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Abstract

A class of immigration superprocess with dependent spatial motion is con-
structed by a passage to the limit from a sequence of superprocesses with positive
jumps. A non-critical branching is then obtained by using a Girsanov transform
of Dawson’s type, which also gives a state-dependent spatial drift.
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1 Introduction

Let B(IR) be the totality of all bounded Borel functions on IR and let C(IR) denote its subset
comprising of continuous functions. Let M (IR) denote the space of finite Borel measures on IR
endowed with the topology of weak convergence. We write (f,u) for [ fdu and for a function
F on M(IR) let

OF(p) .. 1
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if the limit exists. Let 62F(u)/du(x)du(y) be defined in the same way with F replaced by
(6F/6p(y)) on the right hand side. Suppose that h is a continuously differentiable function on
IR such that both h and h’ are square-integrable. Then the function

pla) = [ hy=oh)ds, v R, (1.1)

is twice continuously differentiable with bounded derivatives p’ and p”. Suppose that ¢ € C(IR)
is Lipschitz and o € B(IR)*. We may define an operator £ by

2
P = 5 [ a<m>jx2‘;f ((jj))u(d:c)

2 2
+1/IR2 p(z —y) & o) p(dz)p(dy)

2 drdy dp(z)opu(y)
1 02 F (p)
t3 /]RU(IL‘) TIEE w(dx), (1.2)

which acts on a class of functions on M (IR) to be specified. A Markov process with generator £
was constructed in Dawson et al [2], generalizing the construction of Wang [9, 10]. The process
generated by L is naturally called an superprocess with dependent spatial motion (SDSM) with
parameters (a, p, o), where a(-) represents the rate of the underlying motion, p(-) represents the
interaction between the “particles” and o(-) represents the branching density. We shall also
call the process simply a (a, p,0)-superprocess. We refer the reader to [2, 9, 10] for detailed
descriptions of the model. Given A € M (IR), we may define another operator J by

OF (p)
R Ou()

A Markov process generated by J can be called an SDSM with immigration with parameters
(a,p,0, ) or simply a (a, p, o, \)-superprocess, where \ represents the immigration rate.

In this work, we give a construction of the (a, p, o, \)-superprocess by a passage to the limit
from a sequence of SDSM’s with positive jumps. From the (a, p, o, A)-superprocess we shall use
Girsanov transform of Dawson’s type to derive an M (IR)-valued diffusion process with generator

D

TF(u) = LF(p) + A(dz). (1.3)

TF() = JF() - /R b() B )
SEW) () (), (1.4)

—/ZP(rc—wb(y) TH
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where b € C'(IR). Note that the generator J° not only involves a non-critical branching given
by the second term on the right hand side, it also involves a state-dependent drift in the spatial
motion represented by the last term. This is different from the classical case where the Girsanov
transform does not effect the spatial motion; see Dawson [1].

2 Function-valued dual processes

As in Dawson et al [2], we shall define a function-valued dual process and investigate its con-
nection to the solution of the martingale problem for the immigration SDSM. For p € M(IR)



and a subset D(J) of the domain of 7, we say an M (IR)-valued cadldg process {X; : ¢t > 0} is
a solution of the (J,D(J))-martingale problem if

F(X;) — F(Xo) — /Ot JF(X,)ds, t>0, (2.1)

is a martingale for each F' € D(J). Let G™ denote the generator of the interacting particle
system introduced in [2], and let (P/™);>¢ denote the transition semigroup generated by the
operator G™. Observe that, if F,, s(u) = (f, u™) for f € C3(IR™), then

1 m m
T Fyn g (1) = Fingm g (1) + 5 > Fncte, )+ Foo1wp(w), (2.2)
i.j=1,i#] i=1

with &;;f € C3(IR™ ") defined by

dsijf(xla e 7xm—1) = O'(xm—l)f(:nla s Tm—1," s Tm—15" " xm—2)7 (23)

where z,,_1 is in the places of the ith and the jth variables of f on the right hand side, and
U, f € C3(IR™ 1) defined by

Wif(xl,---,:rm_l) = / f(xl,---,:ri_l,ac,wi,---,xm_l))\(dx), Z;j S R, (2.4)
R

where x € IR is the i¢th variable of f on the right hand side.

Let {M; : t > 0} be a nonnegative integer-valued cadldg Markov process with transition
intensities {¢; j} such that ¢;;—1 = —¢;; = i(i + 1)/2 and ¢; ; = 0 for all other pairs (7, 7). Let
70 = 0 and Tpg,4+1 = 00, and let {7 : 1 < k < Mp} be the sequence of jump times of {M; : t > 0}.
Let {I : 1 <k < My} be a sequence of random operators which are conditionally independent
given {M; : t > 0} and satisfy

1

P{Fk:¢i,j’M(Tk_):l}:l(l+l)a 1<i#j<l, (2.5)
and
P{I = M (r) =1} = 17 i 5o 1=ist (2.6)

Let B denote the topological union of {B(IR™):m =1,2,---} endowed with pointwise conver-
gence on each B(IR™). Then

T g pMn

T2—T1

M
I.P k-1

Thk—Tk—1

Y, = P

t*Tk

NPMYy, 1 <t < 741,00 <k < My, (2.7)

defines a Markov process {Y; : ¢ > 0} taking values from B. Clearly, {(M;,Y;) : ¢ > 0} is
also a Markov process. To simplify the presentation, we shall let Egﬁb f denote the expectation
given My = m and Yy = f € C(IR™), just as we are working with a canonical realization of

{(M;,Y3) : t > 0}.



Theorem 2.1 Let D(J) be the set of all functions of the form Fy, r(n) = (f, ™) with f €
C2(IR™). Suppose that {X; : t > 0} is a continuous M (IR)-valued process and that E{(1, X;)™}
is locally bounded in t > 0 for each m > 1. If {X; : t > 0} is a solution of the (J,D(J))-
martingale problem with Xy = u, then

B X1 = B [0y e {3 [ anor, + 1as}] (2.9

for any t > 0, f € B(IR™) and integer m > 1. Consequently, the (J,D(J))-martingale problem
has at most one solution possessing locally bounded moments of all degrees.

Proof. The general equality follows by bounded pointwise approximation once it is proved
for f € CA(IR™). Set Fj,(m, f) = Fy, s(1) = (f, &™). From the construction (2.7), it is not hard
to see that {(My,Y;) : t > 0} has generator L* given by

‘C*FM(ma f) = F/L(m7 Gmf)

_|_% Z [Fu(m -1, @ijf) - Fu(mv f)]
ij=1,i4j

+ Y [Fu(m =1, % f) — Fu(m, f)].
i=1
In view of (2.2) we have

LEy g (n) = £ Fulm, ) + gmlm + 1) Fu(m, ). (2.9

Guided by (2.9) one can prove (2.8) using similar calculations as in [2]. To show the last
assertion of the theorem, we may first consider the special case o(z) = o¢ for a constant oy.
In this case, (2.1) implies that {(1,X;) : ¢t > 0} is a one-dimensional diffusion with generator
27 ogzd? /dx? + (1,\)d/dz. As in [5, pp.236-237] one sees that

_ - 1, 1)z
Eexp{z<1,Xt>} = []' - O-Ozt/Q] 2{LA) /o0 €xXp {1<—0'/(j/it/2}’ t> Oa ’Z| < 2/0-0t'

The remaining arguments are similar to those in the proof of Theorem 2.2 in [2]. O

3 SDSM with discrete immigration

Suppose that (P;);>0 is a Feller transition semigroup on some metric space E which has a Hunt
process realization . Suppose that K(z,dy) is a bounded kernel on E. We assume that K(z,-)
depends on # € E continuously. Let 3(z) = K(z,FE). Let Ko(z,dy) = B(x) 'K (z,dy) if
B(x) > 0 and Ko(z,dy) = d,(dy) if f(z) = 0. By the concatenation argument described in
Sharpe [7, p.82] it is not hard to construct a Markov process n with the following properties:

(3A) The process evolves in E according to the law given by the transition probabilities of
¢ until the random time 7 with P{m >t} = exp{— fg B(ns)ds}.

(3B) At time 7 the particle jumps from U to a new place in E according to the probability
distribution K (7771_ ,dy), and then moves randomly according to the transition probabilities of &

again until the random time 7, + 7o with P{m >t} = exp{— f;ﬁ_t B(ns)ds}; and so on.
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Lemma 3.1 Suppose that  has generator (A, D(A)), where D(A) C C(FE). Then n has gener-
ator (B,D(B)), where D(B) = D(A) and

Bf(@) = Af@)+ [ 1)~ @)K (z.0). @€ F.f €D(B) (31)
Moreover, the transition semigroup of n is Feller.

Proof. Let (Q¢)t>0 denote the transition semigroup of 1. The properties (3A) and (3B)
imply that

Quf(x) = Px[f ft)exp{ / B(&,)d }

| |
| few{ = [ seonfore)
(&)exp{ / Be)d H
| few{= [ neon}
e { - [[oeis}

t
+P, /Oexp /Mu Jdu VK (€5, Qusf)d ]
_ Px[fmexp /ﬂfs }

N /0 tpx[exp{— /0 ﬁ(ﬁu)dU}K(és,Qt—sf)]dS- (3.2)

This equation follows as we think about the behavior of the particle. It either moves accord-
ing to & without jumping until time ¢, or it first jumps at some time s € (0,¢]. The first
event happens with probability exp{— fo (&s)ds} and the second happens with probability

exp{— fo (&u)du}B(&s)ds, giving the two terms of on the right hand side. For f € D(A), we
get from (3.2) that

2w = e Pl i@ e { - [ s - o)

t|0

t
+1til161t_1/0 Px[exp{ / ﬁ u du} f&Qt sf :|d3

t
= ltil%lt_lpx[f(gt)_f(x]+ limt 1P, [ (&) eXp{ ; B(&s)d } (Et)]

)
+1tilr0nt—1/0tpx{exp{ /ﬁﬁudU} (6n Qi sf]ds

= Af(2) — Bla)f(x) + K, f)

=A@+ [ 1) - F@)K ).

Since (A, D(A)) generates a Feller transition semigroup, so does (B, D(B)); see e.g. [4, p.37]. O

For a fixed non-trivial measure A € M(/JR) we consider a random variable ¢ in IR with
distribution A(1)7™'*A\. For u € M(IR), let K(u,dv) denote the distribution of the random
measure

X:=p+ 0_154.
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Observe that

| 1P = PR () = A1) [ [+ 0718,) = FGlAd). (3.3)
M(R) R
For 6 > 0 we can define the generator Jy by

TP () = £P() +0 [ [F(u+076) = Pl (). (3.4)

By the result in [2], £ generates a Feller semigroup on M (IR), then so does Jy by Lemma 3.1.
We shall call the process generated by Jy a SDSM with discrete immigration with parameters
(a,p,0,A) and unit mass 1/6. Intuitively, the immigrants come to IR by cliques with mass 1/6
with time-space configuration given by a Poisson random measure with intensity 6ds\(dzx). A
more general immigration model for superprocesses with independent spatial motions has been
considered in Li [6].

4 SDSM with continuous immigration

In this section, we construct a solution of the (7,D(J))-martingale problem by using an ap-
proximation by the SDSM with discrete immigration. Observe that, if

Frgon () = (o110, (bn, 1), € M(IR), (4.1)
for f € C3(IR™) and ¢; € C3(IR), then

THriod() = 5 A6 (on ) adlun

by 30 Ah4ona e ow) [ ole )@ (@)

t,j=1
Z ¢17 3 "a<¢n7u>)<0¢’i¢j’p’>
t,j=1
+ 3 By (D 1)) (B0, A)- (4.2)
i=1

Let {6x} be any non-negative sequence such that 6y — oo as k — oo. For k > 1, let
{Xt(k) :t > 0} be a cadlag SDSM with discrete immigration with parameters (a, p, o, m), unit

1/6x and initial state Xék) = up € My, (IR). Let M (IR) be the space of finite Borel measure on
IR endowed with the weak convergence topology.

Lemma 4.1 If the sequence {(1, ju)} is bounded, then {Xt(k) :t > 0} form a tight sequence in
D([0, 00), M (IR)).

Proof. Let H(v) = (1,v). By (3.4), it is not hard to see that Jp, H(v) = (1, A). It follows
that

By (LX) = (L) + (LN, >0,
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Then {(l,Xt(k)> — (1,A\)t : t > 0} is a martingale. By a martingale inequality, for « > 0 and
n > (1, \)u we have

P{ sup <1,Xt(k)>>2n} < P{ up |<1,X£’”>—<1,A>t|>n}
0<t<u 0<t<u

_ k
< 37! sup B, {11, XM — a1, ¢}
0<t<u

37 (L, k) + 2(1, A)u);

IN

see e.g. [3, p.66]. That is, {Xt(k) : t > 0} satisfies the compact containment condition of [4,

p.142]. Let Jj denote the generator of {Xt(k) :t > 0} and let Fy 4,y be given by (4.1) with
[ € C3(IR™) and with each ¢; € C3(IR) bounded away from zero. Then

t
k k
Fy (o (X)) = Fy 15 (X5 —/O TeFrgoy(XP)ds,  t>0,

is a martingale and the desired tightness follows from the result of [4, p.145]. O
Now suppose that all functions in Cy(IR) are extended to IR by continuity. If ¢ € Cy(IR)*,

the right hands of (4.1) and (4.2) may be regarded as functions on M(IR). Let JF(u) be

~ N

defined by the right hand side of (4.2) as a function on M (IR). Let D(J) be the totality of all
functions of the form (4.1) with f € CZ(IR") and with each ¢; € C3(IR) bounded away from

zero. Suppose that pp — p € M(IR) as k — oo and let Q,, be any limit point of the distributions
of {Xt(k) :t > 0}. As in the proof of Lemma 4.2 in [2], we may see that @, is supported by
C([0, 00), M(IR)) and

t
Ef 14,3 (wr) —Ff,{qbi}(wo)—/o TFs o (ws)ds, — t>0, (4.3)

is a martingale for each Fy (41 € D(J), where {w; : t > 0} denotes the coordinate process of
C([0,00), M (IR)).

Lemma 4.2 Let Q,, be given as the above. Then forn >1,t >0 and pp € M(IR) we have

Qu{(Lwy)"} < (L, w)" +nf(n —1)lol|/2+ (1, N)] /O Q. ({1, ws)" " }ds.

Consequently, Q,{(1,w;)"} is a locally bounded function of t > 0. Let D(J) be the union of
all functions of the form (4.1) with f € CZ2(IR") and ¢; € C3(IR) and all functions of the form
Fop(u) = (f, u™) with f € C3(IR™). Then (4.3) under Q,, is a martingale for each F' € D(J).

Proof. For any k > 1, take f € CZ(IR)) such that fx(z) = 2" for 0 < z < k and f//(z) <
n(n —1)2""2 for all z > 0. Let Fy(u) = fx((1,)). It s easy to see that

T Fy(n) < nf(n = 1)llo]l/2 + (L)L )"

Since

Fi(X,) — Frp(Xo) — /Ot JF((1, X,))ds, t>0,
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is a martingale, we get
t
Q.((L,Xy)) < [frl(L,w)) +nl(n—1)o]l/2+ <1’>\>]/0 Q,.((1, Xs)" 1)ds

t
< <17u>”+n[(n—1)||0||/2+<1,/\>]/0 Q,.((1, Xs)" H)ds.

Then the desired estimate follows by Fatou’s Lemma. The last assertion is immediate. O

By the martingale problem (4.3) and the last lemma, it is easy to find that for each ¢ €
C3(IR),

Mt(¢) = <¢7wt> - <¢7,U’> - <d)7m>t - ;/O <a¢”a ws>d87 t> 07 (44)

is a Q -martingale with quadratic variation process

(M(9)): = /0 (02, wy)ds + /0 s /R (h(z — ), wi)d. (4.5)

For a continuous branching density function o € Cy(IR)*, the existence of a SDSM with immi-
gration is given by the following

Theorem 4.1 Let D(J) be the union of all functions of the form (4.1) with f € CZ(IR™)
and ¢; € C?(IR) and all functions of the form F, ;(u) = (f,u™) with f € C*(IR™). Let
{w; : t > 0} denote the coordinate process of C([0,00), M(IR)). Then for each p € M(IR)
there is a unique probability measure Q,, on C([0,00), M (IR)) such that Q, {wo = p} =1, the
moments Q,{(1,w;)™} are locally bounded and {w; : t > 0} under Q, is a solution of the
(J,D(J))-martingale problem.

Proof. Let @, be as in Lemma 4.2. By Theorem 2.1, the (J,D(J))-martingale problem

has at most one solution possessing locally bounded moments of all degrees. Then the desired
result follows once it is proved that

Q,{w:({0}) =0 for all t € [0,u]} =1, u > 0. (4.6)

Let M (ds,dz) denote the stochastic integral relative to the martingale measure defined by (4.4)
and (4.5). As in [2], we have

t t
(6,w0) = (Bup, 1) + /0 (Presp, N)ds + /0 /B By o6(x) M(ds, dx)
for t > 0 and ¢ € CA(IR). For any fixed u > 0, we have that
A A~ t ~
MES) = (Pusdywr) — (Budy ) — /0 MPos)ds

t A
- / / Pu_SQSM(dS,d.f), te [O,U],
0 JIR



is a continuous martingale with quadratic variation process

/Ot<0(15u—s¢)27ws)ds + /Ot ds /JRUZ(Z )Py (¢), ws)2dz
= [otBmoriwiis+ [ ds [ b= Pumso) e

By a martingale inequality we have

(M*(¢))s

Qu{oiltlgu (Pu—tp,wi) — (Putp, 1) — /t M Py_s)ds 2}
< /Q{ P ),y }ds+4/ s [ Quith(z = )Pucs() )
<

1 /0 (o(PrstuP)ds +4 [ 1) / Qu ({1 w) (a6, w4) s
< 4 [P nPds w416 [ nGPds [0 Quiwas

Choose a sequence {¢;} C C3(IR) such that ¢(-) — 1(g;(-) boundedly and [|¢} || — 0 as k — oc.
Replacing ¢ by ¢ in the above and letting & — oo we obtain (4.6). O

For a general o € B(IR)", we may choose a bounded sequence of functions {0y} C Cy(R)*
such that o, — o pointwise out of a Lebesgue null set. Suppose that {up} € M(IR) and
pur — p € M(IR) as k — oo. For each k > 1, let {Xt(k) : t > 0} be an immigration SDSM
with parameters (a, p, o0k, m) and initial state u; € M(IR) and let @, denote the distribution of
{Xt(k) :t >0} on C([0,00), M(IR)). By the arguments in the proofs of Theorems 5.1 and 5.2 in
[2] we get

Theorem 4.2 As k — oo, the sequence Q), converges to a probability Q,, on C([0,00), M (IR)).
Let D(J) be as in Theorem 4.1 for the more general ¢ € B(IR)". Then Q, is the unique
probability measure on C([0, 00), M (IR)) such that Q, {wo = p} =1 and {w; : t > 0} under Q,,
solves the (J,D(J))-martingale problem. Consequently, {w; : t > 0} under Q,, is a diffusion
process with transition semigroup (Q¢)+>0 defined by

/M(R)<f, V"™ Qi(p, dv) = E, [<thth> exp {; /Ot My(M, + 1)d3}], (4.7)

This gives the existence of the SDSM with continuous immigration for a bounded measurable
branching density o € B(IR)". Clearly, we have that for each ¢ € C?(IR),

Mi(6) == (6, wn) — (&, 1) — (b, m)t — ;/O (ad" wy)ds,  t>0, (4.8)

is a Q,-martingale with quadratic variation process

(M(9)): = /0 (0%, wi)ds + /0 s /B (h(z — ), wi)d. (4.9)

Conversely, if @Q,, is a probability measure on C([0, 00), M (IR)) such that (4.8) is a martingale
with quadratic variation process (4.9), by It6’s formula one can show that Q , 1s the solution of
the (J,D(J))-martingale problem, which is unique by Theorem 2.1. Then (4.8) and (4.9) give
an alternate characterization of the immigration SDSM.



5 Non-critical branching mechanism

Let Q,, denote the distribution on C([0,00), M(IR)) of an (a, p, 0, \)-superprocess with initial
state p € M (IR). Let M (ds, dx) denote the martingale measure defined by (4.8) and (4.9). Then
for any b € C1(IR) the stochastic integral

is well-defined and

(M(b)>t:/0 <ab2,ws>ds+/0 ds/R<h(z—-)b’,ws>2dz. (5.2)

We consider the exponential martingale
1
Z(b) := exp{ — M (b) — 2<M(b)>t}, t>0. (5.3)

Fix a constant 7" > 0 and let QZ(dw) = Zr(w,b)Q,(dw). By Girsanov’s theorem,

t

Ni@) = (o) = (6o — (ot = 5 [ (" wds = [ obo.was

0
+/0 ds /]R<h(z — )b ws)(h(z — )¢, ws)dz, 0<t<T, (5.4)

is a QZ—martingale with quadratic variation process

¢ t
(N (o)) = /0 <0¢>2,w5>d8 +/0 ds /]R<h(z — -)d)',w8>2dz, 0<t<T. (5.5)

As usual, the coordinate process {wy : 0 < t < T'} under QZ is a diffusion process; see e.g.

[5, pp.190-197]. We call the new process a (a,p,o,b, A\)-superprocess. Intuitively, the term
fot (obg, ws)ds in (5.4) represents a linear growth with growth rate o(-)b(-). Girsanov transfor-
mations of this type were introduced by Dawson [1] to get non-critical superprocesses for critical
ones. Note that we have on the right hand side of (5.5) the term

t
/ ds/ (h(z — )b ws)(h(z — )¢, ws)dz, (5.6)
0 R
which may be interpreted as a spatial drift with state-dependent coefficient
| [ b= ¥ - s = [ ¥t~ Ju.dy) (57)
RJIR R

This is different from the classical case where the Girsanov transform does not effect the spatial
motion; see [1]. Let D(J°) be the union of all functions of the form (4.1) with f € CZ(IR") and
¢; € C*(IR) and all functions of the form F,, ¢(u) = (f, ™) with f € C*(IR™).

Theorem 5.1 The (a, p,0,b, \)-superprocess solves the (J°, D(J?))-martingale problem.
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Proof. If Fy 14y is given by (4.1), we have
1 n
T Frion) = 5 Zf;«asl,m, < (fn, 1)) (a0 — 200, 1)

L3 S () | ola =)o) (@t

,Jl

Z ((D1s )55 (Dny 1)) (0D, 1)

1,j=1
=S S i) [ pla = )V @) n(da) ()
i=1
i=1
Based on (5.4) and (5.5), it is easy to check by It&’s formula that
Lo
Fy (63 (we) = Fir (g3 (wo) — /O T Fripy(ws)ds, 0>t <T, (5.9)
is a martingale under QZ. Then the theorem follows by an approximation of an arbitrary

F € D(L). O
If By p(pu) = (f,u™) for f € C3(IR™), then

TFm () = Focps(p)+ % i Fo1,0,,5(1t)
i.j=1,i#j
+>  Fnvw (1) + Y Fongrrp (1), (5.10)
= i=1
where
Gy f(xr, - am) =G f(m1, -+, om) — ib(fci)f(:m, T, (5.11)
i=1
and
Lif (@1, @m, Tns1) = —p(@mr1 — @) (@) fi(@1, - 2m). (5.12)

In view of this expression of the generator, one may construct a dual process which gives ex-
pressions for the moments of the (a, p, o, b, \)-superprocess.
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