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1 Introduction

A class of superprocesses with dependent spatial motion (SDSM) over the real line R were
introduced and constructed by Wang [16, 17]. A generalization of the model was then given in
[3]. The SDSM arises as the weak limit of critical branching particle systems with dependent
spatial motion. Let c ∈ C2

b (R) and h ∈ C2
b (R) and assume both h and h′ are square-integrable.

Let

ρ(x) =
∫

R
h(y − x)h(y)dy, x ∈ R,

and a(x) = c(x)2 + ρ(0). Consider a family of independent Brownian motions {Bi(t) : t ≥ 0, i =
1, 2, · · ·}, the individual noises, and a time-space white noise {W (dt, dy) : t ≥ 0, y ∈ R}, the
common noise. The migration of a particle in the approximating system with label i is defined
by the stochastic equation

dxi(t) = c(xi(t))dBi(t) +
∫

R
h(y − xi(t))W (dt, dy), t ≥ 0. (1.1)

We denote by M(R) the space of finite Borel measures on R endowed with a metric compatible
with its topology of weak convergence. For f ∈ Cb(R) and µ ∈ M(R) denote 〈f, µ〉 =

∫
fdµ.

Let σ ∈ C2
b (R) be a non-negative function. A typical SDSM {Xt : t ≥ 0} is characterized by the

following stochastic equation: For each φ ∈ C2
b (R),

〈φ,Xt〉 = 〈φ,X0〉+
1
2

∫ t

0
〈aφ′′, Xs〉ds+

∫ t

0

∫
R
φ(y)Z(ds, dy)

+
∫ t

0

∫
R
〈h(y − ·)φ′, Xs〉W (ds, dy), (1.2)

where W (ds, dy) is a time-space white noise and Z(ds, dy) is an orthogonal martingale measure
that is orthogonal to W (ds, dy) and has covariation measure σ(y)Xs(dy)ds. We refer the reader
to [15] for the theory of stochastic integrals relative to martingale measures and white noises.

Clearly, the SDSM defined by (1.2) reduces to a usual critical branching Dawson-Watanabe
superprocess if h(·) ≡ 0; see, e.g., [1, 20]. It is known that for a Dawson-Watanabe superprocess,
the multiplicative property and the log-Laplace functional give a class of σ-finite excursion laws,
with which one can decompose the sample paths of the superprocess into excursions. The
decomposition gives an explicit representation of the family structures of the superprocess;
see, e.g., [6, 10, 11, 13]. For the SDSM, however, the multiplicative property fails and log-
Laplace functional cannot be expressed in a convenient way. For this reason, the sample path
decomposition is much harder. In the degenerate case c(x) ≡ 0, the SDSM is purely atomic; see
[2, 4, 16, 18]. Based on this property, a reconstruction of the degenerate SDSM was given in [2]
by one-dimensional excursions carried by a stochastic flow.

In this work, we are interested in the reconstruction of the SDSM in terms of excursions in
the non-degenerate case, namely, where the coefficient c(x) can be non-trivial. In this case, the
SDSM can be absolutely continuous; see [3, 5, 16, 18]. Therefore, we cannot use the method
in [2] for our purpose. In view of (1.1) and (1.2), given {W (ds, dy)} the solution {Xt : t ≥ 0}
should be a generalized inhomogeneous Dawson-Watanabe superprocess, where∫

R
h(y − ·)W (dt, dy)
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gives a generalized drift in the underlying migration. This observation was confirmed to some
extend in [12] by characterizing the conditional log-Laplace functional of {Xt : t ≥ 0} given
{W (ds, dy)}. Some similar results were obtained earlier in [21, 22] for the model of Skoulakis and
Adler [14]. However, the conditional log-Laplace functional in [12] does not give automatically a
decomposition of the SDSM. The main difficulty is that under the conditional probability given
{W (ds, dy)} we only have the a.s. Markov property of the finite dimensional distributions of
the SDSM, which does not imply immediately the full conditional Markov property. A precise
description of the situation is given in section 3. Nevertheless, we shall see that the conditional
log-Laplace functions still give a class of conditional entrance laws in a weak sense. Those
conditional entrance laws can be used to characterize some conditional excursion laws, which
can then be used in a reconstruction of the SDSM. We expect that the conditional log-Laplace
functional would also serve as a basic tool for a series of investigations. See [21, 22, 12] for more
motivations and details of them.

The paper is organized as follows: Some basic properties of the stochastic log-Laplace func-
tional are proved in Section 2. In Section 3, a comparison theorem of the solutions of the
stochastic log-Laplace equation is established. In Section 4, we identify conditional transition
semigroup of the SDSM and its first and the second moments. In Section 5, we describe a
class of conditional entrance laws, with which we characterize the conditional excursion laws.
Constructions of the SDSM and a related immigration superprocess are given in Section 6.

2 Conditional log-Laplace functionals

Let (a, c, h, σ) be given as in the introduction. Suppose that W (ds, dx) is a time-space white
noise. We consider the following non-linear backward SPDE:

ψr,t(x) = φ(x) +
∫ t

r

[
1
2
a(x)∂2

xψs,t(x)−
1
2
σ(x)ψs,t(x)2

]
ds

+
∫ t

r

∫
R
h(y − x)∂xψs,t(x) ·W (ds, dy), t ≥ r ≥ 0, (2.1)

where “·” denotes the backward stochastic integral. Let {Hk(R) : k = 0,±1,±2, · · ·} denote the
Sobolev spaces on R.

Theorem 2.1 ([12]) For any φ ∈ H1(R)∩Cb(R)+, equation (2.1) has a unique H1(R)∩Cb(R)+-
valued strong solution (ψr,t)r≤t. Furthermore, we have a.s. ‖ψr,t‖ ≤ ‖φ‖ for all t ≥ r ≥ 0, where
‖ · ‖ denotes the supremum norm of the Banach space Cb(R).

Theorem 2.2 Let (ψr,t)r≤t be defined by (2.1). Then for any t ≥ u ≥ r ≥ 0 and φ ∈ H1(R) ∩
Cb(R)+ we have a.s. ψr,t(·, φ) = ψr,u(·, ψu,t(·, φ)).

Proof. As usual, we denote ψs,t(x) = ψs,t(x, φ). According to the assumption, for 0 ≤ s ≤ t we
have

ψs,t(x, φ) = φ(x) +
∫ t

s

[
1
2
a(x)∂2

xxψv,t(x, φ)− 1
2
σ(x)ψv,t(x, φ)2

]
dv

+
∫ t

s

∫
R
h(y − x)∂xψv,t(x, φ) ·W (dv, dy) (2.2)
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and for 0 ≤ s ≤ u we have

ψs,u(x, ψu,t) = ψu,t(x) +
∫ u

s

[
1
2
a(x)∂2

xxψv,u(x, ψu,t)−
1
2
σ(x)ψv,u(x, ψu,t)2

]
dv

+
∫ u

s

∫
R
h(y − x)∂xψv,u(x, ψu,t) ·W (dv, dy). (2.3)

Now we define (ψ∗s,t)s≤t by

ψ∗s,t(x) =
{
ψs,t(x, φ) for u ≤ s ≤ t,
ψs,u(x, ψu,t) for 0 ≤ s ≤ u.

Clearly, (ψ∗r,t)r≤t satisfies (2.1) for u ≤ r ≤ t. For 0 ≤ r ≤ u we may use (2.2) and (2.3) to see
that

ψ∗r,t(x) = ψu,t(x) +
∫ u

r

[
1
2
a(x)∂2

xxψv,u(x, ψu,t)−
1
2
σ(x)ψv,u(x, ψu,t)2

]
dv

+
∫ u

r

∫
R
h(y − x)∂xψv,u(x, ψu,t) ·W (dv, dy)

= φ(x) +
∫ t

u

[
1
2
a(x)∂2

xxψv,t(x, φ)− 1
2
σ(x)ψv,t(x, φ)2

]
dv

+
∫ t

u

∫
R
h(y − x)∂xψv,t(x, φ) ·W (dv, dy)

+
∫ u

r

[
1
2
a(x)∂2

xxψ
∗
v,t(x)−

1
2
σ(x)ψ∗v,t(x)

2

]
dv

+
∫ u

r

∫
R
h(y − x)∂xψ∗v,t(x) ·W (dv, dy)

= φ(x) +
∫ t

r

[
1
2
a(x)∂2

xxψ
∗
v,t(x)−

1
2
σ(x)ψ∗v,t(x)

2

]
dv

+
∫ t

r

∫
R
h(y − x)∂xψ∗v,t(x) ·W (dv, dy). (2.4)

Then we have a.s. ψr,t(·, φ) = ψ∗r,t(·) = ψr,u(·, ψu,t(·, φ)) by the uniqueness of the solution of
(2.1). �

We remark that the exceptional null set in Theorem 2.1 depends on the (t, u, r). In this sense,
we shall say the random operators (ψr,t)r≤t satisfy the a.s. semigroup property. In particular,
the linear equation

Tr,tφ(x) = φ(x) +
∫ t

r

[
1
2
a(x)∂2

xTs,tφ(x)
]
ds

+
∫ t

r

∫
R
h(y − x)∂xTs,tφ(x) ·W (ds, dy) (2.5)

defines a family of random linear operators (Tr,t)r≤t on H1(R)∩Cb(R)+ with the a.s. semigroup
property. Given the stochastic semigroup of linear operators (Tr,t)r≤t let us consider the equation

ψr,t(x) = Tr,tφ(x)− 1
2

∫ t

r
Tr,s(σψ2

s,t)(x)ds, t ≥ r ≥ 0. (2.6)
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Theorem 2.3 For any φ ∈ H1(R) ∩ Cb(R)+, equations (2.1) and (2.6) are equivalent. Conse-
quently, (2.6) also has (ψr,t)r≤t as the unique strong solution.

Proof. The existence of a solution of (2.6) follows by a standard iteration argument as in the
deterministic case; see, e.g., [1]. Suppose that ψr,t(x) is an arbitrary solution of (2.6). By the
stochastic Fubini theorem, we have

ψr,t(x) = Tr,tφ(x)− 1
2

∫ t

r
Tr,s(σψ2

s,t)(x)ds

= φ(x) +
1
2

∫ t

r
a(x)∂2

xxTu,tψ(x)du+
∫ t

r

∫
R
h(y − x)∂xTu,tψ(x) ·W (du, dy)

−1
2

∫ t

r
σ(x)ψs,t(x)2ds−

1
2

∫ t

r

{
1
2

∫ s

r
a(x)∂2

xxTu,s(σψ
2
s,t)(x)du

}
ds

−1
2

∫ t

r

{∫ s

r

∫
R
h(y − x)∂xTu,s(σψ2

s,t)(x) ·W (du, dy)
}
ds

= φ(x) +
1
2

∫ t

r
a(x)∂2

xxTu,tψ(x)du− 1
2

∫ t

r
σ(x)ψs,t(x)2ds

+
∫ t

r

∫
R
h(y − x)∂xTu,tψ(x) ·W (du, dy)

−1
2

∫ t

r

{
1
2

∫ t

u
a(x)∂2

xxTu,s(σψ
2
s,t)(x)ds

}
du

−1
2

∫ t

r

∫
R

{∫ t

u
h(y − x)∂xTu,s(σψs,t)2(x)ds

}
·W (du, dy)

= φ(x) +
1
2

∫ t

r
a(x)∂2

xxψu,t(x)du−
1
2

∫ t

r
σ(x)ψs,t(x)2ds

+
∫ t

r

∫
R
h(y − x)∂xψu,t(x) ·W (du, dy),

where we have used (2.6) twice for the last equality. That means that ψr,t(x) is also a solution
of (2.1). The uniqueness for the solution of (2.6) follows from that of (2.1). �

Equation (2.6) looks very much like the log-Laplace equation of a standard Dawson-Watanabe
superprocess; see, e.g., Dawson [1]. We shall refer the solution (ψr,t)r≤t of this equation as a
stochastic or conditional log-Laplace semigroup.

Proposition 2.4 For any t ≥ r ≥ 0, the operators φ 7→ Tr,tφ and φ 7→ ψr,t(·, φ) are contractive
in the uniform norm. Moreover, there is a locally bounded non-negative function (a, T ) 7→
C(a, T ) on [0,∞)2 so that

‖ψr,t(·, φ1)− ψr,t(·, φ2)‖ ≤ C(a, T )‖φ1 − φ2‖

for all 0 ≤ r ≤ t ≤ T and φ1, φ2 ∈ H1(R) ∩ Cb(R)+ satisfying 0 ≤ ‖φ1‖, ‖φ2‖ ≤ a.

Proof. The first assertion follows by Theorem 2.1 and the second one follows by (2.6) and
Gronwall’s inequality. �

By the above proposition we can extend the operators φ 7→ Tr,tφ and φ 7→ ψr,t(·, φ) to
φ ∈ Cb(R)+ by uniform convergence. Then we can extend φ 7→ Tr,tφ to all φ ∈ Cb(R) by
linearity. We shall use those extensions whenever they are necessary. To conclude this section,
we prove two results on the continuity of (ψr,t)r≤t.
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Lemma 2.5 For any λ ≥ 1, µ ∈M(R) and φ ∈ H1(R) ∩ C2
b (R)+ we have

E
(
|〈µ, ψr,t1〉 − 〈µ, ψr,t2〉|

2λ
)
≤ C(λ, φ, 〈µ, 1〉)|t1 − t2|λ, t2 ≥ t1 ≥ r ≥ 0, (2.7)

where C(λ, φ, 〈µ, 1〉) ≥ 0 is a constant. In particular, for any x ∈ R the mapping t 7→ ψr,t(x, φ)
has a continuous modification.

Proof. Since ‖ψr,t‖ ≤ ‖φ‖, it is easy to see that

E
(
|〈µ, ψr,t1〉 − 〈µ, ψr,t2〉|

2λ
)
≤ cE

(∣∣∣e−〈µ,ψr,t1 〉 − e−〈µ,ψr,t2 〉
∣∣∣2λ), (2.8)

where c = exp{2λ‖φ‖〈µ, 1〉}. Now we consider a new probability space on which the following
equation is realized: For φ ∈ C2

b (R),

〈φ,Xt〉 = 〈φ, µ〉+
1
2

∫ t

r
〈aφ′′, Xs〉ds+

∫ t

r

∫
R
φ(y)Z(ds, dy)

+
∫ t

r

∫
R
〈h(y − ·)φ′, Xs〉W (ds, dy), t ≥ r, (2.9)

where W (ds, dx) is a time-space white noise and Z(ds, dy) is an orthogonal martingale measure
which is orthogonal to W (ds, dy) and has covariation measure σ(y)Xs(dy)ds. The governing
probability measure Pr,µ satisfies Pr,µ{Xr = µ} = 1. Then

E
(∣∣∣e−〈µ,ψr,t1 〉 − e−〈µ,ψr,t2 〉

∣∣∣2λ) = Er,µ

(∣∣∣e−〈µ,ψr,t1 〉 − e−〈µ,ψr,t2 〉
∣∣∣2λ)

= Er,µ

(∣∣∣EW
r,µ

(
e−〈Xt1 ,φ〉 − e−〈Xt2 ,φ〉

)∣∣∣2λ)
≤ Er,µ

[
EW
r,µ

(∣∣∣e−〈Xt1 ,φ〉 − e−〈Xt2 ,φ〉
∣∣∣2λ)]

≤ Er,µ

(
|〈Xt1 −Xt2 , φ〉|

2λ
)

≤ C(λ, φ, 〈µ, 1〉)|t1 − t2|λ,

where C(λ, φ, 〈µ, 1〉) ≥ 0 is a constant and the last inequality follows by a standard argument
applied to (2.9). By (2.8) and an adjustment of the constant we get (2.7). For any x ∈ R, letting
µ = δx and λ = 2 we see that t 7→ ψr,t(x, φ) has a continuous modification. �

Proposition 2.6 Suppose that (a, c, h, σ) satisfy the conditions specified in the introduction.
Then for any φ ∈ H1(R) ∩ C2

b (R)+, the mapping (r, t) 7→ ψr,t(·, φ) ∈ H1(R) has a continuous
modification.

Proof. Let {hi : i = 1, 2, · · ·} ⊂ C2
c (R) be a sequence which is dense in the set{

h ∈ H1(R) :
∫

R
h(x)dx ≤ 1, ‖h‖ ≤ 1, ‖h′‖ ≤ 1, ‖h′′‖ ≤ 1

}
by the norm of H1(R). We can define a metric ρ on H1(R) by

ρ(φ, ψ) =
∞∑
i=1

2−i(|〈φ− ψ, hi〉0| ∧ 1).
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Let λ ≥ 1. For t2 ≥ t1 ≥ r ≥ 0 we apply (2.7) to µ(dx) = h±i (x)dx to see that

E
(
|〈ψr,t1 − ψr,t2 , hi〉0|2λ

)
≤ 22λ−1E

(
|〈ψr,t1 − ψr,t2 , h

+
i 〉0|

2λ + |〈ψr,t1 − ψr,t2 , h
−
i 〉0|

2λ
)

≤ 22λ−1C(λ, φ, 1)|t1 − t2|λ.

It then follows that

E[ρ(ψr,t1 , ψr,t2)
2λ] ≤

∞∑
i=1

2−iE[〈ψr,t1 − ψr,t2 , hi〉2λ0 ∧ 1]

≤
∞∑
i=1

2−iC(λ, φ, 1)|t1 − t2|λ

≤ C(λ, φ, 1)|t1 − t2|λ. (2.10)

For t ≥ r2 ≥ r1 ≥ 0 we get from (2.1) that

〈ψr1,t − ψr2,t, hi〉 =
1
2

∫ r2

r1

〈
ψs,t, ∂

2
xx(ahi)− σψs,thi

〉
ds

−
∫ r2

r1

∫
R

〈
ψs,t, ∂x(h(y − ·)hi)

〉
·W (ds, dy).

Then it is easy to see that

E
[
〈ψr1,t − ψr2,t, hi〉2λ

]
≤ 1

2
E

[( ∫ r2

r1

〈
ψs,t, ∂

2
xx(ahi)− σψs,thi

〉
ds

)2λ]
+22λ−1E

[( ∫ r2

r1

∫
R

〈
ψs,t, ∂x(h(y − ·)hi)

〉
·W (ds, dy)

)2λ]
≤ 1

2
(r2 − r1)2λ−1E

[ ∫ r2

r1

〈
ψs,t, ∂

2
xx(ahi)− σψs,thi

〉2λ
ds

]
+22λ−1E

[( ∫ r2

r1

ds

∫
R

〈
ψs,t, ∂x(h(y − ·)hi)

〉2
dy

)λ]
.

Since ‖ψs,t‖ ≤ ‖φ‖, there is a constant C(λ, φ) ≥ 0 so that

E
[
〈ψr1,t − ψr2,t, hi〉2λ

]
≤ C(λ, φ)[(r2 − r1)2λ + (r2 − r1)λ].

By calculations similar to those in (2.10) we have

E[ρ(ψr1,t, ψr2,t)
2λ] ≤ C(λ, φ, 1)[(r2 − r1)2λ + (r2 − r1)λ].

By taking sufficiently large λ ≥ 1 we see that (r, t) 7→ ψr,t(·, φ) ∈ H1(R) has a continuous
modification. �
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3 A stochastic comparison theorem

A comparison theorem for the stochastic log-Laplace equation (2.1) is provided by the following

Theorem 3.1 Let (a, c, h, σ1) and (a, c, h, σ2) be two sets of parameters satisfying the conditions
specified in the introduction. Suppose that σ1(x) ≤ σ2(x) for all x ∈ R. For φ ∈ H1(R)∩Cb(R)+

let (ψir,t)r≤t be the unique strong solution of (2.1) with σ replaced by σi. Then for any t ≥ r ≥ 0
we have a.s. ψ1

r,t(x) ≥ ψ2
r,t(x) simultaneously for all x ∈ R.

Proof. Let us,t(x) = ψ1
s,t(x)− ψ2

s,t(x). It is easy to check that

ur,t(x) =
∫ t

r

[
1
2
a(x)∂2

xus,t(x)−
1
2
ds(x)us,t(x)

]
ds

+
∫ t

r

∫
R
h(y − x)∂xus,t(x) ·W (dy, ds)

+
∫ t

r
cs(x)ds, (3.1)

where

ds(x) = σ1(x)(ψ1
s,t(x) + ψ2

s,t(x)) ≥ 0,

and

cs(x) =
1
2
(σ2(x)− σ1(x))(ψ2

s,t(x))
2 ≥ 0.

Let vs,t(x) be the difference of any two solutions of (3.1). We have

vr,t(x) =
∫ t

r

(
1
2
a(x)∂2

xvs,t(x)−
1
2
ds(x)vs,t(x)

)
ds

+
∫ t

r

∫
R
h(y − x)∂xvs,t(x) ·W (dy, ds).

By an argument similar to the proof of Lemma 4.2 in [12], we can show that there exists a
constant K ≥ 0 such that

E‖vr,t‖2
0 ≤ K

∫ t

r
E‖vs,t‖2

0ds.

An application of Gronwall’s inequality yields v = 0. Then (3.1) has at most one solution. In
the sequel, we show that (3.1) has a non-negative strong solution. To this end, for φ ∈ H1(R)∩
Cb(R)+ we consider the equation

Ur,t(x) = φ(x) +
∫ t

r

[
1
2
a(x)∂2

xxUs,t(x)−
1
2
ds(x)Us,t(x)

]
ds

+
∫ t

r

∫
R
h(y − x)∂xUs,t(x) ·W (dy, ds). (3.2)

By [9], (3.2) has a non-negative solution Ur,t(x) = Ur,t(x, φ). We claim that

θr,t(x) =
∫ t

r
Ur,u(x, cu)du ≥ 0
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is a solution of (3.1). Indeed, from (3.2) we have

Ur,u(x, cu) = cu(x) +
∫ u

r

[
1
2
a(x)∂2

xxUv,u(x, cu)−
1
2
dv(x)Uv,u(x, cu)

]
dv

+
∫ u

r

∫
R
h(y − x)∂xUv,u(x, cu) ·W (dy, dv).

It follows that

θr,t(x) =
∫ t

r
cu(x)du+

∫ t

r

∫ u

r

[
1
2
a(x)∂2

xxUv,u(x, cu)−
1
2
dv(x)Uv,u(x, cu)

]
dvdu

+
∫ t

r

∫ u

r

∫
R
h(y − x)∂xUv,u(x, cu) ·W (dy, dv)du

=
∫ t

r
cu(x)du+

∫ t

r

∫ t

v

[
1
2
a(x)∂2

xxuv,u(x, cu)−
1
2
dv(x)Uv,u(x, cu)

]
dudv

+
∫ t

r

∫
R

∫ t

v
h(y − x)∂xUv,u(x, cu)du ·W (dy, dv)

=
∫ t

r
cu(x)du+

∫ t

r

[
1
2
a(x)∂2

xxθv,t(x)−
1
2
dv(x)θv,t(x)

]
dv

+
∫ t

r

∫
R
h(y − x)∂xθv,t(x) ·W (dy, dv).

This finishes the proof of the claim, and hence, the proof of the lemma. �

4 The conditional transition semigroup

Let us first give a more precise formulation of the stochastic equation (1.2). Let (a, c, h, σ) be
given as in the introduction. For an arbitrary measure µ ∈ M(R), we established in [12] the
joint existence of the continuous measure-valued process X = {Xt : t ≥ 0} and the time-space
white noise {W (ds, dy)} so that X0 = µ and (1.2) defines an orthogonal martingale measure
{Z(ds, dy)} that is orthogonal to {W (ds, dy)} and has covariation measure σ(y)Xs(dy)ds. Those
give the weak existence of the solution of (1.2).

It is well-known that the white noise {W (ds, dy)} can be obtained from a continuous process
W = {Wt : t ≥ 0} taking values in a suitable weighted Sobolev space over R; see [15]. Let
(Ω,F ,Ft) be the canonical space of (X,W ). By the results of [12] we may actually construct
the family of probability measures {PK : K is a probability measure on M(R)}, where PK is the
probability measure on (Ω,F ) under which (1.2) is realized with X0 distributed according to K.
Let PW

K denote the conditional probability given {W (ds, dy)}. Write Pµ = Pδµ and PW
µ = PW

δµ

for µ ∈ M(R). For φ ∈ H1(R) ∩ Cb(R)+ let ψr,t = ψWr,t and Tr,t = TWr,t be defined by (2.1)
and (2.5), respectively. The following result from [12] gives the characterization of transition
probabilities of the SDSM, which implies the uniqueness in law of the superprocess.

Theorem 4.1 ([12]) For every t ≥ r ≥ 0, every φ ∈ Cb(R)+ and every initial distribution K
we have a.s.

EW
K {e−〈φ,Xt〉|Fr} = exp

{
− 〈ψWr,t , Xr〉

}
. (4.1)
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Consequently, {Xt : t ≥ 0} is a diffusion process with Feller transition semigroup (Qt)t≥0 given
by ∫

M(R)
e−〈φ,ν〉Qt(µ, dν) = EK exp

{
− 〈ψW0,t, µ〉

}
.

Proof. For φ ∈ H1(R) ∩ Cb(R)+ the equalities were proved in [12]. By the comments following
Proposition 2.4 they can be extended to all φ ∈ Cb(R)+. �

Theorem 4.2 For any t ≥ r ≥ 0 we can define a unique random probability kernel QWr,t(µ, dν)
on M(R) by ∫

M(R)
e−〈φ,ν〉QWr,t(µ, dν) = exp

{
− 〈ψWr,t , µ〉

}
, φ ∈ Cb(R)+. (4.2)

Moreover, for any t ≥ s ≥ r ≥ 0 and µ ∈M(R) we have a.s.

QWr,t(µ, dν) =
∫
M(R)

QWr,s(µ, dγ)Q
W
s,t(γ, dν). (4.3)

Proof. By Proposition 2.4 the stochastic operator φ 7→ ψr,t(·, φ) is uniquely determined by its
operation on a countable number of functions φ ∈ Cb(R)+. By applying Theorem 4.1 with r = 0
and X0 = µ, we have

EW
µ {e−〈φ,Xt〉} = exp

{
− 〈ψW0,t, µ〉

}
.

Then the right hand side of the above equation defines a random kernel QW0,t(µ, dν) on M(R). By
the property of independent and stationary increments of the time-space white noise, ψr,t(·, φ)
is identically distributed with ψ0,t−r(·, φ). By a shifting argument we see that (4.2) defines a
unique random kernel QWr,t(µ, dν) on M(R). The uniqueness of ψWr,t implies that of QWr,t(µ, dν).
Equation (4.3) follows from the a.s. semigroup property of (ψWr,t)r≤t. �

From Theorems 4.1 and 4.2, one might expect {Xt : t ≥ 0} conditioned upon {W (ds, dy)}
is an inhomogeneous diffusion process with transition semigroup (QWr,t)r≤t. Indeed, for any
t ≥ r ≥ 0 we have a.s.

EW {e−〈φ,Xt〉|Fr} =
∫
M(R)

e−〈φ,ν〉QWr,t(Xr, dν). (4.4)

However, the conditional Markov property does not follow so easily since the null exceptional
set of (4.4) depends on (t, r). Of course, it can be made that (4.4) is a.s. true simultaneously
for all r and t (with t ≥ r) in some fixed countable dense subset U of [0,∞). In this case, the
restricted process {Xt : t ∈ U} becomes an inhomogeneous Markov process under the conditional
probability given {W (ds, dy)}.

In particular, if σ(x) ≡ 0, the corresponding SDSM {X̂t : t ≥ 0} does not involve branching
and from (4.2) its conditional transition semigroup is given by∫

M(R)
e−〈φ,ν〉Q̂Wr,t(µ, dν) = exp

{
− 〈TWr,t φ, µ〉

}
, φ ∈ Cb(R)+. (4.5)
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Thus given X̂r = δx we have X̂t(dy) = TWr,t (x, dy) for all t ≥ r. That is, the evolution of
the SDSM is completely determined by the linear semigroup (TWr,t )r≤t. Observe that given
{W (ds, dy)} the solutions of (1.1) are independent of each other. Then by a (conditional) law
of large numbers and the construction of the SDSM based on the small particle approximation
we see that a.s.

TWr,t φ(x) = 〈φ, X̂t〉 = EW [φ(x(t))], (4.6)

where {x(t) : t ≥ r} is the unique solution of

x(t) = x+
∫ t

r
c(x(s))dB(s) +

∫ t

r

∫
R
h(y − x(s))W (ds, dy), t ≥ r, (4.7)

and {B(t) : t ≥ 0} is a Brownian motion independent of {W (ds, dy)}. Thus (TWr,t )r≤t is roughly
the conditional transition semigroup of the diffusion process {x(t) : t ≥ r} given {W (ds, dy)}.
In this sense, we may regard {x(t) : t ≥ r} as a diffusion process in random environments.
Unfortunately, the null exceptional set of (4.6) also depends on (t, r), so the full conditional
Markov property of {x(t) : t ≥ r} still remains as an open problem.

The following theorem gives representations of some conditional moments of the process in
terms of (TWr,t )r≤t.

Theorem 4.3 For any t ≥ r ≥ 0 and φ ∈ Cb(R) we have a.s.∫
M(R)

〈φ, ν〉QWr,t(µ, dν) = 〈TWr,t φ, µ〉 (4.8)

and ∫
M(R)

〈φ, ν〉2QWr,t(µ, dν) = 〈TWr,t φ, µ〉2 +
∫ t

r
〈TWr,s (σ(TWs,tφ)2), µ〉ds. (4.9)

Proof. Let φ ∈ H1(R)∩Cb(R)+ be fixed. For any λ ≥ 0, let T λr,t(x) ≡ TWr,t (λφ)(x) be the unique
strong solution of

T λr,t(x) = λφ(x) +
1
2
a(x)

∫ t

r
∂2
xxT

λ
s,t(x)ds+

∫ t

r

∫
R
h(y − x)∂xT λs,t(x) ·W (ds, dy).

By the uniqueness of the solution, we have TWr,t (λφ)(x) = λTWr,t φ(x). It follows that

∂

∂λ
TWr,t (λφ)(x) = TWr,t φ(x) and

∂2

∂λ2
TWr,t (λφ)(x) ≡ 0

Let ψλr,t(x) = ψr,t(x, λφ) be the unique strong solution of

ψλr,t(x) = TWr,t (λφ)(x)− 1
2

∫ t

r
TWr,s (σ(ψλs,t)

2)(x)ds. (4.10)

Clearly, we have ψλr,t(x)|λ=0 = 0. Now we prove that ψλr,t(x) is twice differentiable in probability
with respect to λ in the supremum norm ‖ · ‖. Let Zλs,t(x) = λ−1ψλs,t(x) − TWs,tφ(x). According
to (4.10), we have

Zλr,t(x) = − 1
2λ

∫ t

r
TWr,s (σ(ψλs,t)

2)(x)ds

= −1
2

∫ t

r
TWr,s (σλ

−1(ψλs,t)
2 − σψλs,tT

W
s,tφ+ σψλs,tT

W
s,tψ)(x)ds

= −1
2

∫ t

r
TWr,s (σψ

λ
s,tZ

λ
s,t)(x)ds−

1
2

∫ t

r
TWr,s (σψ

λ
s,tT

W
s,tφ)(x)ds.
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By Theorem 2.1 we have ‖ψλs,t‖ ≤ λ‖φ‖ and ‖TWr,sφ‖ ≤ ‖φ‖. Then an application of Gronwall’s
inequality yields

E[‖Zλr,t‖2] → 0 as λ→ 0. (4.11)

That proves
∂ψλ

r,t(x)

∂λ |λ=0 = TWr,t φ(x). Now let

ur,t(x) = −
∫ t

r
TWr,s (σ(TWs,tψ)2)(x)ds

and

uλs,t(x) = λ−2[ψ2λ
s,t(x)− 2ψλs,t(x)]− us,t(x).

By elementary calculations based on (4.10) we get

uλr,t(x) = − 1
2λ2

∫ t

r
TWr,s (σ(ψ2λ

s,t)
2)(x)ds+

1
λ2

∫ t

r
TWr,s (σ(ψλs,t)

2)(x)ds

+
∫ t

r
TWr,s (σ(TWs,tφ)2)(x)ds

=
∫ t

r
TWr,s

{
σ
[
(TWs,tφ)2 +

(ψλs,t
λ

)2
− 2

(ψ2λ
s,t

2λ

)2]}
(x)ds.

Then we can use (4.11) to get E[‖uλr,t‖2] → 0 as λ→ 0. It then follows that

∂2ψλr,t(x)
∂λ2

|λ=0 = −
∫ t

r
TWr,s (σ(TWs,tφ)2)(x)ds.

Now we can get (4.8) and (4.9) by taking derivatives with respect to λ in∫
M(R)

e−〈λψ,ν〉QWr,t(µ, dν) = exp
{
− 〈ψλr,t, µ〉

}
and letting λ = 0. The extensions of (4.8) and (4.9) to an arbitrary φ ∈ Cb(R) are immediate.
�

5 Conditional entrance laws and excursion laws

In this section, we assume there is a constant σ0 > 0 such that σ(x) ≥ σ0 for all x ∈ R. We
shall characterize a class of conditional entrance laws of the SDSM, from which we deduce the
existence of some conditional excursion laws. Suppose that {W (ds, dy)} is a time-space white
noise defined on a standard probability space and let (ψWr,t)r≤t be the stochastic log-Laplace
semigroup defined by (2.1).

Proposition 5.1 For any t ≥ r ≥ 0 and φ ∈ Cb(R)+ we have a.s.

‖ψWr,t(·, φ)‖ ≤ ‖φ‖
1 + σ0(t− r)‖φ‖/2

. (5.1)
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Proof. Let ψ̄Wr,t(x, φ) be defined by (2.1) with σ(x) replaced by σ0. By Theorem 3.1 we have
ψWr,t(x, φ) ≤ ψ̄Wr,t(x, φ). Observe that the stochastic operators φ 7→ ψ̄Wr,t(x, φ) corresponds to an
SDSM {X0

t : t ≥ 0} satisfying the SPDE: For any φ ∈ C2
b ((R),

〈φ,X0
t 〉 = 〈φ, µ〉+

1
2

∫ t

0
〈aφ′′, X0

s 〉ds+
∫ t

0

∫
R
φ(y)Z(ds, dy)

+
∫ t

0

∫
R
〈h(y − ·)φ′, X0

s 〉W (ds, dy), (5.2)

where W (ds, dx) is a space-time white noise and Z(ds, dy) is an orthogonal martingale measure
which is orthogonal to W (ds, dy) and has covariation measure σ0X

0
s (dy)ds. (If it is necessary,

we may construct a new probability space on which all those random elements are defined.)
From (5.2) we see that {〈1, X0

t 〉 : t ≥ 0} is a continuous martingale which is orthogonal to
W (ds, dy) and has quadratic variation σ0〈X0

s , 1〉ds. Then, by considering an extension of the
original probability space, we have

〈1, X0
t 〉 = 〈φ, µ〉+

∫ t

0

√
σ0〈1, X0

s 〉dB(s),

where {B(t) : t ≥ 0} is a Brownian motion orthogonal to and hence independent of W (ds, dy).
In other words, {〈1, X0

t 〉 : t ≥ 0} is a Feller’s branching diffusion with constant branching rate
σ0. Since the above equation has a unique strong solution, we conclude that {〈1, X0

t 〉 : t ≥ 0} is
independent of W (ds, dy). Then we have

exp
{
− ψW0,t(x, φ)

}
≥ exp

{
− ψ̄W0,t(x, φ)

}
≥ EW

δx

[
e−‖φ‖〈1,X

0
t 〉

]
= Eδx

[
e−‖φ‖〈1,X

0
t 〉

]
.

By a well-known result on the characterization of Laplace transform of the Feller’s branching
diffusion we have

Eδx

[
e−λ〈1,X

0
t 〉

]
= exp

{
− λ

1 + σ0tλ/2

}
for any λ ≥ 0; see, e.g., [8, pp.235-236]. Since ψWr,t(·, φ) is identically distributed with ψW0,t−r(·, φ),
we have the desired inequality. �

Let (QWr,t)r≤t be defined by (4.2) and let (Q◦,W
r,t )r≤t be the restriction of (QWr,t)r≤t onM(R)◦ :=

M(R) \ {0}. The following theorem specifies a useful class of entrance laws of the restricted
conditional semigroup (Q◦,W

r,t )r≤t.

Theorem 5.2 For any x ∈ R and t > r ≥ 0, there is a unique finite random measure LWr,t(x, dν)
on M(R)◦ such that for any φ ∈ Cb(R)+ we have a.s.∫

M(R)◦
(1− e−〈φ,ν〉)LWr,t(x, dν) = ψWr,t(x, φ). (5.3)

Furthermore, for any t > s > r ≥ 0 we have a.s.

LWr,t(x, dν) =
∫
M(R)◦

LWr,s(x, dµ)Q◦,W
s,t (µ, dν). (5.4)
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Proof. By Proposition 2.4 the stochastic operator φ 7→ ψr,t(·, φ) is uniquely determined by its
operation on a countable number of functions φ ∈ Cb(R)+. By Theorem 4.2 we have a.s.∫

M(R)
e−〈φ,ν〉QWr,t(qδx, dν) = exp

{
− qψWr,t(x, φ)

}
simultaneously for all rationals q ≥ 0 and all functions φ in a countable dense subset of Cb(R)+.
The above expression implies that the probability measure QWr,t(δx, ·) on M(R)◦ is a.s. infinitely
divisible. Then we have the canonical representation

ψWr,t(x, φ) =
∫

R
φ(y)λWr,t(x, dy) +

∫
M(R)◦

(1− e−〈φ,ν〉)LWr,t(x, dν), (5.5)

where λWr,t(x, ·) is a finite measure on R and LWr,t(x, ·) is a σ-finite measure on M(R)◦. From
Theorem 3.1 and Proposition 5.1 it follows that

lim
λ→∞

ψWr,t(x, λ) ≤ 2
σ0(t− r)

<∞ (5.6)

for any t > r ≥ 0. Then we have a.s. λWr,t(x,R) = 0 and LWr,t(x,M(R)◦) <∞. Thus representation
(5.3) follows. The uniqueness of ψWr,t implies that of LWr,t(x, dν). The relation (5.4) follows by
the a.s. semigroup property of (ψWr,t)r≤t. �

Let W = {w ∈ C([0,∞),M(R)) : there is a non-empty interval (α(w), β(w)) ⊂ [0,∞) such
that w(t) ∈ M(R)◦ for t ∈ (α(w), β(w)) and wt = 0 otherwise}. For any r ≥ 0 let G be the
σ-algebra on W generated by the coordinate process. Let Wr be the subset of W comprising
of paths {wt : t ≥ 0} such that α(w) = r and let G r be the trace of G on Wr.

Theorem 5.3 For any r ≥ 0 there is a σ-finite random measure Qx,Wr on (Wr, G r) such that
for every finite sequence tn > · · · > t1 > r we have a.s.

Qx,Wr {wt1 ∈ dν1, · · · , wtn ∈ dνn} = LWr,t1(x, dν1)Q
◦,W
t1,t2

(ν1, dν2) · · ·Q◦,W
tn−1,tn

(νn−1, dνn). (5.7)

In particular, for any t > r and φ ∈ Cb(R)+ we have a.s.∫
Wr

(1− e−〈φ,wt〉)Qx,Wr (dw) = ψWr,t(x, φ).

Proof. Let Cr = C([r,∞),M(R)) and let F r be the σ-algebra on Cr generated by the coordinate
process. Recall that (Ω,F ,Ft) is the canonical space of (X,W ) and Pµ is the probability
measure on (Ω,F ) under which (1.2) is realized with X0 = µ. Let QWµ denote the regular
conditional distribution of X = {Xt : t ≥ 0} under PW

µ given W = {Wt : t ≥ 0}. For any
s > r, let QWs,µ denote the image of QWs+·

µ under the map X 7→ Xs+· from C0 to Cs. Observe
that QWs,µ is a probability measure on (Cs,F s), which is intuitively the conditional distribution
of {Xt : t ≥ s} given {Wt : t ≥ s} and Xs = µ. In the obvious way, we may regard QWs,µ as a
random probability measure on (Cr,F r,s), where F r,s = σ({wt : t ≥ s}). Then for each integer
k ≥ 1 we can define a random measure Q̃x,Wr+1/k on (Cr,F r,r+1/k) by

Q̃x,Wr+1/k(dw) =
∫
M(R)◦

LWr,r+1/k(x, dµ)QWr+1/k,µ(dw).
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By (5.4) and the a.s. semigroup property of (Q◦,W
r,t )r≤t it is easy to show that a.s.

Q̃x,Wr+1/k(dwt1 ∈ dν1, · · · , wtn ∈ dνn) = LWr,t1(x, dν1)Q
◦,W
t1,t2

(ν1, dν2) · · ·Q◦,W
tn−1,tn

(νn−1, dνn)

for any tn > · · · > t1 > r + 1/k and νn, · · · , ν1 ∈ M(R)◦. Let us equip C((r,∞),M(R)) with
the natural σ-algebra. By an argument based on the inverse limit similar to that of Getoor and
Glover (1987), it is not hard to show that there is random measure Qx,Wr on C((r,∞),M(R))
satisfying (5.7). It is σ-finite since LWr,t(x,M(R)◦) <∞ a.s. for any t > r. From (4.2) it is easily
seen that 0 is a trap for (QWr,t)r≤t. Moreover, by (4.2) and (5.1) we have

QWr,t(µ, {0}) = lim
λ→∞

exp{−〈ψWr,t(·, λ), µ〉} ≥ exp
{
− 2〈1, µ〉
σ0(t− r)

}
.

Thus QWr,t(µ, {0}) → 1 as t→∞. Let Hr be a countable dense subset of (r,∞). Clearly, we can
assume (5.7) a.s. holds for all ordered subset {tn > · · · > t1} ⊂ Hr. Then it is easy to show that
for Qx,Wr -a.a. paths {wt : t > r} in C((r,∞),M(R)) we have β(w) := inf{s > r : ws = 0} < ∞
and wt = 0 for t ≥ β(w). Following the proof of [10, Theorem 5.1] one shows that wr+ = 0 for
Qx,Wr -a.a. paths {wt : t > r}. Then Qx,Wr is actually supported by Wr. �

The property (5.7) suggests that, roughly speaking, under Qx,Wr the coordinate process {wt :
t > r} of Wr is a diffusion process with transition semigroup (Q◦,W

s,t )s≤t and one-dimensional
distributions (LWr,t(x, ·))t>r. However, the exceptional set of (5.7) depends on the sequence
tn > · · · > t1 > r. This is similar to the situation explained after (4.4). For convenience we
sometimes think Qx,Wr as a σ-finite random measure on the enlarged space (W,G ).

6 Construction of the superprocesses

Since the quadratic variation process of Z depends on X, we cannot expect a strong solution of
(1.2) in the usual sense. In other words, the time-space white noise {W (ds, dy)} does not contain
sufficient information to determine the SDSM. However, based on the conditional excursion law
constructed in the last section, we can construct an SDSM from {W (ds, dy)} and an additional
Poisson noise.

We assume there is a constant σ0 > 0 so that σ(x) ≥ σ0 for all x ∈ R. Then the conditional
excursion law QW,x0 (dw) exists by Theorem 5.3. Let µ ∈ M(R) and suppose on a standard
probability space we are given the two random elements W and N , where W (ds, dy) is a time-
space white noise and, conditioned upon W , N(dx, dw) is a Poisson random measure on R×W0

with intensity µ(dx)QW,x0 (dw). Let

Xt :=
∫

R

∫
W0

wtN(dx, dw), t > 0. (6.1)

By Theorem 5.3 we have a.s. LWr,t(x,M(R)◦) <∞, so the right hand side of (6.1) contains only
a finite number of non-trivial terms. Therefore, {Xt : t > 0} is a.s. continuous.

Theorem 6.1 Let X0 = µ and let {Xt : t > 0} be defined by (6.1). Then for any tn > · · · >
t1 > t0 = 0 and {φ0, φ1, · · · , φn} ⊂ Cb(R)+ we have

EW exp
{
−

n∑
i=0

〈φi, Xti〉
}

= exp
{
− 〈φ0 + ψW0,t1(φ1 + · · ·+ ψWtn−1,tn(φn) · · ·), µ〉

}
. (6.2)
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Consequently, {Xt : t ≥ 0} is a realization of the SDSM defined by (1.2).

Proof. By the formula for the Laplace transform of the Poisson random measure we have

EW exp
{
−

n∑
i=0

〈φi, Xti〉
}

= EW exp
{
− 〈φ0, µ〉 −

∫
R

∫
W0

n∑
i=1

〈φi, wti〉N(dx, dw)
}

= exp
{
− 〈φ0, µ〉 −

∫
R
µ(dx)

∫
W0

[
1− exp

( n∑
i=1

〈φi, wti〉
)]
QW,x0 (dw)

}
.

From (5.7) it follows that∫
W0

[
1− exp

(
−

n∑
i=1

〈φi, wti〉
)]
QW,x0 (dw)

=
∫
M(R)

LW0,t1(x, dν1)
∫
M(R)

QWt1,t2(ν1, dν2) · · ·
∫
M(R)

QWtn−2,tn−1
(νn−2, dνn−1)∫

M(R)

[
1− exp

(
−

n∑
i=1

〈φi, νi〉
)]
QWtn−1,tn(νn−1, dνn)

=
∫
M(R)

LW0,t1(x, dν1)
∫
M(R)

QWt1,t2(ν1, dν2) · · ·
∫
M(R)

QWtn−3,tn−2
(νn−3, dνn−2)∫

M(R)

[
1− exp

(
−
n−1∑
i=1

〈φi, νi〉 − 〈ψWtn−1,tn(φn), νn−1〉
)]
QWtn−2,tn−1

(νn−2, dνn−1)

= ψW0,t1(x, φ1 + ψWt1,t2(φ2 + · · ·+ ψWtn−2,tn−1
(φn−1 + ψWtn−1,tn(φn)) · · ·)).

Then we have (6.2), from which it is easy to show that Xt → µ in probability as t → 0.
From (6.2) we see that {Xt : t ≥ 0} has the same conditional finite-dimensional distributions
given {W (ds, dy)} as the SDSM; see Theorem 4.1. Then the non-conditional finite-dimensional
distributions of {Xt : t ≥ 0} also coincide with those of the SDSM. �

An immigration superprocess can be constructed in a similar way. Let m ∈M(R). Suppose
on a standard probability space we have two random elements W and N , where W (ds, dy) is a
time-space white noise and, conditioned upon W , N(ds, dx, dw) be a Poisson random measure
on [0,∞) × R ×W with intensity dsm(dx)QW,xs (dw). Then we can construct an M(R)-valued
process

Yt =
∫ t

0

∫
R

∫
W
wt−sN(ds, dx, dw), t ≥ 0. (6.3)

Theorem 6.2 For any t ≥ r ≥ 0 and φ ∈ Cb(R)+ we have a.s.

EW
[
exp { − 〈φ, Yt〉}

∣∣∣Fr

]
= exp

{
− 〈ψWr,t , Yr〉 −

∫ t

r
〈ψWs,t,m〉ds

}
.

Consequently, {Yt : t ≥ 0} is a Markov process with transition semigroup (Qt)t≥0 given by∫
M(R)

e−〈φ,ν〉Qt(µ, dν) = E exp
{
− 〈ψW0,t, µ〉 −

∫ t

0
〈ψWs,t,m〉ds

}
.

This can be proved in a similar way as Theorem 6.1. Indeed, {Yt : t ≥ 0} is an immigration
superprocess associated with the SDSM; see [12, Theorem 5.1].
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[19] Wang, H. (2003). Singular spacetime Itô integral and a class of singular interacting branching particle
systems. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6, 321–335.

[20] Watanabe, S. (1968). A limit theorem of branching processes and continuous state branching pro-
cesses. J. Math. Kyoto Univ. 8, 141–167.

[21] Xiong, J. (2004a). A stochastic log-Laplace equation. Ann. Probab. 32, 2362–2388.

[22] Xiong, J. (2004b). Long-term behavior for superprocesses over a stochastic flow. Electron. Comm.
Probab. 9, 36–52.

18


