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DISTRIBUTION AND PROPAGATION PROPERTIES OF
SUPERPROCESSES WITH GENERAL BRANCHING

MECHANISMS

ZENGHU LI* AND XIAOWEN ZHOU**

Abstract. A theorem of Evans and Perkins (1991) on the absolute con-

tinuity of distributions of Dawson-Watanabe superprocesses is extended to

general branching mechanisms. This result is then used to establish the prop-
agation properties of the superprocesses following Evans and Perkins (1991)

and Perkins (1990).

1. Introduction

Suppose that E is a Lusin topological space. Let M(E) be the space of fi-
nite Borel measures on E endowed with the topology of weak convergence. Let
B(E) denote the set of bounded Borel functions on E and B(E)+ the subset
of non-negative elements. For f ∈ B(E) and µ ∈ M(E) write µ(f) for

∫
fdµ.

We consider a conservative Borel right process ξ = (Ω,F ,Ft, ξt,Px) in E with
transition semigroup (Pt)t≥0 and a branching mechanism on E given by

φ(x, z) = b(x)z + c(x)z2 +
∫ ∞

0

(e−zu − 1 + zu)m(x, du), (1.1)

where b ∈ B(E), c ∈ B(E)+ and (u ∧ u2)m(x, du) is a bounded kernel from E to
(0,∞). Given f ∈ B(E)+ let t 7→ Vtf be the unique locally bounded non-negative
solution to

Vtf(x) = Ptf(x)−
∫ t

0

ds

∫
E

φ(y, Vsf(y))Pt−s(x, dy), t ≥ 0, x ∈ E. (1.2)

The Dawson-Watanabe superprocess with parameters (ξ, φ), or simply a (ξ, φ)-
superprocess, is a Markov process in M(E) with transition semigroup (Qt)t≥0

defined by∫
M(E)

e−ν(f)Qt(µ, dν) = e−µ(Vtf), t ≥ 0, µ ∈M(E), f ∈ B(E)+. (1.3)

The operators (Vt)t≥0 constitute a semigroup, which is called the cumulant (or log-
Laplace) semigroup of the (ξ, φ)-superprocess; see, e.g., Dawson [2] and Fitzsim-
mons [7, 8].
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The branching mechanism is said to be spatially constant if it is independent of
x ∈ E. In particular, we say the superprocess has binary branching if φ(x, z) ≡ cz2

for some constant c > 0. For a spatially constant branching mechanism z 7→ φ∗(z)
we often consider the condition:

(A1) There is some constant θ > 0 so that

φ∗(z) > 0 for z ≥ θ and
∫ ∞

θ

φ∗(z)−1dz <∞.

A theorem on the absolute continuity of distributions of Dawson-Watanabe
superprocesses with binary branching was proved in Evans and Perkins [6]. As
applications of the theorem, they established some results on support prepara-
tions of super Lévy processes. Using a different approach, Evans and Perkins [6]
also proved some preparation results for superprocesses with general Feller spatial
motion processes and branching mechanisms given by (1.1) under a stronger in-
tegral condition on the kernel m(x, du); see also Perkins [11, 12]. The purpose of
this note is to extend some of those results to superprocesses with general local
branching mechanisms. This work was brought up by the recent paper Bojdecki
et al. [1]. Although the arguments follow closely those of Evans and Perkins [6]
and Perkins [12], we provide the details for the convenience of the reader.

2. Main theorem

Let X = (W,G,Gt, Xt,Qµ) be a canonical Borel right realization of the (ξ, φ)-
superprocess, where W is the space of right continuous paths from [0,∞) to M(E).
The existence of such a realization was proved in Fitzsimmons [7, 8]. It is well-
known that the first moment of the superprocess is given by∫

M(E)

ν(f)Qt(µ, dν) = µ(P b
t f), t ≥ 0, µ ∈M(E), f ∈ B(E), (2.1)

where (P b
t )t≥0 is the semigroup of kernels on E defined by

P b
t f(x) = Px

[
e−

R t
0 b(ξs)dsf(ξt)

]
.

By (1.3), (2.1) and Jensen’s inequality it is simple to see that

Vtf(x) ≤ P b
t f(x), t ≥ 0, x ∈ E, f ∈ B(E)+. (2.2)

If (x, z) 7→ φ(x, z) is bounded below by a spatially constant branching mecha-
nism z 7→ φ∗(z) satisfying (A1), the cumulant semigroup (Vt)t≥0 of the (ξ, φ)-
superprocess admits the canonical representation:

Vtf(x) =
∫

M(E)◦

(
1− e−ν(f)

)
Rt(x, dν), t > 0, x ∈ E, f ∈ B(E)+, (2.3)

where Rt(x, dν) is a bounded kernel from E to M(E)◦ := M(E) \ {0}. In fact, we
have

ht(x) := Rt(x, 1) ≤ v̄t, t > 0, x ∈ E, (2.4)

where t 7→ v̄t is the minimal non-negative solution of the differential equation
d

dt
v̄t = −φ∗(v̄t), t > 0
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with the singular initial condition v̄0+ = ∞; see Dawson [2, Section 11.5] or Li [10,
Sections 3.2 and 8.1]. From (1.3), (2.1) and (2.3) it is simple to see that

P b
t f(x) =

∫
M(E)◦

ν(f)Rt(x, dν), t > 0, x ∈ E, f ∈ B(E)+. (2.5)

Then Rt(x, 1) > 0 for all t > 0 and x ∈ E. For any 0 < r ≤ t and x ∈ E we can
use (1.3), (2.3) and the semigroup property of (Vt)t≥0 to see

Rt(x, ·) =
∫

M(E)◦
Rr(x, dµ)Qt−r(µ, ·) (2.6)

as measures on M(E)◦. For t > 0 and µ ∈M(E) write

Rt(µ, ·) =
∫

E

µ(dx)Rt(x, ·).

In view of (1.3) and (2.3), we have the following

Lemma 2.1. Suppose that (x, z) 7→ φ(x, z) is bounded below by a spatially constant
branching mechanism z 7→ φ∗(z) satisfying (A1). If Ξµ

t is a Poisson random
measure on M(E)◦ with intensity Rt(µ, ·), then

Xµ
t :=

∫
M(E)◦

ν Ξµ
t (dν) (2.7)

has distribution Qt(µ, ·) on M(E). In particular, if µ ∈M(E)◦, for any Borel set
F ⊂M(E)◦ we have

Qt(µ, F ) ≥ P
{
Xµ

t ∈ F,Ξ
µ
t (M(E)◦) = 1

}
= e−Rt(µ,1)R∗t (µ, F ), (2.8)

where R∗t (µ, ·) = Rt(µ, ·)/Rt(µ, 1).

The representation (2.7) is known as the cluster decomposition of the random
measure. For t > 0 let (f, g) 7→ Vt(f, g) be the operator from B(E)+ ×B(E)+ to
B(E)+ defined by

Vt(f, g)(x) =
∫

M(E)◦
ν(g)e−ν(f)Rt(x, dν), x ∈ E, f, g ∈ B(E)+. (2.9)

We have

Vt(f, g)(x) = Ptg(x)−
∫ t

0

ds

∫
E

ψ(y, Vsf(y), Vs(f, g)(y))Pt−s(x, dy), (2.10)

where

ψ(x, y, z) = b(x)z + c(x)yz +
∫ ∞

0

uz
(
1− e−uy

)
m(x, du);

see Li [10, Section 2.4]. From (2.5) and (2.9) we get

Vt(f, g)(x) ≤ Vt(0, g)(x) ≤ P b
t g(x), t ≥ 0, x ∈ E. (2.11)

The next theorem was first proved in Evans and Perkins [6, Theorem 1.1] for
a binary branching; see also Perkins [12, Theorem III.2.2]. The ideas of the proof
given below follow those in the two references.
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Theorem 2.2. Suppose that (x, z) 7→ φ(x, z) is bounded below by a spatially
constant branching mechanism z 7→ φ∗(z) satisfying (A1). Then for any fixed
µ1, µ2 ∈M(E) the following properties are equivalent:

(i) µ1Pr � µ2Pt for all 0 < r ≤ t;
(ii) Rr(µ1, ·) � Rt(µ2, ·) on M(E)◦ for all 0 < r ≤ t;
(iii) Qr(µ1, ·) � Qt(µ2, ·) on M(E) for all 0 < r ≤ t;
(iv) Qµ1(Xr+· ∈ ·) � Qµ2(Xt+· ∈ ·) on (W,G) for all 0 < r ≤ t.

Proof. “(iii) ⇔ (iv)” The implication (iv) ⇒ (iii) is trivial and the implication (iii)
⇒ (iv) follows from the Markov property:

Qµ(Xr+· ∈ ·) =
∫

M(E)

Qr(µ, dν)Qν(X· ∈ ·).

“(i) ⇒ (ii)” Suppose that (i) holds. Let 0 < u < r < t and let F ⊂ M(E)◦ be
a Borel set so that Rt(µ2, F ) = 0. From (2.6) and (2.8) we have

Rt(µ2, ·) ≥
∫

M(E)◦
Rt−u(µ2, dµ)e−Ru(µ,1)R∗u(µ, ·).

It follows that

0 =
∫

M(E)◦
Rt−u(µ2, dµ)

∫
E

µ(dx)Ru(x, F ). (2.12)

By (2.5) and (2.12),

Ru(x, F ) = 0 for µ2P
b
t−u-a.a. x ∈ E.

Since Ps(x, ·) and P b
s (x, ·) are equivalent for every s ≥ 0 and x ∈ E, property (i)

implies
Ru(x, F ) = 0 for µ1P

b
r−u-a.a. x ∈ E.

Then we can reverse the above steps to conclude

0 =
∫

M(E)◦
Rr−u(µ1, dµ)

∫
E

µ(dx)Ru(x, F ).

Consequently,

0 =
∫

M(E)◦
Rr−u(µ1, dµ)e−Ru(µ,1)R∗u(µ, F )

=
∫

M(E)◦
Rr−u(µ1, dµ)P

{
Xµ

u ∈ F,Ξµ
u(M(E)◦) = 1

}
≥

∫
M(E)◦

Rr−u(µ1, dµ)
[
P

{
Xµ

u ∈ F
}
−P

{
Ξµ

u(M(E)◦) ≥ 2
}]

= Rr(µ1, F )−
∫

M(E)◦
P

{
Ξµ

u(M(E)◦) ≥ 2
}
Rr−u(µ1, dµ), (2.13)

where for the inequality we have used the fact that Xµ
u ∈ F ⊂ M(E)◦ implies

Ξµ
u(M(E)◦) ≥ 1. From (2.3), (2.4) and (2.9) we see that the last term on the right

hand side of (2.13) is equal to∫
M(E)◦

[
1− e−Ru(µ,1) −Ru(µ, 1)e−Ru(µ,1)

]
Rr−u(µ1, dµ)
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=
∫

M(E)◦

[
1− e−µ(hu) − µ(hu)e−µ(hu)

]
Rr−u(µ1, dµ)

= µ1

(
Vr−uhu − Vr−u(hu, hu)

)
=

∫ r−u

0

ds

∫
E

ψ(y, Vshu(y), Vs(hu, hu)(y))µ1Pt−s(dy)

−
∫ r−u

0

ds

∫
E

φ(y, Vshu(y))µ1Pt−s(dy),

where we also used (1.2) and (2.10) for the last equality. Using (2.2), (2.4) and
(2.11) it is elementary to see that the right hand side of the equation above tends
to zero as u→ r. By (2.13) we conclude Rr(µ1, F ) = 0.

“(ii) ⇒ (iii)” By the cluster decomposition of the superprocess we see that
Qr(µ1, ·) and Qt(µ2, ·) are the laws of

∑η1
i=1 ν

1
i and

∑η2
i=1 ν

2
i , respectively, where

η1 and η2 are Poissonian random variables with means Rr(µ1, 1) and Rt(µ2, 1),
respectively, and conditional on η1 and η2 the sequences {ν1

i : i ≥ 1} and {ν2
i : i ≥

1} are i.i.d. with laws R∗r(µ1, ·) and R∗t (µ2, ·), respectively. Clearly, (ii) implies
the n-fold product of R∗r(µ1, ·) is absolutely continuous to the n-fold product of
R∗t (µ2, ·). Therefore we can sum over the values of η1 and η2 to obtain Qr(µ1, ·) �
Qt(µ2, ·) as required.

“(iii) ⇒ (i)” From (2.1) we see that (iii) implies µ1P
b
r � µ2P

b
t for all 0 < r ≤ t,

which in turn implies µ1Pr � µ2Pt for all 0 < r ≤ t. �

We remark that Dynkin [4, Theorem 6.2] gave a result on the equivalence of the
exit distributions from a domain for a superdiffusion with branching mechanism
given by (1.1) with b(x) = 0 and with unm(x, du) being a bounded kernel from E
to (0,∞) for every n ≥ 2.

3. Propagations of supports

It is well-known that a (ξ, φ)-superprocess {Xt : t ≥ 0} has no negative jumps.
The following characterizations of the superprocess can be derived from the results
of Fitzsimmons [7, 8]; see El Karoui and Roelly [5] for the results under Feller
assumptions. Let F be the set of functions f ∈ B(E) that are finely continuous
relative to ξ. Fix β > 0 and let (A,D(A)) be the weak generator of (Pt)t≥0 defined
by D(A) = UβF and Af = βf − g for f = Uβg ∈ D(A). Let N(ds, dν) be the
optional random measure on [0,∞)×M(E)◦ defined by

N(ds, dν) =
∑
s>0

1{∆Xs 6=0}δ(s,∆Xs)(ds, dν),

where ∆Xs = Xs−Xs−, and let N̂(ds, dν) denote the predictable compensator of
N(ds, dν). Then N̂(ds, dν) = dsK(Xs−, dν) with the kernel defined by∫

M(E)◦
F (ν)K(µ, dν) =

∫
E

µ(dx)
∫ ∞

0

F (uδx)m(x, du).

Let Ñ(ds, dν) = N(ds, dν)− N̂(ds, dν). For any f ∈ D(A) we have

Xt(f) = X0(f) +M c
t (f) +Md

t (f) +
∫ t

0

Xs(Af − bf)ds, (3.1)
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where

t 7→Md
t (f) =

∫ t

0

∫
M(E)◦

ν(f)Ñ(ds, dν)

is a purely discontinuous local martingale and t 7→ M c
t (f) is a continuous local

martingale with quadratic variation 2Xt(cf2)dt. Let {Xt−(f) : t > 0} denote
the left limit process of the semimartingale {Xt(f) : t ≥ 0}. (In general, the
limit measures {Xt− : t > 0} only exist in M(Ē) with Ē being the Ray-Knight
completion of E with respect to ξ.)

Now we prove a supporting property of the (ξ, φ)-superprocess. The following
theorem was obtained in Evans and Perkins [6, Proof of Theorem 5.1] for binary
branching; see also Perkins [12, Theorem III.2.1].

Theorem 3.1. Let D(A)+ denote the set of non-negative elements in D(A). Then
for any µ ∈M(E) and f ∈ D(A)+ we have

Qµ{Xs(Af) 6= 0 implies Xs(f) > 0 for Lebesgue a.a. s ≥ 0} = 1.

Proof. Let lt ≡ l0t (X(f)) denote the local time of the semimartingale t 7→ Xt(f)
at zero. For any ε > 0 and t ≥ 0 we have

Qµ

[
ε−1

∫ t

0

1{0<Xs(f)≤ε}d〈M c(f)〉s
]

≤ Qµ

[
ε−1

∫ t

0

1{0<Xs(f)≤ε}Xs(cf2)ds
]

≤ ‖cf‖Qµ

[
ε−1

∫ t

0

1{0<Xs(f)≤ε}Xs(f)ds
]

≤ ‖cf‖Qµ

[ ∫ t

0

1{0<Xs(f)≤ε}ds

]
,

which goes to zero as ε → 0. Then lt = 0 for all t ≥ 0. Since f is non-negative,
Tanaka’s Formula implies

Xt(f) = X0(f) +
∫ t

0

1{Xs−(f)>0}dM
c
s (f) +

∫ t

0

1{Xs−(f)>0}dM
d
s (f)

+
∫ t

0

1{Xs−(f)>0}Xs(Af − bf)ds+
∑

0<s≤t

1{Xs−(f)=0}Xs(f); (3.2)

see, e.g., Dellacherie and Meyer [3, Section VIII.29]. As s 7→ Xs has at most
countably many jumps, we have

Qµ

[∣∣∣∣ ∫ t

0

1{Xs−(f)=0}Xs(bf)ds
∣∣∣∣] ≤ ‖b‖Qµ

[ ∫ t

0

1{Xs−(f)=0}Xs(f)ds
]

= 0

and

Qµ

[(∫ t

0

1{Xs−(f)=0}dM
c
s (f)

)2]
= Qµ

[ ∫ t

0

1{Xs−(f)=0}Xs(cf2)ds
]

= 0.

Observe also that

1{Xs−(f)=0}Xs(f) = 1{Xs−(f)=0}∆Xs(f) = 1{Xs−(f)=0}∆Md
s (f).
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Then (3.2) implies

Xt(f) = X0(f) +M c
t (f) +Md

t (f) +
∫ t

0

1{Xs−(f)>0}Xs(Af)ds−
∫ t

0

Xs(bf)ds.

From this and (3.1) it follows that∫ t

0

1{Xs−(f)=0}Xs(Af)ds = 0.

Since Xs−(f) 6= Xs(f) for at most countably many s ≥ 0, we get∫ t

0

1{Xs(f)=0}Xs(Af)ds = 0.

Then 1{Xs(f)=0}Xs(Af) = 0 for Lebesgue a.a. s ≥ 0, and the theorem is proved.
�

In the sequel we consider the special case of E = Rd. Given a σ-finite Borel
measure ν on Rd let S(ν) denote the closed support of ν and let Mν(Rd) = {η ∈
M(Rd) : S(ν ∗ η) ⊂ S(η)}, where “∗” stands for convolution of measures. It is
easy to see that η ∈Mν(Rd) holds if and only if S(ν∗k ∗η) ⊂ S(η) for k = 1, 2, · · · .
In particular, if

∞⋃
k=1

S(ν∗k) = Rd, (3.3)

then η ∈ Mν(Rd) implies S(η) = Rd or ∅. The following results provide some
propagation properties of super Lévy processes.

Theorem 3.2. Suppose that ξ is a Lévy process on Rd with Lévy measure ν. Then
for every µ ∈M(Rd) we have Qµ{Xs ∈Mν(Rd)} = 1 for Lebesgue a.a. s > 0.

Proof. The generator A of ξ has domain D(A) containing C∞K (Rd), the set of
infinitely differentiable functions on Rd with compact support. Let B be an open
ball in Rd and choose f ∈ C∞K (Rd)+ such that {f > 0} = B. Then

Af(x) =
∫

Rd

f(x+ y)ν(dy), x 6∈ B;

see, e.g., Gikhman and Skorokhod [9, Theorem IV.4.1]. This means that Xs(B) =
0 implies

Xs(Af) =
∫

Rd

Xs(dx)
∫

Rd

f(x+ y)ν(dy) = Xs ∗ ν(f).

By Theorem 3.1 we conclude Qµ{Xs ∗ ν(B) > 0 implies Xs(B) > 0 for Lebesgue
a.a. s ≥ 0} = 1. Taking a union over balls with rational radii and centers we get
Qµ{S(Xs ∗ ν) ⊂ S(Xs) for Lebesgue a.a. s ≥ 0} = 1. Then the result follows by
Fubini’s theorem. �

Corollary 3.3. Suppose that ξ is a Lévy process on Rd with Lévy measure ν and
that (x, z) 7→ φ(x, z) is bounded below by a spatially constant branching mechanism
z 7→ φ∗(z) satisfying (A1). If any one of the properties (i) – (iv) in Theorem 2.2
holds for µ1 = µ2 = µ, then for every t > 0 we have Qµ{Xt ∈Mν(Rd)} = 1.
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Proof. By Theorem 3.2 there is a sequence rn →∞ so that Qµ{Xrn ∈Mν(Rd)} =
1 for each n ≥ 1. But, Theorem 2.2 implies that Qµ(Xt ∈ ·) is absolutely con-
tinuous with respect to Qµ(Xrn

∈ ·) for any 0 < t ≤ rn. Then the desired result
holds. �

The results of the above theorem and its corollary were already obtained in
Evans and Perkins [6, Theorem 5.1] and Perkins [11, Theorem 1.5 and Corol-
lary 1.5] for binary branching. The proofs here follow those of Evans and Perkins
[6, pp.674-676] and Perkins [12, pp.202-203]. A different approach for general
Feller spatial motion processes was also provided in Evans and Perkins [6, Corol-
laries 5.3 and 5.4], which implies the above results when (u ∨ u2)m(x, du) is a
bounded kernel from E to (0,∞). Some simple consequences of those results are
given as follows.

Theorem 3.4. Suppose that ξ is a Lévy process on Rd with Lévy measure ν and
absolutely continuous transition semigroup, that is,

Pt(x, dy) = pt(x, y)dy, t > 0, x, y ∈ Rd.

If (x, z) 7→ φ(x, z) is bounded below by a spatially constant branching mechanism
z 7→ φ∗(z) satisfying (A1), then for every t > 0 and µ ∈M(Rd) we have Qµ{Xt ∈
Mν(Rd)} = 1.

Proof. Note that µPt is absolutely continuous with respect to λ for any t > 0.
Choose η ∈M(Rd) that is equivalent to the Lebesgue measure λ. It is easy to see
that (µ+ εη)Pt is equivalent to λ for every t > 0 and ε > 0. By Corollary 3.3 we
have Qµ+εη{Xt ∈Mν(Rd)} = 1 for every t > 0. Note that Xt under Qµ+εη has the
same distribution on M(Rd) as Xµ

t +Xεη
t , where {Xµ

t : t ≥ 0} and {Xεη
t : t ≥ 0}

are independent (ξ, φ)-superprocesses with initial values µ and εη, respectively. It
is easy to see that

P{Xεη
t = 0} = lim

θ→∞
exp{−εη(Vtθ)} = exp{−εRt(η, 1)} = exp{−εη(ht)},

which tends to one as ε→ 0. Then we have

P{Xµ
t ∈Mν(Rd)} = lim

ε→0
P({Xµ

t ∈Mν(Rd)} ∩ {Xεη
t = 0})

= lim
ε→0

P({Xµ
t +Xεη

t ∈Mν(Rd)} ∩ {Xεη
t = 0})

= lim
ε→0

P{Xµ
t +Xεη

t ∈Mν(Rd)} = 1,

giving the desired result. �

Corollary 3.5. Suppose that ξ is a symmetric α-stable process with index 0 <
α < 2 and (x, z) 7→ φ(x, z) is bounded below by a spatially constant branching
mechanism z 7→ φ∗(z) satisfying (A1). Then for every t > 0 and µ ∈ M(Rd) we
have Qµ{S(Xt) = Rd or ∅} = 1.

Proof. The spatial motion process ξ now has Lévy measure ν(dx) = c|x|−d−αdx
for some constant c > 0. Since ν has full support, we have (3.3) and the desired
result follows from Theorem 3.4. �
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Finally, we point out that assuming (x, z) 7→ φ(x, z) is bounded below by a
spatially constant branching mechanism z 7→ φ∗(z) satisfying (A1) is an artifact
of the cluster representation approach in the proof of Theorem 2.2. This condition
was not required in Evans and Perkins [6, Corollaries 5.3 and 5.4]. Nevertheless,
the condition is satisfied if φ(x, z) ≡ γ(x)z1+β for a constant 0 < β < 1 and a
function γ ∈ B(E)+ bounded away from zero, which was excluded from Evans
and Perkins [6].

Acknowledgments. We are grateful to Professor L.G. Gorostiza for suggesting
us the problem of support propagations for general branching mechanisms. We
give our sincere thanks to Professor E.A. Perkins and an anonymous referee for
their very helpful comments.
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