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Abstract

For a one-dimensional superprocess in random environment, a nonlinear
SPDE was derived by Dawson et al [3] for its density process. The time-space
joint continuity of the density process was left as an open problem. In this paper
we give an affirmative answer to this problem.

Keywords: Superprocess, random environment, stochastic partial differential
equation.

AMS 2000 subject classifications: Primary 60G57, 60H15; secondary 60J80.

1 Introduction

Suppose that in a system of kn particles each particle has an independent exponential

clock with parameter n. Before any of these exponential times is up, the particles

with initial locations (xn
1 , · · · , xn

kn
) ∈ Rkn move according to the following system of

stochastic differential equations (SDE):

xn
i (t) = xn

i +Bi(t) +

∫ t

0

∫
R
h(y − xn

i (s))W (dsdy), i = 1, 2, · · · , kn, (1.1)

where h ∈ L2(R) and (B1, · · · , Bkn) is an kn-dimensional Brownian motions indepen-

dent of the Brownian sheet W on R+ × R. The W can be regarded as the random

environment for the particle system. For convenience we assume that

ρ(0) ≡
∫
R
h(x)2dx = 1.

When its clock rings the particle either splits into two or dies with equal probabilities.

The new particles will inherit their mother’s position together with new independent

exponential clocks. This pattern of motion-splitting/dying then continues as before.

1Research of ZL is supported partially by NSFC (10525103 and 10721091) and CJSP, JX by NSF
DMS-0906907, XZ by NSERC.
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In general, each particle in the system can be denoted by a multi-index α =

α1α2 · · ·αk with α1 = 1, · · · , kn and αi = 1, 2 for i ≥ 2. For example, α = (3, 1)

represents the oldest daughter of the third particle in the first generation. Write α ∼ t

if particle α is alive at time t. For each n we define a measure-valued stochastic process

Xn
t =

1

n

∑
α∼t

δxn
α(t), t ≥ 0,

This model is first studied by Wang ([15], [16]). Write MF (R) for the space of finite

measures on E with the topology of weak convergence. Under suitable conditions, it

is proved by Wang [16] and Dawson et al [2] that as n → ∞, Xn converges weakly in

D([0, T ],MF (R)) to the unique solution X of the following martingale problem (MP):

Mϕ
t ≡ ⟨Xt, ϕ⟩ − ⟨µ, ϕ⟩ −

∫ t

0

⟨Xs,∆ϕ⟩ ds, ∀ϕ ∈ C2
b (R) (1.2)

is a continuous martingale with quadratic variation process

⟨
Mϕ
⟩
t
=

∫ t

0

⟨
Xs, ϕ

2
⟩
ds+

∫ t

0

∫
R2

ρ(x− y)ϕ′(x)ϕ′(y)Xs(dx)Xs(dy)ds, (1.3)

where µ ∈ MF (R) is the initial measure and

ρ(x− y) =

∫
R
h(z − x)h(z − y)dz. (1.4)

Here ∆ϕ ≡ ϕ′′ is the second derivative of ϕ. Similarly, we shall use both ∇ϕ and ϕ′ to

denote the first derivative of ϕ.

It is proved by Dawson et al [3] and Wang [15] that Xt is absolutely continuous

with respect to Lebesgue measure and its density, denoted by Xt(x), solves SPDE

Xt(x) = µ(x) +

∫ t

0

∆Xs(x)ds−
∫ t

0

∫
R
∇x(h(y − x)Xs(x))W (dsdy)

+

∫ t

0

√
Xs(x)

B(dsdx)

dx
, (1.5)

where B is a Brownian sheet on R+ × R independent of W . The joint continuity of

(t, x) 7→ Xt(x) is left as an open problem in [3].

When the third term on the RHS of (1.5) is replaced by
∫ t

0

∫
R ∇(h(x)Xs(x))dW̃ (s)

with a real-valued Brownian motion W̃ , the SPDE is satisfied by the density process

of a measure-valued process for a related model studied by Skoulakis and Adler [14].
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For that model, Lee et al [11] proves the continuity in x for Lebesgue almost all fixed

t using Krylov’s (cf. Krylov [8]) Lp theory for linear SPDE.

The goal of this paper is to prove the joint continuity of Xt(x) in Theorem 1.1.

For k ∈ R, p ≥ 1 the space Hk
p with norm ∥ · ∥k,p will be introduced in Section 2. We

always make the following assumption (I) on the initial measure X0.

Assumption (I): X0 has a bounded density µ ∈ H1
2 .

Theorem 1.1 Suppose that h ∈ H2
2 , ∥h∥21,2 < 2 and X0 satisfies the condition (I).

Then the measure-valued process Xt has a density Xt(x) which is almost surely jointly

Hölder continuous. Furthermore, for fixed t its Hölder exponent in x is in (0, 1/2); for

fixed x its Hölder exponent in t is in (0, 1/10).

We now describe the major difficulties and sketch our approaches for the main

result. When h = 0, X becomes the well known Dawson-Watanabe process with the

joint continuity for its density studied by Konno and Shiga [6] and Reimers [13] via a

convolution technique. If we adopt the same technique here, then the density can be

represented as

Xt(x) =

∫
φt(x− y)µ(y)dy +

∫ t

0

∫
R

√
Xs(y)φt−s(x− y)B(dsdy)

+

∫ t

0

∫
R

∫
R
h(y − z)Xs(z)∂zφt−s(x− z)dzW (dsdy), (1.6)

where φ is the heat kernel with generator ∆. However, the third term on the RHS of

the above equation is (for some suitable function g) roughly equal to∫ t

0

∫
R
(t− s)−1/2g(z)W (dsdz),

which does not converge. Therefore, the convolution argument of Konno and Shiga

fails in our model. It actually means that the SPDE (1.5) does not have amild solution.

Since it is the term containing W that causes the problem, we want to absorb

it to the kernel by considering a stochastic transition function. For this purpose let

pW (s, x; t, y) be the conditional transition function of a single particle with W given

(to be made precise in Section 3). We will prove that

Xt(y) =

∫
R
pW (0, x; t, y)µ(x)dx+

∫ t

0

∫
R

√
Xs(x)p

W (s, x; t, y)B(dsdx).
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The first term in the above equation is easy to deal with. So we focus on the second

term. We will apply Kolmogorov’s criteria to obtain the joint continuity. To this end,

we need the following estimates: for any y1, y2 ∈ R,

E

∣∣∣∣∫ t

0

∫
R
|pW (s, x, t, y1)− pW (s, x, t, y2)|2dxds

∣∣∣∣p ≤ K|y1 − y2|2+ϵ (1.7)

and for y ∈ R and t1 < t2,

E

∣∣∣∣∫ t1

0

∫
R
|pW (s, x, t2, y)− pW (s, x, t1, y)|2dxds

∣∣∣∣p ≤ K|t1 − t2|2+ϵ, (1.8)

for some ϵ > 0 and suitable p > 0.

To obtain (1.7) we fix t and let us(x) = pW (t− s, x, t, y1)− pW (t− s, x, t, y2). Then

u satisfies the following linear SPDE

ut(x) = u0(x) +

∫ t

0

∆us(x)ds+

∫ t

0

∫
R
∇us(x)h(y − x)W̃ (dsdy) (1.9)

with initial condition u0 = δy1 − δy2 , where W̃ is a Brownian sheet defined by W with

its time reversed (to be made precise later). We shall derive an estimate of us in terms

of u0 in the spirit of Kurtz and Xiong [10] and obtain (1.7).

For (1.8), we note that ũs(x) = pW (t1 − s, x, t2, y)− pW (t1 − s, x, t1, y) is a solution

to the linear SPDE (1.9) with initial condition ũ0 = pW (t1, ·, t2, y) − δy. The LHS of

(1.8) is then bounded by E ∥ũ0∥2p−1,2, where ∥ · ∥−1,2 is a Sobolev norm to be defined

later. To estimate this quantity, we further define vt(x) = pW (t2 − t, x, t2, y) which

solves SPDE (1.9) with initial v0(x) = δy(x), and then estimate E ∥vt2−t1 − δy∥2p−1,2.

Similar to what we mentioned above for the convolution (1.6), we cannot directly apply

the convolution with kernel φt to (1.9). We shall use a partial convolution by kernel

φtα where α ∈ (0, 1) is a constant to be decided later. Then

vt(z) = φtα(z − y) +

∫ t

0

∫
R
∆vt−r(x)φrα(z − x)dxdr

+

∫ t

0

∫
R

∫
R
∇vt−r(x)h(y − x)φrα(z − x)dxW̃ (drdy)

−α

∫ t

0

∫
R
∆vt−r(x)φrα(z − x)dxrα−1dr. (1.10)

The main difficulty now lies in the fourth term because, due to the integrability, we

can not apply integration by parts to move ∆ completely to φ. Instead, we have to

transform a fraction ∆β of ∆ to φ with β < 1 to be decided (together with α).
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The novelty of this article is as follows. Firstly, to the best of our knowledge the

joint continuity for the solution to SPDE was only previously studied when the mild

solution for that equation can be defined. The current paper appears to be the first

attempt for such a problem when the SPDE does not allow a mild solution. Secondly,

a fractional integration by parts technique is introduced to obtain estimates for the

solution to SPDE. We believe this technique will be useful in studying other SPDEs.

Thirdly, a stochastic convolution technique is implemented, which provides the solution

to SPDE with a “conditionally mild” representation. This technique will be applicable

to other SPDEs arising from particle systems in random environments.

Besides the continuity of the solution, mild representation has been used by many

authors to derive various properties for the solution of the SPDE. For example, Foon-

dun and Khoshnevisan [4] use this representation to study the intermittency. We

believe that the methods we develop in this paper can be applied to study other prop-

erties of the SPDEs for which the mild representations are not available.

The rest of the paper is organized as follows. In Section 2 we establish some

estimates for the solutions to a class of linear SPDEs. Then in Section 3 we derive a

representation of the density Xt(x) in terms of a random transition function. Based

on this representation, we estimate the spatial-increments of Xt(x) in Section 4 and

the time-increments in Section 5. We conclude the proof of Theorem 1.1 in Section 5.

The following conventions will be used throughout the paper. We use K to repre-

sent a positive constant whose value can be different from place to place. We use I or

J with a subscript to represent a term in the quantity to be evaluated. Again, what

I1 stands for can be different from place to place.

2 Two SPDE estimates

In this section we study the SPDE (1.9) where u0 is either a real or a generalized

function for different purposes. To this end, we need to introduce some notation taken

from Krylov [8]. For α ∈ (0, 1) and generalized function u on R, let

(I −∆)αu = c(α)

∫ ∞

0

e−tTtu− u

tα+1
dt, (2.1)

and

(I −∆)−αu = d(α)

∫ ∞

0

tα−1e−tTtudt, (2.2)
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where c(α) and d(α) are two constants and Tt is the Brownian semigroup. As being

indicated by Krylov [8], (2.1) and (2.2) are sufficient to define (I −∆)n/2 consistently

for any n ∈ R (cf. Krasnoselskii et al [7]). In particular, (I−∆)α(I−∆)β = (I−∆)α+β

for any α, β ∈ R. In this paper we only need it for n ∈ [−1, 1].

Let Hn
p be the spaces of Bessel potentials with norms

∥u∥n,p ≡ ∥(I −∆)n/2u∥p (2.3)

where ∥ · ∥p is the norm in Lp. Note that for n = 1 and p = 2, ∥u∥1,2 coincides with

the usual Sobolev norm on H1,2.

The existence and uniqueness of the solution to (1.9) has been studied by Krylov

[8] in suitable Banach spaces. In the remaining of this section, we assume this equation

has a solution (the existence will be evident from the applications in later sections),

and the aim of this section is to prove that, with the appropriate initial condition, the

solution actually lies in the spaces which will be useful for our purpose.

Let β ∈ [0, 1) and u0 ∈ Hβ−1
2 . For f ∈ C∞

0 (R), i.e., f is infinitely differentiable

with compact support, we have

⟨ur, f⟩ = ⟨u0, f⟩+
∫ r

0

⟨∆us, f⟩ ds+
∫ r

0

∫
R
⟨∇ush(y − ·), f⟩ W̃ (dsdy) (2.4)

where ⟨u, f⟩ stands for the duality between the Hilbert spaces H−n
2 and Hn

2 . Applying

Itô’s formula to ⟨ur, f⟩2 and summing up f over a complete orthonormal system of

H1−β
2 , by (2.4) we get

∥ur∥2β−1,2 = ∥u0∥2β−1,2 +

∫ r

0

2 ⟨us,∆us⟩β−1,2 ds+

∫ r

0

∫
R
∥∇ush(y − ·)∥2β−1,2dyds

+

∫ r

0

∫
R
2 ⟨us,∇ush(y − ·)⟩β−1,2 W̃ (dsdy). (2.5)

We first apply (2.5) for β = 0. The following lemmas will be used in Theorem 2.3.

Lemma 2.1 If h ∈ H1
2 , then for any u ∈ H0

2 ,∫
R
∥∇uh(y − ·)∥2−1,2dy ≤ ∥h∥21,2∥u∥20,2.

Proof: Note that∫
R
∥∇uh(y − ·)∥2−1,2dy =

∫
R

sup
∥f∥1,2≤1

⟨∇u, h(y − ·)f⟩2 dy

6



=

∫
R

sup
∥f∥1,2≤1

⟨u, f ′h(y − ·)− fh′(y − ·)⟩20,2 dy

≤
∫
R

sup
∥f∥1,2≤1

(∥uh(y − ·)∥0,2∥f ′∥0,2 + ∥uh′(y − ·)∥0,2∥f∥0,2)2 dy

≤
∫
R

(
∥uh(y − ·)∥20,2 + ∥uh′(y − ·)∥20,2

)
dy

= ∥h∥21,2∥u∥20,2,

where the first inequality follows from the definition of the norm using duality.

Lemma 2.2 If h ∈ H2
2 , then for any u ∈ H−1

2 ,∫
R
⟨u,∇uh(y − ·)⟩2−1,2 dy ≤ K∥u∥2−1,2.

Proof: Let g = (I −∆)−1u. By integration by parts, we get

⟨u, f∇u⟩−1,2 =
⟨
(I −∆)−1u, f∇u

⟩
0,2

(2.6)

= −⟨f ′g, g⟩0,2 − ⟨(f + f ′′)g, g′⟩0,2 + ⟨fg′, g′′⟩0,2 − ⟨f ′g′, g′⟩0,2 .

By Lemma 3.2 in [9], we get∫
R
⟨h(y − ·)g′, g′′⟩20,2 dy ≤ K∥h′∥20,2∥g′∥20,2.

Applying Cauchy-Schwartz inequality to the other terms of (2.6) with f replaced by

h(y − ·), we have ∫
R
⟨u,∇uh(y − ·)⟩2−1,2 dy ≤ K∥h∥22,2∥g′∥20,2. (2.7)

As

∥g′∥0,2 = ∥∇(I −∆)−1u∥0,2 ≤ K∥(I −∆)−
1
2u∥0,2 = K∥u∥−1,2,

the conclusion of the lemma then follows from (2.7), where the last inequality follows

from the boundedness of the operator ∇(I −∆)−
1
2 (cf. [8]).

Theorem 2.3 For p ≥ 1, u0 ∈ H−1
2 , h ∈ H2

2 and ∥h∥21,2 < 2, we have

E sup
t≤T

∥ut∥2p−1,2 + E

(∫ T

0

∥ut∥20,2dt
)p

≤ K∥u0∥2p−1,2. (2.8)
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Proof: In this proof we adapt the arguments of Kurtz and Xiong [9] for the norm

given by (2.3). Using a smoothing technique as in [9] if necessary, we may assume that

ut ∈ H0
2 . Note that for u ∈ H0

2 . By (2.3) we have

⟨u,∆u⟩−1,2 = ⟨u,∆u− u⟩−1,2 + ∥u∥2−1,2 = −∥u∥20,2 + ∥u∥2−1,2. (2.9)

By Lemma 2.1 we then have

2 ⟨u,∆u⟩−1,2 +

∫
R
∥∇uh(y − ·)∥2−1,2dy ≤ −

(
2− ∥h∥21,2

)
∥u∥20,2 + 2∥u∥2−1,2. (2.10)

It follows from Lemma 2.2 that

E sup
t≤r

∣∣∣∣∫ t

0

∫
R
2 ⟨us,∇ush(y − ·)⟩−1,2 W̃ (dsdy)

∣∣∣∣p
≤ KE

(∫ r

0

∫
R
⟨us,∇ush(y − ·)⟩2−1,2 dsdy

)p/2

≤ KE
∫ r

0

∥us∥2p−1,2ds. (2.11)

Using (2.5) with β = 0, together with (2.10) and (2.11) we have

E sup
s≤r

∥us∥2p−1,2 + E

(∫ r

0

∥us∥20,2ds
)p

≤ KE ∥u0∥2p−1,2 +K

∫ r

0

E ∥us∥2p−1,2ds. (2.12)

Removing the second term on the LHS of (2.12), we get

E sup
s≤r

∥us∥2p−1,2 ≤ K1∥u0∥2p−1,2 +K2

∫ r

0

E ∥us∥2p−1,2ds.

It follows from Gronwall’s inequality that

E sup
s≤r

∥us∥2p−1,2 ≤ K1∥u0∥2p−1,2e
K2r.

Removing the first term on the LHS of (2.12), we get

E

(∫ r

0

∥us∥20,2ds
)p

≤ K1∥u0∥2p−1,2 +K2

∫ r

0

K1∥u0∥2p−1,2e
K2rds ≤ K3∥u0∥2p−1,2.

In most applications, we shall take u0 = δy or u0 = δy1 − δy2 . It is well known that

for any y ∈ R, δy ∈ H−α
2 for any α > 1

2
(cf. Example 1 of Section 5.2 in the book of

Barros-Neto [1]). This justifies the applicability of the last theorem.

We will prove a stronger version of Theorem 2.3 which is useful in estimating time-

increment of the random field Xt(y). To this end, we need the following two lemmas.
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Lemma 2.4 For h ∈ H1
2 and for any α ∈ (0, 1

2
] there exists a constant K such that∫

R
∥∇uh(y − ·)∥2−2α,2dy ≤ 3

2
∥∇u∥2−2α,2 +K∥u∥20,2.

Proof: Note that

I(t, x, y) ≡ Tt(u
′h(y − ·))(x)− Tt(u

′)(x)Tth(y − ·)(x)

=
1

2

∫
R
dz1

∫
R
dz2(u

′(z1)− u′(z2)) (h(y − z1)− h(y − z2))φt(x− z1)φt(x− z2)

=
1

2

∫
R
dz1

∫
R
dz2(u(z1)− u(z2)) (h

′(y − z1)− h′(y − z2))φt(x− z1)φt(x− z2)

+
1

2

∫
R
dz1

∫
R
dz2(u(z1)− u(z2)) (h(y − z1)− h(y − z2))

z1 − z2
t

φt(x− z1)φt(x− z2).

Then ∫
R
dx

∫
R
dy|I(t, x, y)|2

≤ K

∫
R
dx

∫
R
dy

∫
R
dz1

∫
R
dz2(u(z1)− u(z2))

2 (h′(y − z1)− h′(y − z2))
2
φt(x− z1)φt(x− z2)

+K

∫
R
dx

∫
R
dy

∫
R
dz1

∫
R
dz2(u(z1)− u(z2))

2

∣∣∣∣ 1

z1 − x

∫ z1

x

h′(y − z)dz

∣∣∣∣2
×|z1 − z2|2

t
φt(x− z1)φt(x− z2)

≤ K

∫
R
dz1

∫
R
dz2(u(z1)

2 + u(z2)
2)φ2t(z1 − z2) +K

∫
R
dz1

∫
R
dz2(u(z1)

2 + u(z2)
2)φ(2+ϵ)t(z1 − z2)

= K∥u∥20,2,

where the constant K depends on ∥h′∥20,2 and we used the inequality

x2

t
φt(x)φ(1+ϵ)t(x)

−1 =
x2

t

√
1 + ϵ exp

(
x2

2(1 + ϵ)t
− x2

4t

)
=

√
1 + ϵ

x2

t
exp

(
− ϵx2

4t(1 + ϵ)

)
≤

√
1 + ϵ sup

y≥0

(
y exp

(
− ϵ

2(1 + ϵ)
y

))
≡ K(ϵ).

On the other hand,∫
R

∫
R
dxdy

∣∣∣∣∫ ∞

0

tα−1e−tTt(u
′)(x)Tth(y − ·)(x)dt

∣∣∣∣2
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=

∫
R

∫
R
dxdy

∫ ∞

0

∫ ∞

0

dsdt(ts)α−1e−(t+s)Ts(u
′)(x)Tt(u

′)(x)Tth(y − ·)(x)Tsh(y − ·)(x)

≤ ρ(0)

∫
R
dx

∫ ∞

0

∫ ∞

0

dsdt(ts)α−1e−(t+s)Ts(u
′)(x)Tt(u

′)(x)

= ∥∇u∥2−2α,2.

By the triangular inequality, we have(∫
R
∥∇uh(y − ·)∥2−2α,2dy

)1/2

≤
(∫

R

∫
R
dxdy

∫ ∞

0

tα−1e−tI(t, x, y)2dt

)1/2

+ ∥∇u∥−2α,2

≤ K∥u∥0,2 + ∥∇u∥−2α,2.

The conclusion then follows from the elementary inequality (a+ b)2 ≤ 3
2
a2 + 3b2.

Lemma 2.5 For h ∈ H1
2 , there exists a constant K such that for any 0 ≤ u ∈ H0

2 ,∫
R
⟨u,∇uh(y − ·)⟩2−2α,2 dy ≤ K∥u∥2−2α,2∥u∥20,2.

Proof: Note that(∫
R
⟨u,∇uh(y − ·)⟩2−2α,2 dy

)1/2

=

(∫
R

(∫
R
dx

∫ ∞

0

∫ ∞

0

(ts)α−1e−(t+s)dtdsTtu(x)Ts(u
′h(y − ·))(x)

)2

dy

)1/2

≤
√

I1 +
√

I2,

where

I1 =

∫
R

(∫
R
dx

∫ ∞

0

∫ ∞

0

(ts)α−1e−(t+s)dtdsTtu(x)Tsu
′(x)h(y − x)

)2

dy

and

I2 =

∫
R

(∫
R
dx

∫ ∞

0

∫ ∞

0

(ts)α−1e−(t+s)dtds

×Ttu(x) (Ts(u
′h(y − ·))(x)− Tsu

′(x)h(y − x))
)2
dy.

By integration by parts and changing the order of Ts and ∇, we get∫
R
dx

∫ ∞

0

∫ ∞

0

(ts)α−1e−(t+s)dtdsTtu(x)Tsu
′(x)h(y − x)

=
1

2

∫
R
dx

∫ ∞

0

∫ ∞

0

(ts)α−1e−(t+s)dtdsTtu(x)h
′(y − x)Tsu(x).

10



Thus,

I1 ≤ K

∫
R
dx

∫ ∞

0

∫ ∞

0

(ts)α−1e−(t+s)dtdsTtu(x)Tsu(x)

×
∫
R
dx′
∫ ∞

0

∫ ∞

0

(t′s′)α−1e−(t′+s′)dt′ds′Tt′u(x
′)Ts′u(x

′)

= K∥u∥4−2α,2 ≤ K∥u∥2−2α,2∥u∥20,2.

Note that we used the non-negativity of u(x) in the inequality above.

Now we estimate I2. Note that

I2 =

∫
R2

d(x, x′)

∫
(0,∞)4

d(t, s, t′, s′)(tst′s′)α−1e−(t+s+t′+s′)Ttu(x)Tt′u(x
′)J(x, x′),

where

J(x, x′) =

∫
R
dy

∫
R2

dzdz′φs(x− z)(h(y − z)− h(y − x))u′(z)

×φs′(x
′ − z′)(h(y − z′)− h(y − x′))u′(z′)

=

∫
R2

dzdz′φs(x− z)φs′(x
′ − z′)u′(z)u′(z′)

× (ρ(z − z′)− ρ(x− z′)− ρ(z − x′) + ρ(x− x′)) .

By integration by parts again, we can continue with

J(x, x′) ≡
∫
R2

dzdz′∇zφs(x− z)∇z′φs′(x
′ − z′)u(z)u(z′)

× (ρ(z − z′)− ρ(x− z′)− ρ(z − x′) + ρ(x− x′))

+

∫
R2

dzdz′∇zφs(x− z)φs′(x
′ − z′) (ρ′(x− z′)− ρ′(z − z′))u(z)u(z′)

+

∫
R2

dzdz′φs(x− z)∇z′φs′(x
′ − z′) (ρ′(z − z′)− ρ′(z − x′))u(z)u(z′)

−
∫
R2

dzdz′φs(x− z)φs′(x
′ − z′)ρ′′(z − z′)u(z)u(z′)

≡ J1 + J2 + J3 + J4.

Note that for some ϵ > 0 we have

J2 ≤ K

∫
R2

dzdz′φs(x− z)
|x− z|2

s
φs′(x

′ − z′)u(z)u(z′) ≤ K1T(1+ϵ)su(x)Ts′u(x
′).

Let Gu(x) =
∫∞
0

sα−1e−sT(1+ϵ)su(x)ds. Then the corresponding term of J2 in I2 is

bounded (up to a constant multiplication) by

∥u∥2−2α,2

∫
R
dx

∫ ∞

0

∫ ∞

0

(ts)α−1e−(t+s)dtdsTtu(x)T(1+ϵ)su(x)

11



= ∥u∥2−2α,2

⟨
(I −∆)−αu,Gu

⟩
0,2

≤ ∥u∥3−2α,2∥Gu∥0,2

≤ ∥u∥3−2α,2

(∫ ∞

0

∫ ∞

0

(ts)α−1e−(t+s)dtds∥u∥20,2
)1/2

≤ K∥u∥3−2α,2∥u∥0,2 ≤ K∥u∥2−2α,2∥u∥20,2.

The other terms can be estimated similarly.

The following estimate will be used in the arguments in Section 5.

Theorem 2.6 Suppose that the conditions of Theorem 2.3 hold. Then for β ∈ [0, 1/2], u0 =

δz and p ≥ 1 we have

E sup
t≤T

∥ut∥2pβ−1,2 + E

(∫ T

0

∥ut∥2β,2dt
)p

≤ K∥δz∥2pβ−1,2. (2.13)

Proof: Similar to Theorem 2.3 we may assume that ut ∈ Hβ
2 a.s.. Further, using a

stopping argument if necessary we may and will assume that the LHS of (2.13) is finite.

Denote 1− β = 2α for simplicity. By (2.5) and Lemma 2.4 we get

∥ur∥2−2α,2 ≤ ∥u0∥2−2α,2 −
1

2

∫ r

0

∥∇us∥2−2α,2ds+ 3

∫ r

0

∥us∥20,2ds

+

∫ r

0

∫
R
2 ⟨us,∇ush(y − ·)⟩β−1,2 W̃ (dsdy)

≤ ∥u0∥2−2α,2 −
1

2

∫ r

0

∥us∥21−2α,2ds+
7

2

∫ r

0

∥us∥20,2ds

+

∫ r

0

∫
R
2 ⟨us,∇ush(y − ·)⟩β−1,2 W̃ (dsdy),

where the last inequality follows from

∥∇u∥2−2α,2 = d(α)2
⟨∫ ∞

0

tα−1e−tTtu
′dt,

∫ ∞

0

tα−1e−tTtu
′dt

⟩
0,2

= −d(α)2
⟨∫ ∞

0

tα−1e−tTtudt,∆

∫ ∞

0

tα−1e−tTtudt

⟩
0,2

= d(α)2
⟨∫ ∞

0

tα−1e−tTtudt, (I −∆)

∫ ∞

0

tα−1e−tTtudt

⟩
0,2

−d(α)2
⟨∫ ∞

0

tα−1e−tTtudt,

∫ ∞

0

tα−1e−tTtudt

⟩
0,2

= ∥(I −∆)
1
2 (I −∆)−αu∥22 − ∥(I −∆)−αu∥22

= ∥u∥21−2α,2 − ∥u∥2−2α,2 ≥ ∥u∥21−2α,2 − ∥u∥20,2.

12



Thus,

E sup
t≤r

∥ut∥2pβ−1,2 + E

(∫ r

0

∥ut∥2β,2dt
)p

≤ K∥u0∥2p−2α,2 +KE

(∫ r

0

∥us∥20,2ds
)p

+KE

(∫ r

0

∫
R
2 ⟨us,∇ush(y − ·)⟩2β−1,2 dyds

)p/2

≤ K1∥u0∥2p−2α,2 +KE

(∫ r

0

∫
R
2 ⟨us,∇ush(y − ·)⟩2β−1,2 dyds

)p/2

,

where the last inequality follows from Theorem 2.3 and the fact ∥u0∥−1,2 ≤ ∥u0∥−2α,2.

By Lemma 2.5, we get

E sup
s≤r

∥us∥2pβ−1,2 + E

(∫ r

0

∥us∥2β,2ds
)p

≤ K∥δz∥2pβ−1,2 +KE

(∫ r

0

∥us∥2β−1,2∥us∥20,2ds
)p/2

≤ K∥δz∥2pβ−1,2 +KE

(
sup
s≤r

∥us∥2β−1,2

∫ r

0

∥us∥20,2ds
)p/2

≤ K∥δz∥2pβ−1,2 +
1

2
E sup

s≤r
∥us∥2pβ−1,2 + 8K2E

(∫ r

0

∥us∥20,2ds
)p

≤ K∥δz∥2pβ−1,2 +
1

2
E sup

s≤r
∥us∥2pβ−1,2 +K1∥δz∥2p−1,2.

The conclusion then follows from easy calculations.

3 A convolution representation

In this section, we establish a convolution representation for the density Xt(x) in

terms of a random transition function. We first define the random transition function

by considering the spatial motion of a typical particle in the system, which satisfies

ξt = ξ0 +Bt +

∫ t

0

∫
R
h(y − ξs)W (dsdy).

For r ≤ t and x ∈ R fixed, we define the conditional transition probability

pr,x,Wt (·) ≡ pW (r, x; t, ·) ≡ PW (ξt ∈ ·|ξr = x).

Then for r and x fixed pr,x,Wt can be regarded as the optimal filter with vanishing

observation function. Thus, it is a P(R)-valued process satisfying the Zakai equation⟨
pr,x,Wt , f

⟩
= f(x) +

∫ t

r

⟨
pr,x,Ws ,∆f

⟩
ds+

∫ t

r

∫
R

⟨
pr,x,Ws ,∇fh(y − ·)

⟩
W (dsdy), (3.1)
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where P(R) is the space of Borel probability measures on R. We refer the reader to

the books of Kallianpur [5] and Xiong [17] for an introduction to nonlinear filtering

and the related Zakai equation.

Next, we consider the dual equation on Cb(R):

Tr,t(x) = f(x) +

∫ t

r

∆Ts,t(x)ds+

∫ t

r

∫
R
∇Ts,t(x)h(y − x)W (d̂sdy), (3.2)

where d̂s stands for the backward Itô integral. We refer to Li et al [12] for the defi-

nition of the backward Itô integral. We also denote Tr,t(x) by T f
r,t(x) to indicate the

dependence on f . Similar to Corollary 6.22 in Xiong [17] it is easy to show that

T f
s,t(x) =

∫
R
f(y)pW (s, x; t, dy) = E W

s,xf(ξt), (3.3)

where E W
s,x denotes the conditional expectation given W and ξs = x.

The following convolution representation is the key in proving the joint continuity

of Xt(y). We shall denote Z(dsdx) ≡
√

Xs(x)B(dsdx).

Lemma 3.1 Suppose that X0 satisfies condition (I) and f ∈ C2
b (R). Then we have

⟨Xt, f⟩ = ⟨X0, T0,t⟩+
∫ t

0

∫
R
Ts,t(x)Z(dsdx). (3.4)

Proof: Similar to Theorem 2.1 in Lee et al [11], we can prove that Xt ∈ H0
2 and

sup
s≤t

E ∥Xs∥20,2 < ∞.

Denote the RHS of (3.4) by ⟨Yt, f⟩. It is easy to show that Yt is an H0
2 -valued process.

Note that for f ∈ C2
b (R) we have

⟨Yt, f⟩ − ⟨X0, f⟩ −
∫ t

0

⟨Ys,∆f⟩ ds−
∫ t

0

∫
R
⟨Ys, h(y − ·)∇f⟩W (dsdy)

=
⟨
X0, T

f
0,t

⟩
+

∫ t

0

∫
R
T f
s,t(x)Z(dsdx)− ⟨X0, f⟩

−
∫ t

0

{⟨
X0, T

∆f
0,s

⟩
+

∫ s

0

∫
R
T∆f
r,s (x)Z(drdx)

}
ds

−
∫ t

0

∫
R

{⟨
X0, T

h(y−·)∇f
0,s

⟩
+

∫ s

0

∫
R
T h(y−·)∇f
r,s (x)Z(drdx)

}
W (dsdy)

=

⟨
X0, T

f
0,t − f −

∫ t

0

T∆f
0,s ds−

∫ t

0

∫
R
T

h(y−·)∇f
0,s W (dsdy)

⟩
14



+

∫ t

0

∫
R
E W

s,xf(ξt)Z(dsdx)−
∫ t

0

∫
R

∫ t

r

E W
r,x∆f(ξs)dsZ(drdx)

−
∫ t

0

∫
R

∫ t

r

∫
R
E W

r,x (h(y − ξs)∇f(ξs))W (dsdy)Z(drdx)

=

∫
R
X0(dx)E

W
0,x

(
f(ξt)− f(x)−

∫ t

0

∆f(ξs)ds−
∫ t

0

∫
R
h(y − ξs)∇f(ξs)W (dsdy)

)
+

∫ t

0

∫
R
Z(dsdx)E W

s,x

{
f(ξt)−

∫ t

s

∆f(ξr)dr −
∫ t

s

∫
R
h(y − ξr)∇f(ξr)W (drdy)

}
=

∫ t

0

∫
R
f(x)Z(dsdx).

Let X̃t = Xt − Yt. By (1.5) X̃ is an H0
2 -valued solution to the following linear SDE⟨

X̃t, f
⟩
=

∫ t

0

⟨
X̃s,∆f

⟩
ds+

∫ t

0

∫
R

⟨
X̃s, h(y − ·)∇f

⟩
W (dsdy). (3.5)

By Theorem 3.5 in Kurtz and Xiong [9] we have that X̃ = 0.

4 An estimate in spatial increment

In this section we estimate spatial increment of the density Xt(y). As a consequence,

we shall see that for t > 0 fixed, Xt(y) is Hölder continuous with exponent 1/2− ϵ.

Applying Theorem 2.3 to (3.1), we see that pW (s, x; t, ·) has a density, denote it by

pW (s, x; t, y). By Lemma 3.1, Xt(y) can be represented as

Xt(y) =

∫
R
µ(x)pW (0, x; t, y)dx+

∫ t

0

∫
R
pW (s, x; t, y)Z(dsdx) ≡ X1

t (y) +X2
t (y). (4.1)

To prove the joint continuity by Kolmogorov’s criteria, we need the following estimate.

Lemma 4.1 Suppose that Condition (I) holds. Then ∀ p ≥ 1,

E

∣∣∣∣∫ t

0

∫
R
(pW (s, x; t, y1)− pW (s, x; t, y2))Z(dsdx)

∣∣∣∣2p
≤ K

(
E

∣∣∣∣∫ t

0

∫
R
(pW (s, x; t, y1)− pW (s, x; t, y2))

2dxds

∣∣∣∣2p−1
) p

2p−1

. (4.2)

Proof: By BDG inequality, we have

L ≡ E

∣∣∣∣∫ t

0

∫
R
(pW (s, x; t, y1)− pW (s, x; t, y2))Z(dsdx)

∣∣∣∣2p
≤ KE E W

∣∣∣∣∫ t

0

∫
R
(pW (s, x; t, y1)− pW (s, x; t, y2))

2Xs(x)dxds

∣∣∣∣p .
15



For 2 = (2p− 1)/p+ 1/p, applying the Cauchy-Schwarz inequality we have

L ≤ KE

(∣∣∣∣∫ t

0

∫
R
(pW (s, x; t, y1)− pW (s, x; t, y2))

2dxds

∣∣∣∣
2p−1

2

×
∣∣∣∣∫ t

0

∫
R
(pW (s, x; t, y1)− pW (s, x; t, y2))

2Xs(x)
2pdxds

∣∣∣∣
1
2

)

≤ K

(
E

∣∣∣∣∫ t

0

∫
R
(pW (s, x; t, y1)− pW (s, x; t, y2))

2dxds

∣∣∣∣2p−1
) 1

2

×
(
E
∫ t

0

∫
R
(pW (s, x; t, y1)− pW (s, x; t, y2))

2Xs(x)
2pdxds

) 1
2

≡ KI × J.

Since µ is bounded, it is easy to show that

sup
t,x

⟨µ, φt(x− ·)⟩ < ∞. (4.3)

It then follows from the same arguments as in the proof of Lemma 3.1 of Lee et al [11]

that E Xs(x)
2p is bounded. Therefore,

J ≤ K

(
E
∫ t

0

∫
R
(pW (s, x; t, y1)− pW (s, x; t, y2))

2dxds

) 1
2

≤ KI1/(2p−1).

Thus, L ≤ KI2p/(2p−1) which coincides with the RHS of (4.2).

As a consequence of Theorem 2.3, we get

Proposition 4.2 Suppose the conditions of Theorem 1.1 hold. Let t ∈ [0, T ] and

p ≥ 1 be fixed. Then, there exists a constant K = K(p, T ) such that

E |X2
t (y1)−X2

t (y2)|2p ≤ K|y1 − y2|p, ∀ y1, y2 ∈ R. (4.4)

Consequently, for t > 0 fixed X2
t is Hölder continuous with exponent 1/2 − ϵ for any

ϵ > 0.

Proof: Let us(x) = pW (t− s, x, t, y1)− pW (t− s, x, t, y2). Then u solves equation (1.9)

with u0 = δy1 − δy2 . For any f ∈ H1
2 we have

| ⟨u0, f⟩ | = |f(y1)− f(y2)| =
∣∣∣∣∫ y2

y1

f ′(s)ds

∣∣∣∣ ≤√|y2 − y1|∥f∥1,2.
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Thus,

∥u0∥−1,2 ≤
√
|y2 − y1|. (4.5)

By Theorem 2.3 we get

E

(∫ t

0

∫
R
|pW (s, x, t, y1)− pW (s, x, t, y2)|2dxds

)p

≤ K|y1 − y2|p.

Inequality (4.4) then follows from Lemma 4.1.

Finally, we consider X1
t (y).

Proposition 4.3 Suppose the conditions of Theorem 1.1 hold. Let t ∈ [0, T ]. Then,

for p ≥ 1, there exists a constant K = K(p, T ) such that

E |X1
t (y1)−X1

t (y2)|2p ≤ K|y1 − y2|p.

Proof: Note that

E |X1
t (y1)−X1

t (y2)|2p = E

∣∣∣∣∫
R

(
pW (0, x; t, y1)− pW (0, x; t, y2)

)
µ(x)dx

∣∣∣∣2p
≤ E ∥pW (0, ·; t, y1)− pW (0, ·; t, y2)∥2p−1,2∥µ∥

2p
1,2

≤ K1∥δy1 − δy2∥
2p
−1,2∥µ∥

2p
1,2.

The conclusion then follows from (4.5).

5 Estimates in time increment

In this section we consider time-increments of the types of∫ t1

0

∫
R

(
pW (s, x; t2, y)− pW (s, x; t1, y)

)
Z(dsdx) (5.1)

and ∫ t2

t1

∫
R
pW (s, x; t2, y)Z(dsdx). (5.2)

For the type of (5.1), we first use Theorem 2.3 to obtain a preliminary estimate by

E ∥ut2−t1−δy∥2p−1,2, where ut is a solution to SDE (1.9) with u0 = δy. To further estimate

this quantity, we need to develop two major techniques, i.e., the partial convolution by

kernel φrα and the partial integration by parts introduced in Section 1. For the type

of (5.2), we will use a technique developed by Xiong and Zhou [18].
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Lemma 5.1 For any t1 < t2 and y ∈ R, we have

E

(∫ t1

0

∫
R

(
pW (s, x; t2, y)− pW (s, x; t1, y)

)
Z(dsdx)

)2p

≤ KE ∥pW (t1, ·; t2, y)−δy∥2p−1,2.

Proof: Note that pW (t1 − s, x; t2, y)− pW (t1 − s, x; t1, y) is the solution of SPDE (1.9)

with initial condition pW (t1, ·; t2, y)− δy and hence,

E

(∫ t1

0

∫
R

(
pW (s, x; t2, y)− pW (s, x; t1, y)

)
Z(dsdx)

)2p

≤ K

(
E

(∫ t1

0

∫
R

(
pW (s, x; t2, y)− pW (s, x; t1, y)

)2
dsdx

)2p−1
) p

2p−1

≤ KE ∥pW (t1, ·; t2, y)− δy∥2p−1,2.

Let us(x) = pW (t2 − s, x; t2, y). Then u solves (1.9) with u0 = δy. As ∆us is not

in H−1
2 we cannot use (1.9) directly to get an estimate on E ∥ut2−t1 − δy∥2p−1,2. Instead,

fixing t and taking differential of
∫
R ut−r(x)φrα(z − x)dx with respect to r, and then

taking integral we get (1.10). Denote the second and the third term on the RHS by I2

and I3, respectively. Write the fourth term by I4 − I5 with

I4 = α

∫ t

0

∫
R
(I −∆)ut−r(x)φrα(z − x)dxrα−1dr

and

I5 = α

∫ t

0

∫
R
ut−r(x)φrα(z − x)dxrα−1dr.

Then

ut(z)− δy(z) = I1 + I2 + I3 + I4 − I5.

We now estimate Ij, j = 1, 2, · · · , 5, separately. Although the following result can

be implied directly from the analyticity of ∆ on L2(R), we give a brief and elementary

proof for the convenience of the reader.

Lemma 5.2 For β ∈ (0, 1) there is a constant such that for r ∈ (0, T ) we have∫
R

∣∣∣(I −∆)β φr(x)
∣∣∣ dx ≤ Kr−β. (5.3)
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Proof: Note that the integral in the definition of (I −∆)β can be split up into two

parts: I1 denotes the part from 0 to r and I2 from r to ∞. Then∫
R
|I2(x)|dx ≤

∫ ∞

r

e−t + 1

t1+β
dt ≤ 2

β
r−β.

For t ≤ r, we have∣∣e−tφt+r(x)− φr(x)
∣∣φt+r(x)

−1

=

∣∣∣∣∣e−t −
√

t+ r

r
exp

(
−x2

2r
+

x2

2(t+ r)

)∣∣∣∣∣
≤

∣∣e−t − 1
∣∣+ ∣∣∣∣∣1−

√
t+ r

r

∣∣∣∣∣+
√

t+ r

r

∣∣∣∣1− exp

(
− tx2

2r(t+ r)

)∣∣∣∣
≤

√
2

(
tx2

2r(r + t)
+ t+

t

r

)
.

Multiplying both sides by φt+r(x) and taking integral we see that
∫
R |I1(x)|dx ≤ Kr−β.

Now we estimate I4. Note that

∥I4∥−1,2 ≤ α

∫ t

0

∥∥∥∥∫
R
(I −∆)

1+β
2 ut−r(· − x)(I −∆)

1−β
2 φrα(x)dx

∥∥∥∥
−1,2

rα−1dr

≤ K

∫ t

0

∥∥∥(I −∆)
1+β
2 ut−r

∥∥∥
−1,2

∫
R

∣∣∣(I −∆)
1−β
2 φrα(x)

∣∣∣ dxrα−1dr

≤ K

∫ t

0

∥∥∥(I −∆)
1+β
2 ut−r

∥∥∥
−1,2

r−
α
2
(1−β)rα−1dr

≤ K

(∫ t

0

∥∥∥(I −∆)
1+β
2 ut−r

∥∥∥2
−1,2

dr

) 1
2
(∫ t

0

rα(1+β)−2dr

) 1
2

= K

(∫ t

0

∥ur∥2β,2dr
) 1

2

t(α(1+β)−1)/2

where β ∈ (0, 1/2) is chosen such that α(1 + β) > 1. Thus, E ∥I4∥2p−1,2 ≤ Kt(α(1+β)−1)p.

I2 and I5 can be estimated similarly (easier).

Next, we estimate I3. Note that∫ t

0

∫
R

∥∥∥∥∫
R
∇ut−r(x)h(y − x)φrα(· − x)dx

∥∥∥∥2
−1,2

drdy

=

∫ t

0

∫
R

∥∥∥∥∫
R
ut−r(x)∇h(y − x)φrα(· − x)dx

∥∥∥∥2
−1,2

drdy
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+

∫ t

0

∫
R

∥∥∥∥∫
R
ut−r(x)h(y − x)∇φrα(· − x)dx

∥∥∥∥2
−1,2

drdy ≡ I31 + I32.

We calculate

I32 =

∫ t

0

∫
R

∥∥∥∥∫
R
ut−r(· − x)h(y + x− ·)∇φrα(x)dx

∥∥∥∥2
−1,2

drdy

=

∫ t

0

∫
R

∫
R

∫
R
⟨ut−r(· − x)h(y + x− ·), ut−r(· − x′)h(y + x′ − ·)⟩−1,2

×∇φrα(x)∇φrα(x
′)dxdx′dydr

=

∫ t

0

∫
R

∫
R

∫
R

∫ ∞

0

∫ ∞

0

(uv)−1/2e−(u+v)

×
∫
R

∫
R
φu(z − z1)ut−r(z1 − x)h(y + x− z1)dz1

×
∫
R
φv(z − z2)ut−r(z2 − x′)h(y + x′ − z2)dz2dzdudv

×∇φrα(x)∇φrα(x
′)dxdx′dydr

≤ K

∫ t

0

∫
R

∫
R
⟨ut−r(· − x), ut−r(· − x′)⟩−1,2 |∇φrα(x)||∇φrα(x

′)|dxdx′dr

≤ K

∫ t

0

(∫
R
∥ut−r(· − x)∥−1,2|∇φrα(x)|dx

)2

dr

≤ K sup
r≤t

∥ur∥2−1,2

∫ t

0

r−αdr ≤ K sup
r≤t

∥ur∥2−1,2t
1−α,

where in the first inequality we used the identity (1.4) and ρ(x) ≤ 1. I31 can be

estimated similarly. Estimation for I1 is easy. To summarize, we get

Proposition 5.3 For p ≥ 1, α ∈ (0, 1) and β ∈ (0, 1/2) satisfying α(1+β) > 1, there

exists a constant K such that ∀ t1 < t2, we have

E

(∫ t1

0

∫
R

(
pW (s, x; t2, y)− pW (s, x; t1, y)

)2
Z(dsdx)

)p

≤ Kmax
(
|t2 − t1|(α(1+β)−1)p, |t2 − t1|(1−α)p

)
.

Finally, we estimate

E

(∫ t2

t1

∫
R
pW (s, x, t2, y)

2Z(dsdx)

)2p

.

Similar to Section 4, the above moment is bounded by(
E

(∫ t2

t1

∫
R
pW (s, x, t2, y)

2dxds

)2p−1
) p

2p−1
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which we shall estimate using the method of Xiong and Zhou [18].

The key identity proved in [18] is given in the following lemma. We sketch the

proof for convenience of the reader since [18] is not easily accessible.

Lemma 5.4 For any k ∈ N, s < t and x, y ∈ Rk, we have

E Πk
i=1p

W (s, xi, t, yi) = Pk(t− s, x, y),

where Pk is the transition function of the k-dimensional Markov process consisting of

the motion of k particles of the branching particles system introduced in Section 1.

Sketch of the proof Let t and y be fixed. We define ui
r(xi) = pW (t − r, xi, t, y), i =

1, 2, · · · , k. Then ui is a solution to (1.9) with initial δy. Applying Itô’s formula to the

product and taking expectation, we get

d

dr
E Πk

i=1u
i
r(x

i) = AkE Πk
i=1u

i
r(x

i)

where Ak is the generator of the k-dimensional Markov process consisting of the motion

of k particles of the branching particles system. The conclusion of the lemma then

follows easily.

Lemma 5.5 For any integer n ≥ 1, we have

E

(∫ t2

t1

∫
R
pW (s, x, t2, y)

2dxds

)n

≤ K|t2 − t1|n/2. (5.4)

Proof: Let t1 = 0 and t2 = t for simplicity. The LHS of (5.4) is estimated as follows.

L ≡ n!E
∫ t

0

ds1

∫ t

s1

ds2 · · ·
∫ t

sn−1

dsn

∫
R
· · ·
∫
R
dx1 · · · dxnΠ

n
i=1p

W (si, xi, t, y)
2

= n!E
∫ t

0

ds1

∫ t

s1

ds2 · · ·
∫ t

sn−1

dsn

∫
R
· · ·
∫
R
dx1 · · · dxnΠ

n
i=2p

W (si, xi, t, y)
2

×
∫
R
pW (s1, x1, s2, x11)p

W (s2, x11, t, y)dx11

∫
R
pW (s1, x1, s2, x12)p

W (s2, x12, t, y)dx12

= n!E
∫ t

0

ds1

∫ t

s1

ds2 · · ·
∫ t

sn−1

dsn

∫
R
· · ·
∫
R
dx1 · · · dxnΠ

n
i=2p

W (si, xi, t, y)
2

×
∫
R

∫
R
P2(s2 − s1, (x1, x1), (x11, x12))p

W (s2, x11, t, y)p
W (s2, x12, t, y)dx11dx12,
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where the last equality follows from Lemma 5.4. Note that

P2(s2 − s1, (x1, x1), (x11, x12)) ≤
K√

s2 − s1
φs2−s1(x1 − x11).

We now continue the estimate with

L ≤ KE
∫ t

0

ds1√
s2 − s1

∫ t

s1

ds2 · · ·
∫ t

sn−1

dsn

∫
R
· · ·
∫
R
dx11dx12dx2 · · · dxn

×pW (s2, x11, t, y)p
W (s2, x12, t, y)Π

n
i=2p

W (si, xi, t, y)
2

= KE
∫ t

0

ds1√
s2 − s1

∫ t

s1

ds2 · · ·
∫ t

sn−1

dsn

∫
R
· · ·
∫
R
dx11dx12dx2 · · · dxn

×
∫
R
pW (s2, x11, s3, x

′
11)p

W (s3, x
′
11, t, y)dx

′
11

×
∫
R
pW (s2, x12, s3, x

′
12)p

W (s3, x
′
12, t, y)dx

′
12

×
∫
R
pW (s2, x2, s3, x21)p

W (s3, x21, t, y)dx21

×
∫
R
pW (s2, x2, s3, x22)p

W (s3, x22, t, y)dx22Π
n
i=3p

W (si, xi, t, y)
2

= KE
∫ t

0

ds1√
s2 − s1

∫ t

s1

ds2 · · ·
∫ t

sn−1

dsn

∫
R
· · ·
∫
R
dx11dx12dx2 · · · dxn

×
∫
R

∫
R

∫
R

∫
R
dx′

11dx
′
12dx21dx22P4(s3 − s2, (x11, x12, x2, x2), (x

′
11, x

′
12, x21, x22))

×pW (s3, x
′
11, t, y)p

W (s3, x
′
12, t, y)p

W (s3, x21, t, y)p
W (s3, x22, t, y)Π

n
i=3p

W (si, xi, t, y)
2,

where the last equality follows again from Lemma 5.4. Note that

P4(s3 − s2, (x11, x12, x2, x2), (x
′
11, x

′
12, x21, x22))

≤ K√
s3 − s2

φs3−s2(x
′
11 − x11)φs3−s2(x

′
12 − x12)φs3−s2(x21 − x2).

Finally, we continue to estimate the LHS of (5.4) with

L ≤ KE
∫ t

0

ds1√
s2 − s1

∫ t

s1

ds2√
s3 − s2

· · ·
∫ t

sn−1

dsn

∫
R
· · ·
∫
R
dx′

11dx
′
12dx21dx22dx3 · · · dxn

×pW (s3, x
′
11, t, y)p

W (s3, x
′
12, t, y)p

W (s3, x21, t, y)p
W (s3, x22, t, y)Π

n
i=3p

W (si, xi, t, y)
2.

Continue this procedure, we see that

L ≤ KE
∫ t

0

ds1√
s2 − s1

∫ t

s1

ds2√
s3 − s2

· · ·
∫ t

sn−1

dsn√
t− sn

∫
R
· · ·
∫
R
dx11dx12 · · · dxn1dxn2
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Πn
i=1p

W (sn, xi1, t, y)p
W (sn, xi2, t, y)

≤ KE
∫ t

0

ds1√
s2 − s1

∫ t

s1

ds2√
s3 − s2

· · ·
∫ t

sn−1

dsn√
t− sn

≤ Ktn/2.

Thus we finish the proof by replacing t by t2 − t1.

To summarize, we get

Proposition 5.6 Suppose the conditions of Theorem 1.1 hold. Then, there exist in-

teger p ≥ 1 and real numbers ϵ > 0 and K > 0 such that ∀ t1 < t2 and y ∈ R, we

have

E |X2
t1
(y)−X2

t2
(y)|2p ≤ K|t1 − t2|2+ϵ. (5.5)

Proof: Choose p ≥ 2, α ∈ (0, 1) and β ∈
(
0, 1

2

)
such that

min
{
(α(1 + β)− 1)p, (1− α)p,

p

2

}
≥ 2 + ϵ.

By Proposition 5.3 and Lemma 5.5, we see that (5.5) holds.

Note that

E |X1
t1
(y)−X1

t2
(y)|2p = E

∣∣∣∣∫
R

(
pW (0, x; t2, y)− pW (0, x; t1, y)

)
µ(x)dx

∣∣∣∣2p
≤ E ∥pW (0, ·; t2, y)− pW (0, ·; t1, y)∥2p−1,2∥µ∥

2p
1,2.

Similar to the proof for X2
t (y), we get

Proposition 5.7 Suppose the conditions of Theorem 1.1 hold. Then, there exist in-

teger p ≥ 1 and real numbers ϵ > 0 and K > 0 such that ∀ t1 < t2 and y ∈ R, we

have

E |X1
t1
(y)−X1

t2
(y)|2p ≤ K|t1 − t2|2+ϵ.

Remark 5.8 It is conjectured by Yaozhong Hu and David Nualart that for x fixed,

Xt(x) should be Hölder continuous in t with exponent 1/4− ϵ. However, the method in

this paper cannot confirm this conjecture. Instead, it follows from Proposition 5.3 that

Xt(x) is Hölder continuous in t with exponent min (α(1 + β)− 1, 1− α) /2− ϵ. Since

α < 1 and β < 1/2, the best Hölder exponent we can get here is 1/10− ϵ.
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Proof of Theorem 1.1: Combining Propositions 4.2, 4.3, 5.6 and 5.7, we get

E |Xt1(y1)−Xt2(y2)|2p ≤ K|(t1, y1)− (t2, y2)|2+ϵ.

The joint continuity then follows from Kolmogorov’s criteria.
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