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1 Introduction

Fluctuation limits of branching particle systems and superprocesses have been studied exten-
sively. Since the branching particle systems are usually unstable, in many cases one uses time-
dependent scalings which lead to time-inhomogeneous Ornstein-Uhlenbeck processes; see, e.g.,
Bojdecki and Gorostiza [3], Dawson et al [6] and the references therein. For subcritical branch-
ing systems with immigration, it is usually easy to find a stationary distribution. In the study
of fluctuation limits of those systems, we can use a time-independent scaling, which lead to
homogeneous Ornstein-Uhlenbeck processes. Fluctuation limits of this kind were studied in
[14, 15, 18]. In [18] it was shown that a class of distribution-valued Ornstein-Uhlenbeck diffu-
sions arise as fluctuation limits of immigration superprocesses by three different scalings (high
density, small branching and large scale). The tightness was established there by checking Kol-
mogorov’s criterion based on moment calculations. A high density fluctuation limit theorem
for branching particle systems was proved in [15]. In [14] a fluctuation limit of a immigration
superprocess with small branching rate was proved. However, the tightness of the convergent
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sequence was not established there, so the limit theorem there only asserts the convergence
of the finite dimensional distributions. The main difficulty comes from the general branching
mechanisms. In this note, we shall prove that the sequence considered in [14] is really tight in
a typical situation. Indeed, for a large class of Feller underlying processes, we show that the
sequence is tight in the space of càdlàg paths with values in a suitable Sobolev space. Instead of
Kolmogorov’s criterion, we shall use a criterion of tightness given in Either and Kurtz [10] based
on the martingale characterization. A number of properties of Ornstein-Uhlenbeck processes on
Hilbert spaces have been proved under the formulation of generalized Mehler semigroups intro-
duced by Bogachev et al [2]; see, e.g., [7, 8, 12, 20] and the references therein. Our Theorem 4.1
puts the limiting Ornstein-Uhlenbeck process into this framework so that one can easily derive
regularities and properties of the processes from the existing literature.

2 Immigration superprocesses

Let C(Rd) be the Banach space of bounded and continuous functions on Rd endowed with
the supremum norm ‖ · ‖. Let C2(Rd) denote the space of smooth functions on Rd with all
partial derivatives up to the second order belonging to C(Rd). Let (P 0

t )t≥0 be a Feller transition
semigroup on C(Rd) with strong generator A0. For concreteness we assume that C2(Rd) ⊂
D(A0) ⊂ C(Rd) and

A0f(x) =
d∑

i,j=1

αij(x)
∂2f

∂xi∂xj
(x) +

d∑
j=1

βj(x)
∂f

∂xj
(x)

+
∫

Rd

[
f(x + y)− f(x)− 1

1 + |y|2
d∑

j=1

yj
∂f

∂xj
(x)

]
µ(x, dy) (2.1)

for f ∈ C2(Rd), where αij(x) and βj(x) are continuous functions and µ(x, dy) is a Lévy kernel
on Rd such that

sup
x∈Rd

[ d∑
i,j=1

|αij(x)|+
d∑

j=1

|βj(x)|+
∫

Rd\{0}
(1 ∧ |y|2)µ(x, dy)

]
< ∞.

By a result of Courrège [4], the above representation is valid for a large class of Feller generators.

Let M(Rd) be the space of finite Borel measures on Rd equipped with the topology of weak
convergence. Write µ(f) =

∫
fdµ for f ∈ C(Rd) and µ ∈ M(Rd). Let C(Rd)+ denote the subset

of non-negative elements of C(Rd). Let φ be a continuous function on Rd × [0,∞) given by

φ(x, z) = c(x)z2 +
∫ ∞

0
(e−zu − 1 + zu)n(x, du), x ∈ Rd, z ≥ 0, (2.2)

where c(·) ∈ C(Rd)+ and u2n(x, du) is a bounded kernel from Rd to [0,∞). We fix a strictly
positive function b(·) ∈ C(Rd)+ which is bounded away from zero. It is well-known that the
evolution equation

Vtf(x) +
∫ t

0
ds

∫
Rd

[φ(y, Vsf(y)) + b(y)Vsf(y)]P 0
t−s(x, dy) = P 0

t f(x), t ≥ 0, x ∈ Rd, (2.3)
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defines a semigroup of non-linear operators (Vt)t≥0 on C(Rd)+. Moreover, there is a transition
semigroup (Qt)t≥0 on M(Rd) determined by∫

M(Rd)
e−ν(f)Qt(µ, dν) = exp{−µ(Vtf)}, f ∈ C(Rd)+. (2.4)

A Markov process X with transition semigroup (Qt)t≥0 is called a Dawson-Watanabe superpro-
cess; see, e.g., Dawson [5]. (Since b(·) is positive and bounded away from zero, the superprocess
has a subcritical branching mechanism.) A number of basic regularities of Dawson-Watanabe
superprocesses were proved in Fitzsimmons [11]. In particular, it follows from [11, Corollary 3.6]
that the Dawson-Watanabe superprocess has a Hunt realization.

Let (Pt)t≥0 be the semigroup generated by the operator A := A0− b. It is easy to show that
if ξ = (Ω,F ,Ft, ξt,P0

x) is a Hunt realization of (P 0
t )t≥0, then

Ptf(x) = P0
xf(ξt) exp

{
−

∫ t

0
b(ξs)ds

}
.

In terms of (Pt)t≥0, we can rewrite (2.3) as

Vtf(x) +
∫ t

0

∫
Rd

φ(y, Vsf(y))Pt−s(x, dy) = Ptf(x), t ≥ 0, x ∈ Rd, (2.5)

which is more convenient for the discussions in this work.

Given m ∈ M(Rd), we can define another transition semigroup (Qm
t )t≥0 on M(Rd) by∫

M(Rd)
e−ν(f)Qm

t (µ, dν) = exp
{
− µ(Vtf)−

∫ t

0
m(Vsf)ds

}
, f ∈ C(Rd)+. (2.6)

A Markov process in M(Rd) is called an immigration superprocess with parameters (A,φ, m) if its
transition semigroup (Qm

t )t≥0. Intuitively, new particles immigrate to Rd according to a Poisson
random field on the space-time space with intensity proportional to m(dx)ds; see, e.g., [16, 17]. It
was shown in [16] that the immigration superprocess has regularities similar to the superprocess
without immigration defined by (2.4) and (2.5). Indeed, following the arguments of [11] it can
be proved that the immigration superprocess also has a Hunt realization Y = (W,G ,Gt, Yt,Qm

µ ).

As in [9] and [11], it is not hard to show that the immigration superprocess has generator L
defined by

LF (µ) =
∫

Rd

AF ′(µ)(x)µ(dx) +
∫

Rd

F ′(µ, x)m(dx) +
∫

Rd

c(x)F ′′(µ, x)µ(dx)

+
∫

Rd

µ(dx)
∫ ∞

0
[F (µ + uδx)− F (µ)− uF ′(µ, x)]n(x, du), (2.7)

where

F ′(µ, x) = lim
r→0

1
r

[F (µ + rδx)− F (µ)]

and F ′′(µ, x) is defined by the limit with F (µ) replaced by F ′(µ, x). The domain D(L) of L
contains all functions F of the form

F (µ) = h(µ(f1), · · · , µ(fm)) (2.8)
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where h ∈ C2(Rm) and {fj : j = 1, · · · ,m} ⊂ D(A). If F is given by (2.8), then

LF (µ) =
m∑

i=1

h′i(µ(f1), · · · , µ(fm))
∫

Rd

Afi(x)µ(dx)

+
m∑

i=1

h′i(µ(f1), · · · , µ(fm))
∫

Rd

fi(x)m(dx)

+
m∑

i,j=1

h′′ij(µ(f1), · · · , µ(fm))
∫

Rd

c(x)fi(x)fj(x)µ(dx)

+
∫

Rd

µ(dx)
∫ ∞

0
[h(µ(f1) + uf1(x), · · · , µ(fm) + ufm(x))

−h(µ(f1), · · · , µ(fm))− u
m∑

i=1

h′i(µ(f1), · · · , µ(fm))fi(x)]n(x, du). (2.9)

Proposition 2.1 For each f ∈ D(A), the process

〈Yt, f〉 − 〈Y0, f〉 −
∫ t

0
〈Ys, Af〉ds− 〈m, f〉t, t ≥ 0, (2.10)

is a martingale.

Proof. By (2.9) and the martingale characterization of Markov processes, we see that (2.10) is
a local martingale. Since φ′z(x, 0) = 0, we may differentiating both sides of (2.5) and (2.6) to
show that

Qm
µ [〈Yt, f〉] = µ(Ptf) +

∫ t

0
m(Psf)ds (2.11)

first for f ∈ C(Rd)+ and then for all f ∈ C(Rd). Similarly we get

Qm
µ [〈Yt, f〉2] =

[
µ(Ptf) +

∫ t

0
m(Psf)ds

]2

+
∫ t

0
µPt−s[φ′′z(·, 0)(Psf)2]ds

+
∫ t

0
du

∫ u

0
mPu−s[φ′′z(·, 0)(Psf)2]ds (2.12)

Therefore, Qm
µ [〈Yt, f〉2] is a locally bounded function of t ≥ 0. It follows that the process (2.10)

has locally bounded second moment, so it is actually a martingale. �

From (2.6) it is easy to see that, as t →∞ the distribution of Yt converges to the probability
measure Qm(dν) on M(Rd) such that∫

M(Rd)
e−ν(f)Qm(dν) = exp

{
−

∫ ∞

0
m(Vsf)ds

}
, f ∈ C(Rd)+. (2.13)

Moreover, it is easy to show that

γ(f) =
∫ ∞

0
m(Psf)ds =

∫
M(Rd)

ν(f)Qm(dν), f ∈ C(Rd)+, (2.14)

defines a purely excessive measure γ ∈ M(Rd) for (Pt)t≥0. We are interested in the asymptotic
fluctuations of the immigration superprocess around the long-term average γ.
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Proposition 2.2 Let Zt = Yt − γ. Then for any f ∈ C(Rd) we have Qm
γ [〈Zt, f〉] = 0 and

Qm
γ [〈Zt, f〉2] =

∫ t

0
γ(φ′′z(·, 0)(Psf)2)ds, (2.15)

where

φ′′z(x, 0) = 2c(x) +
∫ ∞

0
u2n(x, du).

Moreover, if f ∈ D(A), the process

〈Zt, f〉 −
∫ t

0
〈Zs, Af〉ds, t ≥ 0, (2.16)

is a martingale.

Proof. By (2.14) it is easy to show that

γ(Ptf) +
∫ t

0
m(Psf)ds = γ(f) (2.17)

for each t ≥ 0. Then we have Qm
γ [〈Zt, f〉] = 0 from (2.11). From (2.11) and (2.12) we obtain

Qm
γ [〈Zt, f〉2] =

∫ t

0
γPt−s[φ′′z(·, 0)(Psf)2]ds +

∫ t

0
ds

∫ t

s
mPu−s[φ′′z(·, 0)(Psf)2]du

=
∫ t

0
γPt−s[φ′′z(·, 0)(Psf)2]ds +

∫ t

0
ds

∫ t−s

0
mPr[φ′′z(·, 0)(Psf)2]dr.

Then we get (2.15) by applying (2.17) with f replaced by φ′′z(·, 0)(Psf)2. Using (2.17) to Af ,
we have

〈γ, Af〉t =
∫ t

0

[ ∫ s

0
mPr(Af)dr + γPs(Af)

]
ds

=
∫ t

0
m(Psf − f)ds +

∫ t

0
γPs(Af)ds

=
∫ t

0
m(Psf − f)ds + γ(Ptf − f)

= −〈m, f〉t.

It follows that

〈Zt, f〉 −
∫ t

0
〈Zs, Af〉ds = 〈Yt, f〉 − 〈γ, f〉 −

∫ t

0
〈Ys, Af〉ds− 〈m, f〉t.

Then the martingale property of (2.16) follows from Proposition 2.1. �
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3 Convergence in the Schwartz space

Let γ ∈ M(Rd) be a purely excessive measure of the transition semigroup (Pt)t≥0. Then there
is a finite entrance law (ηs)s>0 such that

γ =
∫ ∞

0
ηsds;

see, e.g., Getoor [13, p.43]. Since all finite entrance laws for the Feller semigroup (P 0
t )t≥0 are

closable, Li [16, Lemma 2.1] implies that all those laws for (Pt)t≥0 are also closable. In particular,
there is m ∈ M(Rd) such that

γ =
∫ ∞

0
mPsds.

For any integer k ≥ 1 let φk(x, z) = φ(x, z/k). Suppose that {Y (k)
t : t ≥ 0} is a càdlàg

immigration superprocess with parameters (A,φk,m) and Y
(k)
0 = γ. Let Sγ

k (Rd) be the set of
signed-measures µ on Rd such that µ + kγ ∈ M(Rd). We define the Sγ

k (Rd)-valued process
{Z(k)

t , t ≥ 0} by

Z
(k)
t = k[Y (k)

t − γ], t ≥ 0. (3.1)

By Proposition 2.2 we have E[〈Z(k)
t , f〉] = 0 for each f ∈ C(Rd). By the calculations in [14],

{Z(k)
t : t ≥ 0} is a Markov process with transition semigroup∫

Sγ
k (Rd)

e−ν(f)R
(k)
t (µ, dν) = exp

{
− µ(k−1V

(k)
t (kf)) +

∫ t

0
γ(φ(k−1V (k)

s (kf)))ds

}
, (3.2)

where (V (k)
t )t≥0 is determined by

V
(k)
t f(x) +

∫ t

0

∫
Rd

φk(y, V (k)
s f(y))Pt−s(x, dy) = Ptf(x). (3.3)

Let S (Rd) denote the Schwartz space of rapidly decreasing real functions on Rd. That
is, each f ∈ S (Rd) is infinitely differentiable and for each non-negative integer k and each
non-negative integer-valued vector α = (α1, · · · , αd) we have

lim
|x|→∞

|x|k|∂αf(x)| = 0,

where

∂αf(x) =
∂|α|

∂xα1
1 · · ·xαd

d

f(x1, . . . , xd)

and |α| = α1 + · · ·+ αd. The topology of S (Rd) is defined by the sequence of semi-norms

f 7→ pn(f) := sup{(1 + |x|n)|∂αf(x)| : x ∈ Rd, |α| ≤ n}, n = 0, 1, 2, · · · .

Let S ′(Rd) denote the dual space of S (Rd) equipped with the strong topology. Then both
S (Rd) and S ′(Rd) are nuclear spaces; see, e.g., Schaefer [21, p.107]. We regard Sγ

k (Rd) as a
subspace of S ′(Rd) in the usual sense. Thus {Z(k)

t : t ≥ 0} is a processes taking values from
S ′(Rd).
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Theorem 3.1 As k → ∞, the finite dimensional distributions of {Z(k)
t : t ≥ 0} converge to

those of the S ′(Rd)-valued Markov process {Zt : t ≥ 0} with Z0 = 0 and with semigroup (Rt)t≥0

determined by∫
S ′(Rd)

eiν(f)Rt(µ, dν) = exp
{

iµ(Ptf) +
∫ t

0
γ(φ(−iPsf))ds

}
, f ∈ S (Rd), (3.4)

where φ(−iPsf) is given by (2.2) with z replaced by −iPsf(x).

The above theorem was established by Gorostiza and Li [14]. The main purpose of this
section is to show the weak convergence of {Z(k)

t : t ≥ 0} on the space D([0,∞),S ′(Rd)). To
this end it suffices to prove the tightness of the sequence {Z(k)

t : t ≥ 0; k ≥ 1}.

Lemma 3.1 For η > 0, T > 0 and f ∈ D(A), there is a constant C = C(T, ‖f‖, ‖Af‖) such
that

sup
k≥1

P
{

sup
0≤t≤T

|〈Z(k)
t , f〉| > η

}
≤ C/η. (3.5)

Proof. Observe that

P
{

sup
0≤t≤T

|〈Z(k)
t , f〉| > η

}
≤ P

{
sup

0≤t≤T

∣∣∣∣〈Z(k)
t , f〉 −

∫ t

0
〈Z(k)

s , Af〉ds

∣∣∣∣ > η/2
}

+P
{ ∫ T

0
|〈Z(k)

s , Af〉|ds > η/2
}

. (3.6)

By Proposition 2.2,

〈Z(k)
t , f〉 −

∫ t

0
〈Z(k)

s , Af〉ds, t ≥ 0,

is a right continuous martingale. Then by Doob’s martingale inequality, the first term on the
right hand side of (3.6) is dominated by

2
η
E

∣∣∣∣〈Z(k)
T , f〉 −

∫ T

0
〈Z(k)

s , Af〉ds

∣∣∣∣ ≤ 2
η

[
E1/2[〈Z(k)

T , f〉2] +
∫ T

0
E1/2[〈Z(k)

s , Af〉2]ds

]
By (2.15), we get

E{〈Z(k)
s , h〉2} =

∫ s

0
γ(φ′′z(·, 0)|Prh|2)dr ≤ ‖φ′′z(·, 0)‖‖h‖2γ(1)T (3.7)

for any 0 ≤ s ≤ T and h ∈ C(Rd). Applying this estimate to f and Af we obtain

P
{

sup
0≤t≤T

|〈Z(k)
t , f〉 −

∫ t

0
〈Z(k)

s , Af〉ds| > η/2
}

≤ 2
η

[
‖φ′′z(·, 0)‖‖f‖2γ(1)T

]1/2
+

2T

η

[
‖φ′′z(·, 0)‖‖Af‖2γ(1)T

]1/2
.
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By Chebyshev’s inequality,

P
{ ∫ T

0
|〈Z(k)

s , Af〉|ds ≥ η/2
}

≤ 2
η

∫ T

0
E[|〈Z(k)

s , Af〉|]ds

≤ 2
η

∫ T

0
E1/2[〈Z(k)

s , Af〉2]ds

≤ 2T

η

[
‖φ′′z(·, 0)‖‖Af‖2γ(1)T

]1/2
.

Then we obtain (3.5). �

Lemma 3.2 For any f ∈ D(A), the sequence {〈Z(k)
t , f〉 : t ≥ 0; k ≥ 1} is tight in D([0,∞), R).

Proof. Let Lk denote the generator of {Z(k)
t , t ≥ 0}. Let F (µ) = h(〈µ, f〉) for h ∈ C2(R) and

µ ∈ Sγ
k (Rd). By (2.9) it is not hard to show that

LkF (µ) = h′(〈µ, f〉)〈µ,Af〉+ k−1h′′(〈µ, f〉)〈µ, cf2〉+ h′′(〈µ, f〉)〈γ, cf2〉

+ k−1

∫
Rd

µ(dx)
∫ ∞

0
l(x, f, h, µ)n(x, du)

+
∫

Rd

γ(dx)
∫ ∞

0
l(x, f, h, µ)n(x, du), (3.8)

where

l(x, f, h, µ) =
∫ ∞

0

[
h(〈µ, f〉+ uf(x))− h(〈µ, f〉)− h′(〈µ, f〉)uf(x)

]
n(x, du).

Since

F (Z(k)
t )− F (Z(k)

0 )−
∫ t

0
LkF (Z(k)

s )ds, t ≥ 0,

is a martingale, according to Ethier and Kurtz [10, p.142 and p.145], to obtain the desired
tightness it suffices to show

sup
k≥1

∫ T

0
E[|LkF (Z(k)

s )|2]ds < ∞. (3.9)

for each T > 0. Recall that Z
(k)
s = k[Y (k)

s − γ]. Then we have

L (k)F (Z(k)
s ) = h′(〈Z(k)

s , f〉)〈Z(k)
s , Af〉+ h′′(〈Z(k)

s , f〉)〈Y (k)
s , cf2〉

+
∫

Rd

l(x, f, h, Z(k)
s )Y (k)

s (dx).

It follows that

|L (k)F (Z(k)
s )|2 ≤ C1[〈Z(k)

s , Af〉2 + 〈Y (k)
s , cf2〉2 + 〈Y (k)

s , l(f, h, Z(k)
s )〉2] (3.10)

for some constant C1 only depending on ‖h′‖ and ‖h′′‖. By (3.7) we have

E[〈Z(k)
s , Af〉2] ≤ ‖φ′′z(·, 0)‖‖Af‖2γ(1)T.
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From (2.12) it follows that

E[〈Y (k)
t , g〉2] ≤ ‖g‖2[γ(1)2 + m(1)2T 2 + ‖φ′′z(·, 0)‖γ(1)T + ‖φ′′z(·, 0)‖m(1)T 2],

for any g ∈ C(Rd). By Taylor’s expansion it is easy to find that

|l(x, f, h, Z(k)
s )| ≤ C2

∫ ∞

0
u2n(x, du) (3.11)

for a constant C2 depending on ‖f‖ and ‖h′′‖. Under our assumption, the right hand side of
(3.11) is bounded in x ∈ Rd. Thus (3.9) follows. �

Theorem 3.2 As k →∞, the sequence {Z(k)
t : t ≥ 0} converges weakly to a process {Zt : t ≥ 0}

in D([0,∞),S ′(Rd)) with Z0 = 0 and with transition semigroup (Rt)t≥0 determined by (3.4).

Proof. By Lemma 3.2 and Mitoma’s result, the sequence {Z(k)
t : t ≥ 0; k ≥ 1} is tight in

D([0,∞),S ′(Rd)). Then the result follows from Theorem 3.1. See, e.g., Walsh [22, pp.364-365].
�

4 Convergence in Sobolev spaces

In this section, we give a formulation of the fluctuation limit theorem in a Sobolev space. This
puts the limiting Ornstein-Uhlenbeck process into the framework of Bogachev et al [2] and
Fuhrman and Röckner [12]; see also Dawson et al [8]. For any f ∈ S (Rd) we define its Fourier
transform f̂ by

f̂(ξ) =
1

(2π)d/2

∫
Rd

e−ix·ξf(x)dx,

where “ · ” denotes the inner product on Rd. For f ∈ S ′(Rd), we define the Fourier transform
f̂ as a distribution by 〈f̂ , g〉 = 〈f, ĝ〉 for g ∈ S (Rd). For each s ∈ R we consider the Sobolev
space

Hs(Rd) = {f ∈ S ′(Rd) : (1 + |x|2)sf̂(x) ∈ L2(Rd)}

which is endowed with the Hilbertian norm ‖ · ‖s defined by

‖f‖2
s =

∫
Rd

(1 + |x|2)s|f̂(x)|2dx. (4.1)

It is well-known that each Hs(Rd) is a separable Hilbert space and its strong topological dual
can be identified with H−s(Rd). In particular, for any integer n ≥ 0 we may also define Hn(Rd)
by

Hn(Rd) = {f ∈ S ′(Rd) : ∂αf ∈ L2(Rd) whenever |α| ≤ n}

with the norm ‖ · ‖n,2 defined by

‖f‖2
n,2 =

∑
|α|≤n

∫
Rd

|∂αf(x)|2dx,
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which is equivalent to the norm ‖ · ‖n given by (4.1). Moreover, for any s ≤ t we have

S ′(Rd) ⊃ Hs(Rd) ⊃ Ht(Rd) ⊃ S (Rd) (4.2)

with continuous embeddings. See, e.g., Barros-Neto [1, Theorem 5.5]. Let {Zt : t ≥ 0} and
{Z(k)

t : t ≥ 0} be as in the last section. Now we have

Theorem 4.1 For n > d + 2 the process {Zt : t ≥ 0} has a realization in D([0,∞),H−n(Rd))
and {Z(k)

t : t ≥ 0} converges weakly to {Zt : t ≥ 0} in D([0,∞),H−n(Rd)).

Proof. By Sobolev’s embedding theorem, when p > d/2, any function f ∈ Hp(Rd) possess
bounded and continuous derivatives in the classical sense. Then Hp+2(Rd) ⊂ C2(Rd) ⊂ D(A)
and (3.5) holds for f ∈ Hp+2(Rd). Since ‖ · ‖p+2 < ‖ · ‖n in the Hilbert-Schmidt sense for any
n > d/2+p+2, the result follows from Theorem 3.1 and Lemma 3.2. See, e.g., Walsh [22, p.335
and p.365]. �
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