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Abstract. It is proved that a general non-differentiable skew convolution semigroup associated
with a strongly continuous semigroup of linear operators on a real separable Hilbert space can be
extended to a differentiable one on the entrance space of the linear semigroup. A cadlag strong
Markov process on an enlargement of the entrance space is constructed from which we obtain a
realization of the corresponding Ornstein-Uhlenbeck process. Some explicit characterizations of
the entrance spaces for special linear semigroups are given.

Mathematics Subject Classifications (2000): Primary 60J35; Secondary 60H15

Key words and phrases: skew convolution semigroup, differentiable extension, generalized
Ornstein-Uhlenbeck process, right continuous realization.

1 Introduction

Suppose that (S, +) is a Hausdorff topological semigroup and (Q¢):>0 is a transition semigroup
on S satisfying

Qt($1+$2,') :Qt(qjla')*Qt('rQa')a t 20,331,$2 € Sv (11>

Wy ”

where “«” denotes the convolution operation. A family of probability measures (y)¢>0 on S is
called a skew convolution semigroup (SC-semigroup) associated with (Q¢)>o if it satisfies

prst = (prQr) * p, 7,8 > 0. (1.2)
This equation is of interest since it is satisfied if and only if

QY (z,) == Qulz, ) ¥ (), t>0,z €S, (1.3)
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defines another transition semigroup (Q}'):>0 on S. (Note that (1.1) implies (u*v)Q; = (uQt) *
(vQ:) for probability measures p and v on S.) This fact was first observed in [5, 6] when
S = M(FE) is the space of all finite Borel measures on a metrizable space E; see also [8,
Theorem 2.1]. In that case, (Qt):>0 corresponds to a measure-valued branching process and
(Qf)tgo corresponds to an immigration process.

In this work, we shall consider the formulation in another special situation, where S = H is a
real separable Hilbert space and Q(z, ) = 7, for a strongly continuous semigroup of bounded
linear operators (7});>0 on H. In this case, we can rewrite (1.2) as

Hrt = (EMT) * i, T,t > 07 (14)

and the transition semigroup (Q}'):>¢ is given by

Qif(a) = [ f(Tix + yhuldy), @€ H.f € B) (1.5)

where B(H) denotes the totality of bounded Borel measurable functions on H. The semigroup
(Q})t>0 defined by (1.5) is called a generalized Mehler semigroup associated with (7})¢>0, which
corresponds to a generalized Ornstein-Uhlenbeck process (OU-process). This definition of the
generalized Mehler semigroup was given by Bogachev et al [1]. They also gave a characterization
for the SC-semigroup (pt)¢>0 under the assumption that the function t — fi;(a) is differentiable
at t = 0, where [i;(a) denotes the characteristic functional of p. It is known that for a general
SC-semigroup (u¢)e>0 defined by (1.4) the function ¢t — fi;(a) is not necessarily differentiable
at t = 0; see e.g. [2, 11, 12]. A simple and nice necessary and sufficient condition for an SC-
semigroup to be differentiable was given in [11] in the setting of cylindrical probability measures.
In [1] it was shown that a differentiable cylindrical Gaussian SC-semigroup can be extended into
a real Gaussian SC-semigroup in an enlargement of H and the corresponding OU-process was
constructed as the strong solution to a stochastic differential equation. Those results were
extended to the general non-Gaussian case in [4]. A characterization for general SC-semigroups
(t)1>0 was given in [2], where it was also observed that the OU-processes corresponding to a
non-differentiable SC-semigroup usually have no right continuous realizations. This property is
similar to that of the immigration processes studied in [6, 7, 8] and represents a departure from
the theory of well-studied classes of OU-processes in [1, 4].

The main purpose of this paper is to study the construction of OU-processes corresponding to
non-differentiable SC-semigroups. We shall see that, under a moment assumption, a general SC-
semigroup can be decomposed as the convolution of a centered SC-semigroup and a degenerate
one. For this reason, we shall only consider centered SC-semigroups. In section 2, we derive from
the results of Dawson et al [2] that each centered SC-semigroup is uniquely determined by an
infinitely divisible probability measure on the entrance space H for the semigroup (T%)¢>0, which
is an enlargement of H. In section 3, it is shown that a general non-differentiable centered SC-
semigroup can always be extended to a differentiable one on the entrance space H. In section
4, we use a modification of the argument of Fuhrman and Rockner [4] to construct a cadlag
and strong Markov OU-process {X; : t > 0} on a further extension H of H. We also show
that, if Xo € H, then X; € H almost surely for every ¢t > 0 and {1y(X;)X; : t > 0} is
an OU-process with transition semigroup (Q4):>o defined by (1.5). Those results provide an
approach to the study of non-differentiable generalized Mehler semigroups with which one can
reduce some of their analysis to the existing framework of [1] and [4]. However, this approach



should not convince the reader that non-differentiable generalized Mehler semigroups do not
bear particular consideration on their own. In fact, there are some cases where the natural state
space of the OU-process is H and the introduction of H and H seems unnatural and artificial.
For example, an OU-process on L?(0,00) with non-differentiable SC-semigroup represents the
fluctuation density of a catalytic branching processes with immigration; see [2]. In this case, it is
rather unnatural to take L2(0,00) as the state space. We provide some explicit characterization
for the non-negative elements of L?(IR%) and L?(0, c0) in section 5. The explicit characterization
for all elements of L2(IR%) and L?(0, 0c) seems much more sophisticated.

2 Non-differentiable semigroups

Suppose that H is a real separable Hilbert space with dual space H* and (1});>0 is a strongly con-
tinuous semigroup of linear operators on H with dual (7})¢>0. Let (ut)+>0 be an SC-semigroup
defined by (1.4) satisfying the moment condition

| lalPutde) < oo, ¢z 0, 2.1)

where H° = H \ {0}. Then we may define an H-valued path (b:)¢>0 by Bochner integrals

by ::/ xpi(dx), t>0,
HO

and define u§ = d_p, * pe. It is easy to check that both (s, )i>0 and (uf)i>0 are SC-semigroups
associated with (T});>0 and py = puf *dp,. That is, under the moment assumption, a general SC-
semigroup can be decomposed as the convolution of a centered SC-semigroup and a degenerate
one. For this reason, we shall only discuss centered SC-semigroups in the sequel.

Since (1i)t>0 is strongly continuous, there are constants c¢g > 0 and by > 0 such that
T3] < coe®t. Let (Us)asp, denote the resolvent of (7});>¢ and let A denote its generator
with domain D(A) = U,H C H. An H-valued path & = {Z(s) : s > 0} is called an entrance
path for the semigroup (7}):>0 if it satisfies Z(r +t) = T32(r) for all r,¢ > 0. Let E denote the
set of all entrance paths for (73)i>0. We say & € E is closable if there is an element Z(0) € H
such that z(s) = Ts2(0) for all s > 0; and we say it is locally square integrable if

l
/0 17(s)|%ds < oo (2.2)

for some [ > 0.

Lemma 2.1 For any Z € E, (2.2) holds for some | > 0 if and only if it holds for all | > 0; and
if and only if

/ =257 (s) | 2ds < oo (2.3)
0

for all b > by.



Proof. Suppose that (2.2) holds for some Iy > 0. Let [ > 0 and let n > 1 be an integer such
that nlp > [. Then

l ~ 9 nlg ~ 9
[la)as < [ ats) s
0 0
- Z / it ()]s
0
< 5 e [ a(o)ds
k=0 0
< Q.

Thus (2.2) holds for all I > 0. On the other hand, for any b > by,
> —2bs|ia( 12 o~ —2kbly [ 2 ~ 12
| e aitas = 3 e [T e 1,3(s) s
k=0

[ lo

< che—%(b—bo)lo/ e=2%||7(s)|2ds
k=0 0

< 0oQ.

That is, (2.3) holds for all b > by. The remaining assertions are obvious. O

Let H denote the set of all locally square integrable entrance paths for (73)¢>0. We shall call
H the entrance space for (T¢)t>0. For any fixed b > by, we may define an inner product on H by

@i~ = [ M), ds)ds, 3.5 € . (24

Let || - ||~ denote the norm induced by this inner product. The proof of the following result was
suggested to us by W. Sun.

Lemma 2.2 The normed space (H,| - ||~) is complete, so (H,(-,-)..) is a Hilbert space.

Proof. Suppose {Z,} C H is a Cauchy sequence under the norm || - ||, that is,
o 2
0= Fnlle = [ € als) = Fun(s)|Pds — 0
as m,n — oo. For each t > 0,
2 [ 2
[Zn(t) = Zm(@O)7 = = /0 [Zn(t) — Zm (1) "ds
t
= 7 [ ITe@nls) = Fn()]ds
¢
2T / =270 (5) — Zm(5)||2ds.
0

IN

Then the limit Z(¢) = lim, oo Zn(t) exists in H. Since Ty is a continuous operator on H, for
s >0,

Tsz(t) = lim Tz, (t) = Jim Tn(t+s)=2z(t+s),

n—oo



that is, £ = {Z(t) : ¢ > 0} is an entrance path for (7});>¢. For € > 0, choose large enough N > 1
such that

(e e}
0=l = [ e Eu(s) = Bls) s < ¢
for m,n > N. By Fatou’s lemma we get
o0 o0
/ e 257 (s) — i(s)||2ds < liminf [ e 25||@,(s) — Fm(s)]%ds < e.
0 m—oo Jo

It follows that
o0 o0 o0
/0 =293 (s)|2ds < /0 =297, (s)|2ds +/0 =520 (s) — #(s)|2ds < oo.
Then 7 € H and lim,,_, o lzn — 2|2 =0. O

Lemma 2.3 The map J : x +— {Tsz : s > 0} from (H, || -[) to (H,| - ||~) is a continuous dense
embedding and hence (H, || - ||) is separable.

Proof. Since x = lim;_,o+ Tyx, the map J : x — {Tsz : s > 0} is injective. If lim,, ooz, =
x € H, then

o0 o0
| e T~ Tualds < llan — - [ 20 0
0 0
as n — co. Thus J is a continuous embedding. For an arbitrary Z € H we have
oo
IJE(t) — ]2 = / e || Tyi(s) — @(s)||*ds
OT [ee)
= [ e Imats) - s@)Pds + [ e IT L) - 5] s
0 r
< 2( 2 2bot+1)/ 2b8||£i‘(8)“2d8
0
o0
e ML) — 3|2 [ 20 mas,
T

Observe that the first integral on the right hand side goes to zero as r — 07 and for fixed r > 0
the second term goes to zero as t — 0. Then we have ||JZ(t) — Z||~ — 0 as t — 0, and JH is
dense in H. Since H is separable, so is H. O

Theorem 2.1 A family (ut)i>0 of centered probability measures on H satisfying (2.1) is an
SC-semigroup associated with (T}):>¢ if and only if its characteristic functionals are given by

t
ft(a) = exp {/ log ﬁs(a)ds}, t>0,a€ H", (2.5)
0

where (vg)s>0 Is a family of centered infinitely divisible probability measures on H satisfying
Vpyt = Ty, for all it > 0 and

t
/ ds/ |z |2vs(dz) < o0, t>0, (2.6)
0 H®°

and log Us(+) denotes the unique continuous function on H* with logvs(0) = 0 and vs(a) =
exp{log s(a)} for all a € H*.



Proof. It is well-known that the second moment of a centered infinitely divisible probability
measure only involves the Gaussian covariance operator and the Lévy measure. If the centered
probability measures (j¢)i>0 and (vs)s>o are related by (2.5), the Gaussian covariance operators
and Lévy measures of (4¢)¢>0 can be represented as integrals of those of (vs)s>0. This observation
yields that

() = /ot ds [ (w.av(ds). t>0.0€H"

Let {e, : n = 1,2,...} be an orthonormal basis of H = H*. Applying the above equation to
each e, and taking the summation we see

[ el = [(ds [ JelPvitan), o0 (2.7

Thus conditions (2.1) and (2.6) are equivalent for the probability measures (u¢):>0 and (vs)s>0
related by (2.5). Suppose (ut)¢>0 is given by (2.5) with the centered infinitely divisible proba-
bilities (vs)s>o satisfying v,4+ = Tyv, for all 7.t > 0. Then (ut)¢>0 is a centered SC-semigroup
by [2, Theorem 2.3]. Conversely, by [2, Theorems 2.1 and 2.2] any SC-semigroup (j¢)¢>0 has the
expression (2.5) up to the convolution of a family of degenerate probability measures (dp, )t>0-
If (pt)e>0 is a centered SC-semigroup, we must have by =0 for all ¢ > 0. O

Theorem 2.2 A family (pu)i>0 of centered probability measures on H satisfying (2.1) is an
SC-semigroup associated with (T});>o if and only if its characteristic functionals are given by

fi(a) :exp{—/ot¢5(a)ds}, t>0,a € H", (2.8)

where 1)4(+) denotes the unique continuous function on H* with 15(0) = 0 and
exp{—¢s(a)} = /ﬁ SN\ (dT), s> 0,a€ H, (2.9)

where \g is a centered infinitely divisible probability measure on H satisfying
[ a2 0(a5) < . (2.10)

Proof. Let (vs)s>o be given as in Theorem 2.1. In the terminology of Markov processes,
(vs)s>0 is a probability entrance law for the Markov process {T;z : ¢ > 0} with deterministic
motion. Let Fy = H(®>) be the totality of paths {w(t) : t > 0} from (0,00) to H. We endow
Ey with the o-algebra &) generated by the maps w — w(s), s > 0. By Kolmogorov’s existence
theorem, there is a unique probability measure \g on Ey so that {w(t) : ¢ > 0} under Ay is a
Markov process with the same transition semigroup as the process {Tyz : t > 0} and vy is the
image of A\ under w — w(s); see e.g. Sharpe [13, p.6]. Because of the special deterministic
motion mechanism of {T;z : t > 0} we may assume that )¢ is supported by the entrance paths
E. Let &(F) and & (H) denote respectively the traces of & on E and H. Since w — ||w(s)||?
is clearly a non-negative & (F)-measurable function on E,

L * —2bs 2d
w = flwl[~ = . [w(s)|"ds



is an & (£)-measurable function on E taking values in [0, oc]. It is also easy to check that &y(H)
coincides with the Borel o-algebra B(H ) induced by the norm || - ||~. Since (vs)s>0 satisfies (2.6),
we have
o0
[ lwl2o(dw) = [ do(dw) [ e us)| s
E E 0

_ / ds/ =22 vy (d)
0 H
o0 01

= > [ ds [ e TPy da)
n—0"0 H

o0 1
C%Zefz(b*bo)”/ ds/ e 25|z ?vs (da)
=0 0 H

< 00,

IN

s0 A is supported by H and (2.10) holds. The infinite divisibility of A follows immediately
from that of vs. O

3 Differentiable extensions

For a general SC-semigroup given by Theorem 2.2, the function ¢ — fi;(a) is not necessarily
differentiable at t = 0. However, if vq is a centered infinitely divisible probability measure on H
satisfying

/ 2|20 (de) < oo, (3.1)
HO
then
t
fi(a) = exp {/ log ﬁO(T:a)dS}, t>0,a € H", (3.2)
0

defines a centered SC-semigroup (f¢)s>0 such that ¢ — fi(a) is differentiable at ¢ = 0 for all
a € H*. In the sequel, we shall call (u)i>0 a differentiable SC-semigroup if it is given by (3.2).
We shall discuss how to extend a general SC-semigroup on H to a differentiable one on the
entrance space H. For any strongly continuous linear semigroup (T})e>0 on H,

(T17)(s) = &(t +5), s,t>0, (3.3)
defines a semigroup of linear operators (Tt)tZO on H. Since
~ o0 o)
1Tl = [ et + 9)Pds < TP [ e as) P
0 0

we have [T}~ < ||T3]I. Let ([204)21>b0 denote the resolvent of (T1)i>0 and let A denote its

generator with domain D(A) =U,H C H.

Lemn}a 3.1 Let J be defined as in Lemma 2.3. Then JT;x = Tth ~for allt > 0 and x € H
and (T})¢>0 is a strongly continuous semigroup of linear operators on H.



Proof. For t > 0 and x € H we have
JTyx = {TsTyx : s > 0} = {TiTex : s > 0} = Ty Jx,
giving the first assertion. By the proof of Lemma 2.3, |T3i — Z||~ = || JE(t) —&||~ — 0 ast — 0,
that is, (T3)¢>0 is strongly continuous. O
Lemma 3.2 We have U,& = {U,#(s) : s > 0} and AUyZ = {AU,x(s) : s > 0} for all & € H.

Proof. The first assertion follows as we observe that

o0

Ui(s) = / =T, (s)dt = / ¢S TyE(s)dt = Uadi(s),
0 0
and the second follows from the equality AU, & = aU,i— 7. O

Theorem 3.1 All centered SC-semigroups associated with (T});>o satisfying (2.1) are differen-
tiable if and only if all its locally square integrable entrance paths are closable.

Proof. Suppose that all entrance paths € H are closable and (p1¢)¢>0 is an SC-semigroup
given by (2.8). To each & € H there corresponds some #(0) € H such that Z(s) = T,&(0) for
all s > 0. This element is apparently determined by T uniquely. Letting 1y be the image of Ag
under the map & — #(0) we get (3.2). Conversely, if Z = {#(s) : s > 0} € H is not closable,
then

1 t
fe(a) = exp{ -5/ <:z<s>,a>2ds}, £>0.0€H",
0

defines a non-differentiable SC-semigroup. O

Theorem 3.2 All entrance paths for (T;);>o are closable.

Proof. Suppose that £ = {Z(u) : w > 0} is an entrance path for (T})¢>0, where each
Z(u) = {Z(u,s) : s > 0} € H is an entrance path for (7});>0. Then we get

{Z(u,r+5):5 >0} = (1;2)(v) = Z(r +u) = {Z(r + u,s) : s > 0}, (3.4)
where the first equality follows from (3.3) and the second one holds since Z is an entrance path
for (Ti)¢>0. Setting z(0) = {z(s/2,s/2) : s > 0} we have

Tz (0)(5) = #(s/2, u+ 5/2) = 3(u, 5, (3.5)

3.5
where the first equality follows from (3.3) and the second one holds by (3.4). Thus T,,Z(0) = Z(u),
that is, z = {Z(u) : u > 0} is closed by z(0). O

For the infinitely divisible probability measure Ao on H given by Theorem 2.2 we have

Xo(d) = e %@ G e 7, (3.6)
for a functional 1/;0 on H* with representation
- 1 -~ . - -
do(@) = 5 (Ra, a)~ - / (@~ 1 —i(z,a).) M(dz), ae H", (3.7)
H

where R is a nuclear operator on H and ||Z||2 M (di) is a finite measure on H® := H \ {0}; see
e.g. [10].



Theorem 3.3 Let (ut)i>0 be a centered SC-semigroup given by (2.8) and let fiy = Ju. Then
(fit)t>0 is a differentiable centered SC-semigroup associated with (T});>0 and

/~ 12~ iy (d7) —exp{ /% dS} t>0,a€H" (3-8)

H

Proof. By Lemma 2.3, J : H — H is an embedding. Thus (fit)r>0 is an SC-semigroup
associated with (7});>0. Since (T})i>0 is a strongly continuous semigroup, for any a = {a(s) :
s > 0} € H we have by dominated convergence

/Hexp{'/oo _2b5<Tm,&(s)>ds}ut(dx)

= lim exp{ Le=2bk/m Ty nx a(k:/n))},ut(da:)

n—oo

k=
= lim exp{ <m,§:n ! *Qbk/”T* (k/n)>},ut(dx)

n—o0

k=1
= nlLrgoexp{ {log/Hexp{ < Zn 1 _Zbk/"T* (k/n)>}z/s(dx)] ds}
= nh_{]go exp{ Ot {log/ exp {iz::ln_le_Qbk/”<Tk/nac,&(k/n)>}us(dx)} ds}

= exp{/ [log/HeXp{/ 2b“<Tu:c,d(u))du}ys(dx)]ds}.

It follows that

/~ U0~ 711y (d7) _exp{/ {log/ Uz~ gy da:)]ds}, t>0,a€eH. (3.9)

H

Recall from the proof of Theorem 2.2 that vy is the image of A\g under & — Z(s). Then T o = Jvs
and (3.8) follows from (3.9) and (3.6). O

Theorem 3.4 Let (fit)i>0 be a centered SC-semigroup associated with (T t)e>0 satisfying
/~ 1Z]|%f¢(dZ) < o0, t > 0. (3.10)
HO

Then there is a centered SC-semigroup (jit)i>0 associated with (T});>o satisfying (2.1) and
= Ju; for each t > 0.

Proof. By Theorems 3.1 and 3.2, (fit):>o is differentiable, so it has the expression (3.8) for
an infinitely divisible probability Ao on H defined by (3.6). Then we get (u¢):>0 by Theorem
2.2, which clearly satisfies the requirements. O

By Theorems 3.3 and 3.4, centered SC-semigroups associated with (T#)¢>0 and those as-
sociated with (7});>0 are in 1-1 correspondence. Therefore we may reduce some analysis of
non-differentiable centered SC-semigroups to those of differentiable ones studied in [1, 4].



4 Ornstein-Uhlenbeck processes

In this section, we discuss constructions of the OU-processes. By the results of the last section,
a general centered SC-semigroup on H can be extended to a differentiable one on the entrance
space H. Then by Fuhrman and Rockner [4, Theorem 5.3], there is an extension E of H on
which a cadlag realization of the corresponding OU-process can be constructed. In the sequel,
we shall give a modification of the arguments of Fuhrman and Rockner [4] which provides a
smaller extension but still contains a cadlag realization of the OU-process. Fix a > by and
define an inner product on H by

o0
@.0)- = [ (Uails), Uah(s))ds. 3.5 € . (4.1)
0
Let || - ||= be the corresponding norm and let H be the completion of H with respect to || - ||

Lemma 4.1 For I € H we have ||#||— < |[Ua||||Z]|~, so the identity mapping I from (H,|| - |~)
to (H,| -||-) is a continuous embedding.

Proof. By (2.4) and (4.1),
Iz )12 :/0 e~ **||Uad(s)|*ds < HUaHQ/O e~ ||z (s)|*ds = [|Ual?|1Z]12

giving the desired estimate. O

Note that the embedding of (H, | - |l~) into (H, |- |-) is not necessarily Hilbert-Schmidt, so
our extension is different from the one used in [4]. For £ € H we have, by (4.1),

~ 00 00
\Ti])? = /0 e 9| U Ty (5) | 2ds = /0 e 2%|| UL E(2 + 5)||2ds < 2|2

Then each T} has a unique extension to a bounded linear operator T, on H. Since the semigroup
property and strong continuity of (7});>¢ hold on the dense subspace H of H, they also hold on
H, that is, the semigroup of linear operators (T});>o extends (T3)i>o. Let (Us )a>b, denote the
resolvent of (T});>0 and let A denote its generator with domain D(A) = U,H C H. Then D(A)

is a Hilbert space with inner product norm || - || 5 defined by
|1l 2 = Izl - + [ Az[|l-, & € D(A). (4.2)
Lemma 4.2 We have H C D(A) and
1A7]- < 22| Uall® + 1)'?|gll~, 5 € H. (4.3)

Consequently, the identity mapping I from (H, ||-||~) to (D(A), ||| 1) is a continuous embedding.

Proof. Suppose that § € D(A) ¢ D(A). Then § = U, for some # € H. By (4.1) and
Lemma 3.2,

IAg|]> = [ AU.E|>
_ / 25| AU23(s) | 2ds
0
_ / =252 (s) — Unii(s)||2ds
0

< 2APULlP+1) [ e Ui Pds
0
(Ul + V2.

10



Since D(A) is a dense subset of (H,||-||~), we have H C D(A) by (4.2) and the above inequality
remains true for all gy € H. O

Now suppose that (u¢)e>0 and (fit)e>0 are the SC-semigroups described in Theorem 3.3. Let
[y be the unique probability measure on H whose restriction to H is fiz. Then (fit)¢>0 is an
SC-semigroup associated with (73);>0. By (3.8),

/7 1) iy (dz) —exp{ /wo ds} t>0,ae H C H*, (4.4)
H

where 1(-) is defined by (3.6). Let (Q)i>0 be the generalized Mehler semigroup defined by (1.5)

from (NTt)t>0 and (fi¢)¢>0. By [4, Theorem 5.1], there is a cadlag H-valued process {Yt t >0}

with Yy = 0 and with independent increments such that Y} Y has distribution ~;_, with
Hi_p(@) = exp{—(t — r)bo(a)}, t>r>0,aec H" (4.5)

By the strong continuity of (7;)¢>0 and Lemma 4.2, s — T sAY, is a right continuous H-valued
function of s € [0,%]. Then for any given Z € H we may define the cadlag H-valued process

_ _ - t_ _~
X, =Tz +Y +/ T,_ AYyds, t>0. (4.6)
0

Lemma 4.3 The H-Valued_random variable X; has distribution Qf(i, -) for every t > 0. In
particular, if x € JH, then Xy € JH a.s. for every t > 0.

Proof. We first prove that X( ) .= X, — T,z has distribution ae(-) = QY(0,-). By the right
continuity of s — Tj_ SAY,, we have

X = Vit LS Ty gV — it [T AV = X
k’ 1
asn — o0o. Let Dy =0 and Dy, = T(l_n/n)tfl +- 4+ T(l_k/n)tfl. Then we have
X" = Yot 4D - D2)Yy/n 4+ + (Dn-1 — D) Y 1y1/n + DY /]
= (?nt/n - ff(n—l)t/n) +ot (}}Qt/n - ﬁ/n) + (Y/;f/n - 5}0)
+n_1t[D1(}~/t/n - i/b) + D2(}~/2t/n - Y/;5/71) +
+Dn(}~/nt/n - Y/v(n—l)t/n)]
= (I + n_ltDl)(f/;f/n - };E)) + (I + n_ltD2)(}~/2t/n - Y/;f/n) +
+(I + n_ltDn)(Y/nt/n - i/(n—l)t/n)]‘
It follows that

Bexp {i(X("a)-} = Bexp {i (T + 07 D) Faupn ~ Vs 1yya)-0)- |
k=1

- Eexp{zz (Fiajo = Vis o). (1 + 07 1tD)a) |
k=

3

~ exp { : gjl Jo((I + nltDk)*a)}.
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In view of (3.7), to(-) is uniformly continuous on any bounded subset of H*. Observe also that
IT( s jmye — (I +n~"tDy) al|-
t n

:Hlk/n_ a— EZ lj/nA i

1-G-1)/n)t A
Z/ |75 A% — T}, A% - ds

1—j/n)t

< tesup{||TA%a — T A%a||l- : 0 < ty,tp < tand [ta — 1] < t/n},

IN

which goes to zero as n — oo. Thus we have

Eexp{i()zt(o),@_} = JLIEOEeXp{M 725(71),&)_}
) e+ _
= Jm eXp{ T > wO(Tu—k/n)ta)}

so that )_(t(o) has distribution Q"(0,-). Therefore, X; has distribution Q}(z,-). If Z = Jx for
some z € H, then Tiz = TyJx = JTyx € JH by Lemma 3.1. Since ji;(-) is supported by JH, so
is QY (z,-) and hence a.s. X; € JH. O

Theorem 4.1 The process {X; :t > 0} defined by (4.6) is a cadlag strong Markov process with
transition semigroup (Q})t>0.

Proof. By the construction (4.6), {X; : t > 0} is adapted to the filtration F; := o({Vs : 0 <
s <t}). For r,t > 0,

_ _ - _ o~ r+t _ -
Xept — i Xy = Yoy — LY, + / Ty sAYsds
'
- - r+t _ _ o~ -
= W= ¥+ [ T AW - Vs,
IS

Since {Y/}H —Y, :t> 0} given F, is a process with independent increments and has the same
law as {Y; : t > 0}, Lemma 4.3 implies that

E eXP{ r-i-tv a)- }

]:T} = exp{ (X,,T;a) /onads}

Thus {X; : ¢t > 0} is a Markov process with transition semigroup (Q")¢>0. The strong Markov
property holds since (Q});>o is Feller. O

Now let & = Jx for some z € H. In this case, X; € JH a.s. by Lemma 4.3. Recall that
J:H— JH C HC Handlet X; = 1JH(Xt)J_1(Xt) where J~1 : JH — H denotes the inverse
map of J. Then {X; : ¢t > 0} is an OU-process with transition semigroup (Q}):>o and Xy = .
This gives a construction of the OU-process {X; : t > 0} from the cadlag strong Markov process
{X; : t > 0}. In general, {X; : t > 0} does not have right continuous modification in H. A
similar construction in the measure-valued setting has been used in [6] to prove the non-existence
of right continuous realization of a general immigration process.
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5 Brownian transition semigroups

We have seen that a general SC-semigroup on H can always be extended to a differentiable one
in the entrance space H and a cadlag realization of the corresponding OU-process can always be
constructed in an extension H of H. In this section, we provided some explicit characterization
for the non-negative elements of L?(IR%) and L?(0, o) constructed respectively from L?(IR?) and
L?(0,00). It seems that the explicit characterization for all elements of L?(IR?) and L?(0, 00) is
much more sophisticated.

We first consider the case where (7})¢>0 is the transition semigroup of the standard Brownian
motion on R?. Let H := L?>(IR?) be defined from H := L*(IR%) and (T});>0. Let

1
ga(s,x) = Wexp{—kv\g/ls}, s> 0,z € R, (5.1)
where | - | denote the Euclidean norm on IR?, and let S(IR?) be the set of signed-measures y on

IR? with total variation measures ||u| satisfying

l
[ s [ i) [ gazs.y—o)luldy) < o (5.2

for some I > 0. Let S, (IR%) and L2 (IRY) denote respectively the subsets of non-negative
elements of S(IRY) and L?(IRY).

Theorem 5.1 There is a 1-1 correspondence between # € L% (IR?) and p € S (IR?) which is
given by

z(s, ) = /le ga(s, — z)u(dz), s>0. (5.3)

Proof. If 1 € S (IR?), then (5.3) defines a non-negative entrance path # for (7});>0. Since

[ = [as [ ([ asu—2n) a
= /Ol ds /le dy /le 9a(s,y — x)u(dr) /Rd 9s(y — z)p(dz)
= /Ol ds /]Rd wu(dz) /Rd 9d(2s,z — x)u(dz)

we have # € L2 (IR?). Conversely, suppose that # € L2 (IR?) and let x4(dy) = #(s,y)dy. Then
(Ks)s>0 is a measure-valued entrance law for (7;);>0. By the property of the Brownian semigroup,
there is a measure y on IR? such that ks = uT}; see e.g. Dynkin [3, p.80]. Thus Z(s,-) has the
representation (5.3), and (5.2) follows from (2.2) and the calculations above. O

When d = 1, we can give a necessary and sufficient condition for (5.2). Observe that for
0 <1 <1 we have

e d Pl 2/4}ds = — 2/4
[ sy - s < [ 5o expl~y — 2)?/4}ds = - exp{~(y ~ 2)?/4),
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and for [ > 1 we have
[ n@s.y—apis> [ expi—ty—a/apds = L Loty -0/}
0 ’ 1 2vnl 2/l
By Lemma 2.1 and the proof of Theorem 5.1, (5.2) holds if and only if

[ ) [ exp{=(y ~ 2)?/4}nldy) < oo. (54)
R R

Theorem 5.1 gives a complete characterization of non-negative elements of L? (IRY). By this
result, (5.3) also defines an element of L2(IRY) for u € S(IR?). Unfortunately, this representation
does not give all elements of L?(IR?). To see this, take any sequence {az} C IR and observe that

oo
/ 6_2bsd8/ [91(s,y — 2) = g1(s,y)]*dy — 0
0 R
as  — 0. Then for each k > 1 there exists ¢, € (0,k~2) such that
o0
it [T s [ sy -2 - glsPy <2 (5.5)

Let 7, = k~! and 2 = k= + ;. Then 2, > ) > 2p11 > Tpyq > ... decrease to zero. By (5.5)
and the shift invariance of the Lebesgue measure it is easy to see that

.'i'n(S,‘) = Zak[91(57'_2k)—91(57‘_$k)]7 S>O7
defines a Cauchy sequence {#,} C L?(IR) with limit # € L2(IR) given by
)= Z arlgi(s,- — zx) — g1(s,- — xx)], s> 0. (5.6)

To represent this element in the form of (5.3) we need to let

o0 o0
n= Z ak‘(szk - Z ak6$k7
k=1 k=1

which is clearly not belonging to S(IR) in general.

Now we consider the case where (7});>¢ is the transition semigroup of the absorbing barrier
Brownian motion in D = (0,00). Let y(dy) = (1 — e ¥’ )dy and let L*(D,~) be defined from
L?*(D,~) and (T})¢>0. Let

ps(ﬂf,y) Zgl(s,y—x)—gl(s,y+$), Sa$ay>0’ (57)
and let
ks(y) = 271 (d/da)ps (@, y) oo+ = y91(s,9)/5, 5,y > 0. (5.8)

Let S(D, ) be the set of signed-measures p on D with total variation measures |u| satisfying

[as [ ([ peteplultan) sia) < oo (59)

for some [ > 0. Let Si(D,~) and L 2 (D,~) denote respectively the subsets of non-negative
elements of S(D,~) and L?(D,~).
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Theorem 5.2 There is a 1-1 correspondence between I € ii(D,y) and (a,p) € [0,00) X
S+(D,~) which is given by

#(s,) = aks() —|—/Dps(z,-),u(dz), s> 0. (5.10)

Proof. If (a, ) € [0,00) x S4(D, ), then (5.10) defines an entrance path & for (7})¢>¢. Since

2
y _2/8 1
ks(y)3ds < Y /sds =
/ s / I3 § 2my?’

(aeas = [as [ (aks)+ [ piteupntaz) sty
0 D D
2a> /l ds/ ks(y)?y(dy)
+2/ dS/ (/ ps(z,9)p (d2)>27(dy)

that is, # € L2 (D,v). Conversely, suppose that & € L2 (IR) and let #(dy) = #(s,y)dy. Then
(ks)s>0 is a measure-valued entrance law for (7});>0. By the property of the absorbing barrier
Brownian motion, there is a constant a > 0 and a measure p on D such that (5.10) holds; see
e.g. [9, Lemma 1.1]. Since

/%/(/mwl(> (@) < [ ats, )1Pds, < oc.

we have p € S(D,v). O

we have

IN

By the general results of section 4, an OU-process associated with the absorbing barrier
Brownian motion in D = (0, 00) always has cadlag realization in L?(D,~) D L?(D,~) defined
from L%(D,~). It was observed in [2] that in a special case the process also has cadlag realization

in S(D,~).
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