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1 Introduction

To put the investigation into perspectives, we first give a brief review of some recent progresses
in the study of generalized Mehler semigroups and Ornstein-Uhlenbeck processes. Suppose that
(S, +) is a Hausdorff topological semigroup and (Qt)t≥0 is a transition semigroup on S satisfying

Qt(x1 + x2, ·) = Qt(x1, ·) ∗Qt(x2, ·), t ≥ 0, x1, x2 ∈ S, (1.1)

where “∗” denotes the convolution operation. A family of probability measures (µt)t≥0 on S is
called a skew convolution semigroup (SC-semigroup) associated with (Qt)t≥0 if it satisfies

µr+t = (µrQt) ∗ µt, r, t ≥ 0. (1.2)
1Supported by NSFC (No. 10131040 and No. 10071008) and RFDP (No. 2000002710).
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This equation is of interest since it is satisfied if and only if

Qµ
t (x, ·) := Qt(x, ·) ∗ µt(·), t ≥ 0, x ∈ S, (1.3)

defines another transition semigroup (Qµ
t )t≥0 on S. In the special case where S is the space of

all finite measures on some given measurable space, (Qt)t≥0 corresponds to a measure-valued
branching process and (Qµ

t )t≥0 corresponds to an immigration process. In this setting, it was
proved in [24] that SC-processes are in one-to-one correspondence with infinitely divisible prob-
ability entrance laws for the semigroup (Qt)t≥0; see also [27]. In [25], a characterization of such
laws for the so-called Dawson-Watanabe superprocesses is given. With different formulations,
measure-valued immigration processes corresponding to closable infinitely divisible probability
entrance laws have been studied by a number of authors; see e.g. [6, 7, 12, 17, 21, 23, 34, 35].

The second well-studied case is where S = H is a real separable Hilbert space and Qt(x, ·) ≡
δTtx for a semigroup of bounded linear operators (Tt)t≥0 on H. In this case, we can rewrite
equation (1.2) as

µr+t = (µr ◦ T−1
t ) ∗ µt, r, t ≥ 0, (1.4)

and the transition semigroup (Qµ
t )t≥0 is given by

Qµ
t f(x) :=

∫
H

f(Ttx + y)µt(dy), x ∈ H, f ∈ B(H), (1.5)

where B(H) denotes the totality of bounded Borel measurable functions on H. The semigroup
(Qµ

t )t≥0 defined by (1.5) is called a generalized Mehler semigroup associated with (Tt)t≥0, which
corresponds to a generalized Ornstein-Uhlenbeck process (OU-process). This definition of the
generalized OU-process was given in [1]. The similarity between this formulation and that of
the immigration process was first noticed by L.G. Gorostiza (1999, personal communication);
see also [5, 33]. In the setting of cylindrical probability measures, it was proved in [1] that
an SC-semigroup (µt)t≥0 is uniquely determined by an infinitely divisible probability measure
on H if the function t 7→ µ̂t(a) is differentiable at t = 0 for all a ∈ H, where µ̂t denotes the
characteristic functional of µt. Constructions of Gaussian and non-Gaussian generalized OU-
processes with differentiable SC-semigroups were given respectively in [1, 18]. A characterization
for general non-differentiable SC-semigroups was given in [9], where it was also observed that
the corresponding OU-processes may have no right continuous realizations; see also [30, 33] for
the study of non-differentiable SC-semigroups. A general construction of such OU-processes was
given in [8]. Some powerful inequalities for differentiable generalized Mehler semigroups were
proved recently by [32].

Another rich class of generalized OU-processes can also be formulated by (1.4) and (1.5) if
we replace H by the space of Schwartz distributions S ′(IRd). Some of the S ′(IRd)-valued OU-
processes arise as high density fluctuation limits of measure-valued branching processes with or
without immigration; see e.g. [2, 3, 8, 14, 15, 16, 20, 26, 36]. As pointed out in [36, p.308],
for sufficiently regular semigroup (Tt)t≥0, the S ′(IR)-valued generalized OU-process usually has
an L2(IR)-valued version. Some of those processes can also be regarded as multi-parameter
OU-processes and defined by stochastic integrals; see [36, 39, 40]. It was observed in [8, 9]
that OU-processes in L2(IR) or L2(0,∞) corresponding to non-differentiable skew convolution
semigroups may arise as fluctuation limits of superprocesses with measure-valued branching
catalysts. In general, the S ′(IRd)-valued OU-processes really live in the space of distributions
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when d ≥ 2, and it is neither convenient nor natural to treat them as processes in Hilbert
spaces. Therefore, generalized Mehler semigroups and OU-processes on the space S ′(IRd) with
d ≥ 2 need to be studied separately. Indeed, those distribution-valued OU-processes involve
interesting mathematical structures. For example, in [4, 5] the self-intersection local times of
the S ′(IRd)-valued generalized OU-processes were studied.

This work arose from the curiosity in whether or not an S ′(IR)-valued generalized OU-process
associated with the Brownian semigroup always has a well-defined L2(IR)-valued version. As
a testing example, we study the fluctuation limits of the superprocess with dependent spatial
motion over the real line recently constructed in [10, 37, 38]. The model is described as follows.
Let M(IR) be the space of finite Borel measures on IR endowed with the weak convergence
topology. Let C(IR) be the set of bounded continuous functions on IR. Let c ≥ 0 be a non-
negative constant and σ(·) a bounded non-negative Borel function on IR. Given a square-
integrable function h ∈ C(IR), let

ρ(x) =
∫

IR
h(y − x)h(y)dy, x ∈ IR, (1.6)

and a = c2 + ρ(0). We assume in addition that h is continuously differentiable with square-
integrable derivative h′. Then ρ is twice continuously differentiable with bounded derivatives
ρ′ and ρ′′. Based on the results of [10, 37, 38], we shall prove that there is an M(IR)-valued
diffusion process {Xt : t ≥ 0} such that, for each φ ∈ C2(IR),

Mt(φ) = 〈φ,Xt〉 − 〈φ,X0〉 −
1
2

a

∫ t

0
〈φ′′, Xs〉ds, t ≥ 0, (1.7)

is a continuous martingale with quadratic variation process

〈M(φ)〉t = σ

∫ t

0
〈φ2, Xs〉ds +

∫ t

0
ds

∫
IR
〈h(z − ·)φ′, Xs〉2dz. (1.8)

We call {Xt : t ≥ 0} a superprocess with dependent spatial motion (SDSM) with parameters
(a, ρ, σ), where a represents the speed of the underlying motion, ρ represents the interaction of
migration between the “particles” and σ represents the branching density. Clearly, the SDSM
reduces to a usual super Brownian motion with independent spatial motion when ρ(·) ≡ 0; see
e.g. [6]. The SDSM is also related with McKean-Vlasov type interacting diffusion systems and
superprocess arising from stochastic flows; see e.g. [22, 28].

In the study of high density fluctuation limits of measure-valued branching processes with
independent spatial motion, techniques of Laplace functionals play an important role; see e.g.
[9, 15, 16, 20]. Since the Laplace functionals are not neatly represented for the SDSM, we have
to find some replacements. Our approach is to embed the fluctuation processes into a family of
continuous martingales and observe those martingales as time changed Brownian motions. By
a weak law of large numbers, we show that the quadratic variation processes of the martingales
converge to a deterministic increasing process, from which we get the central limit theorem of
the finite-dimensional distributions. The tightness of the fluctuation processes is proved using
a criterion of [13]. Our fluctuation limit theorems lead to a class of S ′(IR)-valued generalized
OU-processes. Those processes have differentiable skew convolution semigroups, but we cannot
define the function-valued versions for some of them in the natural way. Therefore, it is not
convenient to deal with their function-valued versions even they do exist. This phenomenon
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seems new and shows that the study of generalized Mehler semigroups and OU-processes on the
space S ′(IRd) for all dimension numbers d ≥ 1 is of interest. The complete description of all
generalized Mehler semigroups on the space S ′(IRd) is still a challenging open problem.

Notation: Let Cn(IRm) denote the set of continuous functions on IRm with bounded continuous
partial derivatives up to the n-th order. Let φp(x) = (1 + x2)−p for x ∈ IR and p > 0. Let
Cp(IRm) be the set of functions f ∈ C(IRm) with ‖f/φ⊗m

p ‖ < ∞, where φ⊗m
p (x1, · · · , xm) =

φp(x1) · · ·φp(xm). Let C2
p(IR) denote the set of twice continuously differentiable functions f ∈

Cp(IR) with ‖f ′/φp‖+‖f ′′/φp‖ < ∞. In particular, we have φp ∈ C2
p(IR). We use the superscript

“+” to denote the subsets of non-negative elements of the function spaces, e.g. C2(IR)+. We
also write C(E) for the totality of all bounded continuous functions on a general topological
space E. For a function f and measure µ, we write 〈f, µ〉 for

∫
fdµ if the integral is meaningful.

Let Mp(IR) be the set of all σ-finite Borel measures on IR satisfying 〈µ, φp〉 < ∞. We define
a topology on Mp(IR) by the convention that µn → µ if and only if 〈µn, f〉 → 〈µ, f〉 for all
f ∈ Cp(IR). Let S(IR) denote the Schwartz space on IR; see e.g. [19, p.305], and let S ′(IR)
denote the dual space of S(IR). We also write 〈·, ·〉 for the duality on (S ′(IR), S(IR)). Let
(Tt)t≥0 denote the transition semigroup of a standard Brownian motion.

Because of the presence of the derivative φ′ in the variation process (2.2), it is not obvious
how extend the definition of {Mt(φ) : t ≥ 0} to a general function φ ∈ C(IR). However, following
the method of [36], we can still define the stochastic integral∫ t

0

∫
IR

φ(s, x)M(ds, dx), t ≥ 0, (1.9)

if both φ(s, x) and φ′x(s, x) are belong to C([0,∞)× IR).
In section 2 we recall some basic characterizations of the SDSM. The convergence of finite

dimensional distributions is established in section 3. In section 4 we discuss tightness and weak
convergence on the path space. Two extreme cases are discussed in section 5.

2 Characterizations of the SDSM

We here recall the existence and some characterizations of the SDSM given in [10]. For a function
F on M(IR) let

δF (µ)
δµ(x)

= lim
r→0+

1
r

[F (µ + rδx)− F (µ)], x ∈ IR, (2.1)

if the limit exists. Let δ2F (µ)/δµ(x)δµ(y) be defined in the same way with F replaced by
δF/δµ(y) on the right hand side. Define the operator L by

LF (µ) =
a

2

∫
IR

d2

dx2

δF (µ)
δµ(x)

µ(dx)

+
1
2

∫
IR2

ρ(x− y)
d2

dxdy

δ2F (µ)
δµ(x)δµ(y)

µ(dx)µ(dy)

+
1
2

∫
IR

σ(x)
δ2F (µ)
δµ(x)2

µ(dx), (2.2)
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which acts on a class of continuous functions on M(IR). The domain of the generator L defined
by (2.2) includes all functions of the form Fm,f (µ) := 〈f, µm〉 with f ∈ C2(IRm) and all functions
of the form Ff,φ(µ) := f(〈φ, µ〉) with f ∈ C2(IR) and φ ∈ C2(IR). Let D(L) denote the collection
of all those functions, which is a subset of the domain of L. By Theorems 2.2 and 5.2 in [10] we
have

Theorem 2.1 There is an M(IR)-valued diffusion process (Xt,Gt,Qµ) with transition semi-
group (Qt)≥0 generated by the closure of (L, D(L)).

The diffusion process given by the above theorem is the so-called SDSM. A useful martingale
characterization of the SDSM is given in the following

Theorem 2.2 A continuous M(IR)-valued process {Xt : t ≥ 0} is a diffusion process with
semigroup (Qt)≥0 if and only if for each φ ∈ C2(IR),

Mt(φ) := 〈φ,Xt〉 − 〈φ,X0〉 −
a

2

∫ t

0
〈φ′′, Xs〉ds, t ≥ 0, (2.3)

is a continuous martingale with quadratic variation process

〈M(φ)〉t =
∫ t

0
〈σφ2, Xs〉ds +

∫ t

0
ds

∫
IR
〈h(z − ·)φ′, Xs〉2dz. (2.4)

Proof. Suppose that {Xt : t ≥ 0} is a solution of the (L, D(L))-martingale problem, that is,

F (Xt)− F (X0)−
∫ t

0
LF (Xs)ds, t ≥ 0, (2.5)

is a continuous martingale for every F ∈ D(L). Comparing the martingales related to the
functions µ 7→ 〈φ, µ〉 and µ 7→ 〈φ, µ〉2 and using Itô’s formula we see that (2.3) is a continuous
martingale with quadratic variation process (2.4). Conversely, suppose that Qµ is a probabil-
ity measure on C([0,∞),M(IR)) under which (2.3) is a continuous martingale with quadratic
variation process (2.4) for each φ ∈ C2(IR). If

Ff,{φi}(ν) := f(〈φ1, ν〉, · · · , 〈φn, ν〉)

for f ∈ C2(IRn) and {φi} ⊂ C2(IR), we have

LFf,{φi}(ν) =
1
2
ρ(0)

n∑
i=1

f ′i(〈φ1, ν〉, · · · , 〈φn, ν〉)〈φ′′i , ν〉

+
1
2

n∑
i,j=1

f ′′ij(〈φ1, ν〉, · · · , 〈φn, ν〉)
∫

IR2
ρ(x− y)φ′i(x)φ′j(y)µ(dx)µ(dy)

+
1
2
σ

n∑
i,j=1

f ′′ij(〈φ1, ν〉, · · · , 〈φn, ν〉)〈φiφj , ν〉.

By Itô’s formula we see that (2.5) is a continuous martingale if F = Ff,{φi}. Then the theorem
follows by an approximation of an arbitrary F ∈ D(L). 2

The following theorem can be proved by similar arguments as Lemma 4.6 of [10].

5



Theorem 2.3 For t ≥ 0 and φ ∈ C1(IR) we have a.s.

〈φ,Xt〉 = 〈Tatφ,X0〉+
∫ t

0

∫
IR

Ta(t−s)φ(x)M(ds, dx). (2.6)

To study the fluctuation limits of the SDSM, we need the following moment estimate.

Lemma 2.1 Let β(p) = ‖φ′p/φp‖ + ‖φ′′p/φp‖ and let α = β(p)2(c2 + ‖ρ‖)/2. Then for any
f ∈ Cp(IRm) and any integer m ≥ 1,∫

M(IR)
〈f, νm〉Qt(µ, dν) ≤ m2meαm2t(1 + ‖σ‖m)‖f/φ⊗m

p ‖
m∑

k=1

〈φp, µ〉k, (2.7)

where ‖ · ‖ denotes the supremum norm.

Proof. Let (Pm
t )t≥0 be the transition semigroup on IRm generated by the differential operator

Gm :=
a

2

m∑
i=1

∂2

∂x2
i

+
1
2

m∑
i,j=1,i6=j

ρ(xi − xj)
∂2

∂xi∂xj
. (2.8)

It is easy to check that |Gmφ⊗m
p (x)| ≤ αm2φ⊗m

p (x), and hence

d

dt
P⊗m

t φ⊗m
p = P⊗m

t Gmφ⊗m
p ≤ αm2φ⊗m

p .

By a comparison theorem we get Pm
t φ⊗m

p ≤ eαm2tφ⊗m
p for all t ≥ 0. As in the proof of Lemma

2.1 of [10] we have∫
M(IR)

〈f, νm〉Qt(µ, dν) ≤ ‖f/φ⊗m
p ‖

∫
M(IR)

〈φ⊗m
p , νm〉Qt(µ, dν)

≤ eαm2t‖f/φ⊗m
p ‖

m−1∑
k=0

2−kmk(m− 1)k‖σ‖k〈φp, µ〉m−k,

from which the desired estimate follows. 2

3 A fluctuation limit theorem

We fix the constant p > 1/2. For each θ ≥ 1, let ρθ(·) be defined by (1.1) with h(·) replaced
by h(·)/

√
θ and let aθ = c2 + ρ(0)/θ. Let Lθ be defined by (2.2) with a and ρ(·) replaced

respectively by aθ and ρθ(·). Let (Ω ,A,P ) be a complete probability space on which an SDSM
{X(θ)

t : t ≥ 0} is defined with generator Lθ and initial state X
(θ)
0 = µθ ∈ M(IR). We define the

S ′(IR)-valued process {Z(θ)
t : t ≥ 0} by

〈φ,Z
(θ)
t 〉 = (〈φ,X

(θ)
t 〉 − θ〈φ, λ〉)/

√
θ, φ ∈ S(IR). (3.1)

The following lemma establishes a weak law of large numbers for {X(θ)
t : t ≥ 0}.
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Lemma 3.1 Suppose that µθ/θ → µ ∈ Mp(IR) as θ → ∞. Then for t ≥ 0 and φ ∈ C2
p(IR), we

have 〈φ/θ, X
(θ)
t 〉 → 〈T c

t φ, µ〉 in L2(Ω ,P ) as θ →∞, where T c
t = Tc2t.

Proof. Let M (θ)(ds, dx) denote the stochastic integral with respect to the martingale measure
determined by (2.3) with {Xt : t ≥ 0} replaced by {X(θ)

t : t ≥ 0}. Then for fixed t ≥ 0 and
φ ∈ C2

p(IR),

M
(θ)
t,u (φ) :=

∫ t∧u

0

∫
IR

Taθ(t−s)φ(x)M (θ)(ds, dx), u ≥ 0 (3.2)

is a continuous martingale with quadratic variation process

〈M (θ)
t (φ)〉u =

∫ t∧u

0
〈σ(Taθ(t−s)φ)2, X(θ)

s 〉ds

+
∫ t∧u

0
ds

∫
IR
〈h(z − ·)Taθ(t−s)(φ

′), X(θ)
s /

√
θ〉2dz. (3.3)

It follows that

E{〈M (θ)
t (φ/θ)〉t} =

1
θ

∫ t

0
E{〈σ[Taθ(t−s)φ]2/θ, X(θ)

s 〉}ds

+
1
θ

∫ t

0
ds

∫
IR

E{〈h(z − ·)Taθ(t−s)(φ
′)/θ, X(θ)

s 〉2}dz. (3.4)

Observe that φ′′p(x) ≤ (4p + 6)φp(x). Thus there is a constant Ct ≥ 0 such that

|Taθ(t−s)φp(x)| ≤ Ctφp(x), x ∈ IR, θ ≥ 1, 0 ≤ s ≤ t.

Then we get by Lemma 2.1 that

E{〈σ[Taθ(t−s)φ]2/θ, X(θ)
s 〉} ≤ Ct‖σφ2/φp‖E{〈φp/θ, X(θ)

s 〉}
≤ Ct‖σφ2/φp‖eαt(1 + ‖σ‖)〈φp/θ, µθ〉. (3.5)

By Schwarz’ inequality and a similar procedure as the above one finds that∫
IR

E{〈h(z − ·)Taθ(t−s)(φ
′)/θ, X(θ)

s 〉2}dz

≤
∫

IR
E{〈Taθ(t−s)(φ

′)/θ, X(θ)
s 〉〈h(z − ·)2Taθ(t−s)(φ

′)/θ, X(θ)
s 〉}dz

≤ ρ(0)C2
t ‖φ′/φp‖2E{〈φp/θ, X(θ)

s 〉2}
≤ ρ(0)C2

t ‖φ′/φp‖2e4αt(1 + ‖σ‖2)(〈φp/θ, µθ〉+ 〈φp/θ, µθ〉2). (3.6)

Combining (3.4), (3.5) and (3.6) we see that

E{(〈φ/θ, X
(θ)
t 〉 − 〈Taθtφ/θ, µθ〉)2} = E{〈M (θ)

t (φ/θ)〉t} → 0

uniformly on each finite interval of t ≥ 0 as θ →∞. Observe also that

|〈Taθtφ/θ, µθ〉 − 〈T c
t φ, µ〉|

≤
∫ aθt

c2t
〈Ts|φ′′|/θ, µθ〉ds + |〈T c

t φ/θ, µθ〉 − 〈T c
t φ, µ〉|

≤ ‖φ′′/φp‖
∫ (c2+ρ(0)/θ)t

c2t
〈Tsφp/θ, µθ〉ds + |〈T c

t φ/θ, µθ〉 − 〈T c
t φ, µ〉|.
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Clearly, the right hand side also goes to zero as θ →∞. Consequently,

E{(〈φ/θ, X
(θ)
t 〉 − 〈T c

t φ/θ, µ〉)2} → 0

uniformly on each finite interval of t ≥ 0 as θ →∞. 2

Theorem 3.1 Suppose that σ ∈ C2(IR)+ and h ∈ C2(IR). If ζθ := (µθ − θλ)/
√

θ → ζ ∈ S ′(IR)
as θ → ∞, then the distribution of Z

(θ)
t converges to a probability measure Q̃t(ζ, ·) on S ′(IR)

determined by∫
S′(IR)

ei〈φ,ν〉Q̃t(ζ, dν) = exp
{

i〈T c
t φ, ζ〉 − 1

2

∫ t

0
〈σ(T c

s φ)2, λ〉ds

− 1
2

∫ t

0
ds

∫
IR
〈h′(z − ·)T c

s φ, λ〉2dz

}
. (3.7)

Proof. We use the notation introduced in the proof of Lemma 3.1. By (2.6) and (3.2) we
have

M
(θ)
t,t (φ/

√
θ) = (〈φ,X

(θ)
t 〉 − 〈Taθtφ, µθ〉)/

√
θ, t ≥ 0.

It follows that

〈φ,Z
(θ)
t 〉 = M

(θ)
t,t (φ/

√
θ) + (〈Taθtφ, µθ〉 − 〈T c

t φ, µθ〉)/
√

θ + 〈T c
t φ, ζθ〉. (3.8)

That is, the main part of 〈φ,Z
(θ)
t 〉 can be embedded into the continuous martingale (3.2). By

(3.3),

〈M (θ)
t (φ/

√
θ)〉u =

∫ t∧u

0
〈σ(Taθ(t−s)φ)2, X(θ)

s /θ〉ds

+
∫ t∧u

0
ds

∫
IR
〈h(z − ·)Taθ(t−s)(φ

′), X(θ)
s /θ〉2dz. (3.9)

Under the assumptions, we have µθ/θ → λ. Thus by Lemma 3.1,

〈M (θ)
t (φ/

√
θ)〉u →

∫ t∧u

0
〈σ(T c

t−sφ)2, λ〉ds +
∫ t∧u

0
ds

∫
IR
〈h(z − ·)T c

t−s(φ
′), λ〉2dz (3.10)

in L2(Ω ,P ) as θ → ∞. By a representation of continuous martingales, there is a standard
Brownian motion {B(θ)

t,φ (u) : u ≥ 0} defined on an extension of (Ω ,A,P ) such that M
(θ)
t,u (φ/

√
θ) =

B
(θ)
t,φ (〈M (θ)

t (φ/
√

θ)〉u) for all u ≥ 0; see e.g. [31, p.171]. Thus (3.10) implies that the distribution

of M
(θ)
t,t (φ/

√
θ) converges to the Gaussian distribution with mean zero and variance∫ t

0
〈σ(T c

t−sφ)2, λ〉ds +
∫ t

0
ds

∫
IR
〈h(z − ·)T c

t−s(φ
′), λ〉2dz

=
∫ t

0
〈σ(T c

t−sφ)2, λ〉ds +
∫ t

0
ds

∫
IR
〈h(z − ·)(T c

t−sφ)′, λ〉2dz

=
∫ t

0
〈σ(T c

t−sφ)2, λ〉ds +
∫ t

0
ds

∫
IR
〈h′(z − ·)T c

t−sφ, λ〉2dz. (3.11)
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On the other hand, observe that

1√
θ
|〈Taθtφ, µθ〉 − 〈T c

t φ, µθ〉| ≤ 1√
θ

∫ aθt

c2t
〈Ts|φ′′|, µθ〉ds

≤ 1√
θ
‖φ′′/φp‖

∫ (c2+ρ(0)/θ)t

c2t
〈Tsφp, µθ〉ds. (3.12)

The right hand side clearly goes to zero as θ →∞. In view of (3.8), the distribution of 〈φ,Z
(θ)
t 〉

converges to the Gaussian distribution with mean 〈T c
t φ, ζ〉 and variance (3.11), giving the desired

result. 2

It is easy to see that (3.7) defines a transition semigroup (Q̃t)t≥0 on S ′(IR). Clearly, Theorem
3.1 implies that the finite dimensional distributions of {Z(θ)

t : t ≥ 0} converge as θ →∞ to those
of an S ′(IR)-valued Markov process {Zt : t ≥ 0} with transition semigroup (Q̃t)t≥0. Note that
Nt = Q̃t(0, ·) satisfies

Nr+t = (T c
t Nr) ∗Nt, r ≥ 0, t ≥ 0, (3.13)

where T c
t Nr denotes the image of Nr under the adjoint operator of T c

t on S ′(IR). That is, (Q̃t)t≥0

is a generalized Mehler semigroup associated with (T c
t )t≥0. In view of (3.7), the characteristic

functional of Nt is differentiable for any testing function φ ∈ S(IR).

4 Weak convergence and generalized OU-diffusions

In this section, we prove that the process {Z(θ)
t : t ≥ 0} defined by (3.1) converges weakly on

the space C([0,∞),S ′(IR)). Therefore, the limiting generalized OU-process {Zt : t ≥ 0} has a
diffusion realization.

Lemma 4.1 Suppose that ζθ := (µθ − θλ)/
√

θ → ζ ∈ S ′(IR) as θ →∞. Then {Z(θ)
t : t ≥ 0; θ ≥

1} is a tight family in C([0,∞),S ′(IR)).

Proof. We use the notation introduced in the proof of Lemma 3.1. By (3.9),

E{M (θ)
t,t (φ/

√
θ)2} =

∫ t

0
E{〈σ(Taθ(t−s)φ)2/θ, X(θ)

s 〉}ds

+
∫ t

0
ds

∫
IR

E{〈h(z − ·)Taθ(t−s)(φ
′/θ), X(θ)

s 〉2}dz.

In view of (3.5) and (3.6), this value is bounded above by a locally bounded function C1(φ, t)
of t ≥ 0. From (3.8) we see that E{〈φ,Z

(θ)
t 〉2} is bounded above by a locally bounded function

C2(φ, t) of t ≥ 0. Similarly,

E{M (θ)
t (φ/

√
θ)2} = E{〈M (θ)(φ/

√
θ)〉t}

=
∫ t

0
〈σφ2/θ, µθ〉ds +

∫ t

0
ds

∫
IR

E{〈h(z − ·)φ′/θ, X(θ)
s 〉2}dz

is bounded above by a locally bounded function C3(φ, t) of t ≥ 0. For each φ ∈ S(IR) we have
φ′ ∈ S(IR) and hence 〈φ′′, λ〉 = 0. Then we get from (2.3) that

〈φ,Z
(θ)
t 〉 − 〈φ, ζθ〉 = M

(θ)
t (φ/

√
θ) +

aθ

2

∫ t

0
〈φ′′, Z(θ)

s 〉ds, t ≥ 0. (4.1)
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For u > 0 and η > 0 we have

P

{
sup

0≤t≤u
|〈φ,Z

(θ)
t 〉 − 〈φ, ζθ〉| ≥ η

}
≤ 1

η2
E

{
sup

0≤t≤u
|〈φ,Z

(θ)
t 〉 − 〈φ, ζθ〉|2

}
≤ 2

η2
E

{
sup

0≤t≤u
|M (θ)

t (φ/
√

θ)|2
}

+
a2

θu

2η2

∫ u

0
E{〈φ′′, Z(θ)

s 〉2}ds

≤ 8
η2

E

{
〈M (θ)(φ/

√
θ)〉u

}
+

a2
θu

2η2

∫ u

0
E{〈φ′′, Z(θ)

s 〉2}ds.

The right hand side goes to zero as η → ∞. Then {Z(θ)
t (φ) : t ≥ 0} satisfy the compact

containment condition of [13, p.142]. For f ∈ C2(IR) we consider the function F (µ) :=
f((〈φ, µ〉 − θ〈φ, λ〉)/

√
θ) on M(IR). Let

L(θ)F (µ) =
1
2
f ′((〈φ, µ〉 − θ〈φ, λ〉)/

√
θ)(〈φ′′, µ〉 − θ〈φ′′, λ〉)/

√
θ

+
1

2θ2
f ′′((〈φ, µ〉 − θ〈φ, λ〉)/

√
θ)

∫
IR2

ρ(y − x)φ′(x)φ′(y)µ(dx)µ(dy)

+
1
2θ

f ′′((〈φ, µ〉 − θ〈φ, λ〉)/
√

θ)〈σφ2, µ〉.

Then

f(〈φ,Z
(θ)
t 〉)− f(〈φ, ζθ〉)−

∫ t

0
L(θ)F (X(θ)

s )ds, t ≥ 0, (4.2)

is a martingale. By Lemma 2.1 and the proof of Theorem 3.1, it is not hard to find that
E{L(θ)F (X(θ)

s )2} is a locally bounded function of s ≥ 0. By [13, pp.142-145], the family
{〈φ,Z

(θ)
t 〉 : t ≥ 0; θ ≥ 1} is tight in C([0,∞), IR), which is a closed subset of D([0,∞), IR).

The tightness of {Z(θ)
t : t ≥ 0; θ ≥ 1} then follows by a theorem of [29]. 2

By Lemma 4.1 and the observations at the end of the last section we get the following weak
convergence on the path space, which also gives the existence of a diffusion realization of the
limiting generalized OU-process.

Theorem 4.1 Assume in addition that σ ∈ C2(IR)+ and h ∈ C2(IR). If ζθ := (µθ − θλ)/
√

θ →
ζ ∈ S ′(IR) as θ → ∞, then the distribution of {Z(θ)

t : t ≥ 0} on C([0,∞),S ′(IR)) converges as
θ →∞ to that of a generalized OU-diffusion process {Zt : t ≥ 0} with initial value Z0 = ζ and
transition semigroup (Q̃t)t≥0 given by (3.7).

5 Two extreme cases

Suppose that σ ∈ C2(IR)+ and h ∈ C2(IR) ∩ L2(IR, λ) with h′ ∈ L2(IR, λ). It is not hard to
check that (Q̃t)t≥0 has generator J given by

JF (µ) =
1
2
c2〈∆δF (µ)/δµ(·), µ〉
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+
1
2

∫
IR2

ρ(x− y)
d2

dxdy

δ2F (µ)
δµ(x)δµ(y)

dxdy

+
1
2

∫
IR

σ(x)
δ2F (µ)
δµ(x)2

dx, (5.1)

where δF (µ)/δµ(x) is defined as in (2.1). Let us consider two extreme cases separately.
Example 5.1 Assume that h ≡ 0 and σ ∈ L1(IR, λ) is non-trivial. In this case, the cor-

responding S ′(IR)-valued generalized OU-diffusion process {Zt : t ≥ 0} satisfies the following
Langevin equation:

〈φ,Zt〉 = 〈φ,Z0〉+ 〈φ,Wt〉+
1
2
c2

∫ t

0
〈φ′′, Zs〉ds, t ≥ 0, (5.2)

where {Wt : t ≥ 0} is an S ′(IR)-valued Wiener process such that

〈W (φ)〉t = t〈σφ2, λ〉; (5.3)

see [2, 15, 16, 26]. Let W (ds, dx) denote the stochastic integral determined by the process
{Wt : t ≥ 0}. Then for t ≥ 0 and φ ∈ S(IR) we have a.s.

〈φ,Zt〉 = 〈T c
t φ,Z0〉+

∫ t

0

∫
IR

T c
t−sφ(x)W (ds, dx). (5.4)

Let gc
t (x, y) denote the density of T c

t (x, dy) for t > 0. It is easy to check that∫
IR

dy

∫ t

0
〈σgc

t−s(·, y)2, λ〉ds ≤ 〈σ, λ〉
∫ t

0

1√
2π(t− s)

ds < ∞. (5.5)

In view of (5.4) and (5.5), if Z0 ∈ L2(IR, λ),

Zt(y) := 〈gc
t (·, y), Z0〉+

∫ t

0

∫
IR

gc
t−s(x, y)W (ds, dx), t ≥ 0, x ∈ IR, (5.6)

defines an L2(IR, λ)-valued version of the generalized OU-process {Zt : t ≥ 0}.
Example 5.2 Assume that σ ≡ 0 and h is non-trivial. In this case, (5.2) is valid if we

replace (5.3) by

〈W (φ)〉t = t

∫
IR
〈h(z − ·)φ′, λ〉2dz = t

∫
IR
〈h′(z − ·)φ, λ〉2dz. (5.7)

But, now (5.6) is not well-defined since∫
IR

dy

∫
IR
〈h′(z − ·)gc

t−s(·, y), λ〉2dz

=
∫

IR
dy

∫
IR

dz

∫
IR

h′(z − x1)dx1

∫
IR

h′(z − x2)gc
t−s(x1, y)gc

t−s(x2, y)dx2

=
∫

IR
dz

∫
IR

h′(z − x1)dx1

∫
IR

h′(z − x2)gc
2(t−s)(x1, x2)dx2

= −
∫

IR
dx1

∫
IR

ρ′′(x2 − x1)gc
2(t−s)(x2 − x1)dx2

= −
∫

IR
T c

2(t−s)ρ
′′(0)dx1

= ∞.
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This is very different from the situation observed in [36] and shows that it is not convenient to
deal with the function-valued version of {Zt : t > 0} even it does exist. Actually, we expect
that the process {Zt : t > 0} only lives in a Sobolev space of negative index. Therefore, it is
a non-trivial problem to look into the existence of local times or intersection local times of the
process following [4, 5].
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