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1 Introduction

Measure-valued branching processes or superprocesses constitute a rich class of infinite
dimensional processes currently under rapid development. Such processes arose in appli-
cations as high density limits of branching particle systems; see e.g. Dawson (1992, 1993),
Dynkin (1993, 1994), Watanabe (1968). The development of this subject has been stimu-
lated from different subjects including branching processes, interacting particle systems,
stochastic partial differential equations and non-linear partial differential equations. The
study of superprocesses has also led to a better understanding of some results in those
subjects. In the literature, several different types of superprocess have been introduced
and studied. In particular, Dawson and Hochberg (1991), Dawson et al (1990) and Wu
(1994) studied multilevel branching superprocesses, Gorostiza and Lopez-Mimbela (1990),
Gorostiza and Roelly (1991), Gorostiza et al (1992) and Li (1992b) studied multitype
superprocesses, Dynkin (1993, 1994) and Li (1992a, 1993) studied non-local branching
superprocesses, Gorostiza (1994) studied mass-structured superprocesses, Hong and Li
(1999) and Li (2002) studied superprocess-controlled immigration processes, and Bose
and Kaj (2000) studied age-reproduction-structured superprocesses. Those models arise
in different circumstances of application and are of their own theoretical interests.

In this paper, we provide a unified treatment of the above models. We first give a
new formulation of the non-local branching superprocess as the high density limit of some
specific branching particle systems. Then we derive from this superprocess the multitype,
the mass-structured, the multilevel and the age-reproduction-structured superprocesses
and superprocess-controlled immigration processes. Another related model, the so-called
rebirth superprocesses, is also introduced to explain the non-local branching mechanism.
This unified treatment simplifies considerably the proof of existence of the old classes of
superprocesses and also gives rise to some new ones. We think that this treatment may
give some useful perspectives for those models. The unification is done by considering
an enriched underlying state space E × I instead of E. In this way, the mutation in
types of the offspring can be modeled by jumps in the I-coordinates so that the multitype
superprocess can be derived. The superprocess-controlled immigration process is actually
a special form of the multitype superprocess. To get the mass-structured superprocess
we let I = (0,∞), which represents the mass or size of the infinitesimal particles. For
the age-reproduction-structured superprocess, we take I = [0,∞) × IN , where IN is the
set of non-negative integers, to keep the information on ages and numbers of offspring
of the particles. In this model we have of course that any particle has non-decreasing
[0,∞) × IN -coordinates starting from (0, 0) at its birth time. To get a two level super-
process, we simply assume that I = M(S)◦ is the space of nontrivial finite measures on
another space S, and the M(S)◦-coordinate of the underlying process is a superprocess
itself. For two-level branching systems, what has been done so far for the second level
branching is local, that is, when a superparticle branches, superoffspring are produced
as exact copies of their parent. Since the superparticles have an internal dynamics and
evolve as branching systems themselves, it is desirable to have the possibility that the
superoffspring have internal structures different from those of their parents, which re-
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quires a non-local branching mechanism. Models of this type have potential applications
in genetics, population dynamics and other complex multilevel systems; see e.g. Dawson
(2000) and Jagers (1995).

Notation and basic setting: Suppose that E is a Lusin topological space, i.e., a home-
omorph of a Borel subset of some compact metric space, with Borel σ-algebra B(E). Let
M(E) denote the space of finite Borel measures on E topologized by the weak conver-
gence topology, so it is also a Lusin topological space. Let N(E) be the subspace of M(E)
consisting of integer-valued measures on E and let M(E)◦ = M(E)\{0}, where 0 denotes
the null measure on E. The unit mass concentrated at a point x ∈ E is denoted by δx.
Let

B(E) = { bounded B(E)-measurable functions on E },
C(E) = { f : f ∈ B(E) is continuous },
Ba(E) = { f : f ∈ B(E) and ‖f‖ ≤ a },

where a ≥ 0 and “‖ · ‖”denotes the supremum norm. The subsets of positive members
of the function spaces are denoted by the superscript “+”; e.g., B+(E), C+(E). For
f ∈ B(E) and µ ∈M(E), we write µ(f) for

∫
E fdµ.

2 Non-local branching particle systems

Non-local branching particle systems have been considered by many authors. We here
adapt the model of Dynkin (1993). Let ξ = (Ω , ξt,F ,Ft,P x) be a right continuous strong
Markov process with state space E and transition semigroup (Pt)t≥0. Let γ ∈ B+(E) and
let F (x, dν) be a Markov kernel from E to N(E) such that

sup
x∈E

∫
N(E)

ν(1)F (x, dν) <∞. (2.1)

A branching particle system with parameters (ξ, γ, F ) is described by the following prop-
erties:

(2.A) The particles in E move randomly according to the law given by the transition
probabilities of ξ.

(2.B) For a particle which is alive at time r and follows the path (ξt)t≥r, the conditional
probability of survival during the time interval [r, t] is ρ(r, t) := exp{−

∫ t
r γ(ξs)ds}.

(2.C) When a particle dies at a point x ∈ E, it gives birth to a random number of
offspring in E according to the probability kernel F (x, dν). The offspring then start to
move from their locations. (Thus the name “non-local branching” is used.)

In the model, it is assumed that the migrations, the lifetimes and the branchings of
the particles are independent of each other. Let Xt(B) denote the number of particles in
B ∈ B(E) that are alive at time t ≥ 0 and assume X0(E) < ∞. Then {Xt : t ≥ 0} is a
Markov process with state space N(E). For σ ∈ N(E), let Qσ denote the conditional law
of {Xt : t ≥ 0} given X0 = σ. For f ∈ B+(E), put

ut(x) ≡ ut(x, f) = − log Qδx
exp{−Xt(f)}. (2.2)
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The independence hypotheses imply that

Qσ exp{−Xt(f)} = exp{−σ(ut)}. (2.3)

Moreover, we have the following fundamental equation

e−ut(x) = P x{ρ(0, t)e−f(ξt)}+ P x

{ ∫ t

0

[
ρ(0, s)γ(ξs)

∫
N(E)

e−ν(ut−s)F (ξs, dν)
]
ds

}
. (2.4)

This equation is obtained by thinking that if a particle starts moving from point x at
time 0, it follows a path of ξ and does not branch before time t, or it first splits at time
s ∈ (0, t]. By a standard argument one sees that equation (2.4) is equivalent to

e−ut(x) = P xe
−f(ξt) − P x

{ ∫ t

0
γ(ξs)e

−ut−s(ξs)ds
}

(2.5)

+ P x

{ ∫ t

0

[
γ(ξs)

∫
N(E)

e−ν(ut−s)F (ξs, dν)
]
ds

}
;

see e.g. Dawson (1992, 1993) and Dynkin (1993, 1994). It is sometimes more convenient
to denote

vt(x) ≡ vt(x, f) = 1− exp{−ut(x)}, (2.6)

and rewrite (2.5) into the form

vt(x) = P x

{
1− e−f(ξt)

}
− P x

{ ∫ t

0
γ(ξs)vt−s(ξs)ds

}
(2.7)

+ P x

{ ∫ t

0

[
γ(ξs)

∫
N(E)

(1− e−ν(ut−s))F (ξs, dν)
]
ds

}
.

3 Non-local branching superprocesses

In this section, we prove a limit theorem for a sequence of non-local branching particle
systems. Although the particle systems considered here are very specific, they lead to
the same class of non-local branching superprocesses constructed in Dynkin (1993, 1994)
and Li (1992a) with a slightly different formulation. We shall give some details of the
derivation to clarify the meaning of the parameters, which is needed in understanding the
connections of non-local branching with other related models.

Let {Xt(k) : t ≥ 0}, k = 1, 2, . . . be a sequence of branching particle systems with
parameters (ξ, γk, Fk). Then for each k,

{X(k)
t := k−1Xt(k) : t ≥ 0} (3.1)

defines a Markov process in Mk(E) := {k−1σ : σ ∈ N(E)}. For σ ∈ Mk(E), let Q(k)
σ

denote the conditional law of {X(k)
t : t ≥ 0} given X

(k)
0 = σ. By (2.3) we have

Q(k)
σ exp

{
−X(k)

t (f)
}

= exp
{
−σ(ku

(k)
t )

}
, (3.2)
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where u
(k)
t (x) is determined by

v
(k)
t (x) = k[1− exp{−u(k)

t (x)}]. (3.3)

and

v
(k)
t (x) = P x

{
k(1− e−f(ξt)/k)

}
− P x

{ ∫ t

0
γk(ξs)v

(k)
t−s(ξs)ds

}
(3.4)

+ P x

{ ∫ t

0

[
kγk(ξs)

∫
N(E)

(1− e−ν(u
(k)
t−s))Fk(ξs, dν)

]
ds

}
.

For µ ∈M(E), let σkµ be a Poisson random measure on E with intensity kµ, and let Q
(k)
(µ)

denote the conditional law of {X(k)
t : t ≥ 0} given X

(k)
0 = k−1σkµ. From (3.2) we get

Q
(k)
(µ) exp

{
−X(k)

t (f)
}

= exp
{
−µ(v

(k)
t )

}
. (3.5)

It is natural to treat separately the offspring that start their motion from the death
sites of their parents. Suppose that gk ∈ B+(E × [0, 1]) and, for each x ∈ E,

gk(x, z) =
∞∑
i=0

p
(k)
i (x)zi, z ∈ [0, 1],

is a probability generating function with supx∈E(d/dz)gk(x, 1
−) < ∞. Let αk and βk ∈

B+(E) and assume γk(x) := αk(x) + βk(x) is strictly positive. Let F (k)(x, dν) be another
probability kernel from E to N(E) satisfying (2.1). We may replace Fk(x, dν) by

γk(x)
−1

[
αk(x)

∞∑
i=0

p
(k)
i (x)F

(i)
0 (x, dν) + βk(x)F

(k)(x, dν)
]
, (3.6)

where F
(i)
0 (x, dν) denotes the unit mass concentrated at iδx. Intuitively, as a particle

splits at x ∈ E, the branching is of local type with probability αk(x)/γk(x) and is of
non-local type with probability βk(x)/γk(x). If it chooses the local branching type, the

distribution of the offspring number is {p(k)
i (x)}. The non-local branching at x ∈ E is

described by the kernel F (k)(x, dν). Now (3.4) turns into

v
(k)
t (x) = P x

{
k(1− e−f(ξt)/k)

}
− P x

{ ∫ t

0
γk(ξs)v

(k)
t−s(ξs)ds

}
+ P x

{ ∫ t

0
kαk(ξs)[1− gk(ξs, e

−u
(k)
t−s(ξs))]ds

}
(3.7)

+ P x

{ ∫ t

0

[
kβk(ξs)

∫
N(E)

[1− e−ν(u
(k)
t−s)]F (k)(ξs, dν)

]
ds

}
,

or equivalently

v
(k)
t (x) +

∫ t

0
P x[φk(ξs, v

(k)
t−s(ξs)) + ψk(ξs, v

(k)
t−s)]ds = P xk[1− e−f(ξt)/k], (3.8)
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where

φk(x, z) = kαk(x)[gk(x, 1− z/k)− (1− z/k)] (3.9)

and

ψk(x, f) = βk(x)[f(x)− ζk(x, f)], (3.10)

where

ζk(x, f) =
∫

N(E)
k(1− exp{ν(log(1− f/k))})F (k)(x, dν). (3.11)

Let M0(E) denote the set of all Borel probability measures on E. Suppose that
hk ∈ B+(E ×M0(E)× [0, 1]) and, for each (x, π) ∈ E ×M0(E),

hk(x, π, z) =
∞∑
i=0

q
(k)
i (x, π)zi, z ∈ [0, 1],

is a probability generating function with supx,π(d/dz)hk(x, π, 1
−) < ∞. Suppose that

G(x, dπ) is a probability kernel from E to M0(E). We may consider a special form of the
second term in (3.6) by letting

F (k)(x, dν) =
∫

M0(E)

[ ∞∑
i=0

q
(k)
i (x, π)(lπ)∗i(dν)

]
G(x, dπ), (3.12)

where lπ(dν) denotes the image of π under the map y 7→ δy from E to M(E) and (lπ)∗i

denotes the i-fold convolution of lπ. Now we have

ζk(x, f) =
∫

M0(E)
k[1− hk(x, π, 1− π(f)/k)]G(x, dπ). (3.13)

Intuitively, if a parent particle at x ∈ E chooses non-local branching, it first selects
an offspring-location-distribution π(x, ·) ∈ M0(E) according to the probability kernel
G(x, dπ), then gives birth to a random number of offspring according to the distribution

{q(k)
i (x, π(x, ·))}, and those offspring choose their locations in E independently of each

other according to π(x, ·). A similar non-local branching mechanism was considered in Li
(1992a, 1993).

In view of (3.5) and (3.8), it is natural to assume the sequences {φk}, {βk} and {ζk} to

converge if one hopes to obtain convergence of {X(k)
t : t ≥ 0} to some process {Xt : t ≥ 0}

as k →∞.

Lemma 3.1 (i) Suppose that

∞∑
i=0

iq
(k)
i (x, π) ≤ 1 (3.14)
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and that ζk(x, f) → ζ(x, f) uniformly on E × B+
a (E) for each a ≥ 0, then ζ(x, f) has

representation

ζ(x, f) = λ(x, f) +
∫

M(E)◦
(1− e−ν(f))Γ (x, dν), (3.15)

where λ(x, dy) is a bounded kernel on E, and ν(1)Γ (x, dν) is a bounded kernel from E
to M(E)◦ with

λ(x, 1) +
∫

M(E)◦
ν(1)Γ (x, dν) ≤ 1. (3.16)

(ii) A functional ζ(x, f) can be given by (3.15) and (3.16) if and only if it has repre-
sentation

ζ(x, f) =
∫

M0(E)

[
d(x, π)π(f) +

∫ ∞

0
(1− e−uπ(f))n(x, π, du)

]
G(x, dπ), (3.17)

where d ∈ B+(E ×M0(E)), un(x, π, du) is a bounded kernel from E ×M0(E) to (0,∞)
and G(x, dπ) is a probability kernel from E to M0(E) with

d(x, π) +
∫ ∞

0
un(x, π, du) ≤ 1. (3.18)

(iii) To each function ζ(·, ·) given by (3.17) and (3.18) there corresponds a sequence
of the form (3.13) satisfying the requirement of (i).

Proof. (i) Note that k(1− e−f/k) converges to f uniformly in B+
a (E). Then

ζk(x, k(1− e−f/k)) =
∫

N(E)
k(1− exp{ν(f)/k})F (k)(x, dν)

converges to ζ(x, f) uniformly on E×B+
a (E). It is known that a metric r can be introduced

into E so that (E, r) becomes a compact metric space while the Borel σ-algebra induced
by r coincides with B(E); see e.g. Parthasarathy (1967, p.14). Now M(E) endowed with
weak convergence topology is a locally compact metrizable space. Let M̄(E) = M(E) ∪
{∂} be the one-point-compactification of M(E). By (3.14), {kν(1)F (k)(x, d(k−1ν)) : x ∈
E, k ≥ 1} viewed as a family of finite measures on M̄(E) is tight. Fix x ∈ E and take
{ni} ⊂ {n} such that kiν(1)Fki

(x, d(k−1
i ν)) converges to some finite measure G(x, dν) on

M̄(E) as i→∞. It follows that

ζ(x, f) =
∫

M(E)◦
(1− e−ν(f))ν(1)−1G(x, dν),

first for f ∈ C+(E, r) and then for all f ∈ B+(E). Now (3.15) follows by a simple change
of the measure and (3.16) follows from (3.14). (ii) is immediate. To get (iii) we may set

hk(x, π, z) = 1 + d(x, π)(z − 1) + k−1
∫ ∞

0
(eku(z−1) − 1)n(x, π, du).
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Observe that

di

dzi
hk(x, π, 0) ≥ 0, i = 1, 2, . . . ,

and (3.14) assures that hk(x, π, 0) ≥ 0. Thus for fixed (x, a) ∈ E ×M0(E), hk(x, π, ·) is
a probability generating function. Then we define ζk(x, f) by (3.13) so that ζk(x, f) =
ζ(x, f) for (x, f) ∈ E ×B+

1/k(E). 2

Lemma 3.2 (Li, 1992c) (i) Suppose that, for each l ≥ 0, the sequence φk(x, z) is uni-
formly Lipschitz in z on the set E × [0, l] and that φk(x, z) converges to some φ(x, z)
uniformly as k →∞, then φ(x, z) has the representation

φ(x, z) = b(x)z + c(x)z2 +
∫ ∞

0
(e−zu − 1 + zu)m(x, du), x ∈ E, z ≥ 0, (3.19)

where b ∈ B(E), c ∈ B+(E) and (u ∧ u2)m(x, du) is a bounded kernel from E to (0,∞).
(ii) To each function φ(·, ·) given by (3.19) there corresponds a sequence of the form

(3.9) satisfying the requirement of (i).

Based on Lemmas 3.1 and 3.2, the following result can be proved similarly as in
Dawson (1992, 1993), Dynkin (1993, 1994) and Li (1992a, c).

Lemma 3.3 If the conditions of Lemma 3.1 (i) and Lemma 3.2 (i) are fulfilled and if

βk → β ∈ B+(E) uniformly as k →∞, then for each a ≥ 0 both v
(k)
t (x, f) and ku

(k)
t (x, f)

converge boundedly and uniformly on the set [0, a]×E×B+
a (E) of (t, x, f) to the unique

bounded positive solution Vtf(x) to the evolution equation

Vtf(x) +
∫ t

0

{ ∫
E
[φ(y, Vt−sf(y)) + ψ(y, Vt−sf)]Ps(x, dy)

}
ds = Ptf(x), t ≥ 0, (3.20)

where

ψ(x, f) = β(x)[f(x)− ζ(x, f)], x ∈ E, f ∈ B+(E). (3.21)

By Lemma 3.3 and Dawson (1993, p.42),∫
M(E)

e−ν(f)Qt(µ, dν) = exp{−µ(Vtf)}, f ∈ B+(E), (3.22)

defines a transition semigroup (Qt)t≥0 on M(E). A Markov process {Xt : t ≥ 0} with
state space M(E) is called a non-local branching superprocess with parameters (ξ, φ, ψ)
if it has transition semigroup (Qt)t≥0. Condition (3.14) means that the corresponding
branching particle system has subcritical non-local branching. In terms of the limiting
superprocess, this condition is expressed as (3.16), which is of course a restriction of the
class of ζ(·, ·) given by (3.15). However, since φ(x, z) + β(x)z belongs to the class defined
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by (3.19), and since β ∈ B+(E) is arbitrary, (3.16) does not put any restriction on the
generality of

φ(x, f(x)) + ψ(x, f) = φ(x, f(x)) + β(x)f(x)− β(x)ζ(x, f).

Therefore, the class of non-local branching superprocesses given by (3.20) and (3.22)
coincides with those constructed Dynkin (1993, 1994) and Li (1992a), where the first
term of ψ(x, ·) was written into φ(x, ·). In principle, (3.20) and (3.22) give the most
general non-local branching superprocesses constructed in the literature up to now. A
more general class of non-local branching superprocesses were discussed in Dynkin et al
(1994), but their existence has not been established. The next theorem follows similarly
as in Li (1992a, c).

Theorem 3.1 Let {X(k)
t : t ≥ 0} be the sequence of renormalized branching particle

systems determined by (3.5) and (3.8), and let {Xt : t ≥ 0} be the non-local branching
superprocess with transition semigroup (Qt)t≥0 given by (3.20) and (3.22). Assume that
the conditions of Lemma 3.1 (i) and Lemma 3.2 are fulfilled. Then for every µ ∈ M(E),
0 ≤ t1 < . . . < tn and a ≥ 0, as k →∞,

Q
(k)
(µ) exp

{
−

n∑
i=1

X
(k)
ti (fi)

}
→ Qµ exp

{
−

n∑
i=1

Xti(fi)
}

uniformly on f1, . . . , fn ∈ B+
a (E).

Naturally, we may regard {X(k)
t : t ≥ 0} as a process in the space M(E). Then the

above theorem shows that the finite dimensional distributions of {X(k)
t : t ≥ 0} under

Q
(k)
(µ) converge as k → ∞ to those of {Xt : t ≥ 0} under Qµ. Therefore, the non-local

branching superprocess is a small particle approximation for the non-local branching
particle system. Heuristically, ξ gives the law of the migration of the “particles”, φ(x, ·)
describes the amount of offspring born at x ∈ E by a parent that dies at this point,
and ψ(x, ·) describes the amount of the offspring born by this parent that are displaced
randomly into the space according to distributions π randomly chosen by G(x, dπ). Thus
the locations of non-locally displaced offspring involve two sources of randomness.

Replacing f in (3.21) and (3.22) by θf and differentiating at θ = 0 we see that the
first moments of the superprocess are given by∫

M(E)
ν(f)Qt(µ, dν) = µ(Ttf), t ≥ 0, f ∈ B+(E), (3.23)

where (Tt)t≥0 is a locally bounded semigroup of kernels on E determined by

Ttf(x) +
∫ t

0

{ ∫
E
b(y)Tt−sf(y) + β(y)[Tt−sf(y)−m(y, Tt−sf)]Ps(x, dy)

}
ds = Ptf(x),(3.24)

and m(x, dy) is the bounded kernel on E defined by

m(x, f) = λ(x, f) +
∫

M(E)◦
ν(f)Γ (x, dν). (3.25)
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In particular, we may define another locally bounded semigroup of kernels (Ut)t≥0 on E
by

Utf(x) +
∫ t

0

{ ∫
E
β(y)[Ut−sf(y)−m(y, Ut−sf)]Ps(x, dy)

}
ds = Ptf(x), (3.26)

which has weak generator G such that

Gf(x) = Af(x) + β(x)[m(x, f)− f(x)], f ∈ D(A), (3.27)

where A denotes the weak generator of (Pt)t≥0. Now the generator B of (Tt)t≥0 can be
expressed as

Bf(x) = Gf(x)− b(x)f(x), f ∈ D(A). (3.28)

By a comparison theorem we have Ttf ≤ e‖b‖tUtf for all t ≥ 0 and f ∈ B(E)+. From this
and (3.23) we have∫

M(E)
ν(f)Qt(µ, dν) ≤ e‖b‖tµ(Utf), t ≥ 0, f ∈ B+(E). (3.29)

Note that (3.29) implies that ν 7→ ν(1) is a ‖b‖-excessive function for (Qt)t≥0.
To conclude this section, let us consider briefly the special, and possibly more desir-

able, case where G(x, dπ) ≡ unit mass at some π(x, ·) ∈ M0(E), that is, the non-locally
displaced offspring born at x ∈ E choose their locations independently according to the
(non-random) distribution π(x, ·). In this case, the non-local branching mechanism is
given by

ψ(x, f) = β(x)[f(x)− ζ(x, π(x, f))], x ∈ E, f ∈ B+(E), (3.30)

where

ζ(x, z) = d(x)z +
∫ ∞

0
(1− e−zu)n(x, du), x ∈ E, z ≥ 0, (3.31)

where d ∈ B+(E) and un(x, du) is a bounded kernel from E to (0,∞) with

m(x) := d(x) +
∫ ∞

0
un(x, du) ≤ 1, x ∈ E. (3.32)

In particular, if ζ(x, z) ≡ z, we may rewrite (3.20) formally as

d

dt
Vtf(x) = AVtf(x)− φ(x, Vtf(x)) + β(x)[π(x, Vtf)− Vtf(x)], t ≥ 0, x ∈ E,

with initial condition V0f = f . This equation corresponds to a superprocess with underly-
ing generator A and non-trivial local and non-local branching mechanisms. Alternatively,
we may also think that the superprocess has underlying generator Af(x)+β(x)[π(x, f)−
f(x)] and only non-trivial local branching mechanism. Since the generator B of a general
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Markov process in E is the limit of a sequence of operators of the type β(x)[π(x, f)−f(x)],
in principle a superprocess with more general underlying generator A+B and only local
branching mechanism can be approximated by a sequence of superprocesses with underly-
ing generator A and non-trivial local and non-local branching mechanisms. Under suitable
conditions it is also possible to establish convergence of branching particle systems with
underlying generator A and non-trivial local and non-local branching mechanisms to the
superprocess with underlying generator A+ B and with only non-trivial local branching
mechanism, which has been done in a particular setting in Gorostiza (1994); see also
section 6.

4 Rebirth superprocesses

We may consider a modification of the branching particle system described in the last
two sections. Let (ξ, γ, F ) be given as in section 2. A rebirth branching particle system
with parameters (ξ, γ, F ) is described by (2.A), (2.B) and the following

(4.C) When a particle dies at a point x ∈ E, it gives birth to a random number
of offspring in E according to the probability kernel F (x, dν). In addition, the parent
particle itself is replaced by an extra offspring at site x ∈ E, that is, the parent particle
is reborn. All the offspring then start to move from their locations.

Let {Xt : t ≥ 0} be the process defined in the same way as in section 2. Then
{Xt : t ≥ 0} is still a Markov process with state space N(E). We also have (2.2) and
(2.3), but (2.4) is now replaced by

e−ut(x) = P x{ρ(0, t)e−f(ξt)} (4.1)

+ P x

{ ∫ t

0

[
ρ(0, s)γ(ξs)

∫
N(E)

e−ut−s(ξs)e−ν(ut−s)F (ξs, dν)
]
ds

}
.

This is equivalent to

e−ut(x) = P xe
−f(ξt) − P x

{ ∫ t

0
γ(ξs)e

−ut−s(ξs)ds
}

+ P x

{ ∫ t

0

[
γ(ξs)

∫
N(E)

e−ut−s(ξs)e−ν(ut−s)F (ξs, dν)
]
ds

}
,

or

1− e−ut(x) = P x

{
1− e−f(ξt)

}
− P x

{ ∫ t

0
γ(ξs)(1− e−ut−s(ξs))ds

}
+ P x

{ ∫ t

0

[
γ(ξs)

∫
N(E)

(1− e−ut−s(ξs))e−ν(ut−s)F (ξs, dν)
]
ds

}
+ P x

{ ∫ t

0

[
γ(ξs)

∫
N(E)

(1− e−ν(ut−s))F (ξs, dν)
]
ds

}
.

Let vt(x) ≡ vt(x, f) be defined by (2.6). Then we have

vt(x) = P x

{
1− e−f(ξt)

}
− P x

{ ∫ t

0
γ(ξs)vt−s(ξs)ds

}

11



+ P x

{ ∫ t

0

[
γ(ξs)

∫
N(E)

vt−s(ξs)e
−ν(ut−s)F (ξs, dν)

]
ds

}
(4.2)

+ P x

{ ∫ t

0

[
γ(ξs)

∫
N(E)

(1− e−ν(ut−s))F (ξs, dν)
]
ds

}
.

We now consider a sequence of rebirth branching particle systems {Xt(k) : t ≥ 0} with

parameters (ξ, γk, Fk). Define {X(k)
t : t ≥ 0} and choose Fk as in section 3 with αk(x) ≡ 0

and γk(x) ≡ βk(x). Then (3.5) remains valid if we replace (3.7) by

v
(k)
t (x) = P x

{
k(1− e−f(ξt)/k)

}
− P x

{ ∫ t

0
βk(ξs)v

(k)
t−s(ξs)ds

}
+ P x

{ ∫ t

0

[
βk(ξs)

∫
N(E)

v
(k)
t−s(ξs)e

−ν(u
(k)
t−s)Fk(ξs, dν)

]
ds

}
(4.3)

+ P x

{ ∫ t

0

[
kβk(ξs)

∫
N(E)

[1− e−ν(u
(k)
t−s)]Fk(ξs, dν)

]
ds

}
,

or equivalently

v
(k)
t (x) +

∫ t

0
P x[βk(ξs)φk(ξs, v

(k)
t−s) + ψk(ξs, v

(k)
t−s)]ds = P xk[1− e−f(ξt)/k], (4.4)

where ψk is given by (3.10) and (3.13), and

φk(x, f) = −f(x)
∫

M0(E)
hk(x, π, 1− π(f)/k)G(x, dπ). (4.5)

Lemma 4.1 If the conditions of Lemma 3.1 (i) are fulfilled and if βk → β ∈ B+(E)
uniformly as k → ∞, then, for each a ≥ 0, we have φk(x, f) → f(x) uniformly on

E×B+
a (E) and the solution v

(k)
t (x, f) to (4.4) converges boundedly and uniformly on the

set [0, a] × E × B+
a (E) of (t, x, f) to the unique bounded positive solution Vtf(x) to the

evolution equation

Vtf(x)−
∫ t

0

[ ∫
E
β(y)ζ(y, Vt−sf)Ps(x, dy)

]
ds = Ptf(x), (4.6)

where ζ(·, ·) is defined by (3.15) and (3.21).

Based on this lemma, one can show as in section 3 that the finite dimensional distribu-
tions of {X(k)

t : t ≥ 0} under Q
(k)
(µ) converge as k →∞ to those of the process {Xt : t ≥ 0}

with semigroup (Qt)t≥0 defined by (3.22) and (4.6). Since αk(x) ≡ 0 in the approximating
sequence, we call {Xt : t ≥ 0} a rebirth superprocess. Note that (4.6) is the special form of
(3.20) with local branching mechanism φ(x, z) ≡ −β(x)z, which exactly compensates the
death factor in the non-local branching mechanism. This observation might be helpful in
understanding the non-local branching mechanism given by (3.21).
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5 Multitype superprocesses

In this section, we deduce the existence of a class of multitype superprocesses from
that of the non-local branching superprocess constructed in section 3 following the ar-
guments in Li (1992b). Let E and I be two Lusin topological spaces and let ξ =
{Ω , (ηt, αt),F ,Ft,P (x,a)} be a right continuous strong Markov process with state space
E × I. Let φ(·, ·, ·) and ζ(·, ·, ·) be given by (3.19) and (3.31), respectively, with x ∈ E
replaced by (x, a) ∈ E × I. Let β(·, ·) ∈ E × I and let π(x, a, db) be a probability kernel
from E × I to I. As a special form of the model given in section 3, we have a non-local
branching superprocess {Xt(dx, da) : t ≥ 0} in M(E × I) with transition probabilities
determined by

Qµ exp{−Xt(f)} = exp{−µ(Vtf)}, t ≥ 0, f ∈ B+(E × I), (5.1)

where Vtf is the unique bounded positive solution to

Vtf(x, a) +
∫ t

0
P (x,a)[φ(ηs, αs, Vt−sf(ηs, αs)) + β(ηs, αs)Vt−sf(ηs, αs)]ds

−
∫ t

0
P (x,a)[β(ηs, αs)ζ(ηs, αs, π(ηs, αs, Vt−sf(ηs, ·)))]ds (5.2)

= P (x,a)[f(ηt, αt)].

We may call {Xt : t ≥ 0} a multitype superprocess with type space I. Heuristically,
{ηt : t ≥ 0} gives the law of migration of the “particles”, {αt : t ≥ 0} represents the
mutation of their types, φ(x, a, ·) describes the amount of the a-type offspring born when
an a-type parent dies at x ∈ E, ζ(x, a, ·) describes the amount of the offspring born by
this parent that change into new types randomly according to the kernel π(x, a, db), and
β(x, a) represents the birth rate of the changing-type offspring at x ∈ E. It is assumed
that all of the offspring start migrating from the death site of their parent. Note that the
migration process {ηt : t ≥ 0} and the mutation process {αt : t ≥ 0} are not necessarily
independent.

Now let us consider a special case which has been studied in the literature. Suppose
that I = {1, . . . , k} and for each i ∈ I, η(i) is a right continuous strong Markov process

in E with semigroup (P
(i)
t )t≥0, φ

(i) belongs to the class given by (3.19) and ζ(i) belongs
to the class given by (3.31). Let ξ be a right continuous strong Markov process in the
product space E × I with transition semigroup (Pt)t≥0 defined by

Ptf(x, i) =
∫

E
f(y, i)P

(i)
t (x, dy), f ∈ B+(E × I).

Let φ((x, i), z) = φ(i)(x, z). Suppose that β(i) ∈ B+(E) and π(x, i, ·) is a Markov kernel
from E × I to I having the decomposition

π(x, i, ·) =
k∑

j=1

p
(i)
j (x)δj(·),
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where p
(i)
j (x) ≥ 0,

∑k
j=0 p

(i)
j (x) ≡ 1 and δj denotes the unit mass at j ∈ I. Then we have

a multitype superprocess {Xt : t ≥ 0} in M(E × I) by (5.1) and (5.2). For i ∈ I and µ ∈
M(E×I) we define µ(i) ∈M(E) by µ(i)(B) = µ(B×{i}). The map µ 7→ (µ(1), . . . , µ(k)) is
clearly a homeomorphism betweenM(E×I) and the k-dimensional product spaceM(E)k.

Therefore, {(X(1)
t , . . . , X

(k)
t ) : t ≥ 0} is a Markov process in the space M(E)k, which may

be called a k-type superprocess. Clearly, this class of k-type superprocesses coincides with
the one defined in Li (1992b). Heuristically, η(i) gives the law of the migration of the ith
type “particles”, φ(i)(x, ·) describes the amount of the ith type offspring born when an
ith type parent dies at point x ∈ E, ζ(i)(x, ·) describes the amount of the offspring born
by this parent that change into new types randomly according to the discrete distribution
{p(i)

1 (x), . . . , p
(i)
k (x)}, and β(i)(x) represents the birth rate of the changing-type offspring

at x ∈ E. The study of multitype superprocesses was initiated by Gorostiza and Lopez-
Mimbela (1990); see also Gorostiza and Roelly (1991) and Gorostiza et al (1992).

6 Superprocess-controlled immigration

By the discussions in the last section, we have a special 2-type superprocess {(X(1)
t , X

(2)
t ) :

t ≥ 0} in M(E)2 with transition probabilities determined by

Q(µ(1),µ(2)) exp
{
−X(1)

t (f (1))−X
(2)
t (f (2))

}
= exp

{
−µ(1)(v

(1)
t )− µ(2)(v

(2)
t )

}
, (6.1)

where v
(1)
t (·) and v

(2)
t (·) are defined uniquely by

v
(1)
t (x) +

∫ t

0

[ ∫
E

(
φ(1)(y, v

(1)
t−s(y))− v

(2)
t−s(y)

)
P (1)

s (x, dy)
]
ds = P

(1)
t f (1)(x), (6.2)

and

v
(2)
t (x) +

∫ t

0

[ ∫
E
φ(2)(y, v

(2)
t−s(y))P

(1)
s (x, dy)

]
ds = P

(2)
t f (2)(x). (6.3)

In particular, if f (2) ≡ 0, we have v
(2)
t ≡ 0 and

Q(µ(1),µ(2)) exp
{
−X(1)

t (f (1))
}

= exp
{
−µ(1)(v

(1)
t )

}
, (6.4)

where v
(1)
t (·) is given by

v
(1)
t (x) +

∫ t

0

[ ∫
E
φ(1)(y, v

(1)
t−s(y))P

(1)
s (x, dy)

]
ds = P

(1)
t f (1)(x). (6.5)

Thus {X(1)
t : t ≥ 0} is a superprocess in M(E) with parameters (η(1), φ(1)). On the other

hand, by an expression of weighted occupation times, the value in (6.1) is equal to

Q(µ(1),µ(2)) exp
{
−X(1)

t (f (1))
}

exp
{
−µ(2)(v

(2)
t )−

∫ t

0
X(1)

s (v
(2)
t−s)ds

}
;
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see e.g. Dawson (1993) and Dynkin (1993, 1994). Then we see that

Q(µ(1),µ(2))

[
exp

{
−X(2)

t (f (2))
} ∣∣∣∣X(1)

s : s ≥ 0
]

= exp
{
−µ(2)(v

(2)
t )−

∫ t

0
X(1)

s (v
(2)
t−s)ds

}
.

That is, given {X(1)
t : t ≥ 0}, the second coordinate {X(2)

t : t ≥ 0} is a superprocess with

parameters (η(2), φ(2)) and with immigration controlled by {X(1)
t : t ≥ 0}. A special class

of superprocess-controlled immigration processes have been studied in Hong and Li (1999)
and their relation with multitype superprocesses has been pointed out in Li (2002).

7 Mass-structured superprocesses

A multitype superprocess {Xt(dx, da) : t ≥ 0} with type space I = (0,∞) can be called
a mass-structured superprocess if we interpret x ∈ E and a > 0 as the coordinates of
position and mass, respectively. For the mass-structured superprocess, we may consider
its aggregated process {Yt : t ≥ 0} defined by

Yt(dx) :=
∫ ∞

0
aXt(dx, da), x ∈ E. (7.1)

Since the integrand on the right hand side is unbounded, {Yt : t ≥ 0} is only well-defined
under some restrictions. In general, {Yt : t ≥ 0} is not Markovian. Let A be the weak
generator of {(ηt, αt) : t ≥ 0} and (Tt)t≥0 the locally bounded semigroup of finite kernels
on E × I with generator

Bf(x, a) = Af(x, a) + β(x, a)[m(x, a)π(a, f(x, ·))− f(x, a)]− b(x, a)f(x, a), (7.2)

where b(x, a) is the coefficient of the linear term of φ(x, a, z) and m(x, a) is defined by
(3.32) with x ∈ E replaced by (x, a) ∈ E × I. Indeed, (7.2) is of the same form as
(3.28) with (x, a) instead of x. By the discussions in section 3, the first moments of the
superprocess are given by

Qµ{Xt(f)} = µ(Ttf), f ∈ B+(E × I). (7.3)

In practice, we may have that a newborn offspring is no larger than its parent, which
corresponds to the assumption that π(a, ·) is supported by (0, a). Let H(x, a) = a and
suppose that H ∈ D(A) is a c1-excessive function of {(ηt, αt) : t ≥ 0} for some constant
c1 > 0. In this case, we have BH(x, a) ≤ (c1 + ‖b‖)H(x, a) and hence H ∈ D(B) is a
(c1 + ‖b‖)-excessive function of (Tt)t≥0. It follows from (7.3) that

Qµ{Xt(H)} ≤ e(c1+‖b‖)tµ(H). (7.4)

Then we may change the state space slightly and take any σ-finite measure µ on E×(0,∞)
satisfying µ(H) < ∞ as the initial state of {Xt : t ≥ 0}; see e.g. El Karoui and Roelly
(1991) or Li (1992c). In this case, (7.4) implies that Xt(H) <∞ a.s. for all t ≥ 0 so that
(7.1) defines an aggregated process {Yt : t ≥ 0} with finite measure values.
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A special type of mass-structured superprocess with Markovian aggregated process
has been studied by Gorostiza (1994). Assume that β(·, ·) ≡ 0 and αt = g(t, α0) for a
deterministic mapping g(·, ·) from [0,∞)×(0,∞) to (0,∞). Let P x denote the conditional
law of {ηt : t ≥ 0} given η0 = x. For f ∈ B+(E), (5.2) becomes

Vtf(x, a) +
∫ t

0
P x[φ(ηs, g(s, a), Vt−sf(ηs, g(s, a)))]ds = P xf(ηt). (7.5)

Since the motion of αt = g(t, α0) is deterministic, if X0 is supported by E × {a}, then
Xt is supported by E × {g(t, a)} and Yt = g(t, a)Xt. In this case, {Yt : t ≥ 0} is a
Markov process since the transformation Xt 7→ Yt loses no information. For B ∈ B(E),
let Xa

t (B) = Xt(B × {g(t, a)}). Then {Xa
t : t ≥ 0} is an inhomogeneous superprocess

with cumulant semigroup (V a
r,t)t≥r≥0 defined by V a

r,tf(x) := Vt−rf(x, g(r, a)), which has
underlying process {ηt : t ≥ 0} and time-dependent branching mechanism φ(x, g(t, a), ·).
This gives a representation of the aggregated process in terms of an inhomogeneous su-
perprocess. A representation of this type was first given by Gorostiza (1994) in the case
where αt = α0e

ct for a constant c ∈ IR. Gorostiza (1994) obtained the process as high
density limit of a sequence of branching particle systems where the mass of each offspring
is equal to that of its parent multiplied by a fixed positive constant factor, and the mass of
any particle does not change during its lifetime, realizing in a particular case the program
mentioned at the end of section 3.

8 Multilevel superprocesses

Multilevel superprocesses arise as limits of multilevel branching particle systems. In a two
level system, objects at the higher level consist of non-trivial sub-populations of objects
at the lower level and both lower level and higher level objects can branch. A lower level
object consisting of a population can be described by a measure on some space S. We
can then view a two level system as a multitype system with I = M(S)◦, the space of
non-trivial finite Borel measures on S. Non-local branching is natural in this context. For
example, at the particle level the offspring of a second order object consisting of a set of
particles could consist of a subset of the particles or include more than one copy of the
original particles.

To make this precise, we may let S be a topological Lusin space and {αt : t ≥ 0} be the
Markov process with state spaceM(S)◦ obtained by killing a superprocess at its extinction
time. Then {Xt : t ≥ 0} is a Markov process with state space M(E ×M(S)◦), which
can be called a multilevel superprocess generalizing the model of Dawson and Hochberg
(1991), Dawson et al (1990) and Wu (1994). For the multilevel process, it is also natural
to study the aggregated process {Yt : t ≥ 0} defined by

Yt(A×B) :=
∫

A

∫
M(S)

a(B)Xt(dx, da), A ∈ B(E), B ∈ B(S). (8.1)

To illustrate the possibilities of non-local branching, consider the case in which E is
a singleton. In this case, we may view {Xt : t ≥ 0} as a superprocess with state space
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M(M(S)◦). A possible non-local branching mechanisms is obtained by taking π(µ, dν) to
be the law of

µ(S)

N

N∑
i=1

δZi
, (8.2)

where N ≥ 1 is an integer-valued random variable, and {Z1, Z2, · · ·} are i.i.d. random
variables in S with distribution µ(S)−1µ(·). That is, the offspring of a level two object
µ ∈ M(S) is a single point measure with the same total mass as µ and its location is
selected randomly according to the empirical measure of a sample from the normalized
parent distribution.

Another possibility is given by

π(µ, dν) = δµB
(dν), (8.3)

where B ∈ B(S) and µB ∈ M(S) is defined by µB(A) = µ(A ∩ B). In this case the
offspring is a level two object in which only level one individuals falling in the set B ⊂ S
are present.

In the case in which E is a countable set, we may interpret the M(E×M(S)◦)-valued
process {Xt : t ≥ 0} as a population in a sequence of islands. The E-coordinate tells in
which island the M(S)◦-valued objects {αt : t ≥ 0} in the first level are located. The
non-local branching is given by π(x, µ, dν) = π(µ, dν), which only acts on the M(S)◦-
coordinate at the higher level. Jumps in E described by {ηt : t ≥ 0} correspond to
the independent migration of “clans” (families of the lower level) between the islands.
Suggestively, we may call {Xt : t ≥ 0} a stepping stone type superprocess.

Properties and applications of multilevel superprocesses involving local branching have
been studied extensively in the literature; see e.g. Dawson and Hochberg (1991), Dawson
et al (1990, 1994, 1995), Etheridge (1993), Gorostiza (1996), Gorostiza et al (1995),
Hochberg (1995), Wu(1994) and the references therein.

9 Age-reproduction-structured superprocesses

Let E be a Lusin topological space and let ξ = {Ω , (ηt, αt, θt),F ,Ft,P (y,a,z), γ} be a
Borel Markov process with state space E × IR+ × IN+, where γ is a terminal time; see
Sharpe (1988, p.65). We assume that both αt and θt are non-decreasing processes. Let
β(·, ·, ·) ∈ B(E × IR+ × IN+) and let ζ(·, ·, ·, ·) be given by (3.31) with x ∈ E replaced by
(x, a, z) ∈ E × IR+ × IN+. As a special form of the models given in sections 4 and 5, we
have a rebirth multitype superprocess {Xt : t ≥ 0} in M(E × IR+ × IN+) with transition
probabilities determined by

Qµ exp{−Xt(f)} = exp{−µ(Vtf)}, t ≥ 0, f ∈ B+(E × IR+ × IN+), (9.1)

where Vtf is the unique bounded positive solution to

Vtf(y, a, z) −
∫ t

0
P (y,a,z)[β(ηs, αs, θs)ζ(ηs, αs, θs, Vt−sf(ηs, 0, 0))1{αs<γ}]ds (9.2)

= P (y,a,z)[f(ηt, αt, θt)1{αs<γ}].
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It is not hard to check that the first moments of the superprocess are given by

Qµ{Xt(f)} = µ(Ttf), f ∈ B+(E × IR+ × IN+), (9.3)

where (Tt)t≥0 is a semigroup of bounded linear operators on B+(E × IR+ × IN+) defined
by

Ttf(y, a, z) −
∫ t

0
P (y,a,z)[β(ηs, αs, θs)m(ηs, αs, θs)Tt−sf(ηs, 0, 0)1{αs<γ}]ds (9.4)

= P (y,a,z)[f(ηt, αt, θt)1{αs<γ}],

where m(·, ·, ·) is given by (3.32) with x ∈ E replaced by (x, a, z) ∈ E× IR+× IN+. Using
(Tt)t≥0 we may rewrite (9.2) into

Vtf(y, a, z) +
∫ t

0
Ts[βmVt−sf − ζ(·, ·, ·, Vt−sf(·, 0, 0))](y, a, z)ds = Ttf(y, a, z). (9.5)

In the case αt ≡ α0 + t, we may call {Xt : t ≥ 0} an age-reproduction-structured
superprocess. Heuristically, ηt represents the location of a “particle”, αt its age and θt

the number of its offspring born in the time interval (t − αt, t]. At each branching time,
the particle gives birth to a random number of offspring whose motions start from the
branching site and whose ages and reproduction numbers start from zero. The particle
does not disappear at its branching times, it is removed from the population only when its
age exceeds the lifetime γ. An interesting limit theorem for age-reproduction-structured
branching particle systems was proved in Bose and Kaj (2000) which leads to the super-
process in the special case where E is a singleton and ηt ≡ η0. (Compare (9.5) and their
equation (2.8).)
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