
Published in: Journal of Applied Probability 43 (2006), 1: 289–295
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Abstract. We provide a simple set of sufficient conditions for the weak con-
vergence of discrete Galton-Watson branching processes with immigration to
continuous time and continuous state branching processes with immigration.
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1 Introduction

Let (g, h) be a pair of probability generating functions. By a discrete time and discrete state
Galton-Watson branching process with immigration (DBI-process) corresponding to (g, h) we
mean a discrete-time Markov chain {y(n) : n = 0, 1, 2, · · ·} with state space N := {0, 1, 2, · · ·}
and one-step transition matrix P (i, j) defined by

∞∑
j=0

P (i, j)zj = g(z)ih(z), i = 0, 1, 2, · · · , 0 ≤ z ≤ 1. (1.1)

The intuitive meaning of the process is clear from (1.1). In particular, if h(z) ≡ 1, we simply
call {y(n) : n = 0, 1, 2, · · ·} a discrete time and discrete state Galton-Watson branching process
(DB-process).

Kawazu and Watanabe (1971) studied systematically the limit theorems of DBI-processes.
They also characterized completely the class of the limit processes as continuous time and
continuous state branching processes with immigration (CBI-processes). Let us consider a
special class of the CBI-processes introduced in Kawazu and Watanabe (1971). Suppose that
R is a function on [0,∞) defined by

R(λ) = βλ− αλ2 −
∫ ∞
0

(
e−λu − 1 +

λu

1 + u2

)
µ(du), (1.2)

where β ∈ R and α ≥ 0 are constants and (1 ∧ u2)µ(du) is a finite measure on (0,∞), and F
is a function on [0,∞) defined by

F (λ) = bλ+

∫ ∞
0

(1− e−λu)m(du), (1.3)
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where b ≥ 0 is a constant and (1 ∧ u)m(du) is a finite measure on (0,∞). A Markov process
{y(t) : t ≥ 0} with state space R+ := [0,∞) is called a CBI-process if it has transition
semigroup (Pt)t≥0 given by∫ ∞

0
e−λyPt(x, dy) = exp

{
− xψt(λ)−

∫ t

0
F (ψs(λ))ds

}
, λ ≥ 0, (1.4)

where ψt(λ) is the unique solution of

dψt
dt

(λ) = R(ψt(λ)), ψ0(λ) = λ. (1.5)

Clearly, the transition semigroup (Pt)t≥0 defined by (1.4) is stochastically continuous. In
particular, if F (λ) ≡ 0, we simply call {y(t) : t ≥ 0} a continuous time and continuous state
branching process (CB-process).

A CBI-process is said to be conservative if it does not explode, that is, Px{y(t) <∞} = 1
for every t ≥ 0 and x ∈ R+ where Px denotes the conditional law given y(0) = x. By Kawazu
and Watanabe (1971, Theorem 1.2), the process is conservative if and only if∫

0+
R∗(λ)−1dλ =∞,

where R∗(λ) = R(λ) ∨ 0. (This is a correction to equation (1.21) of Kawazu and Watanabe
(1971).)

Let {bk} and {ck} be sequences of positive numbers such that bk → ∞ and ck → ∞ as
k →∞. Let {yk(n) : n ≥ 0} be a sequence of DBI-processes corresponding to the parameters
{(gk, hk)} and assume yk(0) = ck. Suppose that for all t ≥ 0 and λ ≥ 0 the limits

lim
k→∞

g
[kt]
k (e−λ/bk)ck = φ1(t, λ) and lim

k→∞

[kt]−1∏
j=0

hk(g
j
k(e
−λ/bk)) = φ2(t, λ) (1.6)

exist and the convergence is locally uniform in λ ≥ 0 for each fixed t ≥ 0, where gjk denotes
the j-order composition of gk and [kt] denotes the integer part of kt. The following result was
proved in Kawazu and Watanabe (1971, Theorem 2.1):

Theorem 1.1 Suppose that (1.6) holds and φ1(t, λ) < 1 for some t > 0 and λ > 0. Then
{yk([kt])/bk : t ≥ 0} converges in finite-dimensional distributions to a stochastically continuous
and conservative CBI-process {y(t) : t ≥ 0} with transition semigroup given by (1.4).

Based on this theorem, Kawazu and Watanabe (1971) showed that, given each stochasti-
cally continuous and conservative CBI-process {y(t) : t ≥ 0}, there is a sequence of positive
numbers {bk} with bk → ∞ and a sequence of DBI-processes {yk(n) : n ≥ 0} such that
{yk([kt])/bk : t ≥ 0} converges in finite-dimensional distributions to {y(t) : t ≥ 0}. Their
results have become the basis of many studies of branching processes with immigration; see
e.g. Pitman and Yor (1982) and Shiga and Watanabe (1973). On the other hand, since condi-
tion (1.6) involves complicated compositions of the probability generating functions, it is some
times not so easy to verify. In view of the characterizations (1.1), (1.4) and (1.5) of the two
classes of processes, one naturally expect some simple sufficient conditions for the convergence
of the DBI-processes to the CBI-processes given in terms of the parameters (g, h) and (R,F ).
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The purpose of this note is to provide a set of conditions of this type. For the convenience of
proof, we shall discuss the convergence of {yk([γkt])/k : t ≥ 0} for some sequence of positive
numbers {γk} with γk →∞, which is slightly different from the scaling of Kawazu and Watan-
abe (1971). Instead of the convergence of finite-dimensional distributions, we shall consider
the weak convergence on the space of càdlàg functions D([0,∞),R+).

2 The limit theorem

In this section, we prove a limit theorem for DBI-processes on the space D([0,∞),R+). Let
F be defined by (1.3). For simplicity we assume the function R is given by

R(λ) = βλ− αλ2 −
∫ ∞
0

(e−λu − 1 + λu)µ(du), λ ≥ 0, (2.1)

where β ∈ R and α ≥ 0 are constants and (u ∧ u2)µ(du) is a finite measure on (0,∞).
Suppose that {y(t) : t ≥ 0} is a CBI-process corresponding to (R,F ). Let {yk(n) : n ≥ 0}
be a sequence of DBI-processes corresponding to the parameters {(gk, hk)} and let {γk} be a
sequence of positive numbers. For 0 ≤ λ ≤ k set

Fk(λ) = γk[1− hk(1− λ/k)] (2.2)

and

Rk(λ) = kγk[(1− λ/k)− gk(1− λ/k)]. (2.3)

Let us consider the following set of conditions:

(2.A) As k →∞, we have γk →∞ and γk/k → some γ0 ≥ 0.

(2.B) As k →∞, the sequence {Fk} defined by (2.2) converges to a continuous function.

(2.C) The sequence {Rk} defined by (2.3) is uniformly Lipschitz on each bounded interval
and converges to a continuous function as k →∞.

We remark that conditions (2.B) and (2.C) parallel the sufficient conditions for the con-
vergence of continuous-time and discrete state branching processes with immigration, see e.g.,
Li (1992) for the discussions in the setting of measure-valued processes. Based the results of
Li (1991), the following lemma can be proved by modifying the arguments of the proofs of Li
(1992, Lemmas 3.4 and 4.1).

Lemma 2.1 (i) Under conditions (2.B) and (2.C), the limit functions F and R of {Fk} and
{Rk} have representations (1.3) and (2.1), respectively. (ii) For any (F,R) given by (1.3) and
(2.1), there are sequences {γk} and {(gk, hk)} as above such that (2.A), (2.B) and (2.C) hold
with Fk → F and Rk → R.

For λ ≥ 0 we set

Sk(λ) = kγk[(1− λ/k)− gk(e−λ/k)]. (2.4)

Lemma 2.2 Under conditions (2.A) and (2.C), let R = limk→∞Rk. Then we have

lim
k→∞

Sk(λ) = R(λ)− γ0λ2/2 and lim
k→∞

γk[1− gk(e−λ/k)] = γ0λ (2.5)

uniformly on each bounded interval.
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Proof. By mean-value theorem we have

Sk(λ) = Rk(λ)− kγkg′k(ηk)(e−λ/k − 1 + λ/k), (2.6)

where 1 − λ/k < ηk < e−λ/k and g′k denotes the derivative of gk. Under condition (2.C), the
sequence R′k(λ) = γk[g

′
k(1−λ/k)− 1] is uniformly bounded on each bounded interval λ ∈ [0, l]

for l ≥ 0. Then g′k(1 − λ/k) → 1 uniformly on each bounded interval. In particular, we have
g′k(ηk) → 1 and the first equality in (2.5) follows from (2.A) and (2.6). The second equality
follows by a similar argument. �

Theorem 2.1 Suppose conditions (2.A), (2.B) and (2.C) hold with F = limk→∞ Fk and
R = limk→∞Rk. If yk(0)/k converges in distribution to y(0), then {yk([γkt])/k : t ≥ 0}
converges in distribution on D([0,∞),R+) to the CBI-process {y(t) : t ≥ 0} corresponding to
(R,F ) with initial value y(0).

Proof. Let (Pt)t≥0 denote the transition semigroup of the CBI-process corresponding to (R,F ).
For λ > 0 and x ≥ 0 set eλ(x) = e−λx. We denote by D1 the linear hull of {eλ : λ > 0}.
Then D1 is an algebra which strongly separates the points of R+. Let C0(R+) be the space
of continuous functions on R+ vanishing at infinity. By the Stone-Weierstrass theorem, D1 is
dense in C0(R+) for the supremum norm; see, e.g., Hewitt and Stromberg (1965, pp.98-99).
For λ > 0 we set

Aeλ(x) = −e−λx [xR(λ) + F (λ)] , x ∈ R+, (2.7)

and extend the definition of A to D1 by linearity. Then A := {(f,Af) : f ∈ D1} is a linear
subspace of C0(R+) × C0(R+). Since D1 is invariant under (Pt)t≥0, it is a core of A; see,
e.g., Ethier and Kurtz (1986, p.17). With those observations it is not hard to see that the
semigroup (Pt)t≥0 is generated by the closure of A; see, e.g., Ethier and Kurtz (1986, p.15 and
p.17). Note that {yk(n)/k : n ≥ 0} is a Markov chain with state space Ek := {0, 1/k, 2/k, · · ·}
and one-step transition probability Qk(x, dy) determined by∫

Ek

e−λyQk(x, dy) = gk(e
−λ/k)kxhk(e

−λ/k).

Then the (discrete) generator Ak of {yk([γkt])/k : t ≥ 0} is given by

Akeλ(x) = γk

[
gk(e

−λ/k)kxhk(e
−λ/k)− e−λx

]
= γk

[
exp{xkαk(λ)(gk(e

−λ/k)− 1)} exp{βk(λ)(hk(e
−λ/k)− 1)} − e−λx

]
,

where

αk(λ) = (gk(e
−λ/k)− 1)−1 log gk(e

−λ/k)

and βk(λ) is defined by the same formula with gk replaced by hk. Under conditions (2.A),
(2.B) and (2.C), it is easy to show that

lim
k→∞

(gk(e
−λ/k)− 1) = lim

k→∞
(hk(e

−λ/k)− 1) = 0

and

lim
k→∞

αk(λ) = lim
k→∞

βk(λ) = 1.
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Then we have

Akeλ(x) = −e−λx [xαk(λ)Sk(λ) + xγk(αk(λ)− 1)λ+Hk(λ)] + o(1), (2.8)

where

Hk(λ) = γkβk(λ)(1− hk(e−λ/k)).

By elementary calculations we find that

αk(λ) = 1 +
1

2
(1− gk(e−λ/k)) + o(1− gk(e−λ/k)),

and so limk→∞ γk(αk(λ)− 1) = γ0λ/2 by Lemma 2.2. It follows that

lim
k→∞

[αk(λ)Sk(λ) + γk(αk(λ)− 1)λ] = R(λ).

By the argument of the proof of Lemma 2.2 one can show that

lim
k→∞

Hk(λ) = lim
k→∞

Fk(λ) = F (λ).

In view of (2.7) and (2.8) we get

lim
k→∞

sup
x∈Ek

|Akeλ(x)−Aeλ(x)| = 0

for each λ > 0. This clearly implies that

lim
k→∞

sup
x∈Ek

|Akf(x)−Af(x)| = 0

for each f ∈ D1. By Ethier and Kurtz (1986, p.226 and pp.233-234) we find that {yk([γkt])/k :
t ≥ 0} converges in distribution on D([0,∞),R+) to the CBI-process corresponding to (R,F ).
�

By Lemma 2.1 and Theorem 2.1, for any functions (R,F ) given by (1.3) and (2.1), there
is a sequence of positive numbers {γk} and a sequence of DBI-processes {yk(n) : n ≥ 0}
such that {yk([γkt])/k : t ≥ 0} converges in distribution on D([0,∞),R+) to the CBI-process
corresponding to (R,F ).

3 Generalized Ray-Knight theorems

As an example of the applications of their limit theorems, Kawazu and Watanabe (1971)
reproved the Ray-Knight theorems of diffusion characterizations of the Brownian local time.
In this section, we generalize the results to the case of a Brownian motion with drift. We refer
the reader to Le Gall and Le Jan (1998) for another adequate formulation of the Ray-Knight
theorems for general Lévy processes.

Let A = αd2/dx2 + βd/dx for given constants α > 0 and β ∈ R. Then A generates a
one-dimensional Brownian motion with drift (Xt,Ft,Px). The local time of {Xt : t ≥ 0} is
a continuous two-parameter process {l(t, x) : t ≥ 0, x ∈ R} such that the following property
holds almost surely:

2

∫
B
l(t, x)dx =

∫ t

0
1B(Xs)ds, B ∈ B(R), (3.1)
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where B(R) denote the Borel σ-algebra of R and 1B denotes the indicator function of B. For
fixed a ≥ 0 let

l−1(u, a) = inf{t ≥ 0 : l(t, a) = u}. (3.2)

Theorem 3.1 Under P0 the process

ξu(t) = l(l−1(u, a), a+ t), t ≥ 0 (3.3)

is a diffusion generated by

x
d2

dx2
+
β

α
x
d

dx
. (3.4)

Proof. We follow the ideas of Kawazu and Watanabe (1971, Example 2.2). For c ∈ R let
σc = inf{t ≥ 0 : Xt = c}. Let δ > 0 and let uδ(x) = Px{σδ < σ−δ} = 1−Px{σδ > σ−δ}. Then
uδ(·) satisfies

α
d2

dx2
uδ(x) + β

d

dx
uδ(x) = 0, |x| ≤ δ,

with uδ(δ) = 1 and uδ(−δ) = 0. Solving this boundary value problem we find that

uδ(x) =
exp{βδ/α} − exp{−βx/α}
exp{βδ/α} − exp{−βδ/α}

.

By a δ-downcrossing at x ∈ R before time T > 0 we mean an interval [u, v] ⊂ [0, T ) such
that Xu = x + δ, Xv = x and x < Xt < x + δ for all u < t < v. Let ηδ denote the number
of δ-downcrossings at 0 before time σ−δ. By the property of independent increments of the
Brownian motion with drift we have

E0[z
ηδ ] =

∞∑
i=0

(1− p)(pz)i =
q

1− pz
,

where p = uδ(0), q = 1 − p and E0 denotes the expectation under P0. Let xi = a + i/k
for i ≥ 0 and k ≥ 1 and let Zk(i) denote the number of 1/k-downcrossings at xi before time
l−1(u, a). It is easy to see that Zk(i+ 1) is the sum of Zk(i) independent copies of η1/k. Thus
{Zk(i) : i = 0, 1, · · ·} is a DB-process corresponding to the generating function

gk(z) =
qk

1− pkz
,

where pk = u1/k(0) and qk = 1−pk. By a standard result for local times of diffusion processes,

lim
k→0

Z1/k([kt])/k = l(l−1(u, a), a+ t) = ξu(t);

see Itô and McKean (1965, p.48 and p.222). Then Theorem 2.1 implies that the limit {ξu(t) :
t ≥ 0} is a CB-process corresponding to

R(λ) = lim
k→∞

k2[(1− λ/k)− gk(1− λ/k)] =
β

α
λ− λ2.

This proves the desired result. �

Kawazu and Watanabe (1971, Theorem 2.3 and Example 2.2) proved the results of Theo-
rem 3.1 in the special case β = 0. In that case the generating function gk is actually indepen-
dent of k ≥ 1. In the general case, it seems difficult to check condition (1.6) for the sequence
{gk}. By similar arguments as the above we obtain the following

6



Theorem 3.2 Under P0 the process

ηu(t) = l(l−1(u, a), a− t), 0 ≤ t ≤ a (3.5)

is a diffusion generated by

x
d2

dx2
+
β

α
x
d

dx
+

d

dx
. (3.6)
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