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1 Introduction

Let N := {0, 1, 2, · · · } and let {ξ(n, i) : n, i = 1, 2, · · · } be a sequence of N-valued i.i.d. random
variables. Let x(0) be an N-valued random variable which is independent of {ξ(n, i)}. A Galton-
Watson branching process (GW-process) {x(n) : n = 0, 1, 2, · · · } is defined inductively by

x(n) =
x(n−1)∑

i=1

ξ(n, i), n = 1, 2, · · · . (1.1)

This process is a mathematical representation of the random evolution of an isolated population.
We refer the reader to Athreya and Ney [1] and Harris [29] for the theory of branching processes.

A useful and realistic modification of the above scheme is the addition of the possibility of
immigration into the population. From the point of applications, the immigration processes are
clearly of great importance. Let {η(n) : n = 1, 2, · · · } be another sequence of N-valued i.i.d.
random variables which are independent of {ξ(n, i)}. Let y(0) be an N-valued random variable
independent of {ξ(n, i)} and {η(n)}. We can define a Galton-Watson branching process with
immigration (GWI-process) {y(n) : n = 0, 1, 2, · · · } by

y(n) =
y(n−1)∑

i=1

ξ(n, i) + η(n), n = 1, 2, · · · ; (1.2)

see, e.g., [1, p.263]. The intuitive meaning of the process is clear from the construction (1.2).
Let g(·) and h(·) be the generating function of {ξ(n, i)} and {η(n)}, respectively. Because of
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the independence of the random variables {ξ(n, i), η(n) : n, i = 1, 2, · · · } it is easy to see that
{y(n)} is a discrete-time Markov chain with one-step transition matrix P (i, j) defined by

∞∑
j=0

P (i, j)zj = g(z)ih(z), 0 ≤ z ≤ 1; i = 0, 1, 2, · · · . (1.3)

The purpose of this survey is to give a brief introduction to the recent progresses in the study
of branching processes with immigration and related topics. We shall be concerned with contin-
uous state branching processes (CB processes), CB processes with immigration (CBI processes),
measure-valued branching processes (MB processes), Dawson-Watanabe superprocesses, immi-
gration superprocesses, generalized Ornstein-Uhlenbeck processes, and affine processes. The
basic mathematical structures of those processes already exist in (1.1)–(1.3). Our emphasis is
on the applications of skew convolution semigroups and the connections in those processes. This
is an ongoing research topic of the Probability Group in Beijing Normal University. Other topics
where our Group has been involved include interacting particle systems, ergodic and spectral
theory, probabilistic and functional inequalities, large and moderate deviations and so on. We
refer the reader to Chen [6, 7, 8] and Wang [67, 68, 69] for some recent results of the Group on
those topics.

Let us introduce some notation which will be used throughout the survey. Given a metrizable
topological space E, we denote by B(E) its Borel σ-algebra. Let B(E) the space of bounded
real B(E)-measurable functions on E and C(E) the subset of B(E) of continuous functions.
Let M(E) be the space of finite Borel measures on E endowed with the topology of weak
convergence. For f ∈ B(E) and µ ∈ M(E), let µ(f) =

∫
E fdµ. Let δx denote the unit mass

concentrated at x ∈ E. For any integer m ≥ 1 let Cm(Rd) denote the set of smooth functions
on the Euclidean space Rd with all partial derivatives up to the mth order belonging to C(Rd).
Let C∞(Rd) =

⋂∞
m=1C

m(Rd).

2 Skew convolution semigroups and examples

Let (S,+) be a metrizable abelian semigroup, that is, S is a metrizable topological space and
there is a composition law + : S2 → S which is associative, commutative and continuous. For
two Borel probability measures µ and ν on S, the image of the product measure µ × ν under
the composition law is called the convolution of µ and ν and is denoted by µ ∗ ν. Suppose that
(Qt)t≥0 is a Borel Markov transition semigroup on S satisfying Qt(0, ·) = δ0 and the branching
property

Qt(x1 + x2, ·) = Qt(x1, ·) ∗Qt(x2, ·), t ≥ 0, x1, x2 ∈ S. (2.1)

Given t ≥ 0 and a Borel measure µ on S we define the measure µQt by

µQt(A) =
∫

S
Qt(x,A)µ(dx), A ∈ B(S).

Lemma 2.1 For any Borel probability measures µ and ν on S we have

(µ ∗ ν)Qt = (µQt) ∗ (νQt), t ≥ 0. (2.2)
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Proof. Let f ∈ B(S). From the branching property it follows that∫
S
Qtf(x)(µ ∗ ν)(dx) =

∫
S
µ(dx)

∫
S
Qtf(x+ y)ν(dy)

=
∫

S
µ(dx)

∫
S
ν(dy)

∫
S
f(z)Qt(x+ y, dz)

=
∫

S
µ(dx)

∫
S
ν(dy)

∫
S
Qt(x, dz1)

∫
S
f(z1 + z2)Qt(y, dz2)

=
∫

S
(µQt)(dz1)

∫
S
f(z1 + z2)(νQt)(dz2)

=
∫

S
f(z)[(µQt) ∗ (νQt)](dz).

Then we have the equality (2.2). �

Theorem 2.1 Suppose that (γt)t≥0 is a family of Borel probability measures on S. Then

Qγ
t (x, ·) := Qt(x, ·) ∗ γt(·), x ∈ S, t ≥ 0 (2.3)

defines a Borel kernel on S and (Qγ
t )t≥0 form a transition semigroup if and only if

γr+t = (γrQt) ∗ γt, r, t ≥ 0. (2.4)

Proof. It is easy to show that Qγ
t (x, dy) is a Borel kernel on S. Then we only need to prove that

(2.4) is equivalent to the Chapman-Kolmogorov equation∫
S
f(y)Qγ

r+t(x, dy) =
∫

S
Qγ

r (x, dy)
∫

S
f(z)Qγ

t (y, dz), f ∈ B(S). (2.5)

If (2.5) holds, we may apply this equation with x = 0 to see that∫
S
f(z)γr+t(dz) =

∫
S
γr(dy)

∫
S
f(z)Qγ

t (y, dz)

=
∫

S
γr(dy)

∫
S
Qt(y, dz1)

∫
S
f(z1 + z2)γt(dz2)

=
∫

S
(γrQt)(dz1)

∫
S
f(z1 + z2)γt(dz2).

Then (2.4) holds. Conversely, if (2.4) holds, we have∫
S
f(z)Qγ

r+t(x, dz) =
∫

S
Qr+t(x, dz1)

∫
S
f(z1 + z2)γr+t(dz2)

=
∫

S
Qr(x, dy)

∫
S
Qt(y, dz1)

∫
S
(γrQt)(dz2)

∫
S
f(z1 + z2 + z3)γt(dz3)

=
∫

S
Qγ

r (x, dy)
∫

S
Qt(y, dz2)

∫
S
f(z2 + z3)γt(dz3)

=
∫

S
Qγ

r (x, dy)
∫

S
f(z)Qγ

t (y, dz).

3



That proves the Chapman-Kolmogorov equation (2.5). �

We call (γt)t≥0 a skew convolution semigroup (SC-semigroup) associated with (Qt)t≥0 if
it satisfies (2.4); see Li [44, 50]. The the kernels Qγ

t (x, dy) defined by (2.3) give an abstract
formulation of the expression (1.3). In particular, if Qt is the identity operator for every t ≥ 0,
the SC-semigroup defined by (2.4) becomes a standard convolution semigroup and (Qγ

t )t≥0 is
the transition semigroup of a Lévy process. We refer the reader to Bertoin [3] and Sato [61]
for the theory of Lévy processes. The general formulae (2.3) and (2.4) include many additional
mathematical contents, which are illustrated by the following examples.

Example 2.1 In the particular case S = R+, a Markov process with transition semigroup
(Qt)t≥0 is called a CB-process and a Markov process with transition semigroup (Qγ

t )t≥0 is called
a CBI-process; see [39, 65].

Example 2.2 If S = M(E) is the space of all finite Borel measures on a metrizable space E, the
semigroup (Qt)t≥0 corresponds to an MB-process, of which the Dawson-Watanabe superprocess
is a special case; see [9]. A Markov process with state space M(E) is naturally called an
immigration superprocess associated with (Qt)t≥0 if it has transition semigroup (Qγ

t )t≥0; see
[44, 45, 50].

Example 2.3 Let us consider the case where S = H is a real separable Hilbert space and
Qt(x, ·) ≡ δTtx for a strongly continuous semigroup of bounded linear operators (Tt)t≥0 on H.
In this case, (Qγ

t )t≥0 is called a generalized Mehler semigroup associated with (Tt)t≥0, which
corresponds to a generalized Ornstein-Uhlenbeck process (OU-process). This formulation of the
processes was given by Bogachev et al. [4]; see also [16, 25].

Example 2.4 If S = Rm
+ ×Rn for integers m ≥ 0 and n ≥ 0, the transition semigroup (Qγ

t )t≥0

corresponds to an affine process. The affine Markov processes were introduced in mathematical
finance; see, e.g., [15, 19].

3 Continuous state branching processes with immigration

There is a rich literature in the study of CB- and CBI-processes. In particular, the class of CBI-
processes was characterized completely by Kawazu and Watanabe [39]. Let F be a function
defined by

F (λ) = bλ+
∫ ∞

0
(1− e−λu)m(du), λ ≥ 0, (3.1)

where b ≥ 0 is a constant and um(du) is a finite measure on (0,∞). Let R be given by

R(λ) = βλ− αλ2 −
∫ ∞

0

(
e−λu − 1 + λu

)
µ(du), λ ≥ 0, (3.2)

where β ∈ R and α ≥ 0 are constants and (u ∧ u2)µ(du) is a finite measure on (0,∞). We can
define a transition semigroup (Pt)t≥0 on R+ by∫ ∞

0
e−λyPt(x, dy) = exp

{
− xψt(λ)−

∫ t

0
F (ψs(λ))ds

}
, λ ≥ 0, (3.3)
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where ψt(λ) is the unique solution of

dψt

dt
(λ) = R(ψt(λ)), ψ0(λ) = λ. (3.4)

A Markov process {y(t) : t ≥ 0} with transition semigroup (Pt)t≥0 is a special case of the CBI-
process defined in [39]. Here (3.3) is the continuous time version of (1.3). Various limit theorems
for the CBI-process have been established; see, e.g., [28, 48, 57, 58] and the references therein.

The connections between the GWI-processes and the CBI-processes were investigated in
Kawazu and Watanabe [39]. They showed that a CBI-processes arises as the high density limit
in finite-dimensional distributions of a sequence of GWI-processes. Some simple conditions were
given in Li [51] which ensure that the convergence of GWI-processes mentioned above holds on
the space of càdlàg paths. Let {yk(n) : n ≥ 0} be a sequence of GWI-processes with parameters
{(gk, hk)} and {γk} a sequence of positive numbers. For 0 ≤ λ ≤ k set

Fk(λ) = γk[1− hk(1− λ/k)] (3.5)

and

Rk(λ) = kγk[(1− λ/k)− gk(1− λ/k)]. (3.6)

Let us consider the following conditions:

(3.A) As k →∞, we have γk →∞ and γk/k → some γ0 ≥ 0.

(3.B) The sequence {Fk} defined by (3.5) is uniformly Lipschitz on each bounded interval and
converges as k →∞.

(3.C) The sequence {Rk} defined by (3.6) is uniformly Lipschitz on each bounded interval and
converges as k →∞.

Theorem 3.1 ([51]) Suppose that conditions (3.A), (3.B) and (3.C) are satisfied. If yk(0)/k
converges in distribution to y(0), then {yk([γkt])/k : t ≥ 0} converges in distribution on
D([0,∞),R+) to the CBI-process {y(t) : t ≥ 0} corresponding to (R,F ).

Proof. We here only give a sketch and refer the reader to [51] for the details. Let A denote the
generator of the CBI-process. For λ > 0 and x ≥ 0 set eλ(x) = e−λx and let D be the linear
hull of {eλ : λ > 0}. For λ > 0 we have

Aeλ(x) = −e−λx [xR(λ) + F (λ)] , x ∈ R+, (3.7)

and this equality determines the actions of A on D by linearity. Then we deduce that D is a core
of A. Note that {yk(n)/k : n ≥ 0} is a Markov chain with state space Ek := {0, 1/k, 2/k, · · · }
and one-step transition probability Qk(x, dy) determined by∫

Ek

e−λyQk(x, dy) = gk(e−λ/k)kxhk(e−λ/k).

Then one checks that the (discrete) generator Ak of {yk([γkt])/k : t ≥ 0} is given by

Akeλ(x) = γk

[
gk(e−λ/k)kxhk(e−λ/k)− e−λx

]
= γk

[
exp{xkαk(λ)(gk(e−λ/k)− 1)} exp{βk(λ)(hk(e−λ/k)− 1)} − e−λx

]
,
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where

αk(λ) = (gk(e−λ/k)− 1)−1 log gk(e−λ/k)

and βk(λ) is defined by the same formula with gk replaced by hk. Then we use the assumptions
to show that

Akeλ(x) = −e−λx [xαk(λ)Sk(λ) + xγk(αk(λ)− 1)λ+Hk(λ)] + o(1), (3.8)

where

Hk(λ) = γkβk(λ)(1− hk(e−λ/k)).

By elementary calculations we find that

αk(λ) = 1 +
1
2
(1− gk(e−λ/k)) + o(1− gk(e−λ/k)),

and so limk→∞ γk(αk(λ)− 1) = γ0λ/2. It follows that

lim
k→∞

[αk(λ)Sk(λ) + γk(αk(λ)− 1)λ] = R(λ).

Then one shows that limk→∞Hk(λ) = limk→∞ Fk(λ) = F (λ). In view of (3.7) and (3.8) we get

lim
k→∞

sup
x∈Ek

|Akeλ(x)−Aeλ(x)| = 0

for each λ > 0. This clearly implies that

lim
k→∞

sup
x∈Ek

|Akf(x)−Af(x)| = 0

for each f ∈ D. That proves the desired convergence. �

By the results of Li [42] it is easy to show that the limit functions of {Fk} and {Rk} always
have representations (3.5) and (3.6), respectively. On the other hand, for any (F,R) given by
(3.1) and (3.2), there are sequences {γk} and {(gk, hk)} as above such that (3.A), (3.B) and
(3.C) hold with Fk → F and Rk → R; see [43, 51]. Those results show the range of applications
of Theorem 3.1. As consequences of the above theorem, Li [51] gave some generalizations of the
Ray-Knight Theorems on Brownian local times; see also Le Gall and Le Jan [41]. We remark
that conditions (3.A), (3.B) and (3.C) parallel the sufficient conditions for the convergence of
continuous-time and discrete state branching processes with immigration, see, e.g., [43]. In most
cases, those conditions are easier to check than the sufficient conditions given by Kawazu and
Watanabe [39], which involve complicated composition and convolution operations.

From (3.3) it is easy to see that the transition semigroup (Pt)t≥0 is Fellerian, so the CBI-
process has a Hunt realization. A construction of the process was given in Dawson and Li [15]
as the strong solution of a stochastic integral equation. Suppose that (Ω,F ,Ft,P) is a filtered
probability space satisfying the usual hypotheses on which the following adapted objects are
defined:

• a standard Brownian motion {B(t)};
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• a Poisson random measure N0(ds, dξ) on R2
+ with intensity dsm(dξ);

• a Poisson random measure N1(ds, du, dξ) on R3
+ with intensity dsduµ(dξ);

We assume that {B(t)}, {N0(ds, dξ)} and {N1(ds, du, dξ)} are independent of each other. Let
x(0) be a non-negative F0-measurable random variable satisfying E[x(0)] < ∞. We consider
the stochastic integral equation

x(t) = x(0) +
∫ t

0
(b+ βx(s))ds+

∫ t

0

√
2αx(s)dB(s)

+
∫ t

0

∫ ∞

0
ξN0(ds, dξ) +

∫ t

0

∫ x(s−)

0

∫ ∞

0
ξÑ1(ds, du, dξ), (3.9)

where Ñ1(ds, du, dξ) = N1(ds, du, dξ)− dsduµ(dξ).

Theorem 3.2 ([15]) There is a unique non-negative càdlàg process {x(t) : t ≥ 0} such that
equation (3.9) is satisfied a.s. for every t ≥ 0.

The above theorem implies that (3.9) has a unique strong solution {x(t) : t ≥ 0} and the
solution is a strong Markov process. For f ∈ C2(R+) we see from (3.9) and Itô’s formula (see,
e.g., [18, p.334-335]) that

f(x(t)) = f(x(0)) +
∫ t

0
f ′(x(s))(b+ βx(s))ds+ martingale

+
∫ t

0

∫ ∞

0
f ′(x(s))ξN0(ds, dξ) + α

∫ t

0
f ′′(x(s))x(s)ds

+
∫ t

0

∫ ∞

0
[f(x(s) + ξ)− f(x(s))− f ′(x(s))ξ]N0(ds, dξ)

+
∫ t

0

∫ x(s−)

0

∫ ∞

0
[f(x(s) + ξ)− f(x(s))− f ′(x(s))ξ]N1(ds, du, dξ)

= f(x(0)) +
∫ t

0
f ′(x(s))(b+ βx(s))ds+ martingale

+α

∫ t

0
f ′′(x(s))x(s)ds+

∫ t

0
ds

∫ ∞

0
[f(x(s) + ξ)− f(x(s))]m(dξ)

+
∫ t

0
ds

∫ ∞

0
[f(x(s) + ξ)− f(x(s))− f ′(x(s))ξ]x(s)µ(dξ).

Then {x(t) : t ≥ 0} has generator A defined by

Af(x) = αxf ′′(x) + (b+ βx)f ′(x) +
∫ ∞

0

[
f(x+ ξ)− f(x)

]
m(dξ)

+
∫ ∞

0

[
f(x+ ξ)− f(x)− f ′(x)ξ

]
xµ(dξ), (3.10)

so it is a CBI-process; see [39].
The approach of stochastic equations was also used in [15] to construct a general type of

CBI-processes in random catalysts. Suppose we have the parameters (a, (αij), (b1, b2), (βij),m, µ)
such that
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• a ∈ R+ is a constant;

• (αij) is a symmetric non-negative definite (2× 2)-matrix;

• (b1, b2) ∈ R2
+ is a vector;

• (βij) is a (2× 2)-matrix with β12 = 0;

• m(dξ) is a σ-finite measure on R2
+ supported by R2

+ \ {0} such that∫
R2

+

[ξ1 + ξ2]m(dξ) <∞;

• µ(dξ) is a σ-finite measure on R2
+ supported by R2

+ \ {0} such that∫
R2

+

[
(ξ1 ∧ ξ21) + (ξ2 ∧ ξ22)

]
µ(dξ) <∞.

Let σ0 =
√
a and let (σij) be a (2 × 2)-matrix satisfying (αij) = (σij)(σij)τ . Let (Ω,F ,Ft,P)

be a filtered probability space satisfying the usual hypotheses. Suppose that on this probability
space the following adapted objects are defined:

• a 3-dimensional Brownian motion {(B0(t), B1(t), B2(t))};

• a Poisson random measure N0(ds, dξ) on R3
+ with intensity dsm(dξ);

• a Poisson random measure N1(ds, du, dξ) on R4
+ with intensity dsduµ(dξ).

We assume that {(B0(t), B1(t), B2(t))}, {N0(ds, dξ)} and {N1(ds, du, dξ)} are independent of
each other. Let x(0) and y(0) be non-negative F0-measurable random variables defined on
(Ω,F ,Ft,P). We consider the equation system

x(t) = x(0) +
∫ t

0
(b1 + β11x(s))ds+

∫ t

0
σ11

√
2x(s)dB1(s)

+
∫ t

0
σ12

√
2x(s)dB2(s) +

∫ t

0

∫
R2

+

ξ1N0(ds, dξ)

+
∫ t

0

∫ x(s−)

0

∫
R2

+

ξ1Ñ1(ds, du, dξ), (3.11)

y(t) = y(0) +
∫ t

0
(b2 + β21x(s)y(s) + β22y(s))ds+

∫ t

0
σ0

√
2y(s)dB0(s)

+
∫ t

0
σ21

√
2x(s)y(s)dB1(s) +

∫ t

0
σ22

√
2x(s)y(s)dB2(s)

+
∫ t

0

∫
R2

+

ξ2N0(ds, dξ) +
∫ t

0

∫ lx(s−)y(s−)

0

∫
R2

+

ξ2Ñ1(ds, du, dξ). (3.12)

Theorem 3.3 ([15]) The equation system given by (3.11) and (3.12) has a unique strong solu-
tion {(x(t), y(t))}.
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Following Dawson and Fleischmann [11], we call {(x(t), y(t))} a catalytic CBI-process, where
{(x(t))} is the catalyst process and {y(t)} is the reactant process. It is not hard to see that {x(t)}
is a CBI-process. Intuitively, we may think of {y(t)} as a CBI-process with random branching
catalysts governed by the process {x(t)}. A slightly more general catalytic CBI-process with
two reactant processes was considered in [15].

4 Two-dimensional affine processes

The concept of affine Markov processes was introduced in the study of financial models; see,
e.g., [19] and the references therein. For simplicity we only consider those processes in the two-
dimensional case. Let D = R+ × R and U = C− × (iR), where C− = {a + ib : a ∈ R−, b ∈ R}
and iR = {ib : b ∈ R}. A transition semigroup (Qt)t≥0 on D is called a homogeneous affine
semigroup (HA-semigroup) if for each t ≥ 0 there exists a continuous operator u 7→ ψ(t, u) on
U such that ∫

D
exp{〈u, ξ〉}Qt(x, dξ) = exp{〈x, ψ(t, u)〉}, x ∈ D,u ∈ U. (4.1)

(The phrase “homogeneous affine” comes from the homogeneous affine transformation x 7→
〈x, ψ(t, u)〉.) We say the HA-semigroup defined above is regular if it is stochastically continuous
and the derivative (∂ψ/∂t)(0, u) exists for all u ∈ U and is continuous at u = 0.

Clearly, the HA-semigroup satisfies the branching property (2.1), so the probability measure
Qt(x, ·) is infinitely divisible. To simplify the presentation, we assume that (Qt)t≥0 and all
probabilities on D possess finite first absolute moments. Then the infinite divisibility of Qt(x, ·)
and the special structure of D imply that ψ2(t, u) = β22(t)u2 for some β22(t) ∈ R and ψ1(t, u)
has the representation

ψ1(t, u) = β11(t)u1 + β12(t)u2 + α(t)u2
2 +

∫
D

(e〈u,ξ〉 − 1− u2ξ2)µ(t, dξ), (4.2)

where α(t) ∈ R+, (β11(t), β12(t)) ∈ D and µ(t, dξ) is a σ-finite measure on D supported by
D \ {0} such that ∫

D

(
|ξ1|+ |ξ2| ∧ |ξ2|2

)
µ(t, dξ) <∞;

see [15]. From (4.2) and the semigroup property of (Qt)t≥0 it follows that

β22(r + t) = β22(r)β22(t), (4.3)
β11(r + t) = β11(r)β11(t), (4.4)
β12(r + t) = β11(r)β12(t) + β12(r)β22(t), (4.5)
α(r + t) = β11(r)α(t) + α(r)β2

22(t), (4.6)

µ(r + t, ·) =
∫

D
µ(r, dξ)Qt(ξ, ·) + β11(r)µ(t, ·) (4.7)

for any r, t ≥ 0.
The definition of SC-semigroups certainly applies to a HA-semigroup. It was proved in

Dawson and Li [15] that if (γt)t≥0 is a stochastically continuous SC-semigroup associated with a
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regular HA-semigroup (Qt)t≥0, then each γt is an infinitely divisible probability measure. Then
we have the representations∫

D
exp{〈u, ξ〉}γt(dξ) = exp{φ(t, u)}, u ∈ U (4.8)

and

φ(t, u) = b1(t)u1 + b2(t)u2 + a(t)u2
2 +

∫
D

(e〈u,ξ〉 − 1− u2ξ2)m(t, dξ), (4.9)

where a(t) ∈ R+, (b1(t), b2(t)) ∈ D and m(t, dξ) is a σ-finite measure on D supported by D \{0}
such that ∫

D
[|ξ1|+ |ξ2| ∧ |ξ2|2]m(t, dξ) <∞.

Proposition 4.1 ([15]) If (γt)t≥0 is a stochastically continuous SC-semigroup given by (4.8)
and (4.9), then for any r, t ≥ 0 we have

b1(r + t) = b1(r)β11(t) + b1(t), (4.10)
b2(r + t) = b1(r)β12(t) + b2(r)β22(t) + b2(t) (4.11)
a(r + t) = b1(r)α(t) + a(r)β2

22(t) + a(t), (4.12)

m(r + t, ·) =
∫

D
m(r, dξ)Qt(ξ, ·) + b1(r)µ(t, ·) +m(t, ·). (4.13)

The equations (4.10)–(4.13) give an alternative expression of the property (2.4) and make it
possible to treat separately the coefficients in (4.9). This leads to some explicit analysis of the
differentiability of t 7→ φ(t, u). In particular, if ν is an infinitely divisible probability measure
on D, we can define an SC-semigroup (γt)t≥0 by (4.8) by letting

φ(t, u) =
∫ t

0
log ν̂(ψ(s, u))ds, t ≥ 0, u ∈ U, (4.14)

where ν̂ is the characteristic function of ν. In this case, we call (γt)t≥0 a regular SC-semigroup.
A simple but irregular SC-semigroup can be constructed by letting Qt be the identity and letting
γt = δ(0,b2(t)) where b2(t) is a discontinuous solution of b2(r + t) = b2(r) + b2(t); see, e.g., [61,
p.37]. This example shows that some condition on the function t 7→ b2(t) has to be imposed
to get the regularity of the SC-semigroup (γt)t≥0 given by (4.8) and (4.9). The proof of [15,
Theorem 3.1] gives the following

Theorem 4.1 ([15]) Let (γt)t≥0 be a stochastically continuous SC-semigroup given by (4.8)
and (4.9). Then the following conditions are equivalent:

(i) (γt)t≥0 is regular;

(ii) (∂φ/∂t)(0, u) exists for every u ∈ U and is continuous at u = 0;

(iii) t 7→ b2(t) is absolutely continuous on [0,∞).
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Suppose that (Qt)t≥0 is a HA-semigroup given by (4.1) and (γt)t≥0 is an associated SC-
semigroup given by (4.8) and (4.9). Let Pt(x, ·) = Qt(x, ·) ∗ γt(·). Then (Pt)t≥0 is also a Markov
transition semigroup on D and∫

D
exp{〈u, ξ〉}Pt(x, dξ) = exp{〈x, ψ(t, u)〉+ φ(t, u)}, x ∈ D,u ∈ U. (4.15)

In general, a Markov transition semigroup on D with characteristic function of the form
(4.15) is called an affine semigroup; see, e.g., [19]. We say the affine semigroup is regular if
it is stochastically continuous and the derivatives (∂ψ/∂t)(0, u) and (∂φ/∂t)(0, u) exist for all
u ∈ U and are continuous at u = 0. Clearly, (Pt)t≥0 is regular if and only if both (Qt)t≥0 and
(γt)t≥0 are regular. Therefore, the above theorem gives a partial answer to the open problem
of characterizing all affine semigroups without the regularity assumption; see [19, Remark 2.11].
The class of regular affine semigroups was characterized completely in [19]. It was shown in [15]
that a regular affine process arises naturally in a limit theorem for the difference of a pair of
reactant processes in a catalytic CBI-process.

5 Measure-valued immigration processes

Let E be a Lusin topological space, i.e., a homeomorph of a Borel subset of a compact metric
space. Recall that M(E) is the space of finite Borel measures on E endowed with the topology
of weak convergence. A Markov process with state space M(E) is called an MB-process if its
transition semigroup (Qt)t≥0 satisfies the branching property (2.1). MB-processes appeared
in Jǐrina [37, 38] and Watanabe [71] as high density limits of branching particle systems. A
very important special class of MB-processes, known as Dawson-Watanabe processes, have been
studied extensively in the past decades; see, e.g., [9, 20, 21, 40]. The development of this subject
has been stimulated from different subjects including branching processes, interacting particle
systems, stochastic partial differential equations and non-linear partial differential equations.
The study of superprocesses has also led to better understanding of results in those subjects.

Suppose that (γt)t≥0 is an SC-semigroup associated with (Qt)t≥0 and (Qγ
t )t≥0 is defined by

(2.3). A Markov process with transition semigroup (Qγ
t )t≥0 is called an immigration process

associated with (Qt)t≥0. This formulation of immigration processes was given in Li [44, 45].
The intuitive meaning of the immigration model is clear from the definition of (Qγ

t )t≥0. Clearly,
this formulation essentially includes all immigration mechanisms that are independent of the
inner population.

Theorem 5.1 ([44]) A family of probability measures (γt)t≥0 on M(E) is an SC-semigroup
associated with (Qt)t≥0 if and only if there is an infinitely divisible probability entrance law
(Kt)t>0 for (Qt)t≥0 such that

log
∫

M(E)
e−ν(f)γt(dν) =

∫ t

0

[
log

∫
M(E)

e−ν(f)Ks(dν)
]
ds, t ≥ 0, f ∈ B(E)+. (5.1)

Let us consider the case of a Dawson-Watanabe superprocess. Suppose that (Pt)t≥0 is the
transition semigroup of a Borel right process ξ with state space E and φ(·, ·) is a branching
mechanism given by

φ(x, z) = b(x)z + c(x)z2 +
∫ ∞

0
(e−zu − 1 + zu)m(x, du), x ∈ E, z ≥ 0, (5.2)
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where b ∈ B(E), c ∈ B(E)+ and (u ∧ u2)m(x, du) is a bounded kernel from E to (0,∞). Then
for each f ∈ B(E)+ the evolution equation

Vtf(x) +
∫ t

0
ds

∫
E
φ(y, Vsf(y))Pt−s(x, dy) = Ptf(x), t ≥ 0, x ∈ E (5.3)

has a unique solution Vtf ∈ B(E)+, and there is a Markov semigroup (Qt)t≥0 on M(E) such
that ∫

M(E)
e−ν(f)Qt(µ, dν) = exp {−µ(Vtf)} , f ∈ B(E)+. (5.4)

Clearly, (Qt)t≥0 satisfies the branching property (2.1). A Markov process having transition
semigroup (Qt)t≥0 is called a Dawson-Watanabe with parameters (ξ, φ) or simply a (ξ, φ)-
superprocess. This process is a natural generalization of the CB-process; see, e.g., [9]. The
family of operators (Vt)t≥0 form a semigroup, which is called the cumulant semigroup of the
superprocess. Under our hypotheses, (Qt)t≥0 has a Borel right realization; see [22, 23].

Let K (P ) be the set of entrance laws κ = (κt)t>0 for the underlying semigroup (Pt)t≥0

that satisfy
∫ 1
0 κs(E)ds <∞. We endow K (P ) with the σ-algebra generated by the mappings

κ 7→ κt(f) with t > 0 and f ∈ B(E)+. For κ ∈ K (P ), set

St(κ, f) = κt(f)−
∫ t

0
ds

∫
E
φ(y, Vsf(y))κt−s(dy), t > 0, f ∈ B(E)+. (5.5)

Let K 1(Q) denote the set of probability entrance laws K = (Kt)t>0 for the semigroup (Qt)t≥0

of the (ξ, φ)-superprocess such that∫ 1

0
ds

∫
M(E)

ν(E)Ks(dν) <∞.

Theorem 5.2 ([45]) A probability entrance law K ∈ K 1(Q) is infinitely divisible if and only
if its Laplace functional has the representation∫

M(E)
e−ν(f)Kt(dν) = exp

{
− St(κ, f)−

∫
K (P )

(
1− e−St(η,f)

)
J(dη)

}
, (5.6)

where κ ∈ K (P ) and J is a σ-finite measure on K (P ) satisfying∫ 1

0
ds

∫
K (P )

ηs(1)J(dη) <∞.

The above theorem characterizes a class of infinitely divisible probability entrance laws for
(Qt)t≥0. The right hand side of (5.6) corresponds to an infinitely divisible probability measure
on K (P ). If (κt)t>0 is given by κt = µPt, we have clearly St(κ, f) = µ(Vtf). Let λ ∈ M(E)
and let L be a σ-finite measure on M(E) satisfying∫

M(E)
ν(1)L(dν) <∞.
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We can define an infinitely divisible probability entrance law K ∈ K 1(Q) by∫
M(E)

e−ν(f)Kt(dν) = exp
{
− λ(Vtf)−

∫
M(E)

(
1− e−ν(Vtf)

)
L(dν)

}
. (5.7)

This entrance law can be closed by an infinitely divisible probability measure on M(E). In this
case, the transition semigroup of the corresponding immigration process is given by∫

M(E)
e−ν(f)Qγ

t (µ, dν) = exp
{
− µ(Vtf)−

∫ t

0

[
λ(Vsf)

+
∫

M(E)

(
1− e−ν(Vsf)

)
L(dν)

]
ds

}
. (5.8)

This is the case considered in Li [43]. It was proved in Li [45] following the arguments of
Fitzsimmons [22, 23] that (Qγ

t )t≥0 is a Borel right semigroup.
Needless to say, most of the theory of Dawson-Watanabe superprocesses carries over to their

associated immigration processes and could be developed by techniques very close to those of
Dawson [9]. However, the immigration processes have many additional structures, as might be
expected from (2.3) and (2.4). A construction for the immigration processes were given in Li [50]
by picking up measure-valued paths with random times of birth and death. The construction
was based on the observation that any SC-semigroup is determined by a continuous increasing
measure-valued path (ηt)t≥0 and an entrance rule (Gt)t≥0. This structure yields a natural
decomposition of the immigration into two parts, the deterministic part represented by (ηt)t≥0

and the random part determined by (Gt)t≥0. The latter is an inhomogeneous immigration
process and can be constructed by summing up paths {wt : α < t < β} in the associated
Kuznetsov process. By analyzing the asymptotic behavior of the paths {wt : α < t < β} near
the birth time α = α(w), it was shown in [50] that almost all these paths start propagation in
an extension of the underlying space. Those combined with the construction mentioned above
give a full description of the immigration phenomenon. As an application of the construction, Li
[50] gave reformulations of some well-known results on excessive measures in terms of stationary
immigration superprocesses. The immigration phenomena associated with branching particle
systems were studied in [46].

The state space of the immigration superprocess can be extended to include some infinite
measures; see, e.g., [43, 53]. With such extensions, the immigration can be governed by a
σ-finite measure. A central limit theorem for the d-dimensional super-Brownian motion with
immigration was proved in Li and Shiga [52], where the immigration is governed by a determin-
istic σ-finite measure. When the governing measure is the Lebesgue measure, the normalization
function is t3/4 for d = 1, (t log t)1/2 for d = 2 and t1/2 for d ≥ 3. The corresponding large
deviation principle was obtained in Zhang [72] with the normalization function t in all dimen-
sions and the speed function t1/2 for d = 1, t/ log t for d = 2 and t for d ≥ 3; see also [75]. The
gap between the central limit theorem and the large deviation principle was filled in Zhang [73]
by establishing a moderate deviation principle. More precisely, she proved that this immigra-
tion superprocess satisfies a large deviations principle under the normalization t1−δ/4 for d = 1,
t1−δ/2(log t)δ/2 for d = 2 and t1−δ/2 for d ≥ 3, where δ ∈ (0, 1) is a parameter; see also [35, 74].

A super-Brownian motion with immigration governed by another super-Brownian was intro-
duced and studied in Hong and Li [34]. They established a central limit theorem for the process
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which leads to Gaussian random fields in high dimensions. For d = 3 the field is spatially
uniform, for d ≥ 5 its covariance is given by the potential operator of the underlying Brownian
motion and for d = 4 it involves a mixture of the two kinds of fluctuations, which seems to be
a new phenomenon in the asymptotic behavior of measure-valued processes. There is a similar
phenomenon in the central limit theorem of the corresponding occupation times obtained in
Hong [30] with d = 6 being critical. Some quenched mean limit theorems were proved in Hong
[33]. The moderate deviation principles for the immigration superprocesses were established in
[31]. Large deviation problems were studied in [32], where the speed functions are t1/2 in d = 3
and t in d ≥ 4. For d 6= 4 the principle was accomplished by the well-known Gärtner-Ellis
theorem. In the critical dimension d = 4, the large deviation problem is much more difficult and
only the limit superior was established. We refer the reader to [53] for a more detailed survey
on the early results measure-valued immigration processes.

6 Excursions and generalized immigration processes

Let α > 0 be a constant and {B(t) : t ≥ 0} a standard Brownian motion. For any initial
condition x(0) = x ≥ 0 the stochastic differential equation

dx(t) =
√

2αx(t)dB(t), t ≥ 0 (6.1)

has a unique non-negative solution {x(t) : t ≥ 0}, which is a special case of the CB-process.
This process is known as a Feller branching diffusion in the literature. The transition semigroup
(Qt)t≥0 of the process is determined by∫ ∞

0
e−zyQt(x, dy) = exp{−xz(1 + αtz)−1}, t, x, z ≥ 0; (6.2)

see, e.g., [36, p.236]. In view of the infinite divisibility implied by (6.2), there is a family of
canonical measures (κt)t>0 on (0,∞) such that∫ ∞

0
(1− e−zy)κt(dy) = z(1 + αtz/2)−1, t > 0, z ≥ 0. (6.3)

Indeed, it is easy to check that

κt(dy) = (αt)−2e−y/αtdy, t, x > 0. (6.4)

Let Q◦
t (x, dy) denote the restriction to (0,∞) of the kernel Qt(x, dy). Since zero is a trap for

the Feller branching diffusion, (Q◦
t )t≥0 also constitute a semigroup. Based on (6.2) and (6.3) it

is not hard to show that κrQ
◦
t = κr+t for all r, t > 0. In other words, (κt)t>0 is an entrance law

for (Q◦
t )t≥0.

Let W = C([0,∞),R+) and let τ0(w) = inf{s > 0 : ws = 0} for w ∈ W . Let W0 be the set
of paths w ∈ W such that w0 = wt = 0 for t ≥ τ0(w). We endow W and W0 with the topology
of locally uniform convergence. By the theory of Markov processes, there is a unique σ-finite
measure Qκ on (W0,B(W0)) such that

Qκ{wt1 ∈ dy1, · · · , wtn ∈ dyn} = κt1(dy1)Q◦
t2−t1(y1, dy2) · · ·Q◦

tn−tn−1
(yn−1, dyn) (6.5)
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for 0 < t1 < t2 < · · · < tn and y1, y2, · · · , yn ∈ (0,∞); see, e.g., [59]. The measure Qκ is
known as the excursion law of the Feller branching diffusion. Roughly speaking, (6.5) asserts
that {wt : t > 0} under Qκ is a Feller branching diffusion with one-dimensional distributions
{κt : t > 0}. The Feller branching diffusion can be reconstructed from the excursion law Qκ in
the following way: Fix x ≥ 0 and let N(dw) be a Poisson random measure on W0 with intensity
xQκ(dw). Let x(0) = x and

x(t) =
∫

W0

wtN(dw), t > 0. (6.6)

Then {x(t) : t ≥ 0} is a weak solution of (6.1); see [59, Theorem 4.1].
Let b(·) be a non-negative and locally Lipschitz function on R+ satisfying the linear growth

condition. A non-negative diffusion process {y(t) : t ≥ 0} can be defined by the stochastic
differential equation

dy(t) =
√

2αy(t)dB(t) + b(y(t))dt, t ≥ 0. (6.7)

This process can be constructed from a Feller branching diffusion and a Poisson random mea-
sure based on Qκ(dw) as follows. Let {x(t) : t ≥ 0} be a Feller branching diffusion and let
N(ds, du, dw) be a Poisson random measure on R2

+ ×W0 with intensity dsduQκ(dw). We as-
sume that {x(t) : t ≥ 0} and {N(ds, du, dw)} are independent.

Proposition 6.1 ([24]) There is a unique strong solution of the stochastic equation

y(t) = x(t) +
∫ t

0

∫ b(y(s))

0

∫
W0

wt−sN(ds, du, dw), t ≥ 0. (6.8)

Moreover, the solution {y(t) : t ≥ 0} of the above equation is a weak solution of (6.7).

This proposition is a consequence of Fu and Li [24, Theorem 4.1], where more general results
on measure-valued processes were given. In particular, if b(x) ≡ b is a constant, {y(t) : t ≥ 0}
is a CBI-process associated with the Feller branching diffusion; see [59]. In the general case, we
may regard {y(t) : t ≥ 0} as a generalized CBI-process.

The approach of stochastic equations driven by Poisson random measures based on the ex-
cursion law has more substantial applications in constructions of some measure-valued diffusions.
Let us look at an example of this type involving a stochastic flow. Suppose that h is a con-
tinuously differentiable function on R such that both h and h′ are square-integrable. Then the
function

ρ(x) =
∫

R
h(y − x)h(y)dy, x ∈ R (6.9)

is twice continuously differentiable with bounded derivatives ρ′ and ρ′′. Let m be a σ-finite
Borel measure on R and q(·, ·) a non-negative Borel function on M(R)× R such that there is a
constant K such that ∫

R
q(µ, y)m(dy) ≤ K(1 + ‖µ‖), µ ∈M(R), (6.10)

15



and for each R > 0 there is a constant KR > 0 such that∫
R
|q(µ, y)− q(ν, y)|m(dy) ≤ KR‖µ− ν‖ (6.11)

for µ and ν ∈ M(R) satisfying µ(R) ≤ R and ν(R) ≤ R, where ‖ · ‖ denotes the total variation
of the signed measure. Let us consider the following martingale problem of an M(R)-valued
process {Yt : t ≥ 0}: For each φ ∈ C2(R),

Mt(φ) := Yt(φ)− Y0(φ)− ρ(0)
∫ t

0
Ys(φ′′)ds−

∫ t

0
ds

∫
R
φ(y)q(Ys, y)m(dy) (6.12)

is a continuous martingale with quadratic variation process

〈M(φ)〉t = 2α
∫ t

0
Ys(φ2)ds+

∫ t

0
ds

∫
R2

ρ(x− y)φ′(x)φ′(y)Y 2
s (dx, dy). (6.13)

Let W (dt, dy) be a time-space white noise on [0,∞) × R based on the Lebesgue measure;
see, e.g., [66]. By [17, Lemma 3.1] or [70, Lemma 1.3], for any r ≥ 0 and a ∈ R the stochastic
equation

x(t) = a+
∫ t

r

∫
R
h(y − x(s))W (ds, dy), t ≥ r (6.14)

has a unique continuous solution {x(r, a, t) : t ≥ r}, which is a Brownian motion with quadratic
variation ρ(0)dt. Indeed, the system {x(r, a, t) : t ≥ r; a ∈ R} determines an isotropic stochastic
flow. Fix µ ∈M(R) and let N0(da, dw) be a Poisson random measure on R×W0 with intensity
µ(da)Qκ(dw) and N(ds, da, du, dw) a Poisson random measure on R+ × R × R+ × W0 with
intensity dsm(da)duQκ(dw). Suppose that {W (dt, dy)}, {N0(da, dw)} and {N(ds, da, du, dw)}
are independent of each other.

Theorem 6.1 ([13]) There is a unique strong solution of the stochastic equation

Yt =
∫

R

∫
W0

w(t)δx(0,a,t)N0(da, dw)

+
∫ t

0

∫
R

∫ q(Ys,a)

0

∫
W0

w(t− s)δx(s,a,t)N(ds, da, du, dw), t > 0. (6.15)

Furthermore, if we set Y0 = µ, the process {Yt : t ≥ 0} is a measure-valued diffusion process
solving the martingale problem given by (6.12) and (6.13).

In view of (6.15), we may regard {Yt : t ≥ 0} as a generalized immigration superprocess
carried by the stochastic flow given by (6.14). The stochastic equation (6.15) is substantial for
the construction of this measure-valued diffusion process, for the uniqueness of solution of the
martingale problem given by (6.12) and (6.13) still remains open.
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7 Generalized Mehler semigroups

Let H be a real separable Hilbert space and let (Tt)t≥0 be a strongly continuous semigroup of
linear operators on H. A family of probability measures (γt)t≥0 on H is called an SC-semigroup
associated with (Tt)t≥0 if it satisfies

γr+t = (γr ◦ T−1
t ) ∗ γt, r, t ≥ 0. (7.1)

This is clearly the special case of (2.4) with Qt(x, ·) ≡ δTtx. If (7.1) is satisfied, we can define a
Markov transition semigroup (Qγ

t )t≥0 on H by

Qγ
t f(x) =

∫
H
f(Ttx+ y)µt(dy), x ∈ H, f ∈ B(H), (7.2)

which is called a generalized Mehler semigroup associated with (Tt)t≥0. The corresponding
Markov process is a generalized OU-process; see [4].

According to a result of Schmuland and Sun [62], if (γt)t≥0 is a solution of (7.1), each γt is
an infinitely divisible probability measure. By Linde [55, p.75 and p.84], we have the following
representation of the characteristic functional:

γ̂t(a) = exp
{
i〈bt, a〉 −

1
2
〈Rta, a〉

+
∫

H◦

(
ei〈x,a〉 − 1− i〈x, a〉1[0,1](‖x‖)

)
Mt(dx)

}
, t ≥ 0, a ∈ H, (7.3)

where bt ∈ H, Rt is a symmetric, positive-definite nuclear operator on H, and Mt is a σ-finite
measure (Lévy measure) on H◦ := H \ {0} satisfying∫

H◦
(1 ∧ ‖x‖2)Mt(dx) <∞.

Theorem 7.1 ([16]) Suppose that (γt)t≥0 is a family of probability measures on H. If there is
a family of infinitely divisible probabilities (νs)s>0 such that νr+t = νr ◦ T−1

t for all r, t > 0 and

γ̂t(a) = exp
{ ∫ t

0
log ν̂s(a)ds

}
, t ≥ 0, a ∈ H, (7.4)

then (γt)t≥0 is an SC-semigroup. Conversely, if (γt)t≥0 is an SC-semigroup given by (7.3) and
if t 7→ bt is absolutely continuous, then the characteristic functional γ̂t has representation (7.4).

The above theorem gives a characterization for the generalized Mehler semigroup (Qγ
t )t≥0.

If there is an infinitely divisible probability measure ν0 on H such that νt = ν0 ◦ T−1
t , we say

that (γt)t≥0 and (Qγ
t )t≥0 are regular. In this case, the function t 7→ γ̂t(a) is differentiable for

every a ∈ H. It was proved in Bogachev et al. [4] that a cylindrical Gaussian SC-semigroup
satisfying this differentiability condition can be extended into a real Gaussian SC-semigroup in
an enlargement ofH and the corresponding OU-process can be constructed as the strong solution
to a stochastic differential equation. Those results were extended to the general non-Gaussian
case in [25]. A simple and nice necessary and sufficient condition for the differentiability of
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t 7→ γ̂t(a) was given by van Neerven [56]. Some powerful inequalities for regular generalized
Mehler semigroups were proved in Röckner and Wang [60] and Wang [67].

It was observed in Dawson et al. [16] that the OU-processes corresponding to an irregular
generalized Mehler semigroup usually have no right continuous realizations. Under the second
moment assumption, Dawson and Li [14] studied the construction of OU-processes correspond-
ing to centered but irregular SC-semigroups. Based on Theorem 7.1 they showed that each
centered SC-semigroup is uniquely determined by an infinitely divisible probability measure on
the entrance space H̃ for the semigroup (Tt)t≥0, which is an enlargement of H. They proved
that a centered SC-semigroup can always be extended to a regular one on the entrance space.
Those results provide an approach to the study of irregular generalized Mehler semigroups with
which one can reduce some of their analysis to the framework of [4, 25, 67].

8 Fluctuation limits of immigration processes

Fluctuation limits of branching particle systems and superprocesses have been studied exten-
sively. Since those systems are usually unstable, in many cases one uses time-dependent scalings
which lead to time-inhomogeneous OU-processes; see, e.g., [5, 12] and the references therein.
For subcritical branching systems with immigration, it is usually easy to find a stationary dis-
tribution. In the study of fluctuation limits of those systems, we can use a time-independent
scaling, which lead to homogeneous OU-processes. Fluctuation limits of this kind were studied
in [26, 27, 47, 49, 54].

Let A0 be the generator of a conservative Feller transition semigroup on Rd such that
C2(Rd) ⊆ D(A0) and A0f ∈ C(Rd) for every f ∈ C2(Rd). We fix a strictly positive func-
tion b(·) ∈ C(Rd)+ which is bounded away from zero. Let (Pt)t≥0 be the semigroup generated
by A := A0 − b and let φ0 be a continuous function given by

φ0(x, z) = c(x)z2 +
∫ ∞

0
(e−zu − 1 + zu)n(x, du), x ∈ Rd, z ≥ 0, (8.1)

where c(·) ∈ C(Rd)+ and u2n(x, du) is a bounded kernel from Rd to (0,∞). Then the evolution
equation

Vtf(x) +
∫ t

0
ds

∫
Rd

φ0(y, Vsf(y))Pt−s(x, dy) = Ptf(x), t ≥ 0, x ∈ Rd (8.2)

defines a cumulant semigroup (Vt)t≥0. Givenm ∈M(Rd), we can define the transition semigroup
(Qm

t )t≥0 of an immigration superprocess with state space M(Rd) by∫
M(Rd)

e−ν(f)Qm
t (µ, dν) = exp

{
− µ(Vtf)−

∫ t

0
m(Vsf)ds

}
, f ∈ C(Rd)+. (8.3)

Since (Pt)t≥0 is a Feller semigroup, the immigration superprocess has a Hunt realization. In
particular, it has a càdlàg realization; see, e.g., [64, p.221].

It is easy to see that Qm
t (µ, ·) converges as t → ∞ to the probability measure Q∞(·) on

M(Rd) given by∫
M(Rd)

e−ν(f)Qm
∞(dν) = exp

{
−

∫ ∞

0
m(Vsf)ds

}
, f ∈ C(Rd)+. (8.4)
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Clearly, Q∞(·) is the unique equilibrium of the semigroup (Qm
t )t≥0. Moreover, we have∫

M(Rd)
ν(f)Qm

∞(dν) = λ(f), f ∈ C(Rd)+, (8.5)

where λ ∈M(Rd) is defined by

λ =
∫ ∞

0
mPsds.

It is a natural problem to investigate the asymptotic fluctuation of the immigration super-
process around the long-term average λ as the branching mechanism φ0 decreases to zero. A
result of this type is formulated as follows. For any integer k ≥ 1 let φk(x, z) = φ0(x, z/k). Then
φk(x, z) → 0 as k →∞. Suppose that {Y (k)

t : t ≥ 0} is a càdlàg immigration superprocess with
parameters (A,φk,m) and Y (k)

0 = λ. Let

Z
(k)
t = k[Y (k)

t − λ], t ≥ 0. (8.6)

Let S (Rd) denote the Schwartz space of rapidly decreasing functions on Rd. That is, each
f ∈ S (Rd) is belong to C∞(Rd) and for each integer n ≥ 1 and each non-negative integer-
valued vector α = (α1, · · · , αd) we have

lim
|x|→∞

|x|n|∂αf(x)| = 0,

where

∂αf(x) =
∂|α|

∂xα1
1 · · ·xαd

d

f(x1, · · · , xd)

and |α| = α1 + · · ·+ αd. The topology of S (Rd) is defined by the sequence of semi-norms

f 7→ pn(f) := sup{(1 + |x|n)|∂αf(x)| : x ∈ Rd, |α| ≤ n}, n = 0, 1, 2, · · · .

Let S ′(Rd) denote the dual space of S (Rd) equipped with the strong topology. Then both
S (Rd) and S ′(Rd) are nuclear spaces; see, e.g., [63, p.107]. It is easy to see that {Z(k)

t : t ≥ 0}
has sample paths in D([0,∞),S ′(Rd)).

Theorem 8.1 ([26]) As k →∞, the finite dimensional distributions of {Z(k)
t : t ≥ 0} converge

to those of the S ′(Rd)-valued Markov process {Zt : t ≥ 0} with Z0 = 0 and with transition
semigroup (Tt)t≥0 defined by∫

S ′(Rd)
ei〈ν,f〉Tt(µ, dν) = exp

{
i〈µ, Ptf〉+

∫ t

0
λ(φ0(−iPsf))ds

}
, f ∈ S (Rd), (8.7)

where φ0(−iPsf) is given by (8.1) with z replaced by −iPsf(x).

The above theorem was improved in [54], where it was proved that {Z(k)
t : t ≥ 0} converges

to {Zt : t ≥ 0} weakly in D([0,∞),S ′(Rd)). Indeed, the fluctuation limit theorem was also
formulated in [54] in a suitable Sobolev space. For any integer n ≥ 0 we define the Sobolev
space

Hn(Rd) = {f ∈ S ′(Rd) : ∂αf ∈ L2(Rd) whenever |α| ≤ n}
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with the norm ‖ · ‖n defined by

‖f‖2
n =

∑
|α|≤n

∫
Rd

|∂αf(x)|2dx.

Let H−n(Rd) be the strong topological dual of Hn(Rd). It is well-known that H−n(Rd) can be
identified as a subspace of S ′(Rd) and

S ′(Rd) ⊇ Hm(Rd) ⊇ Hn(Rd) ⊇ S (Rd) (8.8)

for any integers m ≤ n with continuous embeddings; see, e.g., [2, Theorem 5.5]. Now we have

Theorem 8.2 ([54]) For any integer n > d + 2 the process {Zt : t ≥ 0} has a realization in

D([0,∞),H−n(Rd)) and {Z(k)
t : t ≥ 0} converges weakly to {Zt : t ≥ 0} in D([0,∞),H−n(Rd)).

By the above theorem, {Zt : t ≥ 0} is a generalized OU-process in the real separable Hilbert
space H−n(Rd). This puts the process into the framework of generalized Mehler semigroup of
the last section and makes it possible to derive regularities and properties of the processes from
the existing literature; see, e.g., [4, 16, 25, 60, 67].

The limiting generalized OU-process obtained in above can live in a much smaller state space.
Let us consider the case where A0 = ∆ and φ0(x, z) = c(x)z2/2. In this case, the corresponding
generalized OU-process solves the Langevin equation

dZt = dWt + ∆Ztdt− bZtdt, t ≥ 0, (8.9)

where {Wt : t ≥ 0} is a time-space white noise with intensity c(x)dtλ(dx); see, e.g., [47]. Given
Z0 the solution of (8.9) is represented by

Zt = Z0Pt +
∫ t

0

∫
Rd

pt−s(x, ·)W (ds, dx), t ≥ 0, (8.10)

where pt(x, ·) denotes the density of Pt(x, ·). If d = 1, the process {Zt : t ≥ 0} has a version in
L2(R). Indeed, it is well-known that Z0Pt ∈ L2(R) whenever Z0 ∈ L2(R). On the other hand,
we have

E
[ ∫

R

( ∫ t

0

∫
R
pt−s(x, y)W (ds, dx)

)2

dy

]
=

∫
R
dy

∫ t

0
ds

∫
R
pt−s(x, y)2c(x)λ(dx)

≤
∫ t

0

1√
2π(t− s)

ds

∫
R
c(x)λ(dx)

< ∞.

Then the second term on the right hand side of (8.10) exists almost surely in L2(R). It follows
that ∫

L2(R)
ei〈ν,f〉Tt(µ, dν) = exp

{
i〈µ, Ptf〉 −

∫ t

0
λ(c|Psf |2)ds

}
, f ∈ L2(R) (8.11)
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defines a generalized Mehler semigroup (Tt)t≥0 on L2(R). This semigroup is clearly irregular
on the state space L2(R), but the characteristic functional of the corresponding SC-semigroup
is differentiable in time. Measure-valued catalysts for superprocess were introduced by Dawson
and Fleischmann [10]. One may also study fluctuation limits of immigration superprocesses with
measure-valued catalysts. In such case the resulting SC-semigroup may have non-differentiable
characteristic functionals; see [16].
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[19] Duffie, D.; Filipović, D. and Schachermayer, W.: Affine processes and applications in finance. Ann.
Appl. Probab. 13 (2003), 984-1053.

[20] Dynkin, E.B.: Diffusions, Superdiffusions and Partial Differential Equations. Amer. Math. Soc.,
Providence, RI (2002).

[21] Etheridge, A.M.: An Introduction to Superprocesses. Amer. Math. Soc., Providence, RI (2000).

[22] Fitzsimmons, P.J.: Construction and regularity of measure-valued Markov branching processes.
Israel J. Math. 64 (1988), 337-361.

[23] Fitzsimmons, P.J.: On the martingale problem for measure-valued Markov branching processes. In:
Seminar on Stochastic Processes 1991 (1992), 39-51. Birkhäuser Boston, Inc., Boston, MA.
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