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Abstract

Let {X(t) : t ≥ 0} be a one-dimensional generalized diffusion process with
initial state X(0) > 0, hitting time τX(0) at the origin and speed measure m which
is regularly varying at infinity with exponent 1/α − 1 > 0. It is proved that, for a
suitable function u(c), the probability law of {u(c)−1X(ct) : 0 < t ≤ 1} converges
as c →∞ to the conditioned 2(1−α)-dimensional Bessel excursion on natural scale
and that the latter is equivalent to the 2(1− α)-dimensional Bessel meander up to
a scale transformation. In particular, the distribution of u(c)−1X(c) converges to
the Weibull distribution. From the conditional limit theorem we also derive a limit
theorem for some of regenerative process associated with {X(t) : t ≥ 0}.
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1 Introduction

A number of limit theorems of generalized diffusion processes and their functionals have
been obtained in the literature; see e.g. Kasahara (1975), Minami et al. (1985), Ogura
(1989), Stone (1963), Watanabe (1995) and Yamazato (1990) among others. Let {X(t) :
t ≥ 0} be a non-negative generalized diffusion process with speed measure m(dx) which
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is regularly varying at infinity with exponent 1/α − 1 > 0. Stone (1963) proved that,
for a suitable scale function u(c), the distribution of {u(c)−1X(ct) : t ≥ 0} converges
in distribution as c → ∞ to a 2(1 − α)-dimensional Bessel diffusion process on natural
scale, and Kasahara (1975) showed that essentially only Bessel processes can arise in this
kind of limits. See Lamperti (1962, 1972) for discussions of scale limits leading to more
general classes of processes. On the other hand, a number of conditional limit theorems for
Brownian motion and random walks have been proved which lead to Brownian meander
and Brownian excursion processes; see e.g. Belkin (1972), Bolthausen (1976), Durrett et
al. (1977), Iglehart (1974), and Shimura (1983). Similar conditional limit theorems for
branching processes have also been studied; see e.g. Athreya and Ney (1972), Lamperti
and Ney (1968), Li (2000) and the references therein.

In this paper, we prove a conditional limit theorem of the generalized diffusion process
{X(t) : t ≥ 0}. Suppose that X(0) > 0 and let τX(0) = inf{t ≥ 0 : X(t) = 0}. We
prove that the distribution of {u(c)−1X(ct) : 0 < t ≤ 1} under P {·|τx(0) > ct} converges
in distribution as c → ∞ and we characterize the limit in terms of Bessel excursion and
Bessel meander. In particular, the conditional distribution of u(c)−1X(c) converges to the
Weibull distribution. From the conditional limit theorem we also derive a limit theorem
for some of regenerative processes associated with {X(t) : t ≥ 0}. Bessel meanders and
their generalizations have been studied by Yor (1992a,b, 1997).

2 Preliminaries

Let M be the totality of left continuous, non-decreasing functions m : [0,∞) → [0,∞]
with m(0) = 0. For any m ∈ M, set lm = sup{x ≥ 0 : m(x) < ∞}. We shall identify
m ∈ M with the measure m on [0,∞) determined by m([0, x)) = m(x). Note that
m({lm}) = ∞ is possible. We sometimes think m ∈M as a measure on (−∞,∞). Given
m ∈ M, let Em denote its closed support and let m−1 ∈ M denote its inverse function,
that is, m−1(0) = 0 and m−1(x) = sup{y ≥ 0 : m(y) < x} for x > 0. Let M0 be the set of
elements m ∈M such that 0 ∈ Em. For any given one-dimensional process {X(t) : t ≥ 0}
and a point x in its state space we define the hitting time τX(x) = inf{t > 0 : X(t) = x}.

Let m ∈M and let {B(t) : t ≥ 0} be a one-dimensional Brownian motion with initial
state B(0) = 0 and generator d2/dx2. Let l(t, x) denote the local time of B(t). Of course,
B(t) and l(t, x) are defined on some probability space (Ω ,F ,P ). Let

S(x, t) =
∫ ∞

−∞
l(t, y − x)m(dy), t ≥ 0, x ∈ IR, (2.1)

and

S−1(x, t) = sup{r : S(x, r) ≤ t}, t ≥ 0, x ∈ IR. (2.2)

For any x ≥ 0 we define

X(x, t) = x+B(S−1(x, t)), t ≥ 0. (2.3)
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Then {X(x, t) : t ≥ 0,P } is a cádlág strong Markov process in Em, whose life time is the
hitting time at lm. This process is the so-called generalized diffusion process with speed
measure m(dx); see e.g. Kasahara (1975) and Stone (1963). The process has formal
generator d2/dm(x)dx. Its transition function can be characterized in terms of Krein’s
correspondence as follows. Consider the integral equations

φ(x, λ) = 1 + λ
∫ x

0
dy

∫
[0,y)

φ(z, λ)m(dz) (2.4)

and

ψ(x, λ) = x+ λ
∫ x

0
dy

∫
[0,y)

ψ(z, λ)m(dz). (2.5)

For each λ > 0, the equations have unique solutions φ(x, λ) and ψ(x, λ). Furthermore,
for each x ≥ 0, both φ(x, λ) and ψ(x, λ) can be extended to a entire function of λ. The
characteristic function h(λ) of m(x) is defined as

h(λ) =
∫ ∞

0

dx

φ(x, λ)2
= lim

x→∞

ψ(x, λ)

φ(x, λ)
(2.6)

(under the conventions 1
∞ = 0 and 1

0
= ∞). The function h(λ) has representation

h(λ) = a+
∫
[0,∞)

σ(ds)

λ+ s
, λ > 0, (2.7)

where a = inf{x ≥ 0 : m(x) > 0} and σ(ds) is a Radon measure on [0,∞) satisfying

∫
[0,∞)

σ(ds)

1 + s
<∞.

The correspondence between m and (a, σ) is one-to-one and known as Krein’s correspon-
dence. Let p(t, x, y) denote the density with respect to m(dy) of the transition function
of X(x). Then we have

p(t, x, y) =
∫
[0,∞)

e−λtφ(x,−λ)φ(y,−λ)σ(dλ), x ≥ 0, y ≥ 0. (2.8)

We refer the reader to Itô and McKean (1965), Kac and Krein (1974), Kasahara (1975),
Kotani and Watanabe (1982) and Yamazato (1990) for more detailed explanations of
those results.

For m ∈M0 and for X(x, t) defined by (2.3), let X0(x, t) := X(x, t ∧ τX(x)(0)). Then
{X0(x, t) : t ≥ 0,P } is the absorbing barrier generalized diffusion process. It is known
that m−1 ∈M0 has characteristic function 1/λh(λ), which may be represented as

1

λh(λ)
= m(0+) +

1

λlm
+

∫
(0,∞)

σ0(ds)

s(λ+ s)
, λ > 0, (2.9)
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where σ0(ds) is a Radon measure on (0,∞) satisfying

∫
(0,∞)

σ0(ds)

s(1 + s)
<∞;

see Minami et al. (1985; Lemma 3). The transition density of the absorbing barrier
process X0(x, t) is given by

p0(t, x, y) =
∫
(0,∞)

e−λtψ(x,−λ)ψ(y,−λ)σ0(dλ), x > 0, y > 0; (2.10)

see Minami et al. (1985; (3.17)). Now we have the following

Lemma 2.1 For x ∈ Em, we have τX(x)(0) = S(x, τB(−x)) and τB(−x) = S−1(x, τX(x)(0))
(a.s.).

Proof. For t > τB(−x) we have l(t,−x) > l(τB(−x),−x). Since 0 ∈ Em, by (2.1)
and the continuity of l(·, ·) we get S(x, t) > σ := S(x, τB(−x)). That is, τB(−x) is an
increasing point of S(x, ·). Therefore, S−1(x, σ) = τB(−x). This implies that X(x, σ) =
B(S−1(x, σ)) + x = 0, and hence τX(x)(0) ≤ σ. On the other hand, since S(x, ·) is
continuous, S−1(x, ·) is strictly increasing. Then for any t < σ, we have S−1(x, t) <
S−1(x, σ) = τB(−x). From this it follows that X(x, t) = B(S−1(x, t)) + x > 0, yielding
τX(x)(0) ≥ σ. The second equality is immediate. 2

In the sequel, we consider a sequence mn ∈M0 for n = 0, 1, · · ·. Let Xn(x) and X0
n(x)

denote the corresponding generalized diffusion processes, and let pn(t, x, y) and p0
n(t, x, y)

denote their transition densities. We also write ψn, σ0
n and so on for the corresponding

quantities associated with mn. An earlier version of the following result was proved by
Stone (1963). We here present it in a form which is more convenient for our application
in the sequel.

Theorem 2.1 Suppose that Em0 = [0,∞). If Emn 3 xn → x0 and mn(x) → m0(x) for
all continuity points x ≥ 0 of m0, then Xn(xn, t) → X0(x0, t) and X0

n(xn, t) → X0
0 (x0, t)

uniformly in t ∈ [0, a] for each a ≥ 0 (a.s.).

Proof. Let Sn(x, t) be define by (2.1) with m replaced by mn. Under the assumption,
S0(x0, t) is strictly increasing in t ≥ 0, so S−1

0 (x0, t) is continuous in t ≥ 0. By (2.1)
we have Sn(xn, t) → S0(x0, t), and hence S−1

n (xn, t) → S−1
0 (x0, t) for all t ≥ 0. Since

the functions are non-decreasing and the limits S0(x0, t) and S−1
0 (x0, t) are continuous in

t ≥ 0, the convergences are uniform in t ∈ [0, a] for every a ≥ 0. Then the assertions
follow from the relations Xn(xn, t) = B(S−1

n (xn, t)) + xn and

X0
n(xn, t) = B(S−1

n (xn, t ∧ τXn(xn)(0))) + xn = B(S−1
n (xn, t) ∧ τB(−xn))) + xn,

where we have used Lemma 2.1 for the last equality. 2
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Theorem 2.2 Suppose that Em0 = [0,∞) and mn(x) → m0(x) for all continuity points
x ≥ 0 of m0. Then for any t > 0 and a > 0 we have

lim
n→∞

sup
0<x,y<a

1

xy
|p0

n(t, x, y)− p0
0(t, x, y)| = 0. (2.11)

Proof. By (2.5), for any λ ∈ IR and x2 > x1 > 0 we have∣∣∣∣ψ(x2, λ)

x2

− ψ(x1, λ)

x1

∣∣∣∣ =
|λ|
x1x2

∣∣∣∣x1

∫ x2

x1

dy
∫
[0,y)

ψ(z, λ)m(dz)

−(x2 − x1)
∫ x1

0
dy

∫
[0,y)

ψ(z, λ)m(dz)
∣∣∣∣

≤ |λ|
x1x2

[
x1

∫ x2

x1

dy
∫
[0,x2)

|ψ(z, λ)|m(dz)

+(x2 − x1)
∫ x1

0
dy

∫
[0,x2)

|ψ(z, λ)|m(dz)
]

≤ 2 |λ| (x2 − x1)
∫
[0,x2)

|ψ(z, λ)|
z

m(dz)

≤ 2 |λ| (x2 − x1)m(x2) cosh
{√

2 |λ|x2m(x2)
}
,

where we have used the inequality

|ψ(x, λ)| ≤ x cosh
{√

2 |λ|xm(x)
}
, x ≥ 0, λ ∈ IR; (2.12)

see Ogura (1989; (5.4)). Using these and (2.10) we get∣∣∣∣p0
n(t, x2, y)

x2y
− p0

n(t, x1, y)

x1y

∣∣∣∣
≤

∫
(0,∞)

∣∣∣∣ψn(x2, λ)

x2

− ψn(x1, λ)

x1

∣∣∣∣∣∣∣∣ψn(y, λ)

y

∣∣∣∣e−λtσ0
n(dλ)

≤ 2 |λ| (x2 − x1)mn(x2)

·
∫
(0,∞)

cosh
{√

2 |λ|x2mn(x2)
}

cosh
{√

2 |λ| ymn(y)
}

e−λtσ0
n(dλ).

By Ogura (1989; Lemma 5.3) and the symmetry of p0
n(t, ·, ·), for every t > 0 and a > 0 the

sequence {(xy)−1p0
n(t, x, y)} is equi-continuous and uniformly bounded in (x, y) ∈ (0, a]×

(0, a]. Thus there is a subsequence {nk} ⊂ {n} such that (xy)−1p0
nk

(t, x, y) converges to
some function q(t, x, y). Since p0

n(t, x, y) → p0
0(t, x, y) by Ogura (1989; Theorem 2.1), we

must have q(t, x, y) = (xy)−1p0
0(t, x, y), yielding the desired result. 2

3 Conditional limit theorem

Given an interval I ⊂ IR, let D(I) denote the set of cadlag paths from I to IR. We
topologize D(I) by the convention that wn → w0 in D(I) if and only if wn(t) → w0(t)
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uniformly in t ∈ [a, b] for each bounded closed interval [a, b] ⊂ I. Let C(I) denote the
subspace of D(I) comprising of continuous paths. Fix a function m ∈M0 that is regularly
varying at infinity and assume that

m(x) ∼ x1/α−1K(x), x→∞, (3.1)

for a constant 0 < α < 1 and a slowly varying function K(x). Let u(·) denote the
inverse function x1/αK(x). It is easy to check that u(x) ∼ xαL(x) for some slowly varying
function L(x). If we define X(x, t) by (2.3), then {Xc(t) ≡ u(c)−1X(x, ct) : t ≥ 0,P }
is a generalized diffusion process with initial state u(c)−1x and speed measure mc(x) :=
c−1u(c)m(u(c)x). Observe that

lim
c→∞

mc(x) = lim
u→∞

[u1/αK(u)]−1u1/αx1/α−1K(ux) = x1/α−1, x ≥ 0. (3.2)

The generalized diffusion process X0 with speed measure m0(dx) := (1/α− 1)x1/α−2dx is
called a 2(1 − α)-dimensional Bessel diffusion process on natural scale. Indeed, X0 has

generator d2/dm0dx = α(1 − α)−1x2−1/αd2/dx2 so that
√

2α(1− α)X
1/2α
0 is a standard

2(1 − α)-dimensional Bessel diffusion. We shall also need to consider the generalized
diffusion processes with absorbing boundary condition at the origin. For any c ≥ 0,
let Pc(t) denote semigroup of Xc and let P 0

c (t) denote semigroup of the corresponding
absorbing barrier processes.

Lemma 3.1 The transition function P 0
0 (t, x, dy) has density

p0
0(t, x, y) =

α
√
xy

t
exp

{
− α(1− α)(x1/α + y1/α)

t

}
Iα

(
2α(1− α)(xy)1/2α)

t

)
(3.3)

with respect to m0(dy), where

Iα(z) =
∞∑

n=0

(z/2)2n+α

n!Γ (α+ n+ 1)
. (3.4)

Proof. It is not hard to check that Y0(t) := 2α(1−α)X0(t)
1/α is the squared Bessel process

generated by 2xd2/dx2 + 2(1 − α)d/dx with absorbing boundary condition at zero. By
Borodin and Salminen (1996; p.117), Y0(t) has transition function

Q0
0(t, x, dy) =

1

2t
exp

{
− x+ y

2t

}
Iα

(√
xy

t

)(
x

y

)α/2

dy, t, x, y > 0.

Then (3.3) follows by a simple transformation. 2

Let us describe a σ-finite Markovian measure associated with P 0
0 (t) which plays an

important role in the study of our conditional limit theorems. For t > 0 and y > 0, let
κt(dy) = κt(y)m0(dy), where

κt(y) =
αα+1(1− α)αy

Γ (1 + α)tα+1
exp

{
− α(1− α)

t
y1/α

}
. (3.5)
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It is simple to check that

κt(y) = lim
x↓0

x−1p0
0(t, x, y), t > 0, y > 0, (3.6)

and (κt)t>0 form an entrance law for P 0
0 (t), that is κs+t = κsP

0
0 (t) for all s > 0 and t > 0.

By the general theory of Markov processes, there is a σ-finite measure Q on C(0,∞) such
that

Q{w(t1) ∈ dx1, w(t2) ∈ dx2, · · · , w(tn) ∈ dxn, tn < τw(0)}
= κt1(dx1)P

0
0 (t2 − t1, x1, dx2) · · ·P 0

0 (tn − tn−1, xn−1, dxn)

for 0 < t1 < t2 < · · · and x1, x2, · · · > 0. Indeed, for Q-almost all paths w ∈ C(0,∞) we
have w(0+) = 0, τw(0) <∞ and w(t) ≡ w(t∧ τw(0)). In the theory of diffusion processes,
Q is known as the excursion law of the α-Bessel diffusion; see e.g. Biane and Yor (1987)
and Pitman and Yor (1992, 1998) for some properties of the excursion law.

Lemma 3.2 Suppose x > 0 and let xc = u(c)−1x. Then for each t > 0, we have
x−1

c P 0
c (t, xc, ·) → κt(·) weakly as c→∞.

Proof. Let p0
c(t, x, y) denote the density of P 0

c (t, x, dy) with respect to mc(dy). For
b > a > 0 we may appeal Theorem 2.2 and (3.6) to see that

lim
c→∞

x−1
c P 0

c (t, xc, [a, b]) = lim
c→∞

∫ b

a
x−1

c p0
c(t, xc, y)mc(dy) =

∫ b

a
κt(y)m0(dy) = κt([a, b]).

By Yamazato (1990; Theorem 4), we have

P 0
c (t, xc, (0,∞)) ∼ [α(1− α)]αx

Γ (1 + α)(ct)αL(ct)
∼ [α(1− α)]αxc

Γ (1 + α)tα
= κt(0,∞)xc, c→∞. (3.7)

Then x−1
c P 0

c (t, xc, ·) → κt(·) weakly as c→∞. 2

Lemma 3.3 Suppose {fc : c ≥ 0} is a bounded family of Borel functions on [0,∞) such
that fc(xc) → f0(x) whenever c → ∞ and xc → x. If {pc : c ≥ 0} is a family of Borel
probabilities on [0,∞) such that pc → p0 weakly as c→∞, then

lim
c→∞

∫
[0,∞)

fc(x)pc(dx) =
∫
[0,∞)

f0(x)p0(dx). (3.8)

Proof. By Skorokhod’s result, we can construct a family of random variables {ξc : c ≥ 0}
such that ξc has distribution pc and ξc → ξ0 as c→∞ (a.s.). Then the assumption implies
that fc(ξc) → f0(ξ0) as c→∞ (a.s.), and (3.8) follows by bounded convergence theorem.
2

Theorem 3.1 For each x > 0, the distribution on D(0, 1] of {u(c)−1X(x, ct) : 0 < t ≤ 1}
under P {·|τX(x)(0) > c} converges as c→∞ to Q0 := Q{·|τw(0) > 1}.
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Proof. Let P c
x denote the distribution on D[0,∞) of the generalized diffusion process

with initial state x ≥ 0 and speed measure mc(dy). Suppose that 0 < r < 1 and F (·) is a
continuous function on D[r, 1]. By (3.7) and the Markov property,

lim
c→∞

E{F (((Xc(t))r≤t≤1)|τX(x)(0) > c}

= lim
c→∞

P {τX(x)(0) > c}−1E{F (((Xc(t))r≤t≤1); τX(x)(0) > c}

= lim
c→∞

Γ (1 + α)u(c)

[α(1− α)]αx

∫ ∞

0
P 0

c (r, u(c)−1x, dy)P c
y{F (((w(t− r))r≤t≤1); τw(0) > 1− r}

=
1

κ1(0,∞)

∫ ∞

0
κr(dy)P

0
y{F (((w(t− r))r≤t≤1); τw(0) > 1− r}

=
1

κ1(0,∞)
Q{F (((w(t))r≤t≤1); τw(0) > 1},

where we also used Theorem 2.1 and Lemmas 3.2 and 3.3 for the third equality. 2

Corollary 3.1 For each x > 0, the distribution of u(c)−1X(x, c) under P {·|τX(x)(0) > c}
converges as c→∞ to the Weibull distribution

κ1(0,∞)−1κ1(dy) = (1− α)y1/α−1 exp
{
−α(1− α)y1/α

}
dy, y > 0. (3.9)

From Corollary 3.1 and the results of Mitov and Yanev (2001) and Mitov et al. (1996)
we can deduce a limit theorem for some kind of regenerative processes associated with
generalized diffusions. Let G be a probability measure on (0,∞) such that

g :=
∫
(0,∞)

yG(dy) <∞. (3.10)

Let {Xi(t) : t ≥ 0}, i = 1, 2, · · ·, be a sequence of i.i.d. generalized diffusions with initial
distribution G and speed measure m(dy), and let ξi, i = 1, 2, · · ·, be a sequence of i.i.d.
non-negative random variables with Eξi <∞. Assume that the two families are defined
on the same probability space and are independent of each other. Let σ0 = 0 and let

σn =
n∑

i=1

(τi + ξi), n = 1, 2, · · · ,

where τi = τXi
(0). Then σn →∞ as n→∞ (a.s.). The regenerative process {Y (t) : t ≥

0} is defined by

Y (t) = Xn((t− σn−1) ∧ τn), σn−1 ≤ t < σn. (3.11)

Corollary 3.2 For each x ≥ 0,

lim
t→∞

P {u(t)−1Y (t) ≤ x}

= π−1 sin(πα)
∫ 1

0
y−α(1− y)α−1

(
1− exp

{
−α(1− α)x1/αy−1

} )
dy.
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Proof. With Corollary 3.1 in hand, the only thing we need to do is to check the tail of
the hitting time τX(x)(0) is of the right order and to appeal the general results of Mitov
and Yanev (2001) and Mitov et al. (1996). Observe that u(x, λ) := E exp{−λτX(x)(0)}
satisfies

d

dm(x)

d+

dx
u(x, λ) = λu(x, λ), u(0, λ) = 1, x ≥ 0, λ > 0, (3.12)

where d+/dx denotes the right derivative. But, it is well-known that

u(x, λ) = φ(x, λ)− h(λ)−1ψ(x, λ), x ≥ 0, λ > 0; (3.13)

see e.g. Itô and McKean (1965; p.129). By (2.4), (2.5) and (3.13) we get

d+

dx
u(0, λ) = λm(0+)− h(λ)−1, λ > 0.

Combining this with (3.12) we get

u(x, λ) = 1− h(λ)−1x+ λ
∫ x

0
dy

∫
[0,y)

u(z, λ)m(dz), x ≥ 0, λ > 0.

Then it is easy to see that 0 ≤ h(λ)[1− u(x, λ)] ≤ x, and h(λ)[1− u(x, λ)] → x as λ→ 0.
Now the dominated convergence theorem yields

h(λ)[1−E exp{−λτi}] =
∫
(0,∞)

h(λ)[1− u(x, λ)]G(dx) → g, λ→ 0.

Using Kasahara (1975; Theorem 2) we get

1−E exp{−λτi} ∼
g

h(λ)
∼ [α(1− α)]αΓ (1− α)gλα

Γ (1 + α)L(1/λ)
, λ→ 0.

By Tauberian theorem,

P {τi > c} ∼ [α(1− α)]αg

Γ (1 + α)cαL(c)
, c→∞;

see e.g. Feller (1971; p.447). Then the result follows immediately from Corollary 3.1 and
Mitov and Yanev (2001, Theorem 2.1) or Mitov et al. (1996; Theorem 1). 2

Note that the three limit distributions obtained above are universal, in the sense that
they only depend on the constant 0 < α < 1 rather than the explicit form of the speed
measure. In particular, the Weibull distribution came from the conditional excursion
law of the Bessel diffusion. These are rather similar to the results for critical branching
processes; see e.g. Athreya and Ney (1972), Lamperti and Ney (1968) and Li (2000).
It would be interesting if one could establish conditional limit theorems for generalized
diffusions under the assumption (3.1) with α = 1, which would correspond to the theorems
for sub-critical branching processes and lead to limit laws depending on the speed measure
explicitly; see e.g. Li (2000; Theorems 4.1 and 4.3).
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4 Conditioned Bessel excursion and Bessel meander

In this section, we give a characterization for the limit law Q0 in Theorem 3.1 in terms
of stochastic differential equation. From this characterization we get that Q0 is in fact
the law of the 2(1 − α)-dimensional Bessel meander on natural scale. Let us define a
conservative inhomogeneous transition semigroup (Qs,t)0≤s≤t≤1 on the state space (0,∞)
by

Qs,t(x, dy) = P 0
0 (1− s)1(x)−1P 0

0 (1− t)1(y)P 0
0 (t− s, x, dy). (4.1)

In view of (3.6) and (4.1), we can extend (Qs,t)0≤s≤t≤1 to a transition semigroup on [0,∞)
by continuity. It is easy to check that Q0 coincides with the distribution on C(0, 1]
of a Markov process with semigroup (Qs,t)0≤s≤t≤1 and initial state zero. The following
result is already known; see Yor (1992a, sect. 2) for a detailed discussion of the result
and its variations. We here include a short proof of the result based on Lemma 3.1 for
completeness.

Lemma 4.1 For t > 0 and x ≥ 0, we have P 0
0 (t)1(x) = Γ (α)−1F (t, x), where

F (t, x) =
1

(2t)α

∫ 2α(1−α)x1/α

0
uα−1e−u/2tdu. (4.2)

Proof. By Lemma 3.1 we have

P 0
0 (t)1(x) =

(1− α)

t

√
x exp

{
− α(1− α)

t
x1/α

} ∞∑
n=0

[α(1− α)x1/2α]2n+α

n!Γ (n+ α+ 1)t2n+α

·
∫ ∞

0
y(n+1)/α−1 exp

{
− α(1− α)

t
y1/α

}
dy

=
(1− α)

t

√
x exp

{
− α(1− α)

t
x1/α

} ∞∑
n=0

[α(1− α)x1/2α]2n+α

n!Γ (n+ α+ 1)t2n+α
· n!αtn+1

[α(1− α)]n+1

= exp
{
− α(1− α)

t
x1/α

} ∞∑
n=0

[α(1− α)]n+αxn/α+1

Γ (n+ α+ 1)tn+α

=
1

Γ (α)

∫ α(1−α)x1/α/t

0
zα−1e−zdz,

where we have used the equality

e−y
∞∑

n=0

yn+α

Γ (n+ α+ 1)
=

1

Γ (α)

∫ y

0
zα−1e−zdz,

which can be checked by differentiating both sides in y ≥ 0. 2
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Theorem 4.1 Let {B(t) : 0 ≤ t ≤ 1} be a standard Brownian motion (with generator
2−1d2/dx2) and let {Z(t) : 0 ≤ t < 1} be the solution to

dZ(t) =
(2α)1/2Z(t)1−1/2α

(1− α)1/2
dB(t) +

2Z(t)1−1/α

(1− α)H(t, Z(t))
exp

{
− α(1− α)Z(t)1/α

1− t

}
dt (4.3)

with Z(0) = 0, where

H(t, x) =
1

[2α(1− α)]αx

∫ 2α(1−α)x1/α

0
uα−1e−u/2(1−t)du, 0 ≤ t < 1, x > 0. (4.4)

Then the distribution of {Z(t) : 0 ≤ t < 1} on C([0, 1)) coincides with Q0.

Proof. Fix r > 0 and x > 0 and let X0
r (x, t) = X(x, (t − r) ∧ τX(x)(0)) for t ≥ r,

where {X(x, t) : t ≥ 0,P } is the generalized diffusion process defined by (2.3) with speed
measure m0(dy) := (1/α− 1)y1/α−2dy. Let

ρ(t) = F (1, x)−1F (1− t,X0
r (x, t)), r ≤ t < 1, (4.5)

and let Qr,x(dω) = ρ(1, ω)P (dω). Then {X0
r (x, t) : r ≤ t < 1} under the probability

measure Qr,x is a Markov process with semigroup (Qs,t)r≤s≤t<1. Recall Lemma 2.1 and
observe that

S(x, t) =
∫ ∞

0
l(t, y − x)m0(dy) =

1− α

α

∫ t

0
(B(s) + x)1/α−2ds

for t ≤ τB(−x) and

S−1(x, t) =
α

1− α

∫ t

0
(B(S−1(x, u)) + x)2−1/αdu =

α

1− α

∫ t

0
X(x, u)2−1/αdu

for t ≤ τX(x)(0). Using Lemma 2.1 again one sees that

X0
r (x, t) = x+B(S−1(x, (t− r) ∧ τX(x)(0))) = x+B(S−1(x, (t− r)) ∧ τB(−x)).

Therefore {X0
r (x, t) : r ≤ t < 1} is a continuous martingale with quadratic variation

process

〈X0
r (x)〉(t) =

2α

1− α

∫ (t−r)∧τX(x)(0)

0
X(x, s)2−1/αds =

2α

1− α

∫ t∧τ
X0

r (x)
(0)

r
X0

r (x, s)2−1/αds.

By Itô’s formula

dρ(t) = F (1, x)−1F ′
x(1− t,X0

r (x, t))dX0
r (x, t), r ≤ t < 1, (4.6)

where

F ′
x(1− t, x) =

1

α

[
α(1− α)

1− t

]α

exp
{
− α(1− α)

1− t
x1/α

}
, r ≤ t < 1.
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It follows that

ρ(t)−1d〈ρ,X0
r (x)〉(t) = F (1− t,X0

r (x, t))−1F ′
x(1− t,X0

r (x, t))d〈X0
r (x)〉(t)

=
1

1− α

[
α(1− α)

1− t

]α

X0
r (x, t)2−1/αF (1− t,X0

r (x, t))−1

· exp
{
− α(1− α)

1− t
X0

r (x, t)1/α
}
1{t<τ

X0
r (x)

(0)}dt.

By the relation

F (1− t, x) =
[α(1− α)]αx

(1− t)α
H(t, x), (4.7)

we have

ρ(t)−1d〈ρ,X0
r (x)〉(t) =

2

1− α
X0

r (x, t)1−1/αH(t,X0
r (x, t))−1

· exp
{
− α(1− α)

1− t
X0

r (x, t)1/α
}
1{t<τ

X0
r (x)

(0)}dt.

Then we may appeal Girsanov’s formula to see that

dX0
r (x, t) = dM(t) +

2

1− α
X0

r (x, t)1−1/αH(t,X0
r (x, t))−1

· exp
{
− α(1− α)

1− t
X0

r (x, t)1/α
}
1{t<τ

X0
r (x)

(0)}dt,

where {M(t) : r ≤ t < 1} under Qr,x is a continuous martingale with quadratic variation
process

〈M〉(t) =
2α

1− α

∫ t∧τX0(x)(0)

r
X0

r (x, s)2−1/αds;

see e.g. Chung and Williams (1990; Theorem 9.8). But, Qr,x{τX0
r (x) > 1} = 1, so

{X0
r (x, t) : r ≤ t < 1} under Qr,x satisfies equation (4.3) on the time interval [r, 1). Now

the desired result is immediate since Q0{w(r) > 0} = 1 for each 0 < r < 1. 2

Recall that the 2(1 − α)-dimensional Bessel meander {Mα(t) : 0 ≤ t ≤ 1} is defined
by

Mα(t) =
1√

1− gα

R−α(gα + t(1− gα)), 0 ≤ t ≤ 1, (4.8)

where {R−α(t) : t ≥ 0} is the 2(1 − α)-dimensional Bessel process starting at zero and
gα = sup{0 ≤ t ≤ 1 : R−α(t) = 0}; see Yor (1992b, p.42). Let {Xα(t) : 0 ≤ t ≤ 1} be the
squared 2(1 + α)-dimensional Bessel process starting at zero, which is governed by the
equation

dX(t) = 2
√
X(t)dB(t) + 2(1 + α)dt, X(0) = 0, (4.9)
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where {B(t) : 0 ≤ t ≤ 1} is a standard Brownian motion.
It is known that the processes {Mα(t) : 0 ≤ t ≤ 1} and {Xα(t) : 0 ≤ t ≤ 1} are related

in the following way: For any bounded measurable function F on C([0, 1)),

E{F (M2
α(t) : 0 ≤ t ≤ 1)} = c(α)E{F (Xα(t) : 0 ≤ t ≤ 1)Xα(1)−α}, (4.10)

where c(α) > 0 is a constant; see Yor (1992b, p.42).
Using those and Theorem 4.1 we now prove the following

Theorem 4.2 Let {Z(t) : 0 ≤ t < 1} be defined by (4.3). Then the probability law of{√
2α(1− α)Z(t)1/2α : 0 ≤ t ≤ 1

}
coincides with the 2(1−α)-dimensional Bessel meander

{Mα(t) : 0 ≤ t ≤ 1}.

Proof. Let Y (t) = 2α(1− α)Z(t)1/α. By Itô’s formula, we have

dY (t) = 2
√
Y (t)dB(t) + 2(1− α)dt+

4Y (t)V ′
x(t, Y (t))

V (t, Y (t))
dt, (4.11)

where

V (t, x) =
∫ x

0
uα−1e−u/2(1−t)du, 0 ≤ t < 1, x ≥ 0. (4.12)

Let

N(t) = exp
{ ∫ t

0
b(s,X(s))dB(s)− 1

2

∫ t

0
b(s,X(s))2ds

}
, 0 ≤ t ≤ 1,

where

b(t, x) = 2
√
x

[
V ′

x(t, x)

V (t, x)
− α

x

]
, 0 ≤ t < 1, x > 0.

By Girsanov’s formula,

E{F (Y (t) : 0 ≤ t ≤ 1)} = E{F (X(t) : 0 ≤ t ≤ 1)N(1)}. (4.13)

Setting

U(t, x) = log V (t, x)− α log x, 0 ≤ t < 1, x > 0,

one may check that

U ′
x =

V ′
x

V
− α

x
, U ′

t =
x

1− t

V ′
x

V
− α

1− t
,

and

U ′′
xx = −

(
V ′

x

V

)2

+
V ′′

xx

V
+
α

x2
= −

(
V ′

x

V

)2

+
(
α− 1

x
− 1

2(1− t)

)
V ′

x

V
+
α

x2
.
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Then we have

U ′
t + 2(1 + α)U ′

x + 2xU ′′
xx +

α

1− t

=
x

1− t

V ′
x

V
+ 2(1 + α)

(
V ′

x

V
− α

x

)
+ 2x

[
−

(
V ′

x

V

)2

+
(
α− 1

x
− 1

2(1− t)

)
V ′

x

V
+
α

x2

]

=
2(1 + α)V ′

x

V
− 2α(1 + α)

x
+ 2x

[
−

(
V ′

x

V

)2

+
α− 1

x

V ′
x

V
+
α

x2

]
= 2x

[
−

(
V ′

x

V

)2

+
2α

x

V ′
x

V
− α2

x2

]
= −1

2
b(t, x)2.

By Itô’s formula,

U(t,X(t))− U(0, x) =
∫ t

0
b(s,X(s))dB(s)− 1

2

∫ t

0
b(s,X(s))2ds+ α log(1− t).

Then we have

N(1) = lim
t→1

exp{U(t,X(t))− U(0, x)− α log(1− t)} = c(α)X(1)−α,

and the desired result follows from (4.10) and (4.13). 2

By the above result, our Theorem 3.1 can be regarded as an extension of the first con-
ditional limit theorem of Durrett et al. (1977), where convergence to Brownian meander
was considered.
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[30] Yor, M., Some Aspects of Brownian Motion, Part II: Some Martingale Problems,
Lectures in Math., ETH Zürich, Birkhaüser (1997).
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