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1 Introduction

A class of superprocesses with dependent spatial motion (SDSM) over the real line R were
introduced and constructed in Wang (1997, 1998). The construction was then generalized in
Dawson et al (2001). In this model, the spatial motion is defined by a system of differential
equations driven by a sequence of independent Brownian motions, the individual noises, and
a common time-space white noise, the common noise. In particular, if the coefficient of the
individual noises is uniformly bounded away from zero, the SDSM is absolutely continuous and
its density satisfies a stochastic differential equation (SPDE) that generalizes the Konno-Shiga
SPDE satisfied by super Brownian motion over R; see Dawson (1993), Dawson et al (2000),
Dawson et al (2001) and Konno and Shiga (1988). On the contrary, if the individual noises
vanish, the SDSM is purely atomic; see Wang (1997, 2002). A construction of the purely atomic
SDSM in terms of one-dimensional excursions was given in Dawson and Li (2002), where some
immigration diffusion processes associated with the SDSM were also constructed as pathwise
unique solutions of stochastic equations with Poisson processes of one-dimensional excursions
carried by a stochastic flow.

In this note, we establish an SPDE for the purely atomic SDSM. The SPDE is driven by a
time-space white noise defining the spatial motion and a sequence of independent Brownian mo-
tions defining the branching mechanism. We show that the SDSM is a pathwise unique solution
of the equation. The result is of interest since it contrasts with the well-known open prob-
lem of strong uniqueness for the Konno-Shiga equation and its generalization to the absolutely
continuous SDSM.

2 Existence of solution of the atomic SPDE

Let M(R) be the space of finite Borel measures on R endowed with the weak convergence
topology. Let C(R) be the set of bounded continuous functions on R. Given a square-integrable
function h ∈ C(R), let

ρ(x) =
∫

R
h(y − x)h(y)dy, x ∈ R. (2.1)

We assume in addition that h is continuously differentiable with square-integrable derivative h′.
Then ρ is twice continuously differentiable with bounded derivatives ρ′ and ρ′′. Let σ(·) be a
bounded non-negative continuous function on R such that there is a constant ε > 0 such that
σ(x) ≥ ε for all x ∈ R. Then a continuous M(R)-valued process {Xt : t ≥ 0} is a realization of
the purely atomic SDSM if and only if, for each φ ∈ C2(R),

Mt(φ) = 〈φ,Xt〉 − 〈φ,X0〉 −
1
2
ρ(0)

∫ t

0
〈φ′′, Xs〉ds, t ≥ 0, (2.2)

is a continuous martingale with quadratic variation process

〈M(φ)〉t =
∫ t

0
〈σφ2, Xs〉ds +

∫ t

0
ds

∫
R
〈h(z − ·)φ′, Xs〉2dz; (2.3)

see e.g. Dawson and Li (2002, Theorem 3.2) or Wang (1998, Corollary 7.3 and 1997). SDSM
is closely related to super-Brownian motion (SBM). The difference between SBM and SDSM is
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that SBM arises as the limit of a system of branching independent Brownian motions whereas
the SDSM arises as the limit of a system of branching particles whose motions are driven by
a common random medium (defined in terms of a Brownian sheet and the function h(·)) and
therefore the motions of the particles are dependent. In particular, the effect of the random
medium on the flow of the resulting measure-valued process X gives rise to the second term on
the right hand side of (2.3) which specifies the quadratic variation of the martingale defined in
(2.2).

Let {W (t, x) : t ≥ 0, x ∈ R} be a Brownian sheet and {B1(t), B2(t), · · · : t ≥ 0} a sequence of
independent one-dimensional Brownian motions which are independent of {W (t, x) : t ≥ 0, x ∈
R}. By Dawson et al (2001, Lemma 3.1) or Wang (1997, Lemma 1.3), given any xi(0) ∈ R the
stochastic equation

xi(t)− xi(0) =
∫ t

0

∫
R

h(y − xi(s))W (ds, dy), t ≥ 0, (2.4)

have unique strong solutions {xi(t) : t ≥ 0}. Given {xi(t) : t ≥ 0} and ξi(0) ≥ 0, we consider
the equation

ξi(t)− ξi(0) =
∫ t

0

√
σ(xi(t))ξi(s)dBi(s), t ≥ 0. (2.5)

It is not hard to prove that equation (2.5) has a unique strong solution {ξi(t) : t ≥ 0}; see e.g.
Ikeda and Watanabe (1989).

Given a finite or countable set of positive integers I and a purely atomic finite measure
ν =

∑
i∈I ξi(0)δxi(0) on R, we define a purely atomic measure-valued process {Xν

t : t ≥ 0} by

Xν
t =

∑
i∈I

ξi(t)δxi(t), t ≥ 0. (2.6)

By Itô’s formula, for any φ ∈ S(R) we have

ξi(t)φ(xi(t))− ξi(0)φ(xi(0)) =
∫ t

0

∫
R

ξi(s)φ′(xi(s))h(y − xi(s))W (ds, dy)

+
1
2

ρ(0)
∫ t

0
ξi(s)φ′′(xi(s))ds +

∫ t

0
φ(xi(s))

√
σ(xi(s))ξi(s)dBi(s), (2.7)

where we have used the fact∫
R

h(y − xi(s))2dy =
∫

R
h(y)2dy = ρ(0).

Then taking the summation in (2.7) we get

∑
i∈I

ξi(t)φ(xi(t))−
∑
i∈I

ξi(0)φ(xi(0)) =
∫ t

0

∫
R

[∑
i∈I

ξi(s)φ′(xi(s))h(y − xi(s))
]
W (ds, dy)

+
1
2

ρ(0)
∫ t

0

[∑
i∈I

ξi(s)φ′′(xi(s))
]
ds +

∑
i∈I

∫ t

0
φ(xi(s))

√
σ(xi(s))ξi(s)dBi(s). (2.8)
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The above equation can be rewritten as

〈φ,Xν
t 〉 − 〈φ,Xν

0 〉 =
∫ t

0

∫
R
〈h(y − ·)φ′, Xν

s 〉W (ds, dy) +
1
2
ρ(0)

∫ t

0
〈φ′′, Xν

s 〉ds

+
∑
i∈I

∫ t

0
φ(xi(s))

√
σ(xi(s))ξi(s)dBi(s). (2.9)

Observe that

Mν
t (φ) :=

∫ t

0

∫
R
〈h(y − ·)φ′, Xν

s 〉W (ds, dy) +
∑
i∈I

∫ t

0
φ(xi(s))

√
σ(xi(s))ξi(s)dBi(s).

is a continuous martingale with quadratic variation process

〈Mν(φ)〉t =
∫ t

0
ds

∫
R
〈h(y − ·)φ′, Xν

s 〉2dy +
∫ t

0
〈σφ2, Xν

s 〉ds.

Then we have proved the following

Theorem 2.1 Given any purely atomic finite measure ν =
∑

i∈I ξi(0)δxi(0), equation (2.9) has
a continuous and purely atomic measure-valued solution {Xν

t : t ≥ 0} in the form (2.6), which
is a realization of the SDSM.

Note that (2.9) gives a degenerate SPDE for the purely atomic measure-valued process
{Xν

t : t ≥ 0}, which parallels the SPDE of Dawson et al (2000).

3 Uniqueness of solution of the single-atomic SPDE

As a special case of the discussions in the last section, given the purely atomic finite measure
ξi(0)δxi(0), there is a continuous process {ξi(t)δxi(t) : t ≥ 0} satisfying the equation

〈φ, ξi(t)δxi(t)〉 − 〈φ, ξi(0)δxi(0)〉 =
∫ t

0

∫
R
〈h(y − ·)φ′, ξi(s)δxi(s)〉W (ds, dy)

+
1
2
ρ(0)

∫ t

0
〈φ′′, ξi(s)δxi(s)〉ds +

∫ t

0
φ(xi(s))

√
σ(xi(s))ξi(s)dBi(s). (3.1)

The following theorem gives the uniqueness of solution of the above equation:

Theorem 3.1 If {ξi(t)δxi(t) : t ≥ 0} is a solution of (3.1), then we have

xi(t)− xi(0) =
∫ t

0

∫
R

h(y − xi(s))W (ds, dy), 0 ≤ t < τi, (3.2)

and

ξi(t)− ξi(0) =
∫ t

0

√
σ(xi(s))ξi(s)dBi(s), t ≥ 0, (3.3)

where τi = inf{s ≥ 0 : ξi(s) = 0}. Consequently, the solution {ξi(t)δxi(t) : t ≥ 0} of (3.1) is
pathwise unique.
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Proof. For each integer n ≥ 1 let ζn = inf{s ≥ 0 : ξi(s)δxi(s)([−n, n]c) > 0}. (We here
suppress the dependence of ζn on i ∈ I.) Since {ξi(t)δxi(t) : t ≥ 0} is continuous, we have
limn→∞ ζn = ∞. Choose any φ ∈ S(R) such that φ(x) = 1 when |x| ≤ n. From (3.1) we get

ξi(t ∧ ζn)− ξi(0) =
∫ t∧ζn

0

√
σ(xi(s))ξi(s)dBi(s), t ≥ 0. (3.4)

Letting n →∞ we get equation (3.3). Let b(t) = ξi(t)φ(xi(t)). Then (3.1) implies

b(t)− b(0) =
∫ t

0

∫
R

ξi(s)h(y − xi(s))φ′(xi(s))W (ds, dy) +
1
2
ρ(0)

∫ t

0
ξi(s)φ′′(xi(s))ds

+
∫ t

0
φ(xi(s))

√
σ(xi(s))ξi(s)dBi(s). (3.5)

Let σn = inf{s ≥ 0 : ξi(s) ≤ 1/n} and γn = ζn ∧ σn. Then clearly limn→∞ γn = τi. By (3.3),
(3.5) and Itô’s formula, it is easy to find that

φ(xi(t ∧ γn))− φ(xi(0)) = b(t ∧ γn)/ξi(t ∧ γn)− b(0)/ξi(0)

=
∫ t∧γn

0

∫
R

h(y − xi(s))φ′(xi(s))W (ds, dy) +
1
2
ρ(0)

∫ t∧γn

0
φ′′(xi(s))ds (3.6)

Choose any φ ∈ S(R) such that φ(x) = x when |x| ≤ n. From (3.6) we have

xi(t ∧ γn)− xi(0) =
∫ t∧γn

0

∫
R

h(y − xi(s))W (ds, dy). (3.7)

Letting n → ∞ gives (3.2). Suppose that {ξ′i(t)δx′
i(t)

: t ≥ 0} is another solution of (3.1). Let
τ ′i = inf{s ≥ 0 : ξ′i(s) = 0}. Since the solution of (2.4) is pathwise unique, the above arguments
show a.s. xi(t) = x′i(t) for all 0 ≤ t ≤ τi ∧ τ ′i . By the uniqueness of solution of (2.5) we have
a.s. ξi(t) = ξ′i(t) for all 0 ≤ t ≤ τi ∧ τ ′i , yielding a.s. τi = τ ′i . Therefore, the two solutions
{ξi(t)δxi(t) : t ≥ 0} and {ξ′i(t)δx′

i(t)
: t ≥ 0} a.s. coincide each other. �

Note that the above theorem only gives the uniqueness of the position process {xi(t) : t ≥ 0}
up to the extinction time τi of the atom, which is sufficient to get the pathwise uniqueness of
the solution {ξi(t)δxi(t) : t ≥ 0}.

4 Uniqueness of solution of the multi-atomic SPDE

Suppose that {xi(0) ∈ R : i ∈ I} is a collection of points which are all distinct. By the
discussions in section 1, given the purely atomic finite initial measure ν =

∑
i∈I ξi(0)δxi(0), there

is a continuous and purely atomic process {Xt : t ≥ 0} in the form

Xt =
∑
i∈I

ξi(t)δxi(t), t ≥ 0, (4.1)

satisfying the equation

〈φ,Xt〉 − 〈φ, ν〉 =
∫ t

0

∫
R
〈h(y − ·)φ′, Xs〉W (ds, dy) +

1
2
ρ(0)

∫ t

0
〈φ′′, Xs〉ds

+
∑
i∈I

∫ t

0
φ(xi(s))

√
σ(xi(s))ξi(s)dBi(s). (4.2)
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Let τi = inf{s ≥ 0 : ξi(s) = 0}. We call each {xi(t) : 0 ≤ t ≤ τi} a position process of the
solution {Xt : t ≥ 0}.

Theorem 4.1 Suppose that the points {xi(0) ∈ R : i ∈ I} are all distinct. Then, given the
initial state X0 =

∑
i∈I ξi(0)δxi(0), the above equation has a pathwise unique continuous and

purely atomic measure-valued solution {Xt : t ≥ 0} in the form (4.1). Moreover, {ξi(t) : t ≥ 0}
and {xi(t) : t ≥ 0} are given respectively by (3.2) and (3.3).

We shall need the following result of Wang (1997, Lemma 1.2).

Lemma 4.1 Let {xi(t) : t ≥ 0} be the solution of (2.4). If xi(0) 6= xj(0), then xi(t) 6= xj(t) for
all t ≥ 0.

Proof of Theorem 4.1. The existence of solution follows from Theorem 2.1. We first assume
that I is a finite set and prove the pathwise uniqueness of the solution. For any solution
{Xt : t ≥ 0} of (4.2),

Mt(φ) = 〈φ,Xt〉 − 〈φ,X0〉 −
1
2

ρ(0)
∫ t

0
〈φ′′, Xs〉ds, t ≥ 0, (4.3)

is a continuous martingale with quadratic variation process

〈M(φ)〉t =
∫ t

0
〈σφ2, Xs〉ds +

∫ t

0
ds

∫
R
〈h(z − ·)φ′, Xs〉2dz. (4.4)

By Dawson and Li (’02, Theorem 3.2) or Wang (1998, Corollary 7.3 and Theorem 4.1), the
solution of the above martingale problem is unique, then the distribution of {Xt : t ≥ 0} must
coincides with the process {Xν

t : t ≥ 0} constructed by (2.6). In particular, each {xi(t) : 0 ≤ t <
τi} is a stopped 1-dimensional Brownian motion and any two of those Brownian motions never
hit each other before their terminal time. Let R̄ = R ∪ {∞} be the one-point compactification
of the real line and set xi(t) = ∞ if t ≥ τi for notational convenience. Let

ε0 = inf{|xi(0)− xj(0)| : {xi(0), xj(0)} ⊂ R and i 6= j ∈ I}

and

η1 = inf{t ≥ 0 : xi(t) ∈ R and |xi(t)− xi(0)| ≥ ε0/3 for some i ∈ I}.

Then η1 is a stopping time. Take φ ∈ S(R) such that φ(x) = 0 when |x− xi(0)| ≥ 2ε0/3. From
(4.2) we get

〈φ, ξi(t)δxi(t)〉 − 〈φ, ξi(0)δxi(0)〉 =
∫ t

0

∫
R
〈h(y − ·)φ′, ξi(s)δxi(s)〉W (ds, dy)

+
1
2
ρ(0)

∫ t

0
〈φ′′, ξi(s)δxi(s)〉ds +

∫ t

0
φ(xi(s))

√
σ(xi(s))ξi(s)dBi(s) (4.5)

for 0 ≤ t < η1. Since |xi(t) − xi(0)| ≤ ε0/3 or ξi(t) = 0 for 0 ≤ t ≤ η1, the above equation
actually holds for an arbitrary testing function φ ∈ S(R). As in the proof of Theorem 3.1 we
have

xi(t)− xi(0) =
∫ t

0

∫
R

h(y − xi(s))W (ds, dy), 0 ≤ t < η1 ∧ τi, (4.6)
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and

ξi(t)− ξi(0) =
∫ t

0

√
σ(xi(s))ξi(s)dBi(s), 0 ≤ t < η1, (4.7)

By Lemma 4.1, {xi(η1) ∈ R : i ∈ I} are all distinct. Generally, once the stopping time ηn is
defined with {xi(ηn) ∈ R : i ∈ I} all distinct, we define

εn = inf{|xi(ηn)− xj(ηn)| : {xi(ηn), xj(ηn)} ⊂ R and i 6= j ∈ I}

and

ηn+1 = inf{t ≥ ηn : xi(t) ∈ R and |xi(t)− xi(ηn)| ≥ εn/3 for some i ∈ I}.

If ξi(ηn) > 0, then xi(ηn) ∈ R and ηn < τi. By a time shift we get similarly as the above that

〈φ, ξi(t)δxi(t)〉 − 〈φ, ξi(ηn)δxi(ηn)〉 =
∫ t

ηn

∫
R
〈h(y − ·)φ′, ξi(s)δxi(s)〉W (ds, dy)

+
1
2
ρ(0)

∫ t

ηn

〈φ′′, ξi(s)δxi(s)〉ds +
∫ t

ηn

φ(xi(s))
√

σ(xi(s))ξi(s)dBi(s) (4.8)

holds for ηn ≤ t < ηn+1 and an arbitrary testing function φ ∈ S(R). Again as in the proof of
Theorem 3.1 we have

xi(t)− xi(ηn) =
∫ t

ηn

∫
R

h(y − xi(s))W (ds, dy), ηn ≤ t < ηn+1 ∧ τi. (4.9)

and

ξi(t)− ξi(ηn) =
∫ t

ηn

√
σ(xi(s))ξi(s)dBi(s), ηn ≤ t < ηn+1, (4.10)

By Lemma 4.1 we conclude that {xi(ηn+1) ∈ R : i ∈ I} are all distinct. For the same reason,
we have limn→∞ ηn = ∞. Then get (3.2) and (3.3) and the pathwise uniqueness of {Xt : t ≥ 0}
follows. Finally, for an infinite set I, we take a constant t0 > 0. From (4.2) we know that
{Xt : t ≥ t0} is a continuous and purely atomic measure-valued solution of

〈φ,Xt〉 − 〈φ,Xt0〉 =
∫ t

t0

∫
R
〈h(y − ·)φ′, Xs〉W (ds, dy) +

1
2
ρ(0)

∫ t

t0

〈φ′′, Xs〉ds

+
∑
i∈I

∫ t

t0

φ(xi(s))
√

σ(xi(s))ξi(s)dBi(s). (4.11)

As we assumed, there is a constant ε > 0 such that σ(x) ≥ ε for all x ∈ R. By Dawson and Li
(2002, Lemma 3.3 and Theorem 3.4) or Wang (2002, Lemma 2.2), I(t0) is a.s. a finite set. By a
time shift of the result proved above, for each i ∈ I(t0) we have

xi(t)− xi(t0) =
∫ t

t0

∫
R

h(y − xi(s))W (ds, dy), t0 ≤ t < τi. (4.12)
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and

ξi(t)− ξi(t0) =
∫ t

t0

√
σ(xi(s))ξi(s)dBi(s), t ≥ t0, (4.13)

Obviously, I = ∪t0>0I(t0). Then for each i ∈ I we have (4.12) and (4.13) when t0 > 0 is
sufficiently small. Since t0 > 0 is arbitrary and since {ξi(t) : t ≥ 0} and {xi(t) : t ≥ 0} are
continuous, we may let t0 → 0 in the above and get respectively (3.2) and (3.3), which give the
uniqueness of {Xt : t ≥ 0}. �

5 An enriched version of the SPDE

In this section, we discuss an enriched version of the SPDE for the SDSM. Let {W (dt, dx)}
be a time-space white noise based on the Lebesgue measure and {B(a, ·) : a ∈ R} a family of
independent one-dimensional Brownian motions which are independent of {W (dt, dx)}. Given
a ∈ R and ξ(a, 0) ≥ 0, let {x(a, t) : t ≥ 0} denote the unique strong solution of

x(t)− a =
∫ t

0

∫
R

h(y − x(s))W (ds, dy), t ≥ 0, (5.1)

and let {ξ(a, t) : t ≥ 0} denote the unique strong solution of

ξ(t)− ξ(0) =
∫ t

0

√
σ(x(a, s))ξ(s)dB(a, s), t ≥ 0. (5.2)

Given a purely atomic finite initial measure ν =
∑

i∈I ξiδai on R, let

Xν
t =

∑
i∈I

ξ(ai, t)δx(ai,t), (5.3)

where {x(ai, t) : t ≥ 0} is given by (5.1) and {ξ(ai, t) : t ≥ 0} is the solution of (5.2) with
ξ(ai, 0) = ξi and with a replaced by ai. Let

Xe
t (da, db) =

∑
i∈I

ξ(ai, t)δx(ai,0)(da)δx(ai,t)(db). (5.4)

As in section 1, for any φ ∈ S(R2) we have by Itô’s formula

ξ(ai, t)φ(ai, x(ai, t))− ξ(ai, 0)φ(ai, ai)

=
∫ t

0

∫
R

ξ(ai, s)φ′(ai, x(ai, s))h(y − x(ai, s))W (ds, dy)

+
1
2

ρ(0)
∫ t

0
ξ(ai, s)φ′′(ai, x(ai, s))ds

+
∫ t

0
φ(ai, x(ai, s))

√
σ(x(ai, s))ξ(ai, s)dB(ai, s).
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Then taking summation we get∑
i∈I

ξ(ai, t)φ(ai, x(ai, t))−
∑
i∈I

ξ(ai, 0)φ(ai, ai)

=
∫ t

0

∫
R

[∑
i∈I

ξ(ai, s)φ′(ai, x(ai, s))h(y − x(ai, s))
]
W (ds, dy)

+
1
2

ρ(0)
∫ t

0

[∑
i∈I

ξ(ai, s)φ′′(ai, x(ai, s))
]
ds

+
∫ t

0

[∑
i∈I

φ(ai, x(ai, s))
√

σ(x(ai, s))ξ(ai, s)
]
dB(ai, s).

The above equation can be written as

〈φ,Xe
t 〉 − 〈φ,Xe

0〉 =
∫ t

0

∫
R

[ ∫
R2

h(y − b)φ′(a, b)Xe
s (da, db)

]
W (ds, dy)

+
1
2
ρ(0)

∫ t

0
〈φ′′, Xe

s 〉ds +
∫ t

0

∫
R

φ(a, x(a, s))
√

σ(x(a, s))ξ(a, s)W ν(ds, da), (5.5)

where {W ν(ds, dy)} denotes the time-space white noise defined by

W ν((r, t]×A) =
∑
i∈I

(B(ai, t)−B(ai, r))1A(ai). (5.6)

This gives an enriched SPDE of the SDSM, which contains more information of the process than
equation (4.2).

Theorem 5.1 Given any purely atomic finite measure ν =
∑

i∈I ξ(ai, 0)δx(ai,0), equation (5.1)
has a unique continuous and purely atomic measure-valued solution {Xe

t : t ≥ 0} in the form
(5.4).

Proof. We have seen the existence of the solution. Let {Xt : t ≥ 0} be an arbitrary continuous
and purely atomic measure-valued solution of the equation in form (5.1). If I is a finite set,
for any i ∈ I and φ1 ∈ S(R) we may choose φ ∈ S(R2) in a way so that φ(ai, ·) ≡ φ1(·) and
φ(aj , ·) ≡ 0 for any j 6= i from I. Then (5.1) becomes

〈φ1, ξ(ai, t)δx(ai,t)〉 − 〈φ1, ξ(ai, 0)δx(ai,0)〉 =
∫ t

0

∫
R
〈h(y − ·)φ′1, ξ(ai, s)δx(ai,s)〉W (ds, dy)

+
1
2
ρ(0)

∫ t

0
〈φ′′1, ξ(ai, s)δx(ai,s)〉ds +

∫ t

0
φ(ai, x(ai, s))

√
σ(x(ai, s))ξ(ai, s)B(ai, ds),

that is, {ξ(ai, t)δx(ai,t) : t ≥ 0} satisfies the single-atomic equation. Thus the uniqueness follows
from Theorem 3.1. For an infinite index set I, the conclusion can be obtained as in the proof of
Theorem 4.1. �
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