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1 Introduction

Currently interactions and stochastic partial differential equations are two of the hot topics in
the field of Superprocesses. We have seen that diverse interactions have been introduced into
the models of superprocesses such as population interaction in the mutually catalytic model,
interactive branching mechanism, inter-particle interaction, particle random medium interac-
tion, mean-field interaction, and so on. (See the survey article [3] and the references therein).
In Dawson et al. [5], a particle random medium interaction model with location dependent
branching, which generalized the model introduced in Wang [14] [13], is introduced and the
limiting superprocesses, which will be called superprocesses with dependent spatial motion and
branching (SDSM’s), are constructed and characterized. An open problem left from the recent
work of Dawson et al. [6] and Wang [16] on this model has especially raised our interest in the
investigation and consideration presented in the present paper. In order to describe the question
clearly, we introduce necessary notations and the model first.

For fixed natural integers k, m ≥ 1, let Ck(Rm) be the set of functions on Rm having
continuous derivatives of order ≤ k and Ck

∂ (Rm) be the set of functions in Ck(Rm) which,
together with their derivatives up to order k, can be extended continuously to R̄m := Rm ∪{∂},
the one point compactification of Rm. Ck

0 (Rm) denotes the subset of Ck
∂ (Rm) of functions that,

together with their derivatives up to order k, vanish at infinity. Let M(Rm) be the space of finite
Borel measures on Rm equipped with the topology of weak convergence. We denote by Cb(Rm)
the set of bounded continuous functions on Rm, and by C0(Rm) its subset of continuous functions
vanishing at infinity. The subsets of non-negative elements of Cb(Rm) and C0(Rm) are denoted
by Cb(Rm)+ and C0(Rm)+, respectively. S(R) stands for the space of all infinitely differentiable
functions which, together with all their derivatives, are rapidly decreasing at infinity. Let B(R)
(resp. C(R)) be the collection of all Borel (resp. continuous) functions on R. For f ∈ B(R) and
µ ∈ M(R), set 〈f, µ〉 =

∫
R fdµ. Suppose that {W (x, t) : x ∈ R, t ≥ 0} is a Brownian sheet (see

Walsh [12]) and {Bi(t) : t ≥ 0},i ∈ N, is a family of independent standard Brownian motions
which are independent of {W (x, t) : x ∈ R, t ≥ 0}. For each natural number n, which serves as
a control parameter for our finite branching particle systems, we consider a system of particles
(initially, there are mn

0 particles) which move, die and produce offspring in a random medium
on R.

The diffusive part of such a branching particle system has the form

dxn
i (t) = c(xn

i (t))dBi(t) +
∫

R
h(y − xn

i (t))W (dy, dt), t ≥ 0, (1.1)

where c ∈ Cb(R) is a Lipschitz function and h ∈ C2
0 (R) is a square-integrable function. By

Lemma 3.1 of Dawson et al. [5], for any initial conditions xn
i (0) = xi ∈ R, the stochastic

equations (1.1) have unique strong solution {xn
i (t) : t ≥ 0} and, for each integer m ≥ 1,

{(xn
1 (t), · · · , xn

m(t)) : t ≥ 0} is an m-dimensional diffusion process which is generated by the
differential operator

Gm :=
1
2

m∑
i=1

a(xi)
∂2

∂x2
i

+
1
2

m∑
i,j=1,i6=j

ρ(xi − xj)
∂2

∂xi∂xj
. (1.2)

In particular, {xn
i (t) : t ≥ 0} is a one-dimensional diffusion process with generator G :=
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(a(x)/2)∆, where ∆ is the Laplacian operator,

ρ(x) :=
∫

R
h(y − x)h(y)dy, (1.3)

and a(x) := c2(x) + ρ(0) for x ∈ R. The function ρ is twice continuously differentiable with ρ′

and ρ′′ bounded since h is square-integrable and twice continuously differentiable with h′ and
h′′ bounded. The quadratic variational process for the system given by (1.1) is

〈xn
i (t), xn

j (t)〉 =
∫ t

0
ρ(xn

i (s)− xn
j (s))ds + δ{i=j}

∫ t

0
c2(xi(s)) ds, (1.4)

where we set δ{i=j} = 1 or 0 according as i = j or i 6= j, where i, j ∈ N. Here xn
i (t) is the

location of the ith particle. We assume that each particle has mass 1/θn and branches at rate
γθn, where γ ≥ 0 and θ ≥ 2 are fixed constants. We assume that when a particle 1

θn δx, which
has location at x, dies, it produces k particles with probability pk(x);x ∈ R, k ∈ N ∪ {0}. This
means that the branching mechanism depends on the spatial location. The offspring distribution
is assumed to satisfy:

p1(x) = 0,

∞∑
k=0

kpk(x) = 1, and m2(x) :=
∞∑

k=0

k2pk(x) < ∞ for all x ∈ R. (1.5)

The second condition indicates that we are solely interested in the critical case. After branching,
the resulting set of particles evolve in the same way as their parents and they start off from the
parent particle’s branching site. Let mn

t denote the total number of particles at time t . Denote
the empirical measure process by

µn
t (·) :=

1
θn

mn
t∑

i=1

δxn
i (t)(·). (1.6)

In order to obtain measure-valued processes by use of an appropriate rescaling, we assume that
there is a positive constant ξ > 0 such that mn

0/θn ≤ ξ for all n ≥ 0 and that weak convergence of
the initial laws µn

0 ⇒ µ holds, for some finite measure µ. As for the convergence from branching
particle systems to a SDSM, the reader is referred to Wang [14] and Dawson et al. [5].

Let E := M(R) be the Polish space of all finite Radon measures on R with the weak topology
defined by

µn ⇒ µ if and only if 〈f, µn〉 → 〈f, µ〉 for ∀f ∈ Cb(R) .

By Ito’s formula and the conditional independence of motions and branching, we can obtain
the following formal generators (usually called pregenerators) for the limiting measure-valued
processes:

Lc,σF (µ) := AcF (µ) + BσF (µ), (1.7)

where

BσF (µ) := 1
2

∫
R

σ(x)
δ2F (µ)
δµ(x)2

µ(dx), (1.8)
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and

AcF (µ) := 1
2

∫
R

a(x)(
d2

dx2
)
δF (µ)
δµ(x)

µ(dx)

+1
2

∫
R

∫
R

ρ(x− y)(
d

dx
)(

d

dy
)

δ2F (µ)
δµ(x)δµ(y)

µ(dx)µ(dy)

(1.9)

for F (µ) ∈ D(Lc,σ) ⊂ C(E), where σ(x) := γ(m2(x)−1) for any x ∈ R, the variational derivative
is defined by

δF (µ)
δµ(x)

:= lim
h↓0

F (µ + hδx)− F (µ)
h

, (1.10)

and D(Lc,σ) is the domain of the pregenerator Lc,σ. Especially, we denote L0,σ = A0 + Bσ for
Lc,σ = Ac +Bσ with c(x) ≡ 0. Let B(R)+ be the space of all non-negative, bounded, measurable
functions on R. We cite one theorem proved in Dawson et al. [5].

Theorem 1.1 Let c ∈ Cb(R) be a Lipschitz function, h ∈ C2
0 (R) be a square-integrable function

on R, and σ(x) ∈ B(R)+. Then, for any µ ∈ E, (Lc,σ, δµ)-martingale problem (MP) has a
unique solution which is denoted by Xt with sample paths in D([0,∞),M(R)). Then Xt is a
diffusion process.

Proof: For the proof of this theorem, the reader is referred to the section 5 of Dawson et al.
[5]. �

Xt is often called the high density limit of the branching particle systems we discussed.
Similar to Konno-Shiga’s famous results for super-Brownian motion (See [9]), for this inter-

active model it was proved by Wang [13] that Xt is absolutely continuous. Also, Dawson et
al [8] derived a stochastic partial differential equation (SPDE) for the density for the case of
c(·) = ε > 0. An interesting case is due to Wang ([13], [15]) who proved that when c(·) ≡ 0, Xt

is a purely atomic measure valued process. In addition, Dawson et al [6] derived a degenerated
SPDE

〈φ,Xt〉 = 〈φ,Xt0〉+
∫ t

t0

∫
R

〈
h(y − ·)φ′, Xu

〉
W (dydu)

+
1
2
ρ(0)

∫ t

t0

〈
φ′′, Xu

〉
du (1.11)

+
∑

i∈I(t0)

∫ t

t0

φ(xi(u))
√

σ(xi(u))ai(u)dBi(u), φ ∈ S(R), t ≥ t0 > 0

for
Xt =

∑
i∈I(t)

ai(t)δxi(t)

and proved that the above degenerate SPDE has a pathwise or strong unique solution. On the
other hand, Wang [16] recently proved that if c(·) ≥ ε > 0, and h is a singular function (See
Wang [16] for the precise definition) which can be roughly defined as “the square root of the
Dirac delta function”, the high density limit Xt is just the super-Brownian motion. Wang [16]
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also pointed out by example that if c(·) ≡ 0, the conclusion is not clear when h is a singular
function due to coalescence. This naturally raised a challenging question: Can we identify the
high density limit as well as its associated degenerate SPDE when c(·) ≡ 0 and h is a singular
function?

We now outline the rough idea for approaching the problem. Since the “square root of
the Dirac delta function” cannot be defined in the sense of distribution, we have to find a
way such that it makes sense. The first idea is to seek a method to handle it as a sequential
limit. The scaling limit argument automatically becomes a good candidate for us. From the
related literature, we found that Dawson and Fleischmann [2] studied the clumping property of
the classical super-Brownian motion (SBM) using the scaling limit. Mimicking this paper, we
defined

XK
t (B) = K−1XKt(KB), ∀ B ∈ B(R). (1.12)

We found that the limit of XK is the same as that of [2]. The external term is simply too weak
to carry over at the end of the scaling. However, this does not give all that we want. When we
carefully checked the proportions of scaling for different coefficients, we realized that we must
adjust the scaling proportion of the random medium term. This adjustment also matches the
real world situation. In fact, h and W characterize the outside force applying to the whole
system. It should use a much larger scale compared to the motion of each individual in the
system. Imagine our own movement and that of the earth! Therefore, we replaced the original
h(x) by

√
Kh(x) and applied the scaling (1.12). We denote the resulted process by ZK

t . Assume
that the scaled initial measures converge. We then prove that the limit Zt of ZK

t exists and is
characterized as follows: At time t0 > 0, Zt0 is a Poisson random measure with intensity t−1

0 µ0.
The particles move according to coalescing Brownian motion, whose mechanism is determined
by the external term ρ, until its mass, governed by independent Feller’s branching diffusions,
reaches 0. Note that when h = 0, the particles do not move and we get the same result as
Dawson and Fleischmann [2]. From this procedure, we derive a singular, degenerated SPDE
for the limit process, where the motion dynamic is driven by a sequence of coalescing Brownian
motions. Nevertheless, the singular, degenerated SPDE does not have strong uniqueness due
to coalescence. After we replace the coalescing Brownian motions by killing Brownian motions,
the strong uniqueness of the singular, degenerated SPDE is recovered and we get our expected
results.

A similar problem is studied by Dawson et al. [7] from a different point of view. Since
the paper is not yet published, we briefly list here the contents of that paper. The main
purpose of the paper is to give a proof of the observation of Dawson et al. [5]. Section 2 gives
characterizations for a coalescing Brownian motion flow and shows that the flow is actually the
scaling limit of the interacting Brownian flow that serves as the carrier of the purely atomic
SDSM in the excursion representation given in Dawson and Li [4]. Section 3 constructs the
limiting superprocess in terms of one-dimensional excursions using the coalescing Brownian
flow as a carrier. Section 4 derives the scaling limit of the SDSM from that of the interacting
Brownian flow and the excursion representations. The major differences between [7] and our
paper are as follows: First, we consider the usual scaling (1.12) and compare with the results of
Dawson and Fleischmann for classical SBM. In [7], the scaling K−2XKt(KB) is used. Secondly,
our scaling limit is for a general superprocess over a stochastic flow, namely, we derive the
degenerate limit from random fields. In [7], it started from the degenerated process (i.e. c = 0)
so that the scaling limit is essentially for finite-dimensional processes. Thirdly, our proof makes
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use of a new representation theorem which provides an easy approach to Wang’s (cf. [15], [13])
result for the non-singular case. Finally, [7] has discussed the excursion representation of the
limiting superprocess. In the current paper we consider an SPDE for the superprocess which is
degenerated as well as singular. These two topics distinguish the two papers’ emphases.

A related model was studied by Skoulakis and Adler [11], and its properties were investigated
by Xiong [18], [17].

This article is organized as follows: In section 2, we prove the weak convergence of XK and
characterize the limit by a martingale problem. In section 3, we discuss the weak convergence
of ZK with h replaced by

√
Kh and prove that the limit martingale problem coincides with

that studied by Dawson et al [7] which arises from a system of coalescing Brownian motions.
In section 4, we show the nonuniqueness for the solution to the degenerated SPDE which is
a natural extension of (1.11) for the singular case. Finally, We modify the driving Brownian
motions and prove strong uniqueness for the modified SPDE.

2 Weak convergence under clumping scaling

To accommodate a larger class of processes, we consider tempered measures. Let

φλ(x) =
∫
|y|<1

dye−λ|x−y| exp
(
− 1

1− y2

)/∫
|y|<1

dy exp
(
− 1

1− y2

)
.

Note that to each λ ∈ R and m ≥ 0 there are positive constants cλ,m and cλ,m such that

cλ,m φλ(x) ≤
∣∣∣ dm

dxm
φλ (x)

∣∣∣ ≤ cλ,m φλ(x), ∀ x ∈ R,

(cf. (2.1) of Mitoma [10]). We define Mtem(R) to be the collection of all measures µ such that

〈φλ, µ〉 < ∞, ∀ λ > 0.

Let Crap(R) be the collection of all functions f such that for all λ > 0, there exists cλ such that
|f(x)| ≤ cλφλ(x) for all x ∈ R.

Lemma 2.1 Assume that a, σ and ρ are bounded and

sup
K

〈
φλ, µK

〉
< ∞, ∀ λ > 0

where µK is define by the same fashion as in (1.12). Then for any α ≥ 2, λ, T > 0, we have

sup
K

E sup
t≤T

〈
φλ, XK

t

〉α
< ∞.

Proof: Denote aK(x) = K−1a(Kx). σK and ρK are defined similarly. Note that XK satisfies
the following martingale problem: ∀ φ ∈ Crap(R),

MK
t (φ) ≡

〈
φ,XK

t

〉
−
〈
φ, µK

〉
− 1

2

∫ t

0

〈
aKφ′′, XK

u

〉
du (2.1)
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is a martingale with quadratic variation process〈
MK(φ)

〉
t
=
∫ t

0

〈
KσKφ2, XK

u

〉
du +

∫ t

0
du

∫
R2

ρK(y − z)φ′(y)φ′(z)XK
u (dy)XK

u (dz). (2.2)

By Burkholder’s inequality, it is easy to see that

E sup
t≤s

〈
φλ, XK

t

〉α ≤ c + cE
(∫ s

0

〈
φλ, XK

t

〉
dt

)α

+cE
(∫ s

0

〈
φ2

λ, XK
t

〉
dt

)α/2

+ cE
(∫ s

0

〈
φλ, XK

t

〉2
dt

)α/2

.

Since φ2
λ ≤ φλ, using |x| ≤ 1 + x2 and Hölder’s inequality, we can continue with

≤ c + c

∫ s

0
E
〈
φλ, XK

t

〉α
dt.

The conclusion of the lemma then follows from Gronwall’s inequality. �

Theorem 2.1 Under the conditions of Lemma 2.1, {XK : K ≥ 1} is tight in C(R+,Mtem(R)).

Proof: It is well known that we only need to prove the tightness of {
〈
φ,XK

〉
: K ≥ 1}

in C(R+, R) for each fixed φ ∈ Crap(R). Note that by the martingale problem (2.1,2.2) and
Lemma 2.1, we have

E
∣∣〈φ,XK

t

〉
−
〈
φ,XK

s

〉∣∣α ≤ c|t− s|α/2.

Take α > 2; the tightness then follows from Kolmogorov’s criterion. �

Theorem 2.2 Suppose that σ(∞) = lim|x|→∞ σ(x) and µ∞ = limK→∞ µK exist and 0 is not an
atom of µ∞. Under the conditions of Lemma 2.1, XK converges in law to the unique solution
of the following martingale problem: ∀ φ ∈ Crap(R),

M∞
t (φ) ≡ 〈φ,X∞

t 〉 − 〈φ, µ∞〉 (2.3)

is a martingale with quadratic variation process

〈M∞(φ)〉t =
∫ t

0

〈
σ(∞)φ2, X∞

u

〉
du. (2.4)

Proof: Note that for any ε > 0 fixed, KσK(y) converges to σ(∞) as K →∞ uniformly for y ∈ Sc
ε

where Sε = (−ε, ε). On the other hand, if we choose fε ∈ Cb(R) such that 1Sε ≤ fε ≤ 1S2ε , then

lim sup
K→∞

E
〈
φ21Sε , X

K
u

〉
≤ lim sup

K→∞

∫
µK(dx)

∫
fε(y)φ2(y)pK

u (x, dy)

=
∫

µ∞(dx)fε(x)φ2(x),

where pK
u (x, dy) is the transition probability of the Markov process generated by LKφ = 1

2aKφ′′.
Let ε ↓ 0; we have ∫

µ∞(dx)fε(x)φ2(x) → 0.

By (2.1), (2.2), it is then easy to see that every limit point of XK solves the martingale problem
(2.3), (2.4). The uniqueness of this martingale problem follows from [2]. The conclusion of the
theorem then follows easily. �

7



3 Weak convergence under strong interaction

In this section, we consider strong interaction, namely, replace h by
√

Kh and then apply
clumping scaling discussed in the previous section. For any φ ∈ Crap(R), we have that

UK
t (φ) ≡

〈
φ,ZK

t

〉
−
〈
φ, µK

〉
− 1

2

∫ t

0

〈
(K−1c2(Kx) + ρ(0))φ′′, ZK

u

〉
du

is a martingale with quadratic variation process〈
UK(φ)

〉
t
=
∫ t

0

〈
KσKφ2, ZK

u

〉
du +

∫ t

0
du

∫
R2

ρ(K(y − z))φ′(y)φ′(z)ZK
u (dy)ZK

u (dz).

We shall prove that ZK is a tight sequence and characterize the limit Z. Note that ZK is a
measure-valued process with density and, as we will show, Z is a purely atomic measure-valued
process. Therefore, it is not easy to derive the limit martingale problem of type (3.8) below from
the martingale problem for ZK studied in Dawson et al. [5]. With a complicated argument as
that in Xiong and Zhou [19], we believe that it can be proved that Z satisfies the martingale
problem (3.6), (3.7). However, that martingale problem is not well-posed. To determine the
distribution of Z uniquely, we start with the dual relation between ZK and (Y K ,M) and prove
the convergence of the latter; then the distribution of Z is determined by the limit of (Y K ,M).
Finally, we construct a process which is clearly a Markov process, since it is the unique solution
to the martingale problem (3.8) and has the same distribution as Z.

First we need the following lemma.

Lemma 3.1 Suppose that lim|x|→∞ ρ(x) = 0 and ηK is governed by the following SDE:

dηK(t) =
√

ρ(0)− ρ(KηK(t))dBt.

Then ηK → η which is a Brownian motion with 0 as an absorbing boundary.

Proof: It is easy to see that ηK is a tight sequence of diffusions on [0,∞), each with 0 as an
absorbing boundary. Let

D0 = {f ∈ C2([0,∞)) : f ′′(0) = 0}.

Then for any f ∈ D0,

f(ηK(t))−
∫ t

0

1
2
(ρ(0)− ρ(KηK(s)))f ′′(ηK(s))ds

is a martingale. Let η be a limit point. Then for any f ∈ D0,

f(η(t))−
∫ t

0

1
2
ρ(0)f ′′(η(s))ds

is a martingale. This proves the conclusion of the lemma. �

To characterize the limit of ZK , we need the concept of the coalescing Brownian motion
(CBM) which was first introduced by R. Arratia [1], where the coalescing Brownian motion is
constructed from a system of discrete random walks. An interesting thing here is that we can
construct the coalescing Brownian motion simply from a given Brownian sheet.
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Definition 3.1 (x1(t), · · · , xm(t)) is a CBM if the components move as independent Brownian
motions until any pair, say xi(t) and xj(t), (i < j), meet. Starting from the meeting time, xj(t)
assumes the values of xi(t), xi(t) disappears, and the system continues to evolve in the same
fashion.

Theorem 3.1 Suppose lim|x|→∞ ρ(x) = 0 and the conditions of Theorem 2.2 hold. Then, ZK

is tight and its limit finite marginal distribution is determined by the following duality relation:
for all f ∈ Crap(Rm),

E 〈f, (Zt)m〉 = Em,f

[〈
Yt, µ

Mt
〉
exp

{
1
2

∫ t

0
Ms(Ms − 1)ds

}]
(3.1)

and recursive relation: for t1 < t2 < · · · < tj+1,

E
(
Πj+1

i=1 〈fi, (Zti)
mi〉
)

(3.2)

= E

(
EY

mj+1,fj+1

[〈
Ytj+1−tj , (Ztj )

Mtj+1−tj

〉
exp

{
1
2

∫ tj+1−tj

0
Ms(Ms − 1)ds

}]

×Πj
i=1 〈fi, (Zti)

mi〉

)

where Mt is Kingman’s coalescent process starting at m with jumping time 0 = τ0 < τ1 < · · · <
τm = ∞, and where Yt, starting at f , is a function-valued process defined by

Yt = P
Mτk
t−τk

Γk · · ·P
Mτ1
τ2−τ1Γ1P

Mτ0
τ1 Y0, ∀ t ∈ [τk, τk+1), 0 ≤ k < m (3.3)

where Pm
t is the semigroup of the m-dimensional coalescing Brownian motion, Γk is taking one

of the Φij randomly and

Φijf(x1, · · · , xm−1) = σ(∞)f(x1, · · · , xm−1, · · · , xm−1, · · · , xm−2), (3.4)

where xm−1 is in the places of the ith and jth variables.

Proof: The tightness follows from an argument similar to that in section 2. By [5], we have

E
〈
f, (ZK

t )m
〉

= Em,f

[〈
Y K

t , µMt
〉
exp

{
1
2

∫ t

0
Ms(Ms − 1)ds

}]
,

where Y K starting from f is defined similarly as in (3.3)-(3.4) with Φij , σ(∞) and Pm
t replaced

by
ΦK

ij f(x1, · · · , xm−1) = σ(Kxm−1)f(x1, · · · , xm−1, · · · , xm−1, · · · , xm−2),

σ(K·), and Pm,K
t , respectively. Pm,K

t is the semigroup with generator

Gm,K =
1
2

m∑
i=1

K−1c2(Kxi)
∂2

∂x2
i

+
1
2

∑
1≤i,j≤m

ρ(K(xi − xj))
∂2

∂xi∂xj
.
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Let

Gm =
1
2

∑
1≤i,j≤m

ρ(0)1{xi=xj}
∂2

∂xi∂xj
.

We define

D1 = {f ∈ C2
b (Rm) :

∂2f

∂xi∂xj
= 0 if xi = xj , for some i 6= j}.

Let xK(t) be the process generated by Gm,K . It is easy to see that xK is tight as an m-
dimensional process. Let x be a limit point. For f ∈ D1, we have Gm,Kf → Gmf and hence

f(x(t))− f(x(0))−
∫ t

0
Gmf(x(s))ds

is a martingale. From this, it is easy to see that x(t) is an m-dimensional Brownian motion
before it reaches the set {x : ∃ i < j, xi = xj}. To study its behavior after it reaches that set,
we consider xK

i (t)− xK
j (t). Note that

d

dt

〈
xK

i − xK
j

〉
t
= K−1c2(KxK

i (t)) + K−1c2(KxK
j (t)) + (ρ(0)− ρ(K(xK

i (t)− xK
j (t))).

The first and the second terms converge to 0 uniformly. As in Lemma 3.1, it is then easy to
show that xi(t)− xj(t) is a Brownian motion with 0 as absorbing boundary. This implies that
x(t) is the coalescing Brownian motion. Hence, Pm,K

t converges to Pm
t , and hence Y K converges

to Y .
As f ∈ Crap(Rm), we have f(x1, · · · , xm) ≤ cλφλ(x1) · · ·φλ(xm) ≡ cλφλ(x). It is easy to

verify that Pm,K
t φ(x) ≤ cm

λ,tφλ(x). Therefore,
〈
Y K

t , µMt
〉
≤ cMt

λ,t 〈φλ, µ〉Mt . (3.1) follows from the
dominated convergence theorem. The same argument as in [5] shows that (3.1) determines the
distribution of Zt uniquely. Thus, for any fixed m and n, we have that

〈
f, (ZK

t )m
〉n is integrable

uniformly in K since
E
(〈

f, (ZK
t )m

〉2n
)

= E
〈
f⊗2n, (ZK

t )2mn
〉
.

Finally we prove (3.2). Note that

E
(
Πj+1

i=1

〈
fi, (ZK

ti )mi
〉)

= E
(
E
(〈

fj+1, (ZK
tj+1

)mj+1

〉
|FK

tj

)
Πj

i=1

〈
fi, (ZK

ti )mi
〉)

= E

(
EY

mj+1,fj+1

[〈
Y K

tj+1−tj , (Z
K
tj )Mtj+1−tj

〉
(3.5)

× exp
{

1
2

∫ tj+1−tj

0
Ms(Ms − 1)ds

}]
Πj

i=1

〈
fi, (ZK

ti )mi
〉)

≡ E
(
Πj

i=1

〈
fK

i , (ZK
ti )mi

〉)
,

where fK
i = fi for i < j and

fK
j = fjEY

mj+1,fj+1

(
Y K

tj+1−tj exp
{

1
2

∫ tj+1−tj

0
Ms(Ms − 1)ds

})
.

Note that fK
j ≤ cλφλ. Letting K →∞ in (3.5), we have (3.2). �
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Next we construct Zt from another point of view. Let〈
f, Z̃n

t

〉
=

1
n

n∑
i=1

ξi(t)f(xi(t)),

where {ξi} are independent Feller’s branching diffusions with branching rate σ(∞) and (xi(t), · · · , xn(t))
is the n-dimensional coalescent Brownian motion with diffusion coefficient ρ(0). Here we consider
the limit of Z̃n by adapting the method of Xiong and Zhou [19].

Theorem 3.2 Under the conditions of Theorem 3.1, Z̃n is tight and its limit Z̃ solves the
following martingale problem:

U∞
t (φ) ≡

〈
φ, Z̃t

〉
− 〈φ, µ∞〉 − 1

2
ρ(0)

∫ t

0

〈
φ′′, Z̃u

〉
du (3.6)

is a martingale with quadratic variation process

〈U∞(φ)〉t =
∫ t

0

〈
σ(∞)φ2, Z̃u

〉
du +

∫ t

0
du

∫
∆

ρ(0)φ′(y)φ′(z)Z̃u(dy)Z̃u(dz), (3.7)

where ∆ = {(x, x) : x ∈ R}.

Proof: Applying Itô’s formula, it is easy to show that

Un
t (φ) ≡

〈
φ, Z̃n

t

〉
− 〈φ, µ∞〉 − 1

2
ρ(0)

∫ t

0

〈
φ′′, Z̃n

u

〉
du

is a martingale with quadratic variation process

〈Un(φ)〉t =
1
n

n∑
i=1

∫ t

0
σ(∞)ξi(s)φ(xi(s))2ds

+
ρ(0)
n2

n∑
i,j=1

∫ t

τij∧t
ξi(s)ξj(s)φ′(xi(s))φ′(xj(s))ds

=
∫ t

0

〈
σ(∞)φ2, Z̃n

u

〉
du +

∫ t

0
du

∫
∆

ρ(0)φ′(y)φ′(z)Z̃n
u (dy)Z̃n

u (dz),

where τij is the first time xi(t) and xj(t) meet. It is easy to prove the tightness of {(Z̃n, 〈Un(φ)〉)}.
Denote the limit by (Z̃, Λ). By arguments similar to those in [19], we see that

Λ(t) =
∫ t

0

〈
σ(∞)φ2, Z̃u

〉
du +

∫ t

0
du

∫
∆

ρ(0)φ′(y)φ′(z)Z̃u(dy)Z̃u(dz)

and hence Z̃ solves the martingale problem (3.6)-(3.7). �

Remark 3.3 The solution to the martingale problem (3.6)-(3.7) is not unique.
For example, if we replace (x1(t), · · · , xn(t)) by n-dimensional ordinary Brownian motion,

the limit will provide another example.
The ordinary SBM with diffusion coefficient ρ(0) and branching rate σ(∞) is a third example

of the solution to the martingale problem (3.6)-(3.7).

11



Finally, we prove Z and Z̃ have the same distribution.

Theorem 3.4 Under the conditions of Theorem 3.1, Z = Z̃ in distribution. Therefore, Zt is a
Markov process.

Proof: We only need to prove (3.1) holds with Z replaced by Z̃. For f ∈ C2
b (Rm), let Fm,f (µ) =

〈f, µm〉. Define

LFm,f (µ) = Fm,Gmf (µ) +
1
2

∑
1≤i6=j≤m

Fm−1,Φijf (µ).

By Itô’s formula, it is easy to see that Z̃n
t solves the following martingale problem: ∀ f ∈ C2

b (Rm),

Fm,f (Z̃n
t )− Fm,f (Z̃n

0 )−
∫ t

0
LFm,f (Z̃n

s )ds

is a martingale. Let n →∞, we see that Z̃t satisfies: ∀ f ∈ C2
b (Rm),

Fm,f (Z̃t)− Fm,f (µ)−
∫ t

0
LFm,f (Z̃s)ds (3.8)

is a martingale. Mimicking the proof of Theorem 2.1 in [5], we see that (3.1) holds with Zt

replaced by Z̃t. Since Z̃t is a Markov process, it is easy to verify that (3.2) holds with Zt

replaced by Z̃t. Therefore, Z and Z̃ have the same distribution and Z is a Markov process. �

4 SPDE

In this section, we first show that Zt is of purely atomic type. Then we characterize Zt as the
unique strong solution to an SPDE.

Since we are only interested in establishing the property for Zt, we may and will assume that
c = 0 and σ = σ(∞) are constants. Let hn converges to the “square root of the delta function”
so that ρn(x) converges to 0 when x 6= 0 and ρn(0) → ρ(0) > 0.

Fix hn as in [5], we first reprove a theorem of Wang [13] (see also [15]) by a new representation
of Zn

t . This representation in a more general setup will involve Perkins’ historical calculus and
will be developed in another paper. Throughout this section, we assume that the conditions of
Theorem 3.1 remain in force.

Theorem 4.1 Let Xn
t (x,W ) be the strong solution of

Xn
t = x +

∫ t

0

∫
hn(y −Xn

s )W (dsdy).

Let ζt be the superprocess with branching rate σ and spatial motion-free. Define

Zn
t (·) = ζt{x : Xn

t (x,W ) ∈ ·}.

Then

Un
t (φ) = 〈φ,Zn

t 〉 − 〈φ,Zn
0 〉 −

∫ t

0

〈
1
2
ρn(0)φ′′, Zn

u

〉
du

12



is a martingale with quadratic variation process

〈Un(φ)〉t =
∫ t

0

〈
σφ2, Zn

u

〉
du +

∫ t

0
du

∫
R2

ρn(y − z)φ′(y)φ′(z)Zn
u (dy)Zn

u (dz).

Proof: Applying Itô’s formula, we have

d 〈φ,Zn
t 〉 = d 〈φ(Xn

t (·,W )), ζt〉
= 〈dφ(Xn

t (·,W )), ζt〉+ 〈φ(Xn
t (·,W )), dζt〉

=
ρn(0)

2
〈
φ′′, Zn

t

〉
dt +

∫ 〈
φ′(Xn

t (·,W ))hn(y − ·), ζt

〉
W (dtdy)

+ 〈φ(Xn
t (·,W )), dζt〉 .

Hence, Un
t (φ) is a martingale with quadratic variation process

〈Un(φ)〉t =
∫ t

0

∫ 〈
φ′(Xn

s (·,W ))hn(y − ·), ζs

〉2
dsdy +

∫ t

0

〈
σφ2(Xn

s (·,W )), ζs

〉
ds

=
∫ t

0
du

∫
R2

ρn(y − z)φ′(y)φ′(z)Zn
u (dy)Zn

u (dz) +
∫ t

0

〈
σφ2, Zn

u

〉
du.

�

Theorem 4.2 For all t > 0, Zt is of purely-atomic type.

Proof: It is well-known that ζt =
∑

i∈I(t) ξi
tδxi is of purely-atomic type (cf. [2] and [13]). Hence

Zn
t =

∑
i∈I(t) ξi

tδXn
t (xi,W ). Taking a limit, it is clear that Zt is of purely-atomic type. �

Mimicking [6], we consider the following SPDE

〈φ, µt〉 = 〈φ, µt0〉+
∑

i∈I(t0)

√
ρ(0)

∫ t

t0

φ′(xi(u))ξi(u)dWi(u) (4.1)

+
1
2
ρ(0)

∫ t

t0

〈
φ′′, µu

〉
du

+
∑

i∈I(t0)

∫ t

t0

φ(xi(u))
√

σ(∞)ξi(u)dBi(u),

where (W1,W2, · · ·) are coalescing Brownian motions independent of {Bi : i ≥ 1}.
If xi(t) =

√
ρ(0)Wi(t) and ξi(t) is the Feller’s branching diffusion generated by Bi, it is easy

to see that
µt =

∑
ξi(t)δxi(t) (4.2)

satisfies (4.1). It is easy to verify that the solution of (4.1) satisfies the martingale problem
(3.8). Therefore, weak uniqueness holds for the solution to (4.1). The next theorem shows the
non-strong-uniqueness of the solution.

Theorem 4.3 Let t0 = 0 and µ0 =
∑

i∈I ξi(0)δxi(0), where I is a countable set. Then, the
pathwise uniqueness for the SPDE (4.1) does not hold.
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Proof: Let
τ1 = inf{t : ∃i 6= j,Wi(t) = Wj(t)}.

Define τ2 similarly. Suppose Wi and Wj (i < j) meet at time τ1. For t ≤ τ1, we define
ξ̃k(t) = ξk(t) for all k. For 0 < τ1 < t ≤ τ2, if k 6= i, j we define ξ̃k(t) = ξk(t); otherwise, we
define that ξ̃j(t) = 0 and let ξ̃i(t) be the unique solution of the following SDE

ξ̃i(t) = ξi(τ1) + ξj(τ1) +
√

σ(∞)
∫ t

τ1

√
ξ̃i(u)dBi(u).

Then
µ̃t =

∑
ξ̃i(t)δxi(t) (4.3)

is another solution to (4.1). Therefore, the pathwise uniqueness for the SPDE (4.1) does not
hold. �

To derive an SPDE with strong uniqueness, we need to modify the Brownian driving system
in (4.1).

Definition 4.1 W̃ = {W̃k} is a system of killing Brownian motions (KBM) if each starts with
an independent Brownian motion until a pair of them meet; at that time, the process with higher
index will be killed and the indexes of the other higher indexed processes is lowered by 1. The
system continues to evolve in this fashion.

B̃ = {B̃k} is a system of adjoint (to W̃ ) killing Brownian motions (AKBM) if each starts
with an independent Brownian motion. A member will be killed when the corresponding member
in W̃ is killed.

Now we modify (4.1) and consider

〈φ, µt〉 = 〈φ, µt0〉+
∑

i∈I(t0)

√
ρ(0)

∫ t

t0

φ′(xi(u))ξi(u)dW̃i(u) (4.4)

+
1
2
ρ(0)

∫ t

t0

〈
φ′′, µu

〉
du

+
∑

i∈I(t0)

∫ t

t0

φ(xi(u))
√

σ(∞)ξi(u)dB̃i(u).

If we construct W̃ and B̃ in an obvious way, it is then clear that µ̃t defined by (4.3) is a
solution to (4.4).

Theorem 4.4 Let t0 = 0 and µ0 =
∑

i∈I ξi(0)δxi(0), where I is a countable set. Then, the
SPDE (4.4) has a pathwise unique solution.

Proof: Let µt be a solution and

τ̃1 = inf{t : ∃i 6= j, W̃i(t) = W̃j(t)}.

14



Now we prove the uniqueness of the solution before time τ̃1 by adapting the technique of [6] to
the present setup. Let

ε0 = inf{|xi(0)− xj(0)| : i 6= j ∈ I}

and
η1 = inf{t ∈ [0, τ1) : |xi(t)− xi(0)| ≥ 1

3
ε0 for some i ∈ I}.

Then η1 is a stopping time. Take φ such that its support is within 2
3ε0 of xi(0). Then

ξi(t)φ(xi(t)) = ξi(0)φ(xi(0)) +
√

ρ(0)
∫ t

0
φ′(xi(u))ξi(u)dW̃i(u)

+
1
2
ρ(0)

∫ t

0
ξi(u)φ′′(xi(u))du +

√
σ(∞)

∫ t

0
φ(xi(u))

√
ξi(u)dB̃i(u).

Also, take φ(x) = 1 for x within 1
3ε0 of xi(0). Then for t ≤ η1

ξi(t) = ξi(0) +
√

σ(∞)
∫ t

0

√
ξi(u)dB̃i(u).

Applying Itô’s formula, we then have

dφ(xi(t)) =
√

ρ(0)φ′(xi(t))dW̃i(t) +
1
2
ρ(0)φ′′(xi(t))dt.

This implies that xi(t) =
√

ρ(0)W̃i(t). By the definition of η1, we have {xi(η1) : i ∈ I} are all
distinct; hence we may start from η1 and define η2 accordingly. As in [6], we then can prove
that ηn converges to τ1 and get the uniqueness for t ≤ τ1. Continuing this procedure, we get
the uniqueness for all t.

The argument for countable I is the same as that at the end of the proof of Theorem 4.1 in
[6]. �
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