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1 Introduction

Suppose that we are given a locally compact metric space E. Let C(E) denote the
set of bounded continuous functions on E, and C0(E) its subset of continuous functions
vanishing at infinity. The subsets of non-negative elements of C(E) and C0(E) are denoted
respectively by C+(E) and C+

0 (E). Let (Pt)t≥0 be a strongly continuous conservative
Feller semigroup on C0(E) with generator (A,D(A)), where D0(A) ⊂ C0(E), and let
D(A) = D0(A) ∪ {1}. Suppose in addition that b(·) ∈ C(E) and c(·) ∈ C+(E) have
continuous extensions to Ē, the one point compactification of E, and that c(·) is bounded
away from zero.

Let M(E) be the space of finite Borel measures on E equipped with the topology
of weak convergence. Let W = C([0,∞), M(E)) be the space of all continuous paths
w : [0,∞) → M(E). Let τ0(w) = inf{s > 0 : w(s) = 0} for w ∈ W and let W0 be the set
of paths w ∈ W satisfying w(0) = w(t) = 0 for all t ≥ τ0(w). We fix a metric on M(E)
which is compatible with its topology and endow W and W0 with the topology of uniform
convergence. Then for each µ ∈ M(E) there is a unique Borel probability measure Qµ

on W such that for f ∈ D(A),

Mt(f) = wt(f)− µ(f)−
∫ t

0

ws(Af − bf)ds, t ≥ 0, (1.1)

under Qµ is a martingale with quadratic variation process

〈M(f)〉t =

∫ t

0

ws(cf
2)ds, t ≥ 0, (1.2)

where µ(f) =
∫

fdµ. The system {Qµ : µ ∈ M(E)} defines a measure-valued diffusion,
which is the well-known Dawson-Watanabe superprocess. In the sequel, we shall simply
refer to it as a (A, b, c)-superprocess. We refer the reader to Dawson [1] and the references
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therein for the construction and basic properties of the process. A modification of the
above model is to replace (1.1) by

Mt(f) = wt(f)− µ(f)−
∫ t

0

ws(Af − bf)ds−
∫ t

0

V (ws, f)ds, t ≥ 0, (1.3)

by using a kernel V (µ, dx) from M(E) to E, which can be regarded as a (A, b, c)-
superprocess with interactive immigration. Some interesting special cases of this modi-
fication have been studied in the literature. Using a Cameron-Martin-Girsanov formula,
Dawson [1, pp.172-173] treated the special case where b(·) ≡ 0 and

V (µ, dx) = r(µ, x)µ(dx), µ ∈ M(E), x ∈ E,

for a continuous function r(·, ·) on M(E)×E and obtained a superprocess with non-linear
birth-death rate. The conditioned superprocess constructed by Evans and Perkins [5] and
Roelly-Coppoletta and Rouault [16] corresponds to the case

V (µ, dx) = µ(1)−1µ(dx), µ ∈ M(E) \ {0}, x ∈ E.

An interesting representation of the conditioned superprocess was given by Evans [4] in
terms of an “immortal particle” that moves around according to the underlying process
and throws off pieces of mass into the space.

Let m be a σ-finite Borel measure on E and let q(·, ·) be a non-negative Borel function
on M(E)× E. We have another particular form of (1.3) given by

Mt(f) = wt(f)− µ(f)−
∫ t

0

ws(Af − bf)ds−
∫ t

0

m(q(ws, ·)f)ds, t ≥ 0, (1.4)

where q(·, ·) can be interpreted as an interactive immigration rate relative to the reference
measure m. The process defined by (1.4) and (1.2) is of interest since it includes as
special cases (at least formally) the superprocess with non-linear birth-death rate and
the conditioned superprocess as they are a.s. absolutely continuous with respect to the
reference measure m, both of which has arisen considerable research interest. If q(ν, x) =
q(x) only depends on x ∈ E, the martingale problem has a unique solution and defines
a superprocess with independent immigration; see e.g. Konno and Shiga [8] and Li and
Shiga [12]. In the general case, a solution of the martingale problem could be constructed
by an approximation by particle systems, but the uniqueness of solution seems hard. This
is similar to the superprocess with mean field interaction studied by Méléard and Roelly
[13, 14] for which the uniqueness still remains open. Instead of the martingale problem,
Shiga [17] suggested another approach to the interactive immigration superprocess, who
gave the formulation of a stochastic integral equation involving a superprocess and a
system of independent Poisson processes on the space of excursions of one-dimensional
branching diffusions. For the particular case where A ≡ 0 and µ 7→ m(q(µ, ·)) is bounded
and Lipschitz relative to the total variation metric, Shiga [17] constructed a solution of
the integral equation and showed that his solution also solves the martingale problem
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(1.4) and (1.2). He proved that the pathwise uniqueness of solution for the stochastic
integral equation holds so his solution is a diffusion process. This is a very interesting
result since the uniqueness of solution of (1.4) and (1.2) is not known. A generalization of
his result was given in the recent work by Dawson and Li [2], where some superprocesses
with dependent spatial motion and interactive immigration were constructed from one-
dimensional excursions carried by stochastic flows.

The main purpose of this paper is to establish the results of Shiga [17] when the spatial
migration mechanism A is non-trivial. Since in this case the mass is mixed, it is not clear
how to construct the process from one-dimensional excursions as in [17]. Fortunately, the
techniques developed by Li and Shiga [12] can be combined with those of Shiga [17] to
solve the difficulty. The main idea of our approach is to formulate a stochastic equation
with a Poisson process on the space of measure-valued excursions. Let {Xt : t ≥ 0} be
an (A, b, c)-superprocess with deterministic initial state X0 = µ and N(ds, dx, du, dw) a
Poisson random measure on [0,∞)×E × [0,∞)×W0 with intensity dsm(dx)duQx(dw),
where Qx is an excursion law of the (A, b, c)-superprocess carried by excursions growing
up at x ∈ E. We assume {Xt : t ≥ 0} and N(ds, dx, du, dw) are defined on a standard
probability space and are independent of each other. We shall prove that the stochastic
equation

Yt = Xt +

∫ t

0

∫
E

∫ q(Ys,x)

0

∫
W0

w(t− s)N(ds, dx, du, dw), t ≥ 0, (1.5)

has a pathwise unique continuous solution {Yt : t ≥ 0} and its distribution on W solves the
martingale problem given by (1.2) and (1.4); see Theorem 4.1. The pathwise uniqueness
implies the strong Markov property of {Yt : t ≥ 0}, so our result gives a partial solution of
the open problem on the Markov property of the superprocess with mean field interaction;
see Méléard and Roelly [14, p.103].

In particular, when E = {a} is a singleton, equation (1.5) gives a decomposition of
the one-dimensional diffusion process {y(t) : t ≥ 0} defined by

dy(t) =
√

cy(t)dB(t) + β(y(t))y(t)dt + γ(y(t))dt, t ≥ 0, (1.6)

where c > 0 is a constant, β(·) is a bounded Lipschitz function on [0,∞) and γ(·) is a
non-negative locally Lipschitz function on [0,∞) satisfying the linear growth condition. In
the special case where β(·) and γ(·) are constant, Pitman and Yor [15] gave a construction
of {y(t) : t ≥ 0} by picking up excursions by a Poisson point process, which served as a
preliminary to their well-known results on decomposition of Bessel bridges. See also Le
Gall and Yor [9].

In section 2 we recall some basic facts on the (A, b, c)-superprocess and its immigration
processes with deterministic immigration rates. In section 3, we discuss construction of
immigration processes with predictable immigration rates. The stochastic equation with
a Poisson process of excursions is studied in section 4.
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2 Deterministic immigration rate

In this section, we summarize some basic facts on the (A, b, c)-superprocess and its immi-
gration processes with deterministic immigration rates. Let (Qt)t≥0 denote the transition
semigroup of the (A, b, c)-superprocess, which is determined by∫

M(E)

e−ν(f)Qt(µ, dν) = exp{−µ(Vtf)}, f ∈ C+(E), µ ∈ M(E), (2.1)

where Vtf is the unique positive solution of the evolution equation

Vtf(x) +
1

2

∫ t

0

ds

∫
E

c(y)Vsf(y)2P b
t−s(x, dy) = P b

t f(x), t ≥ 0, x ∈ E, (2.2)

where (P b
t )t≥0 denotes the semigroup of kernels on E generated by Ab := A − b. By [1,

pp.195-196], there is a family of finite measures Lt(x, dν) on M(E)◦ := M(E) \ {0} such
that ∫

M(E)◦
(1− e−ν(f))Lt(x, dν) = Vtf(x), t > 0, x ∈ E, f ∈ C+(E). (2.3)

Let (Q◦
t )t≥0 be the restriction of (Qt)t≥0 to M(E)◦. It is easy to check that (Lt(x, ·))t>0

is an entrance law for (Q◦
t )t≥0, that is Lr(x, ·)Q◦

t = Lr+t(x, ·) for r > 0 and t > 0. Then
there is a unique σ-finite Borel measure Qx on (W0,B(W0)) such that

Qx(w(t1) ∈ dν1, · · · , w(tn) ∈ dνn)

= Lt1(x, dν1)Q
◦
t2−t1

(ν1, dν2) · · ·Q◦
tn−tn−1

(νn−1, dνn) (2.4)

for 0 < t1 < t2 < · · · < tn and ν1, ν2, · · · , νn ∈ M(E)◦. Indeed, Qx is carried by the paths
w ∈ W0 such that wt(1)

−1wt → δx as t → 0; see [11] and [12]. Moreover, it is easy to
obtain that

Qx{w(t)(f)} = P b
t f(x), t > 0, x ∈ E, f ∈ C+(E). (2.5)

Let Bt(W0) be the σ-algebra on W0 generated by {w(s) : 0 ≤ s ≤ t}. Roughly speak-
ing, (W0,Bt(W0), w(t)) under Qx is a Markov process with semigroup (Q◦

t )t>0 and one-
dimensional distributions (Lt(x, ·))t>0. The measure Qx is known as an excursion law of
(Qt)t≥0.

Now we fix a σ-finite reference measure m on E and suppose that q(·, ·) is a non-
negative Borel function on [0,∞) × E such that m(q(t, ·)) is a locally bounded function
of t ≥ 0. Then∫ ∞

0

e−ν(f)Qq
r,t(µ, dν) = exp

{
− µ(Vt−rf)−

∫ t

r

m(q(s, ·)Vt−sf)ds
}

(2.6)

defines an inhomogeneous transition semigroup (Qq
r,t)t≥r. A diffusion process with tran-

sition semigroup (Qq
r,t)t≥r can be constructed as follows. Let {Xt : t ≥ 0} be an (A, b, c)-

superprocess with deterministic initial state X0 = µ and N(ds, dx, du, dw) a Poisson
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random measure on [0,∞) × E × [0,∞) × W0 with intensity dsm(dx)duQx(dw). We
assume {Xt : t ≥ 0} and N(ds, dx, du, dw) are defined on a standard probability space
(Ω ,A, P ) and are independent of each other. For t ≥ 0, let Gt be the σ-algebra generated
by the P -null sets in A and the random variables

{Xs, N(J × A) : J ∈ B([0, s]× E × [0,∞)), A ∈ Bt−s(W0), 0 ≤ s ≤ t}. (2.7)

We define the M(E)-valued process {Yt : t ≥ 0} by

Yt = Xt +

∫ t

0

∫
E

∫ q(s,x)

0

∫
W0

w(t− s)N(ds, dx, du, dw), t ≥ 0, (2.8)

where the integration area refers to

{(s, x, u, w) : 0 < s ≤ t, x ∈ E, 0 < u ≤ q(s, x), w ∈ W0}.
(We shall make the same convention in the sequel.)

Theorem 2.1 The process {Yt : t ≥ 0} defined by (2.8) is an inhomogeneous diffusion
process relative to (Gt)t≥0 with transition semigroup (Qq

r,t)t≥r. Moreover, for each f ∈
D(A),

Mt(f) = Yt(f)− Y0(f)−
∫ t

0

Ys(Af − bf)ds−
∫ t

0

m(q(s, ·)f)ds, t ≥ 0, (2.9)

is a martingale relative to the filtration (Gt)t≥0 with quadratic variation process

〈M(f)〉t =

∫ t

0

Ys(cf
2)ds, t ≥ 0. (2.10)

Proof. Let N1(ds, dx, du, dw) denote the restriction of N(ds, dx, du, dw) to

{(s, x, u, w) : s > 0, x ∈ E, 0 < u ≤ q(s, x), w ∈ W0}
and let N1(ds, dw) be the image of N1(ds, dx, du, dw) under the map (s, x, u, w) 7→ (s, w).
Then N1(ds, dw) is a Poisson random measure on [0,∞)×W0 with intensity dsQκ

s (dw),
where

Qκ
s (dw) =

∫
E

q(s, x)Qx(dw)m(dx), w ∈ W0.

Then the first assertion follows by an obvious modification of the arguments of [12, The-
orem 1.3] and [17, Theorem 3.6]; see also [10, Theorem 3.2]. The martingale charac-
terization (2.9) and (2.10) can be proved by a calculation of the generator of (Qq

r,t)t≥r.
�

The construction (2.8) gives clear interpretations for reference measure m and im-
migration rate q(·, ·) in the phenomenon. Since (2.9) is linear in f ∈ D(A), it defines
a martingale measure M(ds, dx) with quadratic variation measure c(x)Ys(dx)ds in the
sense of Walsh [18]. By a standard argument one gets the following

Theorem 2.2 For each t ≥ 0 and f ∈ C(E) we have a.s.

Yt(f) = Y0(P
b
t f) +

∫ t

0

∫
E

P b
t−sf(x)M(ds, dx) +

∫ t

0

m(q(s, ·)P b
t−sf)ds. (2.11)
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3 Predictable immigration rate

In this section, we fix a σ-finite reference measure m on E. Let (Ω ,A, P ) be a standard
probability space and N(ds, dx, du, dw) and {Xt : t ≥ 0} be as in the last section. Let
Gt be the σ-algebra on Ω generated by the P -null sets in A and the random variables in
(2.7). Let P be the σ-algebra on [0,∞)× E × Ω generated by functions of the form

g(s, x, ω) = η0(x, ω)1{r0}(s) +
∞∑
i=0

ηi(x, ω)1(ri,ri+1](s), (3.1)

where 0 = r0 < r1 < r2 < . . . and ηi(·, ·) is B(E)× Gri
-measurable. We say a function on

[0,∞)× E × Ω is predictable if it is P-measurable.

Theorem 3.1 Suppose that q(·, ·, ·) is a non-negative predictable function on [0,∞) ×
E × Ω such that E{m(q(t, ·))2} is locally bounded in t ≥ 0. Then the M(E)-valued
process

Yt = Xt +

∫ t

0

∫
E

∫ q(s,x)

0

∫
W0

w(t− s)N(ds, dx, du, dw), t ≥ 0, (3.2)

has a continuous modification. Moreover, for this modification and each f ∈ D(A),

Mt(f) = Yt(f)− Y0(f)−
∫ t

0

Ys(Af − bf)ds−
∫ t

0

m(q(s, ·)f)ds, t ≥ 0, (3.3)

is a martingale relative to the filtration (Gt)t≥0 with quadratic variation process

〈M(f)〉t =

∫ t

0

Ys(cf
2)ds, t ≥ 0. (3.4)

Let M(ds, dx) denote the stochastic integral with respect to the martingale measure
with quadratic variation measure c(x)Ys(dx)ds defined by (3.3) and (3.4). Then we have

Theorem 3.2 For each t ≥ 0 and f ∈ C(E) we have a.s.

Yt(f) = Y0(P
b
t f) +

∫ t

0

∫
E

P b
t−sf(x)M(ds, dx) +

∫ t

0

m(q(s, ·)P b
t−sf)ds. (3.5)

The process {Yt : t ≥ 0} constructed by (3.2) can be regarded as an (A, b, c)-
superprocess allowing immigration with immigration rate given by the predictable func-
tion q(·, ·, ·). To give the proof of the above theorems we need a set of lemmas.

Lemma 3.1 The results of Theorems 3.1 and 3.2 hold if q(·, ·, ·) is of the form (3.1).
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Proof. Observe that ηi(x) is a deterministic function on E under the regular condi-
tional probability P {·|Gri

}. Since Gri
and the restriction of N(ds, dx, du, dw) to (ri,∞)×

E × [0,∞) × W0 are independent, this restriction under P {·|Gri
} is still a Poisson ran-

dom measure with intensity dsm(dx)duQx(dw). Note that {Xt : t ≥ 0} is also an a.s.
continuous (A, b, c)-superprocess under P {·|G0}. Then we conclude by Theorem 2.1 that
{Yt : 0 ≤ t ≤ r1} under P {·|G0} is an a.s. continuous (A, b, c)-superprocess allowing
immigration with immigration rate η0(·). Let

Y
(0)
t = Xt +

∫ r1

0

∫
E

∫ η0(x)

0

∫
W0

w(t− s)N(ds, dx, du, dw), t ≥ r1.

By Theorem 2.1, {Y (0)
t : t ≥ r1} under P {·|G0} is an a.s. continuous (A, b, c)-superprocess.

Of course, {Y (0)
t : t ≥ r1} is still an a.s. continuous (A, b, c)-superprocess under P {·|Gr1}.

It is not difficult to see that

Yt = Y
(0)
t +

∫ t

r1

∫
E

∫ η1(x)

0

∫
W0

w(t− s)N(ds, dx, du, dw), r1 ≤ t ≤ r2.

By Theorem 2.1 again, {Yt : r1 ≤ t ≤ r2} under P {·|Gr1} is an a.s. continuous (A, b, c)-
superprocess allowing immigration with immigration rate η1(·). Using the above argument
inductively we can see that {Yt : ri ≤ t ≤ ri+1} under P {·|Gri

} is an a.s. continuous
(A, b, c)-superprocess allowing immigration with immigration rate ηi(·). By Theorem 2.1,
{Yt : t ≥ 0} has a continuous modification. The martingale characterizations of Theorems
3.1 and 3.2 follow from those of the immigration process with deterministic immigration
rate. �

Lemma 3.2 Suppose that there is a non-negative deterministic function q1(·) ∈ L1(E, m)
such that q(t, x, ω) ≤ q1(x) for a.a. (t, x, ω) ∈ [0,∞) × E × Ω . Let {gn} be a sequence
of non-negative predictable functions of the form (3.1) such that gn(t, x, ω) ≤ q1(x) and

gn(t, x, ω) → q(t, x, ω) for a.a. (t, x, ω) ∈ [0,∞)×E×Ω . Let {Y (n)
t : t ≥ 0} be defined by

(3.2) in terms of gn(·, ·, ·). Then there is an M(E)-valued process {Yt : t ≥ 0} such that

limn→∞ E{‖Y (n)
t − Yt‖} = 0 uniformly on each finite interval of t ≥ 0, where ‖ · ‖ denotes

the total variation metric.

Proof. Since the result of Theorem 3.2 holds for {Y (n)
t : t ≥ 0}, we have

E{Y (n)
t (f)} = µ(P b

t f) +

∫ t

0

E{m(gn(s, ·)P b
t−sf)}ds, f ∈ C(E). (3.6)

Observe that for any k ≥ n ≥ 1, both gn ∨ gk and gn ∧ gk are predictable functions of the
form (3.1). Let

Y
(n,k)
t = Xt +

∫ t

0

∫
E

∫ gn(s,x)∨gk(s,x)

0

∫
W0

w(t− s)N(ds, dx, du, dw)
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and

Z
(n,k)
t = Xt +

∫ t

0

∫
E

∫ gn(s,x)∧gk(s,x)

0

∫
W0

w(t− s)N(ds, dx, du, dw).

Since ‖Y (n)
t − Y

(k)
t ‖ ≤ Y

(n,k)
t (1) − Z

(n,k)
t (1), we may apply (3.6) to {Y (n,k)

t : t ≥ 0} and

{Z(n,k)
t : t ≥ 0} so that

E{‖Y (n)
t − Y

(k)
t ‖} ≤

∫ t

0

e‖b‖(t−s)E{m(|gn(s, ·)− gk(s, ·)|)}ds.

By dominated convergence, the right hand side goes to zero uniformly on each finite
interval of t ≥ 0 as n →∞. Then there is an M(E)-valued process {Yt : t ≥ 0} such that

E{Yt(f)} = µ(P b
t f) +

∫ t

0

E{m(q(s, ·)P b
t−sf)}ds, f ∈ C(E), (3.7)

and limn→∞ E{‖Y (n)
t − Yt‖} = 0 uniformly on each finite interval of t ≥ 0. �

Lemma 3.3 Suppose that the condition of Lemma 3.2 holds. Then the process {Yt : t ≥
0} obtained there is independent of the choice of {gn} in the sense that if {Zt : t ≥ 0}
obtained from another sequence with the same properties, then Yt = Zt a.s. for each t ≥ 0.
Moreover, (3.2) holds a.s. for each t ≥ 0.

Proof. Let {qn} be another sequence having the properties of {gn}. Then {gn ∨ qn}
and {gn∧qn} have the same properties. Let {Y ′

t : t ≥ 0} and {Y ′′
t : t ≥ 0} be the processes

obtained respectively from {gn ∨ qn} and {gn ∧ qn}. Clearly, Y ′′
t ≤ Yt ≤ Y ′

t a.s. for each
t ≥ 0. But, E{Y ′

t (1)} = E{Y ′′
t (1)} = E{Yt(1)} by (3.7), so we have Y ′′

t = Y ′
t = Yt

a.s. for each t ≥ 0. Thus {Yt : t ≥ 0} is independent of the choice of {gn}. To show
(3.2), let Zt denote the value of its right hand side. We first assume in addition there is a
strictly positive deterministic functions q2(·) ∈ L1(E, m) such that q2(x) ≤ q(t, x, ω) for
all (t, x, ω) ∈ [0,∞)×E×Ω . For k ≥ 1, let {Yk,t : t ≥ 0} and {Zk,t : t ≥ 0} be the process
obtained by Lemma 3.2 from the non-negative predictable functions q(t, x, ω) + q2(x)/k
and q(t, x, ω)− q2(x)/k, respectively. Since

q(t, x, ω)− q2(x)/k < q(t, x, ω) < q(t, x, ω) + q2(x)/k,

we have Zk,t ≤ Zt, Yt ≤ Yk,t a.s. for each t ≥ 0. But, by (3.7) it is easy to show that

E{Yk,t(1)− Zk,t(1)} ≤ 2te‖b‖tm(q2)/k,

so we must have Yt = Zt a.s. for each t ≥ 0. In the general case, we may apply the above
reasoning to q(t, x, ω) + q2(x)/k and {Yk,t : t ≥ 0} to get

Yk,t = Xt +

∫ t

0

∫
E

∫ q(s,x)+q2(x)/k

0

∫
W0

w(t− s)N(ds, dx, du, dw)
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and

E{Yk,t(f)} = µ(P b
t f) +

∫ t

0

E{m([q(s, ·) + q2/k]P b
t−sf)}ds.

Clearly, Yk,t decreases to Zt as k →∞. As in the proof of Lemma 3.2, it is easy to show
that limk→∞ E{‖Yk,t − Yt‖} = 0 uniformly on each finite interval of t ≥ 0, so the desired
results hold. �

Lemma 3.4 Under the assumptions of Theorem 3.1, choose a strictly positive function
q1(·) ∈ L1(E, m) and let qn(t, x, ω) = q(t, x, ω) ∧ (nq1(x)). Let {Z(n)

t : t ≥ 0} be defined

by (3.2) in terms of qn(·, ·, ·). Then we have limn→∞ E{‖Z(n)
t − Yt‖} = 0 uniformly on

each finite interval of t ≥ 0, where {Yt : t ≥ 0} is defined by (3.2).

Proof. As in the proof of Lemma 3.2 one can show that there is an M(E)-valued

process {Zt : t ≥ 0} such that limn→∞ E{‖Z(n)
t − Zt‖} = 0 uniformly on each finite

interval of t ≥ 0. As in the proof of Lemma 3.3 we have Yt = Zt a.s. for each t ≥ 0. �

Lemma 3.5 The results of Theorems 3.1 and 3.2 hold if E is compact.

Proof. We first assume the condition of Lemma 3.2 holds. Let {Y (n)
t : t ≥ 0} be the

approximating sequence given by Lemma 3.2 and define {M (n)
t : t ≥ 0} by (3.3) in terms

of {Y (n)
t : t ≥ 0} and gn(·, ·, ·). By (3.6) we have∫ t

0

E{Y (n)(1)}ds ≤
∫ t

0

e‖b‖s[µ(1) + sm(q1)]ds.

Then for T > 0 and ε > 0, there is η > 0 such that

P
{∫ T

0

Y (n)(|b|)ds > η/2
}
≤ 2η−1‖b‖

∫ T

0

e‖b‖s[µ(1) + sm(q1)]ds ≤ ε.

Moreover, from (3.4) we obtain

E{M (n)
T (1)2} =

∫ T

0

E{Y (n)
s (c)}ds ≤ ‖c‖

∫ T

0

e‖b‖s[µ(1) + sm(q1)]ds. (3.8)

In view of the martingale characterization (3.3) and (3.4) for {Y (n)
t : t ≥ 0}, choosing

η > 2µ(1) + 2m(q1)T we have

P
{

sup
0≤t≤T

Y
(n)
t (1) > η

}
≤ ε + P

{
sup

0≤t≤T
Y

(n)
t (1) > η,

∫ T

0

Y (n)
s (|b|)ds ≤ η/2

}
9



≤ ε + P
{

sup
0≤t≤T

[
µ(1) + M

(n)
t (1) +

∫ t

0

m(gn(s, ·))ds
]

> η/2
}

≤ ε + P
{

sup
0≤t≤T

M
(n)
t (1) > η/2− µ(1)−m(q1)T

}
≤ 4(η/2− µ(1)−m(q1)T )−2E

{
M

(n)
T (1)2

}
≤ 4(η/2− µ(1)−m(q1)T )−2‖c‖

∫ T

0

e‖b‖s[µ(1) + sm(q1)]ds

by a martingale inequality; see e.g. [6, p.34]. Consequently,

lim
η→∞

sup
n≥1

P
{

sup
0≤t≤T

Y
(n)
t (1) > η

}
= 0.

Thus {Y (n)
t : t ≥ 0} viewed as processes in C([0,∞), M(E)) satisfy the compact con-

tainment condition of [3, p.142]. (Note that C([0,∞), M(E)) is a closed subspace of
D([0,∞), M(E)).) By Itô’s formula, for G ∈ C2(IRm) and {f1, · · · , fm} ⊂ D(A),

G(Y
(n)
t (f1), · · · , Y (n)

t (fm))−G(Y
(n)
0 (f1), · · · , Y (n)

0 (fm))

−
m∑

i=1

∫ t

0

G′
i(Y

(n)
s (f1), · · · , Y (n)

s (fm))[m(gn(s, ·)fi) + Y (n)
s (Afi − bfi)]ds

−1

2

m∑
i,j=1

∫ t

0

G ′′
ij(Y

(n)
s (f1), · · · , Y (n)

s (fm))Y (n)
s (cf 2

i )ds

is a continuous martingale. From (3.8) and the martingale characterizations of Lemma 3.1

we see that E{Y (n)
t (1)2} is dominated by a locally bounded positive function independent

of n ≥ 1. By [3, pp.142–145] we conclude that {Y (n)
t : t ≥ 0} is a tight sequence in

C([0,∞), M(E)). Consequently, {Yt : t ≥ 0} has a continuous modification and {Y (n)
t :

t ≥ 0} converges a.s. to this modification in the topology of C([0,∞), M(E)). Note also
that ∫ t

0

m(gn(s, ·)fi)ds →
∫ t

0

m(q(s, ·)fi)ds, t ≥ 0,

in the topology of C([0,∞), IR). Then the martingale characterization (3.3) and (3.4) for
{Yt : t ≥ 0} follows from Lemma 3.1 and [7, p.342]. If the condition of Lemma 3.2 does

not hold, we may consider the additional approximating sequence {Z(n)
t : t ≥ 0} given

by Lemma 3.4. Then a modification of the above arguments shows that {Z(n)
t : t ≥ 0} is

a tight sequence, so we also have (3.3) and (3.4). The equality (3.5) follows in the same
way as Theorem 2.2. �

Proof of Theorems 3.1 and 3.2. Note that (Pt)t≥0 can be extended to a Feller transition
semigroup (P̄t)t≥0 on Ē, the one point compactification of E. Since m can be viewed as

10



a σ-finite measure on Ē and since b(·) and c(·) have continuous extensions b̄(·) and c̄(·)
on Ē, we can also regard {Xt : t ≥ 0} and {Yt : t ≥ 0} as objects associated with (P̄t)t≥0.
Applying Lemma 3.5 in this way we see that {Yt : t ≥ 0} has a M(Ē)-valued continuous
modification {Ȳt : t ≥ 0} which satisfies the corresponding martingale characterization
(3.3) and (3.4). Then the two theorems will follow from Lemma 3.5 once it is proved that

P {Ȳt({∂}) = 0 for all t ∈ [0, T ]} = 1, T > 0. (3.9)

Observe that for any f̄ ∈ C(Ē),

MT
t (f̄) := Ȳt(P̄

b
T−tf̄)− Ȳ0(P̄

b
T f̄)−

∫ t

0

m(P̄ b
T−sf̄ q(s, ·))ds

=

∫ t

0

∫
Ē

P̄ b
T−sf̄(x)M̄(ds, dx)

is a continuous martingale in t ∈ [0, T ] with quadratic variation process

〈MT (f̄)〉t =

∫ t

0

Ȳs(c̄(P̄
b
T−sf̄)2)ds,

where (P̄ b
t )t≥0 is defined from (P̄t)t≥0 and b̄. By a martingale inequality we have

P
{

sup
0≤t≤T

∣∣∣Ȳt(P̄
b
T−tf̄)− Ȳ0(P̄

b
T f̄)−

∫ t

0

m(P̄ b
T−sf̄ q(s, ·))ds

∣∣∣2}
≤ 4

∫ T

0

E{Ȳs(c̄(P̄
b
T−sf̄)2)}ds.

Choose a sequence {f̄k} ⊂ C(Ē) such that f̄k → 1{∂} boundedly as k → ∞. Since each
Ȳs is a.s. supported by E, replacing f̄ by f̄k in the above and letting k → ∞ we obtain
(3.9). �

4 A stochastic equation with Poisson process

We fix a σ-finite reference measure m on E. Let (Ω ,A, P ) be a standard probability
space on which N(ds, dx, du, dw) and {Xt : t ≥ 0} are given as in section 2. Let Gt be
the σ-algebra on Ω generated by the P -null sets in A and the random variables in (2.7).
Suppose that q(·, ·) is a Borel function on M(E)×E such that there is a constant K such
that

m(q(ν, ·)) ≤ K(1 + ‖ν‖), ν ∈ M(E), (4.1)

and for each R > 0 there is a constant KR > 0 such that

m(|q(ν, ·)− q(γ, ·)|) ≤ KR‖ν − γ‖ (4.2)
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for ν and γ ∈ M(E) satisfying ν(1) ≤ R and γ(1) ≤ R. We consider the stochastic
integral equation:

Yt = Xt +

∫ t

0

∫
E

∫ q(Ys,x)

0

∫
W0

w(t− s)N(ds, dx, du, dw), t ≥ 0. (4.3)

By a (strong) solution of (4.3) we mean a continuous M(E)-valued process {Yt : t ≥ 0}
which is adapted to the filtration (Gt)t≥0 and satisfies (4.3) with probability one. A
solution of this equation can be regarded as an immigration (A, b, c)-superprocess with
interactive immigration rate given by q(·, ·).

Lemma 4.1 Let R ≥ 0 and let q1(·, ·) and q2(·, ·) be Borel functions on M(E) × E

satisfying q1(ν, ·) ≡ q2(ν, ·) ≡ q(ν, ·) for ν(1) ≤ R. Suppose that {Y (1)
t : t ≥ 0} and

{Y (2)
t : t ≥ 0} are solution of (4.3) with q(·, ·) replaced by q1(·, ·) and q2(·, ·) respectively.

Let τ = inf{t ≥ 0 : Y
(1)
t (1) ≥ R or Y

(2)
t (1) ≥ R}. Then {Y (1)

t∧τ : t ≥ 0} and {Y (2)
t∧τ : t ≥ 0}

are indistinguishable.

Proof. Since each {Y (i)
t : t ≥ 0} is continuous, q(Y

(i)
t , x)I{t≤τ} is predictable. Note also

that m(q(Y
(i)
t , ·)I{t≤τ}) is bounded. Let

Y ∗
t =

∫ t∧τ

0

∫
E

∫ q(Y
(1)
s ,x)∨q(Y

(2)
s ,x)

0

∫
W0

w(t− s)N(ds, dx, du, dw)

and

Z∗
t =

∫ t∧τ

0

∫
E

∫ q(Y
(1)
s ,x)∧q(Y

(2)
s ,x)

0

∫
W0

w(t− s)N(ds, dx, du, dw).

Applying Theorem 3.1 to the predictable function

(s, x, ω) 7→ q(Y (1)
s , x) ∨ q(Y (2)

s , x)I{s≤τ}

we see that

M∗
t (1) = Y ∗

t (1) +

∫ t

0

Y ∗
s (b)ds−

∫ t

0

m(q(Y (1)
s , ·) ∨ q(Y (2)

s , ·))I{s≤τ}ds

is a continuous martingale. By Doob’s stopping theorem,

E{Y ∗
t∧τ (1)} =

∫ t

0

E{m(q(Y (1)
s , ·) ∨ q(Y (2)

s , ·))I{s≤τ}}ds−
∫ t

0

E{Y ∗
s (b)I{s≤τ}}ds.

Similarly, we have

E{Z∗
t∧τ (1)} =

∫ t

0

E{m(q(Y (1)
s , ·) ∧ q(Y (2)

s , ·))I{s≤τ}}ds−
∫ t

0

E{Z∗
s (b)I{s≤τ}}ds.

12



By (4.2) we obtain

E{[Y ∗
t∧τ (1)− Z∗

t∧τ (1)]} =

∫ t

0

E{m(|q(Y (1)
s , ·)− q(Y (2)

s , ·)|I{s≤τ})}ds

+

∫ t

0

E{[Y ∗
s (b)− Z∗

s (b)]I{s≤τ}}ds

≤ KR

∫ t

0

E{‖Y (1)
s − Y (2)

s ‖I{s≤τ}}ds

+‖b‖
∫ t

0

E{[Y ∗
s (1)− Z∗

s (1)]I{s≤τ}}ds

≤ KR

∫ t

0

E{‖Y (1)
s∧τ − Y

(2)
s∧τ‖}ds

+‖b‖
∫ t

0

E{[Y ∗
s∧τ (1)− Z∗

s∧τ (1)]}ds

≤ (KR + ‖b‖)
∫ t

0

E{[Y ∗
s∧τ (1)− Z∗

s∧τ (1)]}ds.

Observe that ‖Y (1)
t∧τ − Y

(2)
t∧τ‖ ≤ Y ∗

t∧τ (1)− Z∗
t∧τ (1). Then Gronwall’s inequality yields

E{‖Y (1)
t∧τ − Y

(2)
t∧τ‖} ≤ E{[Y ∗

t∧τ (1)− Z∗
t∧τ (1)]} = 0

for all t ≥ 0. Since {Y (1)
t∧τ : t ≥ 0} and {Y (2)

t∧τ : t ≥ 0} are continuous, they are indistin-
guishable. �

Lemma 4.2 There is at most one solution of (4.3).

Proof. Suppose {Yt : t ≥ 0} and {Y ′
t : t ≥ 0} are two solutions of (4.3). Let

τn = inf{t ≥ 0 : Yt(1) ≥ n or Y ′
t (1) ≥ n}. By Lemma 4.1, {Yt∧τn : t ≥ 0} and

{Y ′
t∧τn

: t ≥ 0} are indistinguishable for each n ≥ 1. Thus

τn = inf{t ≥ 0 : Yt(1) ≥ n} = inf{t ≥ 0 : Y ′
t (1) ≥ n}.

By continuity of paths, τn ↑ ∞ a.s. as n → ∞ and hence {Yt : t ≥ 0} and {Y ′
t : t ≥ 0}

are indistinguishable, that is, (4.3) has at most one solution. �

Lemma 4.3 Suppose there is a constant L ≥ 0 such that m(q(ν, ·)) ≤ L for all ν ∈ M(E)
and (4.2) holds for all ν and γ ∈ M(E) with KR replaced by L. Then there is a solution
{Yt : t ≥ 0} of (4.3). Moreover, for this solution and each f ∈ D(A),

Mt(f) = Yt(f)− Y0(f)−
∫ t

0

Ys(Af − bf)ds−
∫ t

0

m(q(Ys, ·)f)ds, t ≥ 0,

is a continuous martingale relative to the filtration (Gt)t≥0 with quadratic variation process

〈M(f)〉t =

∫ t

0

Ys(cf
2)ds, t ≥ 0.
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Proof. Since {Xt : t ≥ 0} is a.s. continuous, the function (s, x, ω) 7→ q(Xs(ω), x) is

predictable. We define an approximating sequence {Y (n)
t : t ≥ 0} inductively by Y

(0)
t = Xt

and

Y
(n)
t = Xt +

∫ t

0

∫
E

∫ q(Y
(n−1)
s ,x)

0

∫
W0

w(t− s)N(ds, dx, du, dw)

for n ≥ 1. Let

Y
∗(n)
t =

∫ t

0

∫
E

∫ q(Y
(n−1)
s ,x)∨q(Y

(n−2)
s ,x)

0

∫
W0

w(t− s)N(ds, dx, du, dw)

and

Z
∗(n)
t =

∫ t

0

∫
E

∫ q(Y
(n−1)
s ,x)∧q(Y

(n−2)
s ,x)

0

∫
W0

w(t− s)N(ds, dx, du, dw).

From Theorems 3.1 and 3.2 it follows that

E{Y ∗(n)
t (1)} =

∫ t

0

E{m([q(Y (n−1)
s , ·) ∨ q(Y (n−2)

s , ·)]P b
t−s1)}ds

and

E{Z∗(n)
t (1)} =

∫ t

0

E{m([q(Y (n−1)
s , ·) ∧ q(Y (n−2)

s , ·)]P b
t−s1)}ds.

Then we use (4.2) and the fact ‖Y (n)
t − Y

(n−1)
t ‖ ≤ Y

∗(n)
t (1)− Z

∗(n)
t (1) to see

E{‖Y (n)
t − Y

(n−1)
t ‖} ≤

∫ t

0

E{m(|q(Y (n−1)
s , ·)− q(Y (n−2)

s , ·)|P b
t−s1)}ds

≤ Le‖b‖T
∫ t

0

E{‖Y (n−1)
s − Y (n−2)

s ‖}ds,

and

E{‖Y (1)
t − Y

(0)
t ‖} =

∫ t

0

E{m(q(Xs, ·)P b
t−s1)}ds ≤ LTe‖b‖T

for 0 ≤ t ≤ T . By a standard argument, one shows that there is an M(E)-valued process

{Yt : t ≥ 0} such that limn→∞ E{‖Y (n)
t − Yt‖} = 0 uniformly on each finite interval of

t ≥ 0. Let

Y ′
t = Xt +

∫ t

0

∫
E

∫ q(Ys,x)

0

∫
W0

w(t− s)N(ds, dx, du, dw).
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By a calculation similar as the above we get

E{‖Y (n)
t − Y ′

t ‖} ≤ Le‖b‖T
∫ t

0

E{‖Y (n−1)
s − Ys‖}ds

for 0 ≤ t ≤ T . Then we also have limn→∞ E{‖Y (n)
t − Y ′

t ‖} = 0 uniformly on each finite
interval of t ≥ 0, so that a.s. Y ′

t = Yt and (4.3) is satisfied. By Theorem 3.1, {Yt : t ≥ 0}
has a continuous modification and we have the martingale characterization. �

Lemma 4.4 For each n ≥ 1 define a continuously differentiable function an(·) on [0,∞)
such that

an(z) =

{
1 if z ≤ n− 1,
n/z if z ≥ n + 1,

and 0 ≥ a′n(z) ≥ −1/z for all z ≥ 0. Then qn(ν, x) := q(an(ν(1))ν, x) satisfies the
conditions of Lemma 4.3.

Proof. Observe that the assumptions on a(·) imply that an(z)z ≤ n for every z ≥ 0.
By (4.1) and the definition of qn(·, ·) we have

m(qn(ν, ·)) ≤ K(1 + an(ν(1))ν(1)) ≤ K(1 + n).

On the other hand, for ν and γ ∈ M(E) let η = ν+γ and let gν and gγ denote respectively
the densities of ν and γ with respect to η. Without loss of generality, we may assume
ν(1) ≤ γ(1). By the mean-value theorem we have that

ν(1)|an(ν(1))− an(γ(1))| ≤ ν(1)|a′n(z)||ν(1)− γ(1)| ≤ ‖ν − γ‖,

where ν(1) ≤ z ≤ γ(1). It follows that

|m(qn(ν, ·)− qn(γ, ·))| = |m(q(an(ν(1))ν, ·)− q(an(γ(1))γ, ·))|
≤ Kn‖an(ν(1))ν − an(γ(1))γ‖
≤ Knη(|an(ν(1))gν − an(γ(1))gγ|)
≤ Kn[|an(ν(1))− an(γ(1))|η(gν) + an(γ(1))η(|gν − gγ|)]
≤ Kn[|an(ν(1))− an(γ(1))|ν(1) + ‖ν − γ‖]
≤ 2Kn‖ν − γ‖.

That is, qn(·, ·) satisfies the conditions of Lemma 4.3. �

The following theorem generalizes the result of [17, Corollary 5.5]:

Theorem 4.1 Under the conditions (4.1) and (4.2), there is a unique solution {Yt : t ≥ 0}
of (4.3). Moreover, {Yt : t ≥ 0} is a measure-valued diffusion and for each f ∈ D(A),

Mt(f) = Yt(f)− Y0(f)−
∫ t

0

Ys(Af − bf)ds−
∫ t

0

m(q(Ys, ·)f)ds, t ≥ 0, (4.4)
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is a continuous martingale relative to the filtration (Gt)t≥0 with quadratic variation process

〈M(f)〉t =

∫ t

0

Ys(cf
2)ds, t ≥ 0. (4.5)

Proof. The uniqueness of (4.3) holds by Lemma 4.2. For the proof of existence, we
first construct an approximating sequence. For each integer n ≥ 1 let qn(·, ·) be defined

as in Lemma 4.4. By Lemma 4.3 there is an unique continuous solution {Y (n)
t : t ≥ 0}

of (4.3) with q(·, ·) replaced by qn(·, ·). Then, by Lemma 4.1, for k ≥ n, we have a.s.

Y
(n)
t∧τn

= Y
(k)
t∧τn

for each t ≥ 0, where

τn = inf{t ≥ 0 : Y
(n)
t (1) ≥ n} = inf{t ≥ 0 : Y

(k)
t (1) ≥ n}.

Since {Y (n)
t∧τn

: t ≥ 0} and {Y (k)
t∧τn

: t ≥ 0} have continuous paths, they are indistinguishable.

Using Theorem 3.2, condition (4.1) and noticing that qn(Y
(n)
t , ·) = q(Y

(n)
t , ·) for s ∈

[0, t ∧ τn] we get

E{Y (n)
t∧τn

(1))} ≤ e‖b‖tµ(1) +

∫ t

0

e‖b‖(t−s)E{m(q(Y
(n)
s∧τn

, ·))}ds

≤ e‖b‖t(µ(1) + Kt) + Ke‖b‖t
∫ t

0

E{Y (n)
s∧τn

(1)}ds.

By Gronwall’s inequality there is a locally bounded function C(·) on [0,∞) independent
of n ≥ 1 such that

E{Y (n)
t∧τn

(1)} ≤ C(t). (4.6)

By the definition of τn we have nP {0 < τn < t} ≤ C(t), and so

P {τn ≤ t} = P (τn = 0) + P (0 < τn < t) ≤ 1[n,∞)(µ(1)) + n−1C(t),

which goes to zero as n → ∞. But {τn} is an increasing sequence, so we conclude that
a.s. τn ↑ ∞ as n → ∞. Thus there is a continuous process {Yt : t ≥ 0} such that a.s.

Y
(n)
t = Yt for all t ∈ [0, τn]. Clearly, {Yt : t ≥ 0} satisfies (4.3) with probability one. By

(4.6) and Fatou’s lemma, E{Yt(1)} ≤ C(t). The martingale characterization (4.4) and
(4.5) follows by Lemma 4.3. The strong Markov property can be proved as [17, Theorem
4.4]. �

Suppose that c > 0 is a constant, β(·) is a bounded Lipschitz function on [0,∞) and
γ(·) is a non-negative locally Lipschitz function on [0,∞) satisfying the linear growth
condition. The stochastic differential equation

dy(t) =
√

cy(t)dB(t) + β(y(t))y(t)dt + γ(y(t))dt, t ≥ 0, (4.7)

defines diffusion process {y(t) : t ≥ 0}, which may be called a continuous state branching
diffusion with interactive growth and immigration. Setting

b = − inf
z

β(z) and q(z) = β(z)z + bz + γ(z), z ≥ 0,
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we can rewrite (4.7) as

dy(t) =
√

cy(t)dB(t)− by(t)dt + q(y(t))dt, t ≥ 0. (4.8)

The last equation may be regarded as the special case of the martingale problem (4.4)
and (4.5) with E = {a} being a singleton. Thus equation (4.3) gives a decomposition of
the paths of {y(t) : t ≥ 0} into excursions of the diffusion process {x(t) : t ≥ 0} defined
by

dx(t) =
√

cx(t)dB(t)− bx(t)dt, t ≥ 0. (4.9)

This generalizes a result of [15], who considered the case where β(·) and γ(·) are constants
and hence the right hand side of (4.3) is independent of {y(t) : t ≥ 0}. See also [9].
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