} is a white noise based on dsdz and {N(τ + ds, dz, du)} is a Poisson
random measure with intensity dsm(dz)du. Let Gτ,t be the random operator
on F [0,∞) that maps µ to Y µ

τ,t.

Theorem 3.7 For any finite stopping time τ we have P{Y µ
τ+t = Gτ,tY

µ
τ for

all t ≥ 0} = 1.

Proof. By the sample path regularity of (t, v) 7→ Yt(v) we only need to show
P{Y µ

τ+t(v) = Gτ,tY
µ
τ (v)} = 1 for every t ≥ 0 and v ≥ 0. By (3.5) we have

Y µ
τ+t(v) = Y µ

τ (v) + σ

∫ τ+t

τ

∫ Y µ
s−(v)

0
W (ds, du)

+

∫ τ+t

τ
[γ(v)− bY µ

s−(v)]ds

+

∫ τ+t

τ

∫ ∞

0

∫ Y µ
s−(v)

0
zÑ(ds, dz, du).

By the pathwise uniqueness for (3.12) we get the desired result. �

For any Radon measure µ(dv) on [0,∞) with distribution function v 7→
µ(v), the random function v 7→ Y µ

t (v) induces a random Radon measure
Y µ
t (dv) on [0,∞) so that Y µ

t ([0, v]) = Y µ
t (v) for v ≥ 0. We shall give some

characterizations of the measure-valued process {Y µ
t : t ≥ 0}.
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For simplicity, we fix a constant a ≥ 0 and consider the restrictions of
µ(dv), γ(dv) and {Y µ

t : t ≥ 0} to [0, a] without changing the notation. Let us
consider the step function

f(x) = c01{0}(x) +
n∑

i=1

ci1(ai−1,ai](x), x ∈ [0, a], (3.13)

where {c0, c1, · · · , cn} ⊂ R and {0 = a0 < a1 < · · · < an = a} is a partition of
[0, a]. For this function we have

⟨Y µ
t , f⟩ = c0Y

µ
t (0) +

n∑
i=1

ci[Y
µ
t (ai)− Y µ

t (ai−1)]. (3.14)

From (3.12) and (3.14) it is simple to see

⟨Y µ
t , f⟩ = ⟨µ, f⟩+ σ

∫ t

0

∫ ∞

0
gµs−(u)W (ds, du)

+

∫ t

0
[⟨γ, f⟩ − b⟨Y µ

s−, f⟩]ds

+

∫ t

0

∫ ∞

0

∫ ∞

0
zgµs−(u)Ñ(ds, dz, du), (3.15)

where

gµs (u) = c01{u≤Y µ
s (0)} +

n∑
i=1

ci1{Y µ
s (ai−1)<u≤Y µ

s (ai)}. (3.16)

Proposition 3.8 For any t ≥ 0 and f ∈ B[0, a] we have

E[⟨Y µ
t , f⟩] = ⟨µ, f⟩e−bt + ⟨γ, f⟩b−1(1− e−bt) (3.17)

with b−1(1− e−bt) = t for b = 0 by convention.

Proof. We first consider the step function (3.13). By taking the expectation
in (3.15) we obtain

E[⟨Y µ
t , f⟩] = ⟨µ, f⟩+ t⟨γ, f⟩ − b

∫ t

0
E[⟨Y µ

s , f⟩]ds.

The above integral equation has the unique solution given by (3.17). For a
general function f ∈ B[0, a] we get (3.17) by a monotone class argument. �

Theorem 3.9 The measure-valued process {Y µ
t : t ≥ 0} is a càdlàg strong

Markov process in M [0, a] with Y µ
0 = µ.
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Proof. In view of (3.14), the process t 7→ ⟨Y µ
t , f⟩ is càdlàg for the step function

(3.13). Since any function in C[0, a] can be approximated by a sequence of
step functions in the supremum norm, it is easy to conclude t 7→ ⟨Y µ

t , f⟩ is
càdlàg for all f ∈ C[0, a]. By Theorem 3.7, for any finite stopping time τ we
have Y µ

τ+t = Gτ,tY
µ
τ almost surely. That clearly implies the strong Markov

property of {Y µ
t : t ≥ 0}. �

Theorem 3.10 For any f ∈ B[0, a] the process {⟨Y µ
t , f⟩ : t ≥ 0} has a càdlàg

modification. Moreover, there is a locally bounded function t 7→ C(t) so that

E
[

sup
0≤s≤t

⟨Y µ
s , f⟩

]
≤ C(t)

[
⟨µ, f⟩+ ⟨γ, f⟩

+ ⟨µ, f2⟩1/2 + ⟨γ, f2⟩1/2
]

(3.18)

for every t ≥ 0 and f ∈ B[0, a]+.

Proof. We first consider a non-negative step function given by (3.13) with
constants {c0, c1, · · · , cn} ⊂ R+. By (3.15) and Doob’s martingale inequality,

E
[

sup
0≤s≤t

⟨Y µ
s , f⟩

]
≤ ⟨µ, f⟩+ 2σE

1
2

{[∫ t

0

∫ ∞

0
gµs−(u)W (ds, du)

]2}
+ t⟨γ, f⟩+ |b|

∫ t

0
E[⟨Y µ

s , f⟩]ds

+2E
1
2

{[∫ t

0

∫ 1

0

∫ ∞

0
zgµs−(u)Ñ(ds, dz, du)

]2}
+E

[ ∫ t

0

∫ ∞

1

∫ ∞

0
zgµs−(u)N(ds, dz, du)

]
= ⟨µ, f⟩+ 2σE

1
2

[ ∫ t

0
ds

∫ ∞

0
gµs (u)

2du

]
+ t⟨γ, f⟩+ |b|

∫ t

0
E[⟨Y µ

s , f⟩]ds

+2E
1
2

[ ∫ t

0
ds

∫ 1

0
z2m(dz)

∫ ∞

0
gµs (u)

2du

]
+E

[ ∫ t

0
ds

∫ ∞

1
zm(dz)

∫ ∞

0
gµs (u)du

]
≤ ⟨µ, f⟩+ 2

(∫ t

0
E[⟨Y µ

s , f
2⟩]ds

) 1
2
[
σ +

(∫ 1

0
z2m(dz)

) 1
2
]

+ t⟨γ, f⟩+
∫ t

0
E[⟨Y µ

s , f⟩]ds
[
|b|+

∫ ∞

1
zm(dz)

]
.

In view of (3.17) we get (3.18) for the step function. Now let η(dv) = µ(dv)+
γ(dv) and choose a bounded sequence of step functions {fn} so that fn → f
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in L2(η) as n → ∞. By applying (3.18) to the non-negative step function
|fn − fm| we get

E
[

sup
0≤s≤t

⟨Y µ
s , |fn − fm|⟩

]
≤ C(t)

[
⟨η, |fn − fm|⟩+ 2⟨η, |fn − fm|2⟩1/2

]
.

The right-hand side tends to zero asm,n→ ∞. Then there is a càdlàg process
{Y µ

t (f) : t ≥ 0} so that

E
[

sup
0≤s≤t

|⟨Y µ
s , fn⟩ − Y µ

s (f)|
]
→ 0, n→ ∞. (3.19)

On the other hand, from (3.17) we have

E[⟨Y µ
t , |fn − f |⟩] = ⟨µ, |fn − f |⟩e−bt + b−1(1− e−bt)⟨γ, |fn − f |⟩,

which tends to zero as n → ∞. Then {Y µ
t (f) : t ≥ 0} is a modification of

{⟨Y µ
t , f⟩ : t ≥ 0}. Finally, we get (3.18) for f ∈ B[0, a]+ by using (3.19) and

the result for step functions. �

Theorem 3.11 The process {Y µ
t : t ≥ 0} is the unique solution of the follow-

ing martingale problem: For every G ∈ C2(R) and f ∈ B[0, a],

G(⟨Y µ
t , f⟩) = G(⟨µ, f⟩) + 1

2
σ2

∫ t

0
G′′(⟨Y µ

s , f⟩)⟨Y µ
s , f

2⟩ds

+

∫ t

0
G′(⟨Y µ

s , f⟩)[⟨γ, f⟩ − b⟨Y µ
s , f⟩]ds

+

∫ t

0
ds

∫
[0,a]

Y µ
s (dx)

∫ ∞

0

[
G(⟨Y µ

s , f⟩+ zf(x))

−G(⟨Y µ
s , f⟩)− zf(x)G′(⟨Y µ

s , f⟩)
]
m(dz)

+ local mart. (3.20)

Proof. Again we start with the step function (3.13). Using (3.15) and Itô’s
formula,

G(⟨Y µ
t , f⟩) = G(⟨µ, f⟩) + 1

2
σ2

∫ t

0
ds

∫ ∞

0
G′′(⟨Y µ

s−, f⟩)g
µ
s−(u)

2du

+

∫ t

0
G′(⟨Y µ

s−, f⟩)[⟨γ, f⟩ − b⟨Y µ
s−, f⟩]ds

+

∫ t

0
ds

∫ ∞

0
m(dz)

∫ ∞

0

[
G(⟨Y µ

s , f⟩+ zgµs (u))

−G(⟨Y µ
s , f⟩)−G′(⟨Y µ

s , f⟩)zgµs (u)
]
du+ local mart.

= G(⟨µ, f⟩) + 1

2
σ2

∫ t

0
G′′(⟨Y µ

s , f⟩)⟨Y µ
s , f

2⟩ds
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+

∫ t

0
G′(⟨Y µ

s , f⟩)[⟨γ, f⟩ − b⟨Y µ
s , f⟩]ds

+

∫ t

0
ds

∫ ∞

0
Y µ
s (dx)

∫ ∞

0

[
G(⟨Y µ

s , f⟩+ zf(x))

−G(⟨Y µ
s , f⟩)−G′(⟨Y µ

s , f⟩)zf(x)
]
m(dz) + local mart.

That proves (3.20) for step functions. For f ∈ B[0, a] we get the martingale
problem using (3.19). The uniqueness of the solution follows from a result in
Li (2011, Section 9.3). �

The solution of the martingale problem (3.20) is the special case of the
immigration superprocess studied in Li (2011) with trivial spatial motion.
More precisely, the infinitesimal particles propagate in [0, a] without migra-
tion. Then for any disjoint bounded Borel subsets B1 and B2 of [0, a], the
non-negative real-valued processes {Y µ

t (B1) : t ≥ 0} and {Y µ
t (B2) : t ≥ 0} are

independent. That explains why the restriction of {Y µ
t : t ≥ 0} to the interval

[0, a] is still a Markov process. To consider the process on the half line [0,∞)
we need to introduce a weight function as follows.

Let h be a strictly positive continuous function on [0,∞) vanishing at
infinity. Let Mh[0,∞) be the space of Radon measures µ on [0,∞) so that
⟨µ, h⟩ < ∞. Let Bh[0,∞) be the set of Borel functions on [0,∞) bounded by
const·h and let Ch[0,∞) denote its subset of continuous functions. A topology
onMh[0,∞) can be defined by the convention: µn → µ inMh[0,∞) if and only
if ⟨µn, f⟩ → ⟨µ, f⟩ for every f ∈ Ch[0,∞). Suppose that µ ∈ Mh[0,∞) and
γ ∈Mh[0,∞). It is easy to show that {Y µ

t : t ≥ 0} is a càdlàg strong Markov
process in Mh[0,∞) and the results of Theorem 3.10 and Theorem 3.11 are
also true for Bh[0,∞).

4 Generalized Fleming–Viot flows

In this section we give a construction of the generalized Fleming–Viot flow
as the strong solution of a stochastic integral equation. Let σ ≥ 0, b ≥ 0
and 0 ≤ β ≤ 1 be constants, and let z2ν(dz) be a finite measure on (0, 1].
Suppose that {B(ds, du)} is a white noise on (0,∞)2 with intensity dsdu and
{M(ds, dz, du)} is a Poisson random measure on (0,∞)× (0, 1]× (0,∞) with
intensity dsν(dz)du. Let

q(x, u) = 1{u≤1∧x} − (1 ∧ x), x ≥ 0, u ∈ (0, 1].

We first consider the stochastic integral equation

Xt = X0 +

∫ t

0

∫ 1

0
σq(Xs−, u)B(ds, du) +

∫ t

0
b(β −Xs−)ds
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+

∫ t

0

∫ 1

0

∫ 1

0
zq(Xs−, u)M̃(ds, dz, du), (4.1)

where M̃(ds, dz, du) denotes the compensated measure of M(ds, dz, du). In
fact, the compensation in (4.1) can be disregarded as∫ 1

0
q(Xs−, u)du =

∫ 1

0
[1{u≤Xs−∧1} − (Xs− ∧ 1)]du = 0.

Theorem 4.1 There is a unique non-negative strong solution to (4.1).

Proof. We first show the pathwise uniqueness for (4.1). Set l(x, y, u) =
q(x, u)− q(y, u). For x, y ≥ 0 and 0 ≤ z, t ≤ 1 we have

(x− y) + ztl(x, y, u)

= [(x− 1 ∧ x)− (y − 1 ∧ y)] + (1− zt)(1 ∧ x− 1 ∧ y)
+ zt(1{u≤x∧1} − 1{u≤y∧1}).

It is then easy to see

|(x− y) + ztl(x, y, u)| ≥ (1− zt)|1 ∧ x− 1 ∧ y|.

Moreover, we have∫ 1

0
l(x, y, u)2du = |1 ∧ x− 1 ∧ y| − (1 ∧ x− 1 ∧ y)2

≤ |1 ∧ x− 1 ∧ y|.

Using the above two inequalities,∫ 1

0
(1− t)dt

∫ 1

0
ν(dz)

∫ 1

0

z2l(x, y, u)2

|(x− y) + ztl(x, y, u)|
du

≤
∫ 1

0
z2ν(dz)

∫ 1

0

1− t

1− zt
dt

∫ 1

0

l(x, y, u)2

|1 ∧ x− 1 ∧ y|
du

≤
∫ 1

0
z2ν(dz)

∫ 1

0

1− t

1− zt
dt ≤

∫ 1

0
z2ν(dz).

Then condition (2.d) is satisfied with ρ(z) =
√
z. Other conditions of The-

orem 2.1 can be checked easily. Then we have the pathwise uniqueness for
(4.1). To show the existence of the solution, we may assume X0 = v ≥ 0 is
a deterministic constant. By Theorem 2.5 there a unique non-negative strong
solution of (4.1) if the Poisson integral term is removed. Then for each k ≥ 1
there is a unique non-negative strong solution to

Zt = Z0 +

∫ t

0

∫ 1

0
σq(Zs−, u)B(ds, du) +

∫ t

0
b(β − Zs−)ds

24



+

∫ t

0

∫ 1

1/k

∫ 1

0
zq(Zs−, u)M(ds, dz, du) (4.2)

because the last term on the right-hand side gives at most a finite number of
jumps on each bounded time interval. Let {Zk(t) : t ≥ 0} be the solution of
(4.2) with Zk(0) = v. Let T1 = inf{t ≥ 0 : Zk(t) ≤ 1}. On the time interval
[0, T1], the stochastic integral terms in (4.2) vanish. Then t 7→ Zk(t) is non-
increasing on [0, T1]. By modifying the proof of Proposition 2.1 in Fu and Li
(2010) one can see Zk(t) ≤ 1 for t ≥ T1. Thus Zk(t) ≤ (Zk(0) ∨ 1) = (v ∨ 1)
for all t ≥ 0. Let {τk} be a bounded sequence of stopping times. Note that
the last term on the right-hand side of (4.2) can be considered as a stochastic
integral with respect to the compensated Poisson random measure. Then for
any t ≥ 0 we have

E
{
[Zk(τk + t)− Zk(τk)]

2
}

≤ 3σ2E

[ ∫ t

0
ds

∫ 1

0
q(Zk(τk + s), u)2du

]
+ 3b2t2(v ∨ 1)2

+3E

[ ∫ t

0
ds

∫ 1

0
z2ν(dz)

∫ 1

0
q(Zk(τk + s), u)2du

]
≤ 3t

[
σ2 + tb2(v ∨ 1)2 +

∫ 1

0
z2ν(dz)

]
.

The right-hand side tends to zero as t → 0. By a criterion of Aldous (1978),
the sequence {Zk(t) : t ≥ 0} is tight in D([0,∞),R+); see also Ethier and
Kurtz (1986, pages 137-138). By a modification of the proof of Theorem 4.4
in Fu and Li (2010) one sees that any limit point of this sequence is a weak
solution of (4.1). �

Now let v 7→ γ(v) be a non-decreasing continuous function on [0, 1] so that
0 ≤ γ(v) ≤ 1 for all 0 ≤ v ≤ 1. We denote by γ(dv) the sub-probability
measure on [0, 1] so that γ([0, v]) = γ(v) for 0 ≤ v ≤ 1. By Theorem 4.1 for
each v ≥ 0 there is a pathwise unique non-negative solution {Xt(v) : t ≥ 0} to
the equation

Xt(v) = v +

∫ t

0

∫ 1

0
σ[1{u≤Xs−(v)} −Xs−(v)]B(ds, du)

+

∫ t

0
b[γ(v)−Xs−(v)]ds

+

∫ t

0

∫ 1

0

∫ 1

0
z[1{u≤Xs−(v)} −Xs−(v)]M̃(ds, dz, du). (4.3)

It is not hard to see that 0 ≤ v ≤ 1 implies P{0 ≤ Xt(v) ≤ 1 for all t ≥ 0} = 1.
The compensation for the Poisson random measure can be disregarded, so this
equation just coincides with (1.6). By Theorem 2.2 for any 0 ≤ v1 ≤ v2 ≤ 1
we have

P{Xt(v1) ≤ Xt(v2) for all t ≥ 0} = 1.
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Therefore {X(v) : 0 ≤ v ≤ 1} is a non-decreasing path-valued process in
D[0,∞).

Proposition 4.2 There is a locally bounded non-negative function t 7→ C(t)
on [0,∞) so that

E
{

sup
0≤s≤t

[Xs(v2)−Xs(v1)]
}

≤ C(t)
{
(v2 − v1) + [γ(v2)− γ(v1)]

+
√
v2 − v1 +

√
γ(v2)− γ(v1)

}
(4.4)

for t ≥ 0 and 0 ≤ v1 ≤ v2 ≤ 1.

Proof. Let Zt = Xt(v2)−Xt(v1) for t ≥ 0. From (4.3) we have

Zt = (v2 − v1) +

∫ t

0

∫ 1

0
σ[Ys−(u)− Zs−]B(ds, du)

+

∫ t

0
b{[γ(v2)− γ(v1)]− Zs−}ds

+

∫ t

0

∫ 1

0

∫ 1

0
z[Ys−(u)− Zs−]M̃(ds, dz, du), (4.5)

where Ys(u) = 1{Xs(v1)<u≤Xs(v2)}. Taking the expectation in (4.5) and solving
a deterministic integral equation one can show

E[Zt] = (v2 − v1)e
−bt + [γ(v2)− γ(v1)](1− e−bt). (4.6)

By (4.5) and Doob’s martingale inequality,

E
{

sup
0≤s≤t

Zs

}
≤ (v2 − v1) + 2σE

1
2

{(∫ t

0

∫ 1

0
[Ys−(u)− Zs−]B(ds, du)

)2}
+

∫ t

0
b{[γ(v2)− γ(v1)] +E[Zs]}ds

+2E
1
2

{(∫ t

0

∫ 1

0

∫ 1

0
z[Ys−(u)− Zs−]M̃(ds, dz, du)

)2}
= (v2 − v1) + 2σE

1
2

{∫ t

0
ds

∫ 1

0
[Ys(u)− Zs]

2du

}
+

∫ t

0
b{[γ(v2)− γ(v1)] +E[Zs]}ds

+2E
1
2

{∫ t

0
ds

∫ 1

0
z2ν(dz)

∫ 1

0
[Ys(u)− Zs]

2du

}
,

where ∫ 1

0
[Ys(u)− Zs]

2du = Zs(1− Zs) ≤ Zs.

26



Then we have (4.4) by (4.6). �

Recall that D[0,∞) is the space of non-negative càdlàg functions on [0,∞)
endowed with the Borel σ-algebra generated by the Skorokhod topology. Let
ρ be the metric on D[0,∞) defined by (3.11).

Theorem 4.3 The path-valued process {X(v) : 0 ≤ v ≤ 1} is a Markov
process in D[0,∞).

Proof. Let 0 < v < 1 and let τn = inf{t ≥ 0 : Xt(v) ≤ 1/n} for n ≥ 1. In
view of (4.3), we have Xt(v) = 0 if Xt−(v) = 0. Then τn → τ∞ := inf{t ≥
0 : Xt(v) = 0} as n → ∞. For any p ∈ [0, v) the comparison property
and pathwise uniqueness for (4.3) imply Xt(p) = Xt(v) for t ≥ τ∞. Let
Zn(t) = Xt∧τn(v)

−1Xt∧τn(p) for t ≥ 0. By (4.3) and Itô’s formula,

Zn(t) =
p

v
+

∫ t∧τn

0

∫ 1

0

σ

Xs−(v)

[
1{u≤Xs−(p)} −Xs−(p)

]
B(ds, du)

−
∫ t∧τn

0

∫ 1

0

σXs−(p)

Xs−(v)2

[
1{u≤Xs−(v)} −Xs−(v)

]
B(ds, du)

+

∫ t∧τn

0
bXs−(v)

−1
[
γ(p)− γ(v)Xs−(v)

−1Xs−(p)
]
ds

+

∫ t∧τn

0
ds

∫ 1

0

σ2Xs−(p)

Xs−(v)3

[
1{u≤Xs−(v)} −Xs−(v)

]2
du

−
∫ t∧τn

0
ds

∫ 1

0

σ2

Xs−(v)2

[
1{u≤Xs−(p)} −Xs−(p)

]
·
[
1{u≤Xs−(v)} −Xs−(v)

]
du

+

∫ t∧τn

0

∫ 1

0

∫ 1

0

{
Xs−(p)(1− z) + z1{u≤Xs−(p)}

Xs−(v)(1− z) + z1{u≤Xs−(v)}

−Xs−(p)

Xs−(v)

}
M(ds, dz, du)

=
p

v
+

∫ t∧τn

0

∫ Xs−(v)

0
σXs−(v)

−1
[
1{u≤Xs−(p)}

−Xs−(v)
−1Xs−(p)

]
B(ds, du)

+

∫ t∧τn

0
bXs−(v)

−1
[
γ(p)− γ(v)Xs−(v)

−1Xs−(p)
]
ds

+

∫ t∧τn

0

∫ 1

0

∫ Xs−(v)

0

[
Xs−(p)(1− z) + z1{u≤Xs−(p)}

Xs−(v)(1− z) + z

−Xs−(p)

Xs−(v)

]
M(ds, dz, du),

where the two terms involving σ2 counteract each other. Observe also that the
last integral does not change if we replace M(ds, dz, du) by the compensated
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measure M̃(ds, dz, du). Then we get the equation

Zn(t) =
p

v
+

∫ t∧τn

0

∫ Xs−(v)

0
σXs−(v)

−1
[
1{u≤Xs−(v)Zn(s−)}

−Zn(s−)
]
B(ds, du)

+

∫ t∧τn

0

∫ 1

0

∫ Xs−(v)

0
z

[
1{u≤Xs−(v)Zn(s−)}

z + (1− z)Xs−(v)

− Zn(s−)

z + (1− z)Xs−(v)

]
M̃(ds, dz, du)

+

∫ t∧τn

0
bXs−(v)

−1[γ(p)− γ(v)Zn(s−)]ds. (4.7)

Since Xs−(v) ≥ 1/n for 0 < s ≤ τn, by a simple generalization of Theorem 2.1
one can show the pathwise uniqueness holds for (4.7). Then, setting Zt =
limn→∞ Zn(t) we have

Xt(p) = ZtXt(v)1{t<τ∞} +Xt(v)1{t≥τ∞}, t ≥ 0. (4.8)

Now from (4.7) and (4.8) we infer that {Xt(p) : t ≥ 0} is measurable with
respect to the σ-algebra Fv generated by the process {Xt(v) : t ≥ 0} and the
restricted martingale measures

1{u≤Xs−(v)}B(ds, du), 1{u≤Xs−(v)}M̃(ds, dz, du).

By similar arguments, for any q ∈ (v, 1] one can see {1 − Xt(q) : t ≥ 0} is
measurable with respect to the σ-algebra Gv generated by the process {1 −
Xt(v) : t ≥ 0} and the restricted martingale measures

1{Xs−(v)<u≤1}B(ds, du), 1{Xs−(v)<u≤1}M̃(ds, dz, du).

Observe that {B(ds,Xs−(v) + du)} is a white noise with intensity dsdu and
{M(ds, dz,Xs−(v)+du)} is a Poisson randommeasure with intensity dsν(dz)du.
Then, given {Xt(v) : t ≥ 0} the σ-algebras Fv and Gv are conditionally in-
dependent. That implies the Markov property of {(X(v),Fv) : 0 ≤ v ≤ 1}.
�

Theorem 4.4 The path-valued Markov process {X(v) : 0 ≤ v ≤ 1} has a
ρ-càdlàg modification. Consequently, there is a version of the solution flow
{Xt(v) : t ≥ 0, 0 ≤ v ≤ 1} of (4.3) with the following properties:

(i) for each v ∈ [0, 1], t 7→ Xt(v) is càdlàg on [0,∞) and solves (4.3);

(ii) for each t ≥ 0, v 7→ Xt(v) is non-decreasing and càdlàg on [0, 1] with
Xt(0) ≥ 0 and Xt(1) ≤ 1.
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Proof. This follows from Lemma 3.5 and Proposition 4.2 by arguments as in
the proof of Theorem 3.6. �

We call the solution flow {Xt(v) : t ≥ 0, v ∈ [0, 1]} of (4.3) specified in
Theorem 4.4 a generalized Fleming–Viot flow following Bertoin and Le Gall
(2003, 2005, 2006). The law of the flow is determined by the parameters
(σ, b, γ, ν).

Let F [0, 1] be the set of non-decreasing càdlàg functions f on [0, 1] such
that 0 ≤ f(0) ≤ f(1) ≤ 1. Given a finite stopping time τ and a function
µ ∈ F [0, 1], let {Xµ

τ,t(v) : t ≥ 0} be the solution of

Xµ
τ,t(v) = µ(v) +

∫ τ+t

τ

∫ 1

0
σ[1{u≤Xµ

τ,s−(v)} −Xµ
τ,s−(v)]B(ds, du)

+

∫ τ+t

τ
b[γ(v)−Xµ

τ,s−(v)]ds

+

∫ τ+t

τ

∫ 1

0

∫ 1

0
z[1{u≤Xµ

τ,s−(v)} −Xµ
τ,s−(v)]M̃(ds, dz, du) (4.9)

and write simply {Xµ
t (v) : t ≥ 0} instead of {Xµ

0,t(v) : t ≥ 0}. The pathwise
uniqueness for the above equation follows from that of (4.3). Let Fτ,t be the
random operator on F [0, 1] that maps µ to Xµ

τ,t. As for the flow of CBI-
processes we have

Theorem 4.5 For any finite stopping time τ we have P{Xµ
τ+t = Fτ,tX

µ
t for

all t ≥ 0} = 1.

For any sub-probability measure µ(dv) on [0, 1] with distribution function
v 7→ µ(v) we write Xµ

t (dv) for the random sub-probability measure on [0, 1]
determined by the random function v 7→ Xµ

t (v). We call {Xµ
t : t ≥ 0} the

generalized Fleming–Viot process associated with the flow {Xµ
t (v) : t ≥ 0, v ∈

[0, 1]}. The reader may refer to Dawson (1993) and Ethier and Kurtz (1993) for
the theory of classical Fleming–Viot processes. To give some characterizations
of the generalized Fleming–Viot process, let us consider the step function

f(u) = c01{0}(u) +

n∑
i=1

ci1(ai−1,ai](u), u ∈ [0, 1], (4.10)

where {c0, c1, · · · , cn} ⊂ R and {0 = a0 < a1 < · · · < an = 1} is a partition of
[0, 1]. For this function we have

⟨Xµ
t , f⟩ = c0X

µ
t (0) +

n∑
i=1

ci[X
µ
t (ai)−Xµ

t (ai−1)]. (4.11)

By (4.9) and (4.11) we have

⟨Xµ
t , f⟩ = ⟨µ, f⟩+

∫ t

0

∫ 1

0
σ[gµs−(u)− ⟨Xµ

s−, f⟩]B(ds, du)
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+

∫ t

0
b[⟨γ, f⟩ − ⟨Xµ

s−, f⟩]ds

+

∫ t

0

∫ 1

0

∫ 1

0
z[gµs−(u)− ⟨Xµ

s−, f⟩]M̃(ds, dz, du), (4.12)

where

gµs (u) = c01{u≤Xµ
s (0)} +

n∑
i=1

ci1{Xµ
s (ai−1)<u≤Xµ

s (ai)}. (4.13)

The proofs of the following three results are similar to those for CBI-processes.

Theorem 4.6 The generalized Fleming–Viot process {Xµ
t : t ≥ 0} defined

above is an almost surely càdlàg strong Markov process with Xµ
0 = µ.

Proposition 4.7 For any t ≥ 0 and f ∈ B[0, 1] we have

E[⟨Xµ
t , f⟩] = ⟨µ, f⟩e−bt + ⟨γ, f⟩(1− e−bt). (4.14)

Theorem 4.8 For any f ∈ B[0, 1] the process {⟨Xµ
t , f⟩ : t ≥ 0} has a càdlàg

modification. Moreover, there is a locally bounded function t 7→ C(t) so that

E
[

sup
0≤s≤t

⟨Xµ
s , f⟩

]
≤ C(t)

[
⟨µ, f⟩+ ⟨γ, f⟩

+ ⟨µ, f2⟩1/2 + ⟨γ, f2⟩1/2
]

(4.15)

for any t ≥ 0 and f ∈ B[0, 1]+.

The generalized Fleming–Viot process can be characterized in terms of a
martingale problem. Given any finite family {f1, · · · , fp} ⊂ B[0, 1], write

Gp,{fi}(η) =

p∏
i=1

⟨η, fi⟩, η ∈M1[0, 1]. (4.16)

Let D1(L) be the linear span of the functions on M1[0, 1] of the form (4.16)
and let L be the linear operator on D1(L) defined by

LGp,{fi}(η) = σ2
∑
i<j

[
⟨η, fifj⟩

∏
k ̸=i,j

⟨η, fk⟩ −
p∏

k=1

⟨η, fk⟩
]

+
∑

I⊂{1,···,p},|I|≥2

βp,|I|

[⟨
η,
∏
i∈I

fi

⟩∏
j /∈I

⟨η, fj⟩ −
p∏

k=1

⟨η, fk⟩
]

+ b

p∑
i=1

[
⟨γ, fi⟩

∏
k ̸=i

⟨η, fk⟩ −
p∏

k=1

⟨η, fk⟩
]
, (4.17)

where |I| denotes the cardinality of I ⊂ {1, · · · , p} and

βp,|I| =

∫ 1

0
z|I|(1− z)p−|I|ν(dz).
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Theorem 4.9 The generalized Fleming–Viot process {Xµ
t : t ≥ 0} is the

unique solution of the following martingale problem: For any p ≥ 1 and
{f1, · · · , fp} ⊂ B[0, 1],

Gp,{fi}(X
µ
t ) = Gp,{fi}(µ) +

∫ t

0
LGp,{fi}(X

µ
s )ds+mart. (4.18)

Proof. We first consider a collection of step functions {f1, · · · , fp}. Let gµi (s, u)
be defined by (4.13) with f = fi. Since the compensation of the Poisson
random measure in (4.12) can be disregarded, by Itô’s formula we get

Gp,{fi}(X
µ
t )

= Gp,{fi}(µ) + σ2
∫ t

0
ds

∫ 1

0

[∑
i<j

hµi (s, u)h
µ
j (s, u)

∏
k ̸=i,j

⟨Xµ
s , fk⟩

]
du

+

∫ t

0
ds

∫ 1

0
ν(dz)

∫ 1

0

{ p∏
k=1

[⟨Xµ
s , fk⟩+ zhµk(s, u)]−

p∏
k=1

⟨Xµ
s , fk⟩

}
du

+ b

∫ t

0

p∑
i=1

[⟨γ, fi⟩ − ⟨Xµ
s , fi⟩]

∏
k ̸=i

⟨Xµ
s , fk⟩ds+mart.

= Gp,{fi}(µ) + σ2
∫ t

0
ds

∫ 1

0

[∑
i<j

lµi (u)l
µ
j (u)

∏
k ̸=i,j

⟨Xµ
s , fk⟩

]
Xµ

s (du)

+

∫ t

0
ds

∫ 1

0
ν(dz)

∫ 1

0

{ p∏
k=1

[⟨Xµ
s , fk⟩+ zlµk (u)]−

p∏
k=1

⟨Xµ
s , fk⟩

}
Xµ

s (du)

+ b

∫ t

0

p∑
i=1

[
⟨γ, fi⟩

∏
k ̸=i

⟨Xµ
s , fk⟩ −

p∏
k=1

⟨Xµ
s , fk⟩

]
ds+mart.,

where hµi (s, u) = gµi (s, u)− ⟨Xµ
s , fi⟩ and lµi (u) = fi(u)− ⟨Xµ

s , fi⟩. It is simple
to show ∫ 1

0
lµi (u)l

µ
j (u)X

µ
s (du) = ⟨Xµ

s , fifj⟩ − ⟨Xµ
s , fi⟩⟨Xµ

s , fj⟩.

Then we continue with

Gp,{fi}(X
µ
t )

= Gp,{fi}(µ) + σ2
∫ t

0

∑
i<j

[
⟨Xµ

s , fifj⟩
∏
k ̸=i,j

⟨Xµ
s , fk⟩ −

p∏
k=1

⟨Xµ
s , fk⟩

]
ds

+

∫ t

0
ds

∫ 1

0
ν(dz)

∫ 1

0

{ p∏
k=1

[(1− z)⟨Xµ
s , fk⟩+ zfk(u)]

−
p∏

k=1

⟨Xµ
s , fk⟩

}
Xµ

s (du)
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+ b

∫ t

0

p∑
i=1

[
⟨γ, fi⟩

∏
k ̸=i

⟨Xµ
s , fk⟩ −

p∏
k=1

⟨Xµ
s , fk⟩

]
ds+mart.

= Gp,{fi}(µ) + σ2
∫ t

0

∑
i<j

[
⟨Xµ

s , fifj⟩
∏
k ̸=i,j

⟨Xµ
s , fk⟩ −

p∏
k=1

⟨Xµ
s , fk⟩

]
ds

+

∫ t

0
ds

∫ 1

0
ν(dz)

∫ 1

0

{ ∑
I⊂{1,···,p}

z|I|(1− z)p−|I|
∏
i∈I

fi(u)
∏
j /∈I

⟨Xµ
s , fj⟩

−
p∏

k=1

⟨Xµ
s , fk⟩

}
Xµ

s (du)

+ b

∫ t

0

p∑
i=1

[
⟨γ, fi⟩

∏
k ̸=i

⟨Xµ
s , fk⟩ −

p∏
k=1

⟨Xµ
s , fk⟩

]
ds+mart.

= Gp,{fi}(µ) + σ2
∫ t

0

∑
i<j

[
⟨Xµ

s , fifj⟩
∏
k ̸=i,j

⟨Xµ
s , fk⟩ −

p∏
k=1

⟨Xµ
s , fk⟩

]
ds

+

∫ t

0
ds

∫ 1

0
ν(dz)

∫ 1

0

{ ∑
I⊂{1,···,p}

z|I|(1− z)p−|I|
[∏
i∈I

fi(u)
∏
j /∈I

⟨Xµ
s , fj⟩

−
p∏

k=1

⟨Xµ
s , fk⟩

]}
Xµ

s (du)

+ b

∫ t

0

p∑
i=1

[
⟨γ, fi⟩

∏
k ̸=i

⟨Xµ
s , fk⟩ −

p∏
k=1

⟨Xµ
s , fk⟩

]
ds+mart.

That gives (4.18) for step functions {f1, · · · , fp}. For {f1, · · · , fp} ⊂ B[0, 1]
one can show (4.18) by approximating the functions in the space L2(µ + γ)
using bounded sequences of step functions. Since {Xµ

t : t ≥ 0} is a Markov
process and D1(L) separates probability measures on M [0, 1], the uniqueness
for the martingale problem holds; see Ethier and Kurtz (1986, page 182). �

In particular, if µ(1) = γ(1) = 1, we have Xµ
t (1) = 1 for all t ≥ 0 and the

corresponding generalized Fleming–Viot process {Xµ
t : t ≥ 0} is a probability-

valued Markov process with generator L defined by

LGp,{fi}(η) = σ2
∑
i<j

[
⟨η, fifj⟩

∏
k ̸=i,j

⟨η, fk⟩ −
p∏

k=1

⟨η, fk⟩
]

+
∑

I⊂{1,···,p},|I|≥2

βp,|I|

[⟨
η,
∏
i∈I

fi

⟩∏
j /∈I

⟨η, fj⟩ −
p∏

k=1

⟨η, fk⟩
]

+

p∑
i=1

⟨η,Afi⟩
∏
k ̸=i

⟨η, fk⟩, (4.19)

where

Af(x) = b

∫
[0,1]

[f(y)− f(x)]γ(dy), x ∈ [0, 1].
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That is a generalization of a classical Fleming–Viot process; see, e.g., Ethier
and Kurtz (1993, page 351). On the other hand, for b = 0 the solution flow
{Xµ

t (v) : t ≥ 0, 0 ≤ v ≤ 1} of (4.3) corresponds to the Λ-coalescent process
with Λ(dz) = σ2δ0 + z2ν(dz), which is clear from (4.18) and the martingale
problem given by Theorem 1 in Bertoin and Le Gall (2005). For b > 0 it seems
the flow determines a coalescent process with a spatial structure. A serious
exploration in the subject would be of interest to the understanding of the
related dynamic systems.

5 Scaling limit theorems

In this section, we prove some limit theorems for the generalized Fleming–Viot
flows. We shall present the results in the setting of measure-valued processes
and through the use of Markov process arguments. These are different from
the approach of Bertoin and Le Gall (2006), who used the analysis of char-
acteristics of semimartingales. For each k ≥ 1 let σk ≥ 0 and bk ≥ 0 be
two constants, let z2νk(dz) be a finite measure on (0, 1], and let v 7→ γk(v)
be a non-decreasing continuous function on [0, 1] so that 0 ≤ γk(v) ≤ 1 for
all 0 ≤ v ≤ 1. We denote by γk(dv) the sub-probability measure on [0, 1]
so that γk([0, v]) = γk(v) for 0 ≤ v ≤ 1. Let {Xk

t (v) : t ≥ 0, v ∈ [0, 1]}
be a generalized Fleming–Viot flow with parameters (σk, bk, γk, νk) and with
Xk

0 (v) = v for v ∈ [0, 1]. Let Yk(t, v) = kXk
kt(k

−1v) for t ≥ 0 and v ∈ [0, k].
Let ηk(z) = kγk(k

−1z) and mk(dz) = νk(k
−1dz) for z ∈ (0, k]. In view of

(4.3), we can also define {Yk(t, v) : t ≥ 0, v ∈ [0, k]} directly by

Yk(t, v) = v + kσk

∫ t

0

∫ k

0
[1{u≤Yk(s−,v)} − k−1Yk(s−, v)]Wk(ds, du)

+ kbk

∫ t

0
[ηk(v)− Yk(s−, v)]ds

+

∫ t

0

∫ k

0

∫ k

0
z[1{u≤Yk(s−,v)} − k−1Yk(s−, v)]Ñk(ds, dz, du),(5.1)

where {Wk(ds, du)} is a white noise on (0,∞) × (0, k] with intensity dsdu
and {Nk(ds, dz, du)} is a Poisson random measure on (0,∞) × (0, k]2 with
intensity dsmk(dz)du. In the sequel, we assume k ≥ a for fixed a constant
a ≥ 0. Then the rescaled flow {Yk(t, v) : t ≥ 0, v ∈ [0, k]} induces an M [0, a]-
valued process {Y a

k (t) : t ≥ 0}. We are interested in the asymptotic behavior
of {Y a

k (t) : t ≥ 0} as k → ∞. Recall that λ denotes the Lebesgue measure on
[0,∞).

Lemma 5.1 For any G ∈ C2(R) and f ∈ C[0, a] we have

G(⟨Y a
k (t), f⟩) = G(⟨λ, f⟩) + kbk

∫ t

0
G′(⟨Y a

k (s), f⟩)⟨ηk, f⟩ds
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− kbk

∫ t

0
G′(⟨Y a

k (s), f⟩)⟨Y a
k (s), f⟩ds

+
1

2
k2σ2k

∫ t

0
G′′(⟨Y a

k (s), f⟩)⟨Y a
k (s), f

2⟩ds

− 1

2
kσ2k

∫ t

0
G′′(⟨Y a

k (s), f⟩)⟨Y a
k (s), f⟩2ds

+

∫ t

0
ds

∫ k

0
mk(dz)

∫
[0,a]

{
G(⟨Y a

k (s), f⟩+ zf(x))

−G(⟨Y a
k (s), f⟩)−G′(⟨Y a

k (s), f⟩)zf(x)
}
Y a
k (s, dx)

+

∫ t

0
ds

∫ k

0
[ϵk(s, z) + ξk(s, z)]mk(dz) + local mart.,

where

ϵk(s, z) =

∫ k

0

{
G(⟨Y a

k (s), f⟩+ z[f(x)− k−1⟨Y a
k (s), f⟩])

−G(⟨Y a
k (s), f⟩+ zf(x))

− k−1G′(⟨Y a
k (s), f⟩)z⟨Y a

k (s), f⟩
}
Y a
k (s, dx)

and

ξk(s, z) = [k − Yk(s, a)]
[
G(⟨Y a

k (s), f⟩ − k−1z⟨Y a
k (s), f⟩)

−G(⟨Y a
k (s), f⟩) + k−1G′(⟨Y a

k (s), f⟩)z⟨Y a
k (s), f⟩

]
.

Proof. For the step function defined by (3.13) we get from (5.1) that

⟨Y a
k (t), f⟩ = ⟨λ, f⟩+ kσk

∫ t

0

∫ k

0
hk(s−, u)Wk(ds, du)

+ kbk

∫ t

0
[⟨ηk, f⟩ − ⟨Y a

k (s−), f⟩]ds

+

∫ t

0

∫ k

0

∫ k

0
zhk(s−, u)Ñk(ds, dz, du), (5.2)

where hk(s, u) = gk(s, u)− k−1⟨Y a
k (s), f⟩ and

gk(s, u) = c01{u≤Yk(s,0)} +
n∑

i=1

ci1{Yk(s,ai−1)<u≤Yk(s,ai)}. (5.3)

Let lk(s, x) = f(x)− k−1⟨Y a
k (s), f⟩. By (5.2) and Itô’s formula,

G(⟨Y a
k (t), f⟩) = G(⟨λ, f⟩) + kbk

∫ t

0

G′(⟨Y a
k (s), f⟩)[⟨ηk, f⟩ − ⟨Y a

k (s), f⟩]ds

+
1

2
k2σ2

k

∫ t

0

G′′(⟨Y a
k (s), f⟩)ds

∫ k

0

hk(s, u)
2du
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+

∫ t

0

ds

∫ k

0

mk(dz)

∫ k

0

{
G(⟨Y a

k (s), f⟩+ zhk(s, u))

−G(⟨Y a
k (s), f⟩)−G′(⟨Y a

k (s), f⟩)zhk(s, u)
}
du

+ local mart.

= G(⟨λ, f⟩) + kbk

∫ t

0

G′(⟨Y a
k (s), f⟩)[⟨ηk, f⟩ − ⟨Y a

k (s), f⟩]ds

+
1

2
k2σ2

k

∫ t

0

G′′(⟨Y a
k (s), f⟩)[⟨Y a

k (s), f
2⟩ − k−1⟨Y a

k (s), f⟩]ds

+

∫ t

0

ds

∫ k

0

mk(dz)

∫
[0,a]

{
G(⟨Y a

k (s), f⟩+ zlk(s, x))

−G(⟨Y a
k (s), f⟩)−G′(⟨Y a

k (s), f⟩)zlk(s, x)
}
Y a
k (s, dx)

+

∫ t

0

[k − Yk(s, a)]ds

∫ k

0

{
G(⟨Y a

k (s), f⟩ − k−1z⟨Y a
k (s), f⟩)

−G(⟨Y a
k (s), f⟩) + k−1G′(⟨Y a

k (s), f⟩)z⟨Y a
k (s), f⟩

}
mk(dz)

+ local mart.

That gives the desired result for the step function. For f ∈ C[0, a] it follows
by approximating the function by a sequence of step functions. �

Lemma 5.2 For t ≥ 0 and f ∈ C[0, a]+ we have

E
[

sup
0≤s≤t

⟨Y a
k (s), f⟩

]
≤ ⟨λ, f⟩+ kbk⟨ηk, f⟩t+ 4t

[
⟨λ, f⟩+ ⟨ηk, f⟩

] ∫ k

1
zmk(dz)

+ 2
√
t
[
⟨λ, f2⟩+ ⟨ηk, f2⟩

] 1
2

[
σ +

(∫ 1

0
z2mk(dz)

) 1
2
]
.

Proof. We first consider a non-negative step function given by (3.13) with
{c0, c1, · · · , cn} ⊂ R+. Let gk(s, u) and hk(s, u) be defined as in the proof of
Lemma 5.1. By (5.2) and Doob’s martingale inequality we get

E
[

sup
0≤s≤t

⟨Y a
k (s), f⟩

]
≤ ⟨λ, f⟩+ 2kσkE

1
2

{[∫ t

0

∫ k

0
hk(s−, u)W (ds, du)

]2}
+ kbk⟨ηk, f⟩t+E

[ ∫ t

0
ds

∫ k

1
zmk(dz)

∫ k

0
|hk(s−, u)|du

]
+E

[ ∫ t

0

∫ k

1

∫ k

0
z|hk(s−, u)|Nk(ds, dz, du)

]
+2E

1
2

{[∫ t

0

∫ 1

0

∫ k

0
zhk(s−, u)Ñk(ds, dz, du)

]2}
.
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It then follows that

E
[

sup
0≤s≤t

⟨Y a
k (s), f⟩

]
≤ ⟨λ, f⟩+ 2kσkE

1
2

{∫ t

0
ds

∫ k

0
hk(s, u)

2du

}
+ kbk⟨ηk, f⟩t+ 2E

{∫ t

0
ds

∫ k

1
zmk(dz)

∫ k

0
|hk(s, u)|du

}
+2E

1
2

{∫ t

0
ds

∫ 1

0
z2mk(dz)

∫ k

0
hk(s, u)

2du

}
≤ ⟨λ, f⟩+ kbk⟨ηk, f⟩t+ 4E

[ ∫ t

0
⟨Y a

k (s), f⟩ds
∫ k

1
zmk(dz)

]
+2E

1
2

[ ∫ t

0
⟨Y a

k (s), f
2⟩ds

][
kσk +

(∫ 1

0
z2mk(dz)

) 1
2
]
.

By Proposition 4.7 one can see

E[⟨Y a
k (t), f⟩] = ⟨λ, f⟩e−kbkt + ⟨ηk, f⟩(1− e−kbkt) ≤ ⟨λ, f⟩+ ⟨ηk, f⟩.

Then we have the desired inequality for the step function. The inequality for
f ∈ C[0, a]+ follows by approximating this function with a bounded sequence
of positive step functions. �

Lemma 5.3 Let τk be a bounded stopping time for {Y a
k (t) : t ≥ 0}. Then for

any t ≥ 0 and f ∈ C[0, a] we have

E
{
|⟨Y a

k (τk + t), f⟩ − ⟨Y a
k (τk), f⟩|

}
≤ E

1
2

[ ∫ t

0
⟨Y a

k (τk + s), f2⟩ds
][
kσk +

(∫ 1

0
z2mk(dz)

) 1
2
]

+ kbkE

[ ∫ t

0
(⟨ηk, |f |⟩+ ⟨Y a

k (τk + s), |f |⟩)ds
]

+4E

[ ∫ t

0
⟨Y a

k (τk + s), |f |⟩ds
∫ k

1
zmk(dz)

]
. (5.4)

Proof. We first consider the step function given by (3.13). Let gk(s, u) and
hk(s, u) be defined as in the proof of Lemma 5.1. From (5.2) we have

E
{
|⟨Y a

k (τk + t), f⟩ − ⟨Y a
k (τk), f⟩|

}
≤ kσkE

1
2

{[∫ t

0

∫ k

0
hk(τk + s−, u)W (τk + ds, du)

]2}
+ kbkE

[ ∫ t

0
|⟨ηk, f⟩ − ⟨Y a

k (τk + s−), f⟩|ds
]

+E
1
2

{[∫ t

0

∫ 1

0

∫ k

0
zhk(τk + s−, u)Ñk(τk + ds, dz, du)

]2}
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+E

[ ∫ t

0

∫ k

1

∫ k

0
z|hk(τk + s−, u)|Nk(τk + ds, dz, du)

]
+E

[ ∫ t

0
ds

∫ k

1
zmk(dz)

∫ k

0
|hk(τk + s−, u)|du

]
.

By the property of independent increments of the white noise and the Poisson
random measure,

E
{
|⟨Y a

k (τk + t), f⟩ − ⟨Y a
k (τk), f⟩|

}
≤ kσkE

1
2

{∫ t

0
ds

∫ k

0
hk(τk + s, u)2du

}
+ kbkE

[ ∫ t

0
(⟨ηk, |f |⟩+ ⟨Y a

k (τk + s), |f |⟩)ds
]

+E
1
2

{∫ t

0
ds

∫ 1

0
z2mk(dz)

∫ k

0
hk(τk + s, u)2du

}
+2E

[ ∫ t

0
ds

∫ k

1
zmk(dz)

∫ k

0
|hk(τk + s, u)|du

]
≤ E

1
2

[ ∫ t

0
⟨Y a

k (τk + s), f2⟩ds
][
kσk +

(∫ 1

0
z2mk(dz)

) 1
2
]

+ kbkE

[ ∫ t

0
(⟨ηk, |f |⟩+ ⟨Y a

k (τk + s), |f |⟩)ds
]

+4E

[ ∫ t

0
⟨Y a

k (τk + s), |f |⟩ds
∫ k

1
zmk(dz)

]
.

Then (5.4) holds for the step function. For f ∈ C[0, a] the inequality follows
by an approximation argument. �

Lemma 5.4 Suppose that kbk → b, ηk → η weakly on [0, a] and k2σ2kδ0(dz)+
(z ∧ z2)mk(dz) converges weakly on [0,∞) to a finite measure σ2δ0(dz) +
(z ∧ z2)m(dz) as k → ∞. Let {0 ≤ a1 < · · · < an} be an ordered set of
constants. Then {(Y a1

k (t), · · · , Y an
k (t)) : t ≥ 0}, k = 1, 2, · · · is a tight sequence

in D([0,∞),M [0, a1]× · · · ×M [0, an]).

Proof. Let τk be a bounded stopping time for {Y a
k (t) : t ≥ 0} and assume

the sequence {τk : k = 1, 2, · · ·} is uniformly bounded. Let fi ∈ C[0, ai] for
i = 1, · · · , n. By (5.4) we see

E
{ n∑

i=1

|⟨Y ai
k (τk + t), fi⟩ − ⟨Y ai

k (τk), fi⟩|
}

≤
n∑

i=1

E
1
2

[ ∫ t

0
⟨Y ai

k (τk + s), f2i ⟩ds
][
kσk +

(∫ 1

0
z2mk(dz)

) 1
2
]

+ kbk

n∑
i=1

E

[ ∫ t

0
(⟨ηk, |fi|⟩+ ⟨Y ai

k (τk + s), |fi|⟩)ds
]
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+4

n∑
i=1

E

[ ∫ t

0
⟨Y ai

k (τk + s), |fi|⟩ds
∫ k

1
zmk(dz)

]
. (5.5)

Then the inequality in Lemma 5.2 implies

lim
t→0

sup
k≥1

E
{ n∑

i=1

|⟨Y ai
k (τk + t), fi⟩ − ⟨Y ai

k (τk), fi⟩|
}
= 0.

By a criterion of Aldous (1978), the sequence {(⟨Y a1
k (t), f1⟩, · · · , ⟨Y an

k (t), fn⟩) :
t ≥ 0} is tight in D([0,∞),Rn); see also Ethier and Kurtz (1986, pages 137-
138). Then a simple extension of the tightness criterion of Roelly (1986)
implies {(Y a1

k (t), · · · , Y an
k (t)) : t ≥ 0} is tight in D([0,∞),M [0, a1] × · · · ×

M [0, an]). �

Suppose that σ ≥ 0 and b ≥ 0 are two constants, v 7→ η(v) is a non-
negative and non-decreasing continuous function on [0,∞), and (z∧ z2)m(dz)
is a finite measure on (0,∞). Let η(dv) be the Radon measure on [0,∞) so
that η([0, v]) = η(v) for v ≥ 0. Suppose that {W (ds, du)} is a white noise on
(0,∞)2 with intensity dsdz and {N(ds, dz, du)} is a Poisson random measure
on (0,∞)3 with intensity dsm(dz)du. Let {Xt(v) : t ≥ 0, v ≥ 0} be the
solution flow of the stochastic equation

Xt(v) = v + σ

∫ t

0

∫ Xs−(v)

0
W (ds, du) + b

∫ t

0
[η(v)−Xs−(v)]ds

+

∫ t

0

∫ ∞

0

∫ Xs−(v)

0
zÑ(ds, dz, du). (5.6)

By Theorem 3.11, for each a ≥ 0 the flow {Xt(v) : t ≥ 0, v ≥ 0} induces an
M [0, a]-valued immigration superprocess {Xa

t : t ≥ 0} which is the unique
solution of the following martingale problem: For every G ∈ C2(R) and f ∈
C[0, a],

G(⟨Xt, f⟩) = G(⟨λ, f⟩) + b

∫ t

0
G′(⟨Xs, f⟩)[⟨η, f⟩ − ⟨Xs, f⟩]ds

+
1

2
σ2

∫ t

0
G′′(⟨Xs, f⟩)⟨Xs, f

2⟩ds

+

∫ t

0
ds

∫ ∞

0
m(dz)

∫
[0,a]

[
G(⟨Xs, f⟩+ zf(x))

−G(⟨Xs, f⟩)−G′(⟨Xs, f⟩)zf(x)
]
Xs(dx)

+ local mart. (5.7)

Theorem 5.5 Suppose that kbk → b, ηk → η weakly on [0, a] and k2σ2kδ0(dz)+
(z ∧ z2)mk(dz) converges weakly on [0,∞) to a finite measure σ2δ0(dz) + (z ∧
z2)m(dz) as k → ∞. Then {Y a

k (t) : t ≥ 0} converges to the immigration
superprocess {Xa

t : t ≥ 0} in distribution on D([0,∞),M [0, a]).
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For the proof of the above theorem, let us make some preparations. Since
the solution of the martingale problem (5.7) is unique, it suffices to prove any
weak limit point {Za

t : t ≥ 0} of the sequence {Y a
k (t) : t ≥ 0} is the solution

of the martingale problem. To simplify the notation we pass to a subsequence
and simply assume {Y a

k (t) : t ≥ 0} converges to {Za
t : t ≥ 0} in distribution.

Using Skorokhod’s representation theorem, we can also assume {Y a
k (t) : t ≥ 0}

and {Za
t : t ≥ 0} are defined on the same probability space and {Y a

k (t) : t ≥ 0}
converges a.s. to {Za

t : t ≥ 0} in the topology of D([0,∞),M [0, a]). For n ≥ 1
let

τn = inf
{
t ≥ 0 : sup

k≥1

∫ t

0
[1 + ⟨Y a

k (s) + Za
s , 1⟩2]ds ≥ n

}
.

It is easy to see that τn → ∞ as n→ ∞.

Lemma 5.6 Suppose that kbk → b, ηk → η weakly on [0, a] and k2σ2kδ0(dz)+
(z ∧ z2)mk(dz) converges weakly on [0,∞) to a finite measure σ2δ0(dz) + (z ∧
z2)m(dz) as k → ∞. Let ϵk(s, z) be defined as in Lemma 5.1. Then for each
n ≥ 1 we have

E
[ ∫ t∧τn

0
ds

∫ k

0
|ϵk(s, z)|mk(dz)

]
→ 0, k → ∞.

Proof. By the mean-value theorem, we have

ϵk(s, z) =
1

k
z⟨Y a

k (s), f⟩
∫ k

0

[
G′(⟨Y a

k (s), f⟩+ zθk(s, x))

−G′(⟨Y a
k (s), f⟩)

]
Y a
k (s, dx),

where θk(s, x) takes values between f(x) and f(x) − k−1⟨Y a
k (s), f⟩. Conse-

quently,

|ϵk(s, z)| ≤
2

k
∥G′∥z⟨Y a

k (s), |f |⟩⟨Y a
k (s), 1⟩ ≤

2

k
∥G′∥∥f∥z⟨Y a

k (s), 1⟩2.

Moreover, since ⟨Y a
k (s), 1⟩ ≤ k, we get

|ϵk(s, z)| ≤ 1

k
∥G′′∥z2⟨Y a

k (s), |f |⟩
∫ k

0
|θk(s, x))|Y a

k (s, dx)

≤ 1

k
∥G′′∥z2⟨Y a

k (s), |f |⟩
∫ k

0
[|f(x)|+ k−1⟨Y a

k (s), |f |⟩]Y a
k (s, dx)

≤ 2

k
∥f∥2∥G′′∥z2⟨Y a

k (s), 1⟩2.

It follows that

E
[ ∫ t∧τn

0
ds

∫ k

0
|ϵk(s, z)|mk(dz)

]
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≤ C

k

∫ k

0
(z ∧ z2)mk(dz)E

[ ∫ t∧τn

0
⟨Y a

k (s), 1⟩2ds
]

≤ nC

k

∫ k

0
(z ∧ z2)mk(dz),

where C = 2∥f∥(∥G′∥+∥G′′∥∥f∥). The right-hand side goes to zero as k → ∞.
�

Lemma 5.7 Suppose that kbk → b, ηk → η weakly on [0, a] and k2σ2kδ0(dz)+
(z ∧ z2)mk(dz) converges weakly on [0,∞) to a finite measure σ2δ0(dz) + (z ∧
z2)m(dz) as k → ∞. Let ξk(s, z) be defined as in Lemma 5.1. Then for each
n ≥ 1 we have

E
[ ∫ t∧τn

0
ds

∫ k

0
|ξk(s, z)|mk(dz)

]
→ 0, k → ∞.

Proof. It is elementary to see that

|ξk(s, z)| ≤ k
∣∣∣G(⟨Y a

k (s), f⟩ − k−1z⟨Y a
k (s), f⟩)−G(⟨Y a

k (s), f⟩)

+ k−1G′(⟨Y a
k (s), f⟩)z⟨Y a

k (s), f⟩
∣∣∣

≤ min
{
2∥G′∥z⟨Y a

k (s), |f |⟩,
1

2k
∥G′′∥z2⟨Y a

k (s), |f |⟩2
}

≤ C[1 + ⟨Y a
k (s), 1⟩2](z ∧ k−1z2),

where C = ∥f∥(2∥G′∥+ ∥f∥∥G′′∥/2). Then we have

E
[ ∫ t∧τn

0
ds

∫ k

0
|ξk(s, z)|mk(dz)

]
≤ C

∫ k

0
(z ∧ k−1z2)mk(dz)E

{∫ t∧τn

0
[1 + ⟨Y a

k (s), 1⟩2]ds
}

≤ nC

∫ k

0
(z ∧ k−1z2)mk(dz).

The right-hand side tends to zero as k → ∞. �

Proof of Theorem 5.5. Let f ∈ C[0, a]. Then {⟨Y a
k (t), f⟩ : t ≥ 0} converges

a.s. to {⟨Za
t , f⟩ : t ≥ 0} in the topology of D([0,∞),R). Consequently, we

have a.s. ⟨Y a
k (t), f⟩ → ⟨Za

t , f⟩ for a.e. t ≥ 0; see, e.g., Ethier and Kurtz (1986,
page 118). By Lemma 5.1,

G(⟨Y a
k (t), f⟩) = G(⟨λ, f⟩) + kbk

∫ t

0
G′(⟨Y a

k (s), f⟩)⟨ηk, f⟩ds

− kbk

∫ t

0
G′(⟨Y a

k (s), f⟩)⟨Y a
k (s), f⟩ds
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+
1

2
k2σ2k

∫ t

0
G′′(⟨Y a

k (s), f⟩)⟨Y a
k (s), f

2⟩ds

− 1

2
kσ2k

∫ t

0
G′′(⟨Y a

k (s), f⟩)⟨Y a
k (s), f⟩2ds

+

∫ t

0
ds

∫ k

0
mk(dz)

∫
[0,a]

H(x, z, ⟨Za
s , f⟩)Y a

k (s, dx)

+

∫ t

0
ds

∫ k

0
[ϵk(s, z) + ξk(s, z) + ζk(s, z)]mk(dz)

+ local mart., (5.8)

where

H(x, z, u) = G(u+ zf(x))−G(u)−G′(u)zf(x)

and

ζk(s, z) =

∫
[0,a]

[
H(x, z, ⟨Y a

k (s), f⟩)−H(x, z, ⟨Za
s , f⟩)

]
Y a
k (s, dx).

By the mean-value theorem,

|ζk(s, z)| ≤
∫
[0,k]

|H ′
u(x, z, θk(s))⟨Y a

k (s)− Za
s , f⟩|Y a

k (s, dx),

where θk(s) takes values between ⟨Y a
k (s), f⟩ and ⟨Za

s , f⟩. For G ∈ C3(R) we
have

|H ′
u(x, z, θk(s))| = |G′(θk(s) + zf(x))−G′(θk(s))−G′′(θk(s))zf(x)|

≤ ∥f∥
(
2∥G′′∥+ 1

2
∥f∥∥G′′′∥

)
(z ∧ z2).

It follows that

|ζk(s)| ≤ ∥f∥
(
2∥G′′∥+ 1

2
∥f∥∥G′′′∥

)
(z ∧ z2)

· ⟨Y a
k (s), 1⟩|⟨Y a

k (s)− Za
s , f⟩|. (5.9)

By (5.9) and Schwarz’ inequality,

E
[ ∫ t∧τn

0
ds

∫ k

0
|ζk(s)|mk(dz)

]
≤ Ck(t)

{
E
[ ∫ t∧τn

0
⟨Y a

k (s)− Za
s , f⟩2ds

]}1/2

·
{
E
[ ∫ t∧τn

0
⟨Y a

k (s), 1⟩2ds
]}1/2

≤
√
nCk(t)

{
E
[ ∫ t∧τn

0
⟨Y a

k (s)− Za
s , f⟩2ds

]}1/2

,
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where

Ck(t) = ∥f∥
(
2∥G′′∥+ 1

2
∥G′′′∥∥f∥

)∫ k

0
(z ∧ z2)mk(dz).

Note that supk≥1Ck(t) <∞. It then follows that

E
[ ∫ t∧τn

0
ds

∫ k

0
|ζk(s)|mk(dz)

]
→ 0, k → ∞.

Now letting k → ∞ in (5.8) and using Lemmas 5.6 and 5.7 we obtain (5.7) for
G ∈ C3(R). A simple approximation shows the martingale problem actually
holds for any G ∈ C2(R). �

Theorem 5.8 Suppose that kbk → b, ηk → η weakly on [0, a] and k2σ2kδ0(dz)+
(z ∧ z2)mk(dz) converges weakly on [0,∞) to a finite measure σ2δ0(dz) + (z ∧
z2)m(dz) as k → ∞. Let {0 ≤ a1 < · · · < an = a} be an ordered set of
constants. Then {(Y a1

k (t), · · · , Y an
k (t)) : t ≥ 0} converges to {(Xa1

t , · · · , Xan
t ) :

t ≥ 0} in distribution on D([0,∞),M [0, a1]× · · · ×M [0, an]).

Proof. By Lemma 5.4 the sequence {(Y a1
k (t), · · · , Y an

k (t)) : t ≥ 0} is tight
in D([0,∞), M [0, a1] × · · · × M [0, an]). Let {(Za1

t , · · · , Zan
t ) : t ≥ 0} be a

weak limit point of {(Y a1
k (t), · · · , Y an

k (t)) : t ≥ 0}. To get the result, we
only need to show {(Za1

t , · · · , Zan
t ) : t ≥ 0} and {(Xa1

t , · · · , Xan
t ) : t ≥ 0}

have identical distributions on D([0,∞),M [0, a1] × · · · ×M [0, an]). By pass-
ing to a subsequence and using Skorokhod’s representation, we can assume
{(Y a1

k (t), · · · , Y an
k (t)) : t ≥ 0} converges to {(Za1

t , · · · , Zan
t ) : t ≥ 0} almost

surely in the topology of D([0,∞), M [0, a1] × · · · ×M [0, an]). Theorem 5.5
implies {Zan

t : t ≥ 0} is an immigration superprocess solving the martingale
problem (5.7) with a = an. Let Z̄ai

t denote the restriction of Zan
t to [0, ai].

Then Zan
t = Z̄an

t in particular. We will show {(Za1
t , · · · , Zan

t ) : t ≥ 0} and
{(Z̄a1

t , · · · , Z̄an
t ) : t ≥ 0} are indistinguishable. That will imply the desired

result since {(Xa1
t , · · · , Xan

t ) : t ≥ 0} and {(Z̄a1
t , · · · , Z̄an

t ) : t ≥ 0} clearly have
identical distributions on D([0,∞),M [0, a1]× · · · ×M [0, an]). By the general
theory of càdlàg processes, the complement in [0,∞) of

D(Z) := {t ≥ 0 : P(Za1
t = Za1

t−, · · · , Z
an
t = Zan

t−) = 1}

is at most countable; see Ethier and Kurtz (1986; page 131). For any t ∈ D(Z)
we have almost surely limk→∞ Y ai

k (t) = Zai
t for each i = 1, · · · , n; see Ethier

and Kurtz (1986; page 118). By an elementary property of weak convergence,
for any t ∈ D(Z) we almost surely have

Zai
t ([0, ai]) = lim

k→∞
Y ai
k (t, [0, ai]) = lim

k→∞
Y an
k (t, [0, ai])

≤ Zan
t ([0, ai]) = Z̄an

t ([0, ai]) = Z̄ai
t ([0, ai]).
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Since Theorem 5.5 implies {Zai
t : t ≥ 0} is equivalent to {Z̄ai

t : t ≥ 0}, we have

E[Zai
t ([0, ai])] = E[Z̄ai

t ([0, ai])].

It then follows that almost surely

lim
k→∞

Y ai
k (t, [0, ai]) = Z̄ai

t ([0, ai]). (5.10)

On the other hand, since Y an
k (t) → Z̄an

t , for any closed set C ⊂ [0, ai] we have

lim sup
k→∞

Y ai
k (t, C) = lim

k→∞
Y an
k (t, C) ≤ Z̄an

t (C) = Z̄ai
t (C). (5.11)

By (5.10) and (5.11) we have Zai
t = limk→∞ Y ai

k (t) = Z̄ai
t . Then {Zai

t : t ≥ 0}
and {Z̄ai

t : t ≥ 0} are indistinguishable since both processes are càdlàg. �

Let M be the space of Radon measures on [0,∞) furnished with a metric
compatible with the vague convergence. The result of Theorem 5.8 clearly
implies the convergence of {Yk(t) : t ≥ 0} in distribution onD([0,∞),M ) with
the Skorokhod topology. From Theorem 5.8 we can also derive the following
generalization of a result of Bertoin and Le Gall (2006); see also Bertoin and
Le Gall (2000) for an earlier result.

Corollary 5.9 Suppose that kbk → b, ηk → η weakly on [0, a] and k2σ2kδ0(dz)+
(z ∧ z2)mk(dz) converges weakly on [0,∞) to a finite measure σ2δ0(dz) + (z ∧
z2)m(dz) as k → ∞. Let {0 ≤ a1 < · · · < an} be an ordered set of constants.
Then {(Yk(t, a1), · · · , Yk(t, an)) : t ≥ 0} converges to {(Xt(a1), · · · , Xt(an)) :
t ≥ 0} in distribution on D([0,∞),Rn

+).
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