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1 Introduction

For a given topological space E, let B(F) denote the totality of all bounded Borel functions
on E and let C(E) denote its subset comprising of continuous functions. Let M (E) denote
the space of finite Borel measures on F endowed with the topology of weak convergence.
Write (f, u) for [ fdu. For F € B(M(FE)) let

0F(p) _ . 1
su(z) = lim —[F(u+rd) - F(p)], 2 €E, (1.1)

if the limit exists. Let 6%F(u)/dp(x)du(y) be defined in the same way with F' replaced
by (0F/dp(y)) on the right hand side. For example, if F,, () = (f, ™) for f € B(E™)
and p € M(E), then

M — - ( m—1 x
5“(37) _;<Wl< )f>ﬂ >7 €E7 (1'2)

where ¥;(z) is the operator from B(E™) to B(E™™ ') defined by
Ui(x)f(z1, - Tm1) = f(@1, 21, 0,24, Tpp1), r; € F, (1.3)

where x € F is the ith variable of f on the right hand side.
Now we consider the case where F = IR, the one-dimensional Euclidean space. Sup-
pose that ¢ € C(IR) is Lipschitz and h € C(IR) is square-integrable. Let

pla) = [ h(y—)h(y)dy. (14)

and a(z) = c(x)? + p(0) for z € IR. We assume in addition that p is twice continu-
ously differentiable with p’ and p” bounded, which is satisfied if & is integrable and twice
continuously differentiable with A’ and h” bounded. Then

d2 OF (1
2 / d:c2 ap( )u(da:)

&> 8*F(p)
2/ d:cdyéu( )6u(y)u(dfv)u(dy) (1.5)

defines an operator A which acts on a subset of B(M(IR)) and generates a diffusion
process with state space M (IR). Suppose that {W(z,t) : x € IR,t > 0} is a Brownian
sheet and {B;(t) : t > 0}, i = 1,2,---, is a family of independent standard Brownian
motions which are independent of {W(z,t) : x € R,t > 0}. By Lemma 3.1, for any
initial conditions z;(0) = z;, the stochastic equations

dr;(t) = c(w:(t))dBi(t +/ y— m())W(dy,dt), ¢>0,i=1,2---,  (16)



have unique solutions {x;(t) : ¢ > 0} and, for each integer m > 1, {(z1(t),-- -, xm(t)) : t >
0} is an m-dimensional diffusion process which is generated by the differential operator

li a(z; +1 Z A)i (1.7)
g 2T g Pl = ) g ‘

i,j=1,i#j

In particular, {z;(t) : ¢ > 0} is a one-dimensional diffusion process with generator G :=
(a(x)/2)A. Because of the exchangebility, a diffusion process generated by G™ can be
regarded as an interacting particle system or a measure-valued process. Heuristically,
a(-) represents the speed of the particles and p(-) describes the interaction between them.
The diffusion process generated by A arises as the high density limit of a sequence of
interacting particle systems described by (1.6); see Wang (1997, 1998) and section 4 of
this paper. For o € B(IR)", we may also define the operator B by

=3 fpote

A Markov process generated by L := A+ B is naturally called a superprocess with depen-
dent spatial motion (SDSM) with parameters (a, p, o), where o represents the branching
density of the process. In the special case where both ¢ and o are constants, the SDSM
was constructed in Wang (1997, 1998) as a diffusion process in M (IR), where IR = RU{d}
is the one-point compactification of IR. It was also assumed in Wang (1997, 1998) that
h is a symmetric function and that the initial state of the SDSM has compact support
in IR. Stochastic partial differential equations and local times associated with the SDSM
were studied in Dawson et al (2000a, b).

The SDSM contains as special cases several models arising in different circumstances
such as the one-dimensional super Brownian motion, the molecular diffusion with tur-
bulent transport and some interacting diffusion systems of McKean-Vlasov type; see e.g.
Chow (1976), Dawson (1994), Dawson and Vaillancourt (1995) and Kotelenez (1992,
1995). It is thus of interest to construct the SDSM under reasonably more general con-
ditions and formulate it as a diffusion processes in M (IR). This is the main purpose of
the present paper. The rest of this paragraph describes the main results of the paper and
gives some unsolved problems in the subject. In section 2, we define some function-valued
dual process and investigate its connection to the solution of the martingale problem of
a SDSM. Duality method plays an important role in the investigation. Although the
SDSM could arise as high density limit of a sequence of interacting-branching particle
systems with location-dependent killing density ¢ and binary branching distribution, the
construction of such systems seems rather sophisticated and is thus avoided in this work.
In section 3, we construct the interacting-branching particle system with uniform killing
density and location-dependent branching distribution, which is comparatively easier to
treat. The arguments are similar to those in Wang (1998). The high density limit of the
interacting-branching particle system is considered in section 4, which gives a solution
of the martingale problem of the SDSM in the special case where ¢ € C(IR)* can be
extended into a continuous function on IR. In section 5, we use the dual process to extend

(d:zc) (1.8)



the construction of the SDSM to a general bounded Borel branching density o € B(IR)™.
In both sections 4 and 5, we use martingale arguments to show that, if the processes
are initially supported by IR, they always stay in M (IR), which are new results even in
the special case considered in Wang (1997, 1998). In section 6, we prove a rescaled limit
theorem of the SDSM, which states that a suitable rescaled SDSM converges to the usual
super Brownian motion if ¢(-) is bounded away from zero. This describes another situ-
ation where the super Brownian motion arises universally; see also Durrett and Perkins
(1998) and Hara and Slade (2000a, b). When ¢(-) = 0, we expect that the same rescaled
limit would lead to a measure-valued diffusion process which is the high density limit of
a sequence of coalescing-branching particle systems, but there is still a long way to reach
a rigorous proof. It suffices to mention that not only the characterization of those high
density limits but also that of the coalescing-branching particle systems themselves are
still open problems. We refer the reader to Evans and Pitman (1998) and the references
therein for some recent work on related models. In section 7, we consider an extension of
the construction of the SDSM to the case where o is of the form o = 7 with n belonging
to a large class of Radon measures on IR, in the lines of Dawson and Fleischmann (1991,
1992). The process is constructed only when ¢(-) is bounded away from zero and it can
be called a SDSM with measure-valued catalysts. The transition semigroup of the SDSM
with measure-valued catalysts is constructed and characterized using a measure-valued
dual process. The derivation is based on some estimates of moments of the dual pro-
cess. However, the existence of a diffusion realization of the SDSM with measure-valued
catalysts is left as another open problem in the subject.

Notation: Recall that IR = IRU {0} denotes the one-point compactification of IR. Let
A™ denote the Lebesgue measure on IR™. Let C?(IR™) be the set of twice continuously
differentiable functions on IR™ and let C3(IR™) be the set of functions in C*(IR™) which
together with their derivatives up to the second order can be extended continuously to R.
Let C3(IR™) be the subset of C%(IR™) of functions that together with their derivatives up
to the second order vanish rapidly at infinity. Let (7}™);>¢ denote the transition semigroup
of the m-dimensional standard Brownian motion and let (P");>o denote the transition
semigroup generated by the operator G™. We shall omit the superscript m when it is
one. Let (1575)7520 and G denote the extensions of (P)i>0 and G to IR with 9 as a trap.
We denote the expectation by the letter of the probability measure if this is specified and
simply by FE if the measure is not specified.

We remark that, if |c(x)] > € > 0 for all z € IR, the semigroup (P/");~¢ has density
p"(z,y) which satisfies

pi"(z,y) < const - g (x,y),  t>0,7,y € R™, (1.9)

where ¢/"(z,y) denotes the transition density of the m-dimensional standard Brownian
motion; see e.g. Friedman (1964, p.24).



2 Function-valued dual processes

In this section, we define a function-valued dual process and investigate its connection
to the solution of the martingale problem for the SDSM. Recall the definition of the
generator £ := A+ B given by (1.5) and (1.8) with ¢ € B(IR)". For u € M(IR) and a
subset D(L) of the domain of £, we say an M (IR)-valued cadlag process {X; : t > 0} is
a solution of the (£, D(L), p)-martingale problem if Xy = p and

F(X,) - F(Xo) — /Ot LP(X,)ds, t>0,

is a martingale for each F' € D(L). Observe that, if F,, ((u) = (f, u™) for f € C*(IR™),
then

AFm,f(,u) - 2/mz l’l 1'1’ 7xm)um(dx17“.7d$m)

o [0S pla— ) i e, dy)
B j=1i#j
= Fnamp(p), (2.1)
and
1 m
BFm,f(:u) = 5 Z / xl?"'7$m71),um_1(d$1,"',dﬂ?m,l)
g=L,
1 m
= Y Fuvay) (22
2i,j:1,i

where @;; denotes the operator from B(IR™) to B(IR™ ') defined by

@ijf(xh s ,xm—l) = U($m—1)f($1; oy Tm—1, s Tm—1, " 7$m—2)> (2‘3)

where x,,_; is in the places of the ith and the jth variables of f on the right hand side.
It follows that
1 m
ﬁFm,f(;“/) - Fm,G”f(;“/) + 5 Z Fm—l,@%‘jf(:u)' (24)

i,j=1,i%j
Let {M, : t > 0} be a nonnegative integer-valued cadldg Markov process with tran-
sition intensities {¢;;} such that ¢;;—1 = —¢;; = i(i — 1)/2 and ¢;; = 0 for all other
pairs (i,7). That is, {M; : t > 0} is the well-known Kingman’s coalescent process. Let
7o = 0 and 7, = 00, and let {7, : 1 < k < My — 1} be the sequence of jump times of
{M;:t >0} Let {I}:1<k < My— 1} be a sequence of random operators which are
conditionally independent given {M; : ¢t > 0} and satisfy

1
(1—1)

5

P{l}, = &;;|M(7;) =1} = 1<i#j<lI, (2.5)



where @, ; is defined by (2.3). Let B denote the topological union of {B(R™) : m
1,2, .-} endowed with pointwise convergence on each B(IR™). Then

1P

Tk~ Tk—1

v, = B

tTk

Fk_l"'P.,.Q T1F1P Yb, Tk§t<Tk+1,0§k§Mg—1, (26)

defines a Markov process {Y; : t > 0} taking values from B. Clearly, {(M,;,Y;) : t > 0} is
also a Markov process. To simplify the presentation, we shall suppress the dependence of
{Y;:t > 0} onoandlet E7, , denote the expectation given My = m and Yy = f € C(IR™),
just as we are working with a canonical realization of {(M;,Y;) : t > 0}. By (2.6) we have

£ o, [ 30

1 ks t M. 1 rt—u
+§ > A/o E7 @z]meBYt—u,M t">€Xp{2/0 My (M — l)dstu.

i,j=1,i#j

Lemma 2.1 For any f € B(IR™) and any integer m > 1,

E° [(Yt, exp{ /M —1ds}]

< [l Z 27 " (m — 1)*lo | *(1, )™ *, (2.8)
k=0
where || - || denotes the supremum norm.

Proof. The left hand side of (2.8) can be decomposed as S} ! A, with

Ak- = E |:<}/t, eXp{ / M ds}l{Tk<t<Tk+1}:|

Observe that Ay = (P f, ™) < || f]|{1, u)™ and

m!(m
A = s [
k 2k(m — k)!(m — k - 1! dsy | dsy-

/ E | Ptmsjfk PP P R | = s 1< G < Kdsy
Sk—

S9—81

m)
< gt s [ s [l
m‘(m ) .
% (m — k)l(m 1)!\|f|\HUHk<1>u) ik
for 1 <k <m — 1. Then we get the conclusion. -



Lemma 2.2 Suppose that 0, — o boundedly and pointwise and i, — u in M(IR) as
n — oo. Then, for any f € B(IR™) and any integer m > 1,

E° [(Yt, exp{ /M —1ds}]

= lim E7" [(Y},,unt)exp{Q/O My(M; — l)ds}]. (2.9)

n—oo

Proof. For h € C(IR*) we see by (2.7) that
1 ot
ET5,n [<Y27MTJ\L&> exp {2/0 My (M — 1)ds}]
1 gt
- Ei"@mh {<Y;7 :U’qjyt> exp {2 /0 Ms(Ms - 1)ds}]

- /JRQ Wy, )pe(, y) pn(d) o (y)dy. (2.10)

If f,g € C(IR)* have bounded supports, then we have f(z)u,(dx) — f(z)u(dz) and
9(y)on(y)dy — g(y)o(y)dy by weak convergence, so that

lim [ f@gp(e p)(dr)onw)dy = [ f@)gpe,puldz)o(y)dy.

n—oo BQ

Since {p,} is tight and {0, } is bounded, one can easily see that {p:(z,y)u.(dz)o,(y)dy}
is a tight sequence and hence py(x, y)u,(dz)o, (y)dy — pi(z, y)u(dz)o(y)dy by weak con-
vergence. Therefore, the value of (2.10) converges as n — 0o to

E(f,¢12h[<yt7 >exp{ /M _1)d5}]

= E(f,¢21h[<n, exp{ /M dSH
= /]R2 h(y, y)pi(x, y)p(dz)o(y)dy.

Applying bounded convergence theorem to (2.7) we get inductively

Efn—LqBingnf[Q/i, exp{ / My(Ms —1) ds}]
= lim E7" | 4 me[(Y},,un exp{z/ M(M — l)ds}]
n—oo 0
for 1 <7 # j < m. Then the result follows from (2.7). O

Theorem 2.1 Let D(L) be the set of all functions of the form F,, ;(p) = (f, ™) with
f € C*(IR™). Suppose that {X; : t > 0} is a continuous M (IR)-valued process and that
E{(1, X;)™} is locally bounded int > 0 for each m > 1. If {X; : t > 0} is a solution of
the (L, D(L), u)-martingale problem, then

B X = B [ e {5 [ 0o, — s} (2.11)

for any t > 0, f € B(IR™) and integer m > 1.

7



Proof. In view of (2.6), the general equality follows by bounded pointwise approxima-
tion once it is proved for f € C?(IR™). In this proof, we set F,(m, f) = E,, (i) = (f, 1™).
From the construction (2.6), it is not hard to see that {(M;, Y;) : t > 0} has generator L*
given by

LoEy(m. f) = Fym, G" )+ 5 >0 [Falm =1, 8f) = Fy(m. )l
In view of (2.4) we have

LOFym, 1) = £Fp g 1) — gmlm —1)Fy (1), (2.12)

The following calculations are guided by the relation (2.12). In the sequel, we assume
that {X; : ¢ > 0} and {(M;,Y;) : t > 0} are defined on the same probability space
and are independent of each other. Suppose that for each n > 1 we have a partition
A, ={0=ty <ty <---<t, =t} of [0,t]. Let ||A,|| = max{|t; — t;—1| : 1 <7 < n} and
assume || 4, || — 0 as n — oo. Observe that

E(f,X™) — E{(Yt,,ﬂ% exp {; /Ot M, (M, — 1)dsH

M+, 1
= > <E{<Yt—thti ') exp {2
: 0

n t—1t;
=1

M, (M, — l)ds}] (2.13)

Mt—t' 1 t_ti71
—E[m_til, X exp {2/ M, (M, — 1)dsH>.
0

By the independence of {X; : ¢t > 0} and {(M;,Y;) : t > 0} and the martingale character-
ization of {(M;,Y;) : t > 0},

t—t;

” 1
I Ly
=1

My, 1
—FE |:<}/;f_ti1 ) Xti ' > exp {2

M, (M, — 1)dsH

0

M, (M, — 1)ds}]>
n 1 rt—t;
= lim ZE(GXP{Q MS(MS — 1)d8}E|:FXt(Mttla}/:‘,tz>
| 0 '

_FXti (Mt_tifl ) }/;_tifl)

I iE( {1

= — 11im ex -
n—00 = p 2 Jo

t—t;—1
E[/ E*FXt_(Mu,Yu)du‘X; ((M,,Y,):0<r<i-— ti}D
t 1

X;{(MT,YT):Ogrgt—ti}D

t—t;

My (M, — 1)ds}

1 [t—ti

— _ lim ZE(eXp{ M, (M, — 1)ds}/
o 2 2 Jo A

t—ti—1
£ P, (M, Y,)du)



where

t n 1
i E -
b [ S (oo 3
t—u
—/ <exp{ / M, (M, — 1)ds}£*FXu(Mt_u,Yt_u)>du,

the last step holds by the right continuity of {X; : ¢ > 0}. Using again the

MM, = 1)ds £ P, (Mo, Vi) o (1)

independence and the martingale problem for {X, : t > 0},

t—t;

L - My, 1
nh_{go Z (E |:<}/;/ti17Xti ' 1> exp {2 0
=1
M+

1 [t—ts
—E[(Yt_ti_l,Xt 1“>exp{2 0 Ms(Ms—l)ds}D

n 1 t—t;
lim > E(exp {2 My(M; — 1)d5}
a1 0

M,(M, — 1)dsH

E |:FMtti17Ytti1 (th> - FMtft',l,tht-,l (Xti—l)
n 1
I E( {
dim 2 Bl exp s |
I ij( {1
im exp 4 —
e e AR G
I t 2 E 1
A J, 2 (e f5 [
t 1 t—u
/ E(exp{Q/ My (M, — 1)ds}£FMtu7ytu(Xu)>du,
0 0

)

M, (M, —1ds} U LRy \ i u)du‘M,Y])

t—t;

t—t;

M,(M, — l)ds} / "L, v, 1(Xu)du)
ti—1 - "

ML (M, — 1)ds}£FMtti_l7YHi_1 (Xu)> Loy o (w)du

where we have also used the right continuity of {(M;, Y;) : t > 0} for the last step. Finally,
since |A,| — 0 as n — oo and M; < m for all t > 0, we have

n 1 t—t;

. Mi—t; 4
TLILIQO Z (E |:<}/;f—ti1 ) th’—l ' > eXp {2 0
=1

My, 1 ft—tiza
—E[(YttH,Xt fimti- )exp{ / My(M, —1)

My(M; — 1)dsH
2 Jo d

)

M, (M, — 1)ds}

t—t;

. “ 1
- nh—>nc}o Z E(Fth._1 (Mt—ti_l Yig, ) €xp { 9
i=1

r-ew{3 [, a0 - nanf])

t—t;
= —J]_)IIC}OZE(FX)& 1(]\4t ti 173/15 ti eXp{ /0 MS — ].)dS}

B /tt: M, (M, - 1)duD

1/t 1 ft—ti
= — lim = ZE(Fxti_l(Mt_ti_l,Y;_ti_l)exp{2 M (M, — 1)ds}
i=1

000 2 0

N —



Mt—u(Mt—u - 1)> 1[ti,17ti] (u)du

Since the semigroups (P/™);>o are strongly Feller and strongly continuous, {Y; : t > 0} is
continuous in the uniform norm in each open interval between two neighboring jumps of
{M; : t > 0}. Using this, the left continuity of {X; : £ > 0} and dominated convergence,
we see that the above value is equal to

1 rt 1
~ E(qu(Mtu, Yy ) exp {
2 Jo 2

t—u

M,(M, — 1)ds}Mtu(Mtu _ 1))du.

Combining those together we see that the value of (2.13) is in fact zero and hence (2.11)
follows. O

Theorem 2.2 Let D(L) be as in Theorem 2.1 and let {w; : t > 0} denote the coordinate
process of C([0,00), M(IR)). Suppose that for each pn € M(IR) there is a probability
measure @, on C([0,00), M(IR)) such that Q,{(1,w;)™} is locally bounded in t > 0 for
every m > 1 and such that {w; : t > 0} under Q, is a solution of the (L, D(L), j1)-
martingale problem. Then the system {Q,, : 1 € M(IR)} defines a diffusion process with
transition semigroup (Q:)so given by

&W%WWMMW:E{M, m%l/M —J@H (2.14)

Proof. Let Q;(u,-) denote the distribution of w; under @,. By Theorem 2.1 we have
(2.14). Let us assume first that o(x) = oq for a constant og. In this case, {(1,w;) : t > 0}
is the Feller diffusion with generator (oq/2)xd?/dz?, so that

2(1, ) A
A1,v) dy) = { ) }
[@me Qi(p, dv) PG goni )’

Then for each f € B(IR)* the power series

t>0,A>0.

wa/) )" Qe dv)A™ (2.15)

has a positive radius of convergence. By this and Billingsley (1968, p.342) it is not hard
to show that @Q(u,-) is the unique probability measure on M (IR) satisfying (2.14). Now
the result follows from Ethier and Kurtz (1986, p.184). For a non-constant o € B(IR)™,
let 09 = ||o|| and observe that

/M(R)<f, )" Qu(p, dv) < B0 o {(Yt,pMﬂ exp {; /Ot M, (M, — UdSH

by (2.14) and the construction (2.6) of {Y; : ¢ > 0}, where f®™ € B(IR™)" is defined
by f€™(z1, -, xm) = f(x1) -+ f(zy). Then the power series (2.15) also has a positive
radius of convergence and the result follows as in the case of a constant branching rate.
O

10



3 Interacting-branching particle systems

In this section, we give a formulation of the interacting-branching particle system. We
first prove that equations (1.6) have unique solutions. Recall that ¢ € C(IR) is Lipschitz,
h € C(IR) is square-integrable and p is twice continuously differentiable with p’ and p”
bounded. The following result is an extension of Lemma 1.3 of Wang (1997) where it was
assumed that ¢(x) = const.

Lemma 3.1 For any initial conditions z;(0) = x;, equations (1.6) have unique solutions
{z;(t) : t > 0} and {(z1(t), -+, zm(t)) : t > 0} is an m-dimensional diffusion process with
generator G™ defined by (1.7).

Proof. Fix T' > 0 and i > 1 and define {z%(¢) : t+ > 0} inductively by 2%(¢) = z;(0)
and

¥ () = 240 —i—/ ))dB;( —i—/ / W (dy, ds), t>0.

Let I(c) > 0 be any Lipschitz constant for ¢(-). By a martingale inequality we have
B{ suwp a7~ 0P} < 8 [ Bllelat(0) - ek ()t

48 [ B [ 1ty — h0) — by — 7 1)y bt
()7 [ B(lat () — 2k ()P
416 [ B{1p(0) — p(k(r) — 2t~ 1)
< S0+ 1) [ Bl - o )P ar

IA

Using the above inequality inductively we get

B{ sup [2471(t) = 2O} < (Iel* + p(0))U()? + 10" STV

0<t<T

and hence

P{ sup [o471(0) = ab(0)] > 27} < const - ()7 + ) (ST)* /.

0<t<T

By Borel-Cantelli’s lemma, {zf(t) : 0 < ¢ < T} converges in the uniform norm with
probability one. Since T > 0 was arbitrary, x;(t) = limj_, 7¥(¢) defines a continuous
martingale {z;(t) : ¢ > 0} which is clearly the unique solution of (1.6). It is easy to
see that d(z;)(t) = a(z;(t))dt and d(z;,x;)(t) = p(z;(t) — x;(t))dt for i # j. Then
{(x1(t), -, xp(t)) : t > 0} is a diffusion process with generator G™ defined by (1.7). O

11



Because of the exchangebility, the G"™-diffusion can be regarded as a measure-valued
Markov process. Let N(IR) denote the space of integer-valued measures on IR. For 6 > 0,
let My(IR) ={6'o:0 € N(IR)}. Let ¢ be the mapping from U°_, IR™ to My(IR) defined
by

1 m

1 n m
Gmme(C(xh"'axm)) = 27”2 Z a’(xla)f(;/a(xll’.”’xln)
a=1 ll ,ln:l
1 n m
+ 20n Z Z C(xla)c(mlg)f(;/ﬁ(wh? e, 2,)
a,B=1,0#B 11, ln=1,la=lg
1 n m
+ 20 > > pla, —a) fas(y, - a,). (3.2)
a,0=1,a#0 1, ln=1
Proof. By (3.1), we have
1 m
FuslClonm) = 5o 3 flan,vm,). (33
Iy ln=1
Observe that, for 1 <17 < m,
d? 1 & y
72Fn,f<C<x17"'>$m)):7n Z Zfaﬁ(mlp"'axln)a
dz; 0" 52 o

where {---} = {forall 1 <y,---,1, < m with |, = lg = i}. Then it is not hard to see
that

Z c(x;) ﬁFn,f(C(mla )

1 2 m .
- 97 Z Z C<xla)c(xl@)faﬁ(‘rl1? T 7xln)
ﬂ: 3ty

= fn Z Z c(xla)2fc/u,a<xll’ e 7xln)

1 n m

+97 Z Z C(xla)c(xlﬁ)f(;lﬁ(xlla T 737[”)- (34)

a,B=1,0#8 11, In=1la=lg

On the other hand, for 1 <i # 5 < m,

d? d? 1
F, e T)) = — 1 o
(dmidl’j " dl’ide> Sy Tm)) gn aﬁ;@éﬂ% faﬁ<xl17 ;71
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where {---} = {forall 1 <1, ---,l,, <m with [, =i and lg = j}. It follows that

m d2
‘ _21: i — %‘)an,f@(ﬂ?u S Tm))
i,j=1,i#j J

- 97 Z Z p('rla _Ilg)fgﬂ(xlu"'uxln)‘
0476:1704756 ll,"',lnzl,la¢l5

Using this and (3.4) with ¢(z;)? replaced by p(0),

m 2
p 7Fn,f(<(x17axm))
1]2:1 dl’zdI]
1 m
= 972 Z p(o)fga(xln"'axln)
=111, =1

(I m
+ on > Z p(r, — x15) fog(wy, -+ au,). (3.5)

Wl

a,8=1,a#06 11, ln=1
Then we have the desired result from (3.4) and (3.5). O

Suppose that X (t) = (z1(t), -+, z,(t)) is a Markov process in IR™ generated by G™.
Based on (1.2) and Lemma 3.2, it is easy to show that ((X(¢)) is a Markov process in
My(IR) with generator Ay given by

2/ d Ll )M(d )—Fi c(x)c(y) d O F(p) 8, (dy) pu(da)

x2 op(z) 20 dxdy dpu(x)dp(y)
> 0 F(p)
+5 fro e = D) (). (3.6)
In particular, if
F(M) :f(<¢17:u>7""<¢m:u>)7 MGM@(R), (37>
for f € C*(IR") and {¢;} C C?*(IR), then
AP () = 330 Fi{u ), s ) )
+ g5 20 F5(0n o 6 )il ) (39
" ; i (1o (60 ) [ ol = 9)6()65 ()l

Now we introduce a branching mechanism to the interacting particle system. Suppose
that for each € IR we have a discrete probability distribution p(z) = {pi(z) : i =
0,1,---} such that each p;(-) is a Borel measurable function on IR. This serves as the

13



distribution of the offspring number produced by a particle that dies at site x € IR. We
assume that

o

pi(x) =0, > ipi(x) =1, (3.9)

i=1

and

= ilfpl(x) -1 (3.10)

is bounded in z € IR. Let [y(u, dv) be the probability kernel on My(IR) defined by

/MQ(R) F@)lolp, dv) 1 Z ip] () <u+ = 1)9—15%.), (3.11)

=1 j=0

where u € My(IR) is given by

For a constant 7 > 0, we define the bounded operator By on B(Mjy(IR)) by

BoF(n) =A0%0 A (V)] | [F(v) = F(u)]y(ps, dv). (3.12)
Mo (IR)

In view of (1.6), Ay generates a Feller Markov process on My (IR), then so does Ly := Ag+
By by Ethier-Kurtz (1986, p.37). We shall call the process generated by Ly an interacting-
branching particle system with parameters (a, p,~y,p) and unit mass 1/6. Heuristically,
each particle in the system has mass 1/6, a(-) represents the migration speed of the
particles and p(-) describes the interaction between them. The branching times of the
system are determined by the killing density v0%[0 A u(1)], where the truncation “0 A pu(1)”
is introduced to make the branching not too fast even when the total mass is large. At
each branching time, with equal probability, one particle in the system is randomly chosen,
which is killed at its site x € IR and the offspring are produced at x € IR according to
the distribution {p;(z) :i=0,1,---}. If F'is given by (3.7), then ByF (1) is equal to

9 n o
21 A ()] /\M Z Y (0= DX pifus((Pr, 1) + &1, (dns i) + Ebn)datp, 1) (3.13)

a,f=1j=1

for some constant 0 < &; < (j — 1)/6. This follows from (3.11) and (3.12) by Taylor’s
expansion.
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4 Continuous branching density

In this section, we shall construct a solution of the martingale problem of the SDSM
with continuous branching density by using particle system approximation. Assume that
o € C(IR) can be extended continuously to IR. Let A and B be given by (1.5) and (1.8),
respectively. Observe that, if

for f € C*(IR™) and {¢;} C C*(IR), then

APG) = 53 F(orap) o ) o) (1.2
b5 20 Ao i) e = )6 )6 () ),

S
<.
H

and

BEG) = 5 3 F5l{om oo (u i)l ). 43)

Let {0} be any sequence such that 6, — oo as k — oo. Suppose that {Xt(k) 1t >0} is
a sequence of cadlag interacting-branching particle systems with parameters (a, p, vz, p™),
unit mass 1/6; and initial states X(()k) = up € My (IR). In an obvious way, we may also
regard {Xt(k) :t > 0} as a process with state space M(IR). Let o, be defined by (3.10)

with p; replaced by pgk).

Lemma 4.1 Suppose that the sequences {0y} and {(1, ju1,) } are bounded. Then {Xt(k)
t > 0} form a tight sequence in D([0,00), M (IR)).

Proof. By the assumption (3.9), it is easy to show that {(1, X} : ¢ > 0} is a
martingale. Then we have

1
Plaip( x(9) > g < L2
t>0 n

for any n > 0. That is, {Xt(k) : t > 0} satisfies the compact containment condition of

Ethier and Kurtz (1986, p.142). Let £ denote the generator of {Xt(k) :t >0} and let '
be given by (4.1) with f € C3(IR") and with each ¢; € C3(IR) bounded away from zero.
Then

t
F(xM) - F(x§Y) —/0 L. F(X®)ds, >0,

is a martingale and the desired tightness follows from the result of Ethier and Kurtz (1986,
p.145). O
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In the sequel of this section, we assume {¢;} C C3(IR). In this case, (4.1), (4.2) and
(4.3) can be extended to continuous functions on M (R). Let AF(;) and BF (1) be defined
respectively by the right hand side of (4.2) and (4.3) and let LF(p) = AF(n) + BF (1),

all defined as continuous functions on M (IR).

Lemma 4.2 Let D(L) be the totality of all functions of the form (4.1) with f € C2(IR")
and with each ¢; € C3(IR) bounded away from zero. Suppose further that Yo, — o
uniformly and pi — p1 € M(IR) as k — oo. Then any limit point @, of the distributions

of {X® : ¢ > 0} is supported by C([0,00), M(IR)) under which
.
Fluw) = Flwy) = [ LF(w)ds, >0, (4.4)
0

is a martingale for each F' € D(L), where {w, : t > 0} denotes the coordinate process of
C([0,00), M(IR)).

Proof. We use the notation introduced in the proof of Lemma 4.1. By passmg to a
subsequence if it is necessary, we may assume that the distribution of {Xt :t >0} on
D([0,00), M(IR)) converges to Q,. Using Skorokhod’s representation, we may assume

that the processes {Xt(k) : t > 0} are defined on the same probability space and the
sequence converges almost surely to a cadlag process {X; : t > 0} with distribution
Q, on D([0,00), M(IR)); see e.g. Ethier and Kurtz (1986, p.102). Let K(X) = {t >
0: P{X; = X;-} = 1}. By Ethier and Kurtz (1986, p.118), for each t € K(X) we
have a.s. limy_ Xt(k) = X;. Recall that f and f/i are rapidly decreasing and each
¢; is bounded away from zero. Since ~yxar — o uniformly, for t € K(X) we have a.s.
limy oo L F (th)) LF(X,) boundedly by (3.8), (3.13) and the definition of £. Suppose
that {H;}7_, ¢ C(M(IR)) and {t;}™"} ¢ K(X) with 0 < t; < --- < t, < tns;. By Ethier
and Kurtz (1986, p.31), the set K(X) is at most countable. Then

A

B{[Fx0 - Fox) - [ 2RO T}

i=1

- E{F(th+1) ﬁ[l Hi(Xti)} _ E{F(th) II Hi(Xti)}

— E{ﬁF(X ) ﬁ Hi(Xti)}ds

tn

= lim E{F (X)) HH X}’“)} lim E{F(X}f))HHi(X;’“))}
i=1 ;

k—o0

tn n
—dim [ E{EkF(X(’“)) HH,.(Xt(f))}ds

k—oo Jt, =1
tn n
= Jim B PO - PO - [T Lpoe®)ds| T ) |
—ee tn i=1
= 0.
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By the right continuity of {X; : ¢ > 0}, the equality

n

H Hi(Xti)} =0

=1

tnt1 4
B{|F(X,..) - PG, — [ 2P(x s
tn
holds without the restriction {t;}74! ¢ K(X). That is,
(2N
F(X,) — F(X,) —/ LF(X)ds, >0,
0

is a martingale. As in Wang (1998, pp.783-784) one can show that {X; : t > 0} is in fact
a.s. continuous. a

Lemma 4.3 Let D(L) be as in Lemma 4.2. Then for each i € M(IR), there is a probabil-

~

) /
ity measure Q,, on C([0,00), M (IR)) under which (4.4) is a martingale for each F' € D(L).

Proof. 1t is easy to find uy € My, (IR) such that uy — p as k — oo. Then, by Lemma
4.2, it suffices to construct a sequence (7, p*)) such that y,0, — o as k — oo. This is
clementary. One choice is described as follows. Let v, = 1/vk and oy = Vk(o + 1/VE).
Then the system of equations

k k k
e+ 08+ =1,
2p5” + kpy” =1,
1 +1p) =ont 1,

has the unique solution

p(k)_0k+k_1 (k) k—1— o0y (k) o, — 1

() B ¥ s

)

where each pgk is nonnegative for sufficiently large k£ > 3. a

Lemma 4.4 Let Q, be given by Lemma 4.3. Then forn > 1,t > 0 and p € M(IR) we
have

1 t )

Qui(Lw)"} < (L) + 5nln = Dllol] [ Q{(1w.)" " yds.
Consequently, Q,{(1,w:)"} is a locally bounded function of t > 0. Let D(L) be the union
of all functions of the form (4.1) with f € C3(IR") and {¢;} C C%(IR) and all functions
of the form Fy, j(n) = (f,u™) with f € C3(IR™). Then (4.4) under Q, is a martingale

~

for each F' € D(L).
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Proof. For any k > 1, take fr € CZ(IR)) such that fy(z) = 2" for 0 < z < k and
/(2) <n(n—1)2""2 for all z > 0. Let Fy(u) = fu((1,1)). Then AF, (1) = 0 and

BFi(u) < 5n(n = 1llo (1, )"

N | —

Since
t
Fk(Xt)—Fk(Xo)—/O LE((1,X))ds, t>0,

is a martingale, we get

1 ¢ _
QuA((1L,X)") = fil(l,m) + gn(n —1)|o]| /0 Q,.((L, X,)"")ds
1 t _
< (L + 5nln = Dlol| [ @u((1,X.)" s,
Then the desired estimate follows by Fatou’s Lemma. The last assertion is an immediate
consequence of Lemma 4.3. O
Lemma 4.5 Let Q, be given by Lemma 4.3. Then for i € M(IR) and ¢ € C3(IR),

1

Mt(gb) = <¢a wt> - <¢a M> Y

t
5 (ag”, ws)ds, t >0, (4.5)
0

is a Q,-martingale with quadratic variation process

(M) = | (06 w,)ds + / ds [ (bl = )6/ w)d. (4.6)
Proof. 1t is easy to check that, if F,,(u) = (¢, u)", then

R = Mo oo+ g2 [ (hz - )62
n(n —1)
2

[\]

+ (¢, )" (00", ).

It follows that both (4.5) and

t

MA6) = (6w — (6, = [ (6,w) 0, w)ds
_/Ot ds/lk<h(z_ ')¢,7ws>2dz—/0t<0q52,ws>ds (4.7)

are martingales. By (4.5) and It6’s formula we have
(6,0 = (6,07 + [ (600" wdds +2 [ (6,0)AM(0) + (M) (49)
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Comparing (4.7) and (4.8) we get the conclusion. 0

Observe that the martingales {M;(¢) : t > 0} defined by (4.5) form a system which is
linear in ¢ € C3(IR). Because of the presence of the derivative ¢’ in the variation process
(4.6), it seems hard to extend the definition of {M;(¢) : t > 0} to a general function
9 € B (li%) However, following the method of Walsh (1986), one can still define the

stochastic integral
t
| [ ots.o)Mids, ), t>0,
0 JIR

if both ¢(s,z) and ¢/,(s,z) can be extended continuously to [0,00) x IR. With those in
hand, we have the following

Lemma 4.6 Let Q, be given by Lemma 4.3. Then for any t > 0 and ¢ € C3(IR) we
have a.s.

(6,0 = (B + [ [ Pl M(ds, da).

Proof. For any partition A, :={0=1t; <t; <--- <t, =t} of [0,¢], we have

<¢7 wt) - <pt¢v :u> = Z(pt_ti¢ - pt_tifl ¢, wti>
=1

+ ZKpt_ti—l gbv wti> - <pt_ti—1 gbv wti—1>]'

i=1
Let ||A,|| = max{|t; — t;_1] : 1 <i < n} and assume ||A,|| — 0 as n — oco. Then
7}1_{{)10 Z(fjt—tzﬁb - pt—ti_1¢7wti> = —7}1_{202/ Pt sGQb Wy, >

= _/0<Pt—sG¢vw8>dS

Using Lemma 4.5 we have

lim Z Pt ti O, Wy,) — USt tia @y Wy, )]

n—oo

:7}%2/ [, o 6()Mds, do) + Jim 3 Z/ a( Py, )" w,)ds
= [ [ AotMds,de) + 5 [{a(Pro) s

Combining those we get the desired conclusion. a
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Theorem 4.1 Let D(L) be the union of all functions of the form (4.1) with f € C*(IR")
and {¢;} C C*(IR) and all functions of the form F, ;(u) = (f, ™) with f € C*(IR™). Let
{w; : t > 0} denote the coordinate process of C([0,00), M (IR)). Then for each p € M (IR)
there is a probability measure Q,, on C([0,00), M (IR)) such that Q, {(1,w;)™} is locally
bounded in t > 0 for every m > 1 and such that {w; : t > 0} under Qu is a solution of
the (L, D(L), u)-martingale problem.

Proof. Let @, be the probability measure on C([0,c0), M (IR)) provided by Lemma
4.3. The desired result will follow once it is proved that

Q, {w;({0}) =0forallt € [0,u]} =1, u > 0. (4.9)
For any ¢ € C3(IR), we may use Lemma 4.6 to see that
M) = (Pacirw) = (BPuoi) = [ [ Pusob(ds, o), 1€ [0,u),
is a continuous martingale with quadratic variation process
(@) = [ oo iwdds+ [ ds [ bz = )Pus(), ) ds
= [Pt wds + [ ds [ (1= )(Puso)swn)de
By a martingale inequality we have

Q{ sup [(Puidrwn) — (Pus. i)

0<t<u

< 4/”@ ((o(Pu_sd)?, w,) }ds+4/“ ds/ﬁ%QM{(h(z— NPy (&), w52}z
< A [P pPds + 4 [ bRz [ QUL w) ([Puns(@) w) s
< 4 [Ho(Prso uP)ds + 401 [ h(27dz [* Qu{(Lw))ds,

Choose a sequence {¢,} C C3(IR) such that ¢y(-) — 1gs;(-) boundedly and ||¢,|| — 0 as
k — oco. Replacing ¢ by ¢, in the above and letting & — oo we obtain (4.9). a

Combining Theorems 2.2 and 4.1 we get the existence of the SDSM in the case where
o € C(IR)" extends continuously to IR.

5 Measurable branching density

In this section, we shall use the dual process to extend the construction of the SDSM to
a general bounded Borel branching density. Given o € B(IR)™", let {(M,Y:) : t > 0} be
defined as in section 2. Choose any sequence of functions {0} C C(IR)" which extends
continuously to R and o, — o boundedly and pointwise. Suppose that {u,} € M(R)
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and py, — p € M(IR) as k — oo. For each k > 1, let {X* : t > 0} be a SDSM with
parameters (a, p,0x) and initial state p, € M(IR) and let Q) denote the distribution of
{(X® ¢ >0} on C(]0,00), M(IR)).

Lemma 5.1 Under the above hypotheses, {Q,} is a tight sequence of probability mea-
sures on C([0,00), M (IR)).

Proof. Since {(1, Xt(k)> :t > 0} is a martingale, one can see as in the proof of Lemma
4.1 that {Xt(k) .t > 0} satisfies the compact containment condition of Ethier and Kurtz
(1986, p.142). Let £ denote the generator of {X* : ¢ > 0} and let F be given by (4.1)
with f € C2(IR") and with {¢;} C C%(IR). Then

t
FX®) - F(x®)y - / LoF(X®ds, >0,
0

is a martingale. Since the sequence {0y} is uniformly bounded, the tightness of {Xt(k) it >
0} in C([0, 00), M(IR)) follows from Lemma 4.4 and the result of Ethier and Kurtz (1986,
p.145). We shall prove that any limit point of {Q,} is supported by C([0,00), M (IR))
so that {Q,} is also tight as probability measures on C([0,00), M (IR)). Without loss
of generality, we may assume Q) converges as k — oo to @, by weak convergence of

probability measures on C([0,00), M(IR)). Let ¢, € C*(IR)" be such that ¢,(zr) = 0
when ||z|| < n and ¢, () = 1 when ||z|| > 2n and ||¢,|| — 0 as n — oo. Fix v > 0 and
let m,, be such that ¢,,,(z) < 2F¢,(x) for all 0 <t <wu and x € IR. For any a > 0, the
paths w € C([0,00), M (IR)) satisfying SUPg<s<y(Pm,, we) > a constitute an open subset

of C([0,00), M(IR)). Then, by an equivalent condition for weak convergence,

Q. sw wl{@}) > a} < @,{ sw (60, w) > o

0<t<u 0<t<u

4
< liminf Qk{ Sup (P, we) > Oé} < sup QQk{ sup <Pu—t¢mn7wt>2}
k—oo E>1 O

0<t<u 0<t<u

8 8
< sup 5 Qu{ S [{Pacin, w0) = (Pu i) P 500 50D 5 {Puth 1)’
E>1 O 0<t< >1 0<t<u O

As in the proof of Theorem 4.1, one can see that the right hand side goes to zero as
m, — oo. Then @, is supported by C([0, 00), M (IR)). O

Theorem 5.1 The distribution Q" (fix, ) of x* on M(IR) converges as k — oo to a
probability measure Q¢(u,-) on M(IR) given by

foon o) Qui ) = B g0y exo {5 [0 = as}] )

Moreover, (Q)i>o is a transition semigroup on M (IR).
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Proof. By Lemma 5.1, {ng)(,uk, dv)} is a tight sequence of probability measures on
M(IR). Take any subsequence {k;} so that ngi)(,uki,dy) converges as ¢ — 00 to some
probability measure Q;(u, dv) on M(IR). By Lemma 2.1 we have

/MUR) ooy (1,20 (1) QY (e, )
oy (1 Q )

s o Z 27" (m + 1)'m [l (1, pue)™
=0

which goes to zero as a — oo uniformly in & > 1. Then for f € C(Zi%)Jr we may
regard {(f, Vm)QEk)(uk, dv)} as a tight sequence of finite measures on M (IR). By passing

to a smaller subsequence {k;} we may assume that (f, I/m>Q§ki)(,uki,dl/) converges to a
finite measure K;(u,dv) on M(IR). Then we must have K;(u,dv) = (f,v™)Q:(p, dv).
By Lemma 2.2 and the proof of Theorem 2.2, Q;(1,-) is uniquely determined by (5.1).

Therefore, ng) (g, +) converges to Q;(u, ) as k — oo. From the calculations

/M(R) Qr(u,dn)/( (f,v™)Qi(n, dv)

_ /M(IR)E [(Yt, exp{ / M, ( }]Qr(mdn)

= By [ e QG dn)exp {2 /0 M, (M, — 1)ds ]

- E, Eg” (m,ﬂw exp {; /0 M,(M, — 1)ds}) exp {; /Ot M,(M, — 1)dSH
- B, :mﬂ,uth) exp{é/orﬂ M,(M, — 1)dsH

= /M <f7 Vm)QH—t (777 dy)
(IR)

we have the Chapman-Kolmogorov equation. O

The existence of a SDSM with a general bounded measurable branching density func-
tion o € B(IR) is given by the following

Theorem 5.2 The sequence Q) converges as k — oo to a probability measure Q,, on
C([0,00), M(IR)) under which the coordinate process {w; : t > 0} is a diffusion with
transition semigroup (Q);>o defined by (5.1). Let D(L) be the union of all functions
of the form (4.1) with f € C*(IR") and {¢;} C C?*(IR) and all functions of the form
Fonp(p) = (f, ™) with f € C*(IR™). Then {w; : t > 0} under Q,, solves the (L, D(L), j1)-

martingale problem.

Proof. Let Q,, be the limit point of any subsequence {Q,, } of {Q;}. Using Skorokhod’s
representation, we may construct processes {Xt(ki) :t > 0} and {X; : t > 0} with
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distributions @y, and @, on C([0,00), M(IR)) such that {(x*) ¢ > 0} converges to
{X;:t >0} as. when i — oo; see Ethier and Kurtz (1986, p.102). For any {H;}"*] C
C(M(R)) and 0 < t; < --- < t, < tny1 we may use Theorem 5.1 and dominated
convergence to see that

E{ 11 2,(x., )HW(XW)}

j=1

= lim E{ H H;(X ]. n+1(Xt(n+)1)}

71— 00 le

= tim B{TT ) [ QM) -, (X0, av)}

1— 00 le

= E{jf[lHj(th)/M(R) Hy1(V)Qu, - tn(Xtmd’/)}

Then {X; : t > 0} is a Markov process with transition semigroup (Q¢)¢>o and actually
Q) — Q, as k — co. The strong Markov property holds since (Q;)>o is Feller by (5.1).
To see the last assertion, one may simply check that (£, D(L)) is a restriction of the
generator of (Q:):>o. a

6 Rescaled limits

In this section, we study the rescaled limits of the SDSM constructed in the last section.
Given any 6 > 0, we defined the operator Ky on M (IR) by Kou(B) = u({0z : x € B}).
For a function h € B(IR) we let hyo(z) = h(0z).

Lemma 6.1 Suppose that {X; : t > 0} is a SDSM with parameters (a, p,o). Let X! =
072KyXg2,. Then {X? :t >0} is a SDSM with parameters (ag, pg, 7).

Proof. We shall compute the generator of {X? : ¢ > 0}. Let F(u) = f((¢, 1)) with
f € C*(R) and ¢ € C*(IR). Note that F o Ky(u) = F(Kgu) = f({¢1/6,1)). By the
theory of transformations of Markov processes, {KyX; : ¢t > 0} has generator £’ such
that LVF () = L(F o Ky)(K1/pp). Since

d 1 d? 1
%%/9(90) = 5(¢')1/9(9€) and @%/0(90) = @(W')lw(l‘%

it is easy to check that
LOF(p) = (6, 1)) (agd”, 1)
2; "(90) [, ool ~ )0 ()6 (o)

(1) 0P, 1)

202
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Then one may see that {#2K,X; : t > 0} has generator Ly such that

LoF() = o (et
292 "(61)) [, pale = 5)o' (@) (y)nld)(dy)
g (6, 1) o001,
and hence {X? : ¢t > 0} has the right generator §%L,. O

Theorem 6.1 Suppose that (12, X;,Q,,) is a realization of the SDSM with parameters
(a,p,0) with |c(z)| > € > 0 for all z € IR. Then there is a A X A x Q ,-measurable
function X;(w, ) such that Q {w € 2 : X;(w,dx) is absolutely continuous with respect
to the Lebesgue measure with density X;(w,x) for A-a.e. t > 0} = 1. Moreover, for
A X A-a.e. (t,x) € [0,00) x IR we have

QX = [ py.ziw2)u(dw)u(dy)
+/ ds/ (dy) / 2)p2(z, 22, 2)pi_s(y, 2)dz. (6.1)

Proof. Recall (1.9). For r; > 0 and o > 0 we use (2.7) and (5.1) to see that
Qu{ger, (,), Xe)(ger, (7, ), X0} = Qu{{ger, (,) @ gy, (), X7) }
(PR ) @ g ) 1)+ [ (P buaPRol, () @ gL (), 1) ds
= [ PRl (o) @ gh (o, ) (0. 2 dy)n(d2)
+ [ds [ ptdy) [ o) P2h 0,) @ gl () (2 2ol 2
Observe that
PRgh, () @ 00, )002) = [ gl (0s20)gh, (0, 2208200, 7520, )
converges to p?(y, z; z,x) boundedly as r; — 0 and ro — 0. Note also that
| oL (2,) © gl (@) (= 2)peca (. 2)dz
< const- ol [ Toagh, () (oo 21

< const -

1
||O-Hﬁgel(t+r1)(y7 )

< const -

o=
g .
vV st
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By dominated convergence theorem we get

Tllgrio Qp{<gelr1 (xa ')7 Xt><gelr2 (J}, ')7 Xt>}
= [ P s )udy)u(d)
—l—/ ds/ (dy) / 2)p2(z, 21, 2)pr_s(y, 2)dz.

Then it is easy to check that

T

lim dt/ Qu{<gelr (.T, ) - gelr (CL’, ')7 Xt>2}d'r =0
r1,72—0 Jo R ! 2

for each T' > 0, so there is a A x A x Q -measurable function X;(w, z) satisfying (6.1) and

limy | ger (. y) Xi(w, dy) = Xi(w, @) (6:2)
in L2(A x A x Q,). For any square integrable ¢ € C(IR),
[e { (650 — [ o) Xi()ie] Jar
< 2/ ~ T, X)) dt
+2 /0 Qﬂ{ (106, X) = [, 0(0)Xu(a)do

and by Schwarz inequality,

Q}dt, (6.3)

Q|70 %) - [ o xiwyaal )
= Q.| [ Xitdn) [ o)l (y.a)ds ~ [ o) Xo(a)ds
- o / 468, 2), %) = Xu(w)o(e)dal b
< [ Qu{lgh (), X0) = Xe(w)} e [ ow)d

By this and (6.2) we get

)

lim TQH{

r—0 Jo

(T, X)) — /R (x) X, () dx

2
bat = 0.
On the other hand, using (2.8) and (5.1) one may see that

ll_r% Q,u{<¢ - Tergby Xt>2} S ll_r}(l) ||¢ - Ter¢||2Qu{<17 Xt>2} = 0.
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Then letting r — 0 in (6.3) we have

[af Yo

completing the proof. a
By Theorem 6.1, for A x A-a.e. (t,z) € [0,00) x IR we have

(6,X0) — [ o) Xi(e)do

Q,{Xi(z)*} < const- U%ﬂ,u) /Bgit(w,y)u(dy)

s df [ tdy) [l a)gh (2 )z
< const- [ (1) + Vilell] [ ske.u)n(an) (6.4)

Theorem 6.2 Suppose that {X; : t > 0} is a SDSM with parameters (a,p,c) with
lc(z)] > € > 0 for all z € R. Let X! = 072KyXgp2;. Assume a(z) — ag, o(x) — 05
and p(z) — 0 as |x| — oo. Then the conditional distribution of {X? : t > 0} given
X8 = pu € M(IR) converges as § — oo to that of a super Brownian motion with underlying
generator (ag/2)A and uniform branching density o.

Proof. Since |log|| = ||o]| and X§ = p, as in the proof of Lemma 5.1 one can see
that the family {X? : ¢ > 0} is tight in C(]0, 00), M (IR)). Choose any sequence 6}, — 0o
such that the distribution of {Xf * 1t >0} converges to some probability measure @, on
C([0,00), M(IR)). We shall prove that @, is the solution of the martingale problem for
the super Brownian motion so that actually the distribution of {X? : ¢ > 0} converges to

Q, as § — oo. By Skorokhod’s representation, we can construct processes {Xt(k) (>0}
and {X” : ¢ > 0} such that {X” : ¢t > 0} and {X : ¢ > 0} have identical distributions,
{Xt(o) :t > 0} has the distribution @, and {Xt(k) :t > 0} converges a.s. to {Xt(o) (1 >0}
in C([0,00), M(IR)). Let F(p) = f({¢,n)) with f € C*(IR) and ¢ € C?*(IR). Then for
each k > 0,

t
FXM) — Px(P) - / LF(X®ds, >0, (6.5)
0

is a martingale, where L is given by

LiF(r) = 76, a0 ) + 5 (6 1) on, 6% 1)

1

30" [, po (e = )¢/ @6 (Yu(da)u(dy).

Observe that
t
| B (6. X)) lan, — asle, X yds
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t
£ | B{{Jas, = aol, X)) }ds
t
< NP6 [ (Plas, = asl,m)ds

< 1M [ ds [ (o) [ lao, ) — asloste. )y,
Then we have
tim [ B0, X)) {lag, — aslo, XO)}ds =0, (6.6)

In the same way, one sees that

i Ot E{|f"({¢, X)) [(|ow, — 0al6?, X{P) }ds = 0. (6.7)
Using the density process of {Xt(k) :t > 0} we have the following estimates
Blf((6. X)) [ po, (o~ )0/ (2)6 () X9 () X (dy)
1] /JR2 o (& = )¢ ()¢ () |[E{X " (2) X (y) Ydady
< I /]R2 o (& = )¢’ ()¢ ()| EAX ) ()} PE{X P (y)*} 2 dady

1/2

11 [ Voonte = )Pl @)6 )Pdedy [ BUXD @B ) drdy
< " 2| 4 drd 1/2 E X(k) 2 d
< 1N [ o= )P0 @) ) Peay) [ B )

By (6.4), for any fixed t > 0,

IN

IN

/ ds/ E{X®(2)*}du

is uniformly bounded in k& > 1. Since py, (z —y) — 0 for A x M-a.e. (z,y) € IR* and since
lpa, |l = llpll, we have

lim [ oo, (= )0/ (@) (y) Pdrdy = 0
when ¢’ € L?()\). Then

lim E
k—o0

F/(46. X [ ooz =)o @) () XD () XPay)| = 0. (63)

Using (6.6),(6.7), (6.8) and the martingale property of (6.5) ones sees in a similar way as
in the proof of Lemma 4.2 that

t
F(x{") - F(x{") —/ LoF(XMds,  t>0,
0
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is a martingale, where L, is given by

1 1

LoF () = Zao " (&, m))(¢", 1) + 500" ({6, )&, 1),

This clearly implies that {Xt(o) :t > 0} is a solution of the martingale problem of the
super Brownian motion. O

7 Measure-valued catalysts

In this section, we assume |c(z)| > € > 0 for all € IR and give construction for a class
of SDSM with measure-valued catalysts. We start from the construction of a class of
measure-valued dual processes. Let Mp(IR) denote the space of Radon measures ¢ on IR
to which there correspond constants b(¢) > 0 and [(¢) > 0 such that

[z, x +1(Q)]) <b(OIC),  zelR (7.1)

Clearly, Mp(IR) contains all finite measures and all Radon measures which are absolutely
continuous with respect to the Lebesgue measure with bounded densities. Let Mp(IR™)
denote the space of Radon measures v on IR™ such that

v(dzy, - dey,) = f(x1, xm)dey, -+ deg,_1((dx,y,) (7.2)

for some f € C(IR™) and ( € Mp(IR). We endow Mp(IR™) with the topology of vague
convergence. Let M4(IR™) denote the subspace of Mp(/R™) comprising of measures
which are absolutely continuous with respect to the Lebesgue measure and have bounded
densities. For f € C(IR™), we define AT € Ma(IR™) by N}'(dz) = f(z)dx. Let M be the
topological union of {Mp(IR™):m =1,2,---}.

Lemma 7.1 If ¢ € Mp(IR) satisfies (7.1), then
J e y)C(dy) < he.Git)/VE t> 0.2 € R
where
h(e, ;) = const - b(C) {25(@ + \/%} £ 0.
Proof. Using (1.9) and (7.1) we have

[ pe)(dy) < const [ gu(ey)C(dy)

2b(Q)1(¢) & k*1(¢)?
v 2met kZ::OeXp{— 2et }

< o B2 o - Zo

b(¢)
< const - Nore [2l(§) +V 27T€t:|,
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giving the desired inequality. O
Fix n € Mp(IR) and let ®;; be the mapping from M4(IR™) to Mp(IR™ ") defined by
Pijp(dzy, - -+, dry 1)
/
= WU (xla oy Tm—1y s =1, 7:Em—2)dx1 o d$m—2n(dxm—l)7 (73)

where 1/ denotes the Radon-Nikodym derivative of u with respect to the m-dimensional
Lebesgue measure, and x,,_1 is in the places of the ith and the jth variables of 1’ on the
right hand side. We may also regard (P");s¢ as operators on Mp(IR™) determined by

P"v(dx) = /]Rm Py (z, y)v(dy)de, t>0,z € R™. (7.4)

By Lemma 7.1 one can show that each P/ maps Mp(IR™) to M4(IR™) and, for f €
C(IR™),

P" i (dx) = P" f(x)dx, t>0,z€ R™. (7.5)
Let {M;:t >0} and {I}x : 1 <k < My — 1} be defined as in section 2. Then

FkPMT’“*1 Iy "P7{24117'1F1P7{\1/[OZ07 T St < 71,0 <k < My —1, (7.6)

Tk —Tk—1

7, = pMm

t—Tg

defines a Markov process {Z; : t > 0} taking values from M. Of course, {(M;, Z;) : t > 0}
is also a Markov process. We shall suppress the dependence of {Z; : ¢ > 0} on 7 and let
E}, , denote the expectation given My = m and Z, = v € Mp(IR™). Observe that by
(7.4) and (7.6) we have

B[z iy e {5 [ 08, - as )]
= ((F"v), p1™) (7.7)

1 ks t 1 rt—u
b5 2 Bl | oo {5 [ 0~ s f]du

ij=1,i#j
Lemma 7.2 Let n € Mp(IR). For any integer k > 1, define n, € Ma(IR) by

n(da) = Kl(n) "' n((idl(n)/k, (i + V)i(n)/k]))dz, @ € (il(n)/k, (i + 1)i(n)/k],
where ¢ = ---,—2,—1,0,1,2,---. Then n, — n by weak convergence as k — oo and

[z, @+ 1)) < 20m)l(n), e R.

Proof. The convergence n, — 1 as k — oo is clear. For any x € IR there is an integer
1 such that

[z, 2+ ()] € (il(n)/k, (i + D)l(n)/k +1(n)]-
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Therefore, we have
([, +1(n)])

(AN
P
—

o~

~
/\
\_/
~

E’T‘
—~

~.

+

—_
~—
—~
=
~

ol

_.I_

o~
—~
=
~

)/k, (i +1)(n)/k +1(n)])
)/k,il(n)/k 4 21(n)])
mln),

as desired. O

ININA

Lemma 7.3 Ifn € Mg(IR) and if v € Mp(IR™) is given by (7.2), then
1 rt
By, (710 exp {2 [ MM, — 1))
7 0
m—1
< A GO (1™ VTS 2 o 1) )51, ]
k=1

(Note that the left hand side of (7.8) is well defined since Z; € M4 (IR) a.s. for eacht > 0
by (7.6).)
Proof. The left hand side of (7.8) can be decomposed as >7-)' A, with

A = EZMV {<Z£’ MMt) exp {; /Ot MS(MS — l)ds}l{mq@-k“}}
By (7.2) and Lemma 7.1,
Ao = ((B"v)' 1) < NI fllR(e, G (L, m)™ VL.

By the construction (7.6) we have

ml(m — 1)!
A = / [asee [
E T i k)m — k= 1) Jo P,
E) {(P "I PRTY TP ™ ’“>|Tj =s;:1<j<k}dsy

t—sg 82—S1
for 1 <k <m —1. Observe that
t dSk 2\/_ ¢ dSk < 4\/%
si—1 VT — Sky/Sk — Sk_1 \/t — Sp—1 Jtrse)/2 VE— S T VT — sk

By (7.5) we have Pm=FA\F < )\m”k for h € C(IR™*). Then using (7.9) and Lemma 7.1
inductively we get

m!(m — )| f]

A S R = k—1)) dSl/ dss - /
h(e, G t)h(e, m; t)" <17u>
VE— 5k /52 — 514/51

2ellm = DAL e ok g
(m - k’)'(m — k- 1)!h(€a G t)h(e,m t)k<laﬂ> kik/2

< 2'mf(m — 1M flla(e, G t)hle, mst) (L, )™ M2,

Returning to the decomposition we get the desired estimate. O

(7.8)

(7.9)

dSk

IA
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Lemma 7.4 Suppose n € Mg(IR) and define n, € M4(IR) as in Lemma 7.2. Assume
that p, — p weakly as k — oco. Then we have

1 gt
E”mu[<Zt’,th> exp {2/ M (M, — WSH
’ 0
t
= [lim E”m’“u{<Z£,ukMt> exp {;/ M (M, — 1)ds”.
—00 ’ 0

Proof. Based on (7.7), the desired result follows by a similar argument as in the proof
of Lemma 2.2. O

Let n € Mp(IR) and let ny, be defined as in Lemma 7.2. Let o, denote the density of

with respect to the Lebesgue measure and let {Xt(k) :t > 0} be a SDSM with parameters
(a, p,ox) and initial state p, € M(IR). Assume that p, — pu weakly as k — oo. Then we
have the following

Theorem 7.1 The distribution Q" (g, ) of X* on M (IR) converges as k — oo to a
probability measure Q¢(u,-) on M (IR) given by

/M(]R)<f, VMQu(ps dv) = Bl e [<z;, LMY exp {; /Ot M.(M, — 1)ds}]. (7.10)

Moreover, (Q;)i>o is a transition semigroup on M (IR).

Proof. With Lemmas 7.3 and 7.4, this is similar to the proof of Theorem 5.1. O

A Markov process with transition semigroup defined by (7.10) is the so-called SDSM
with measure-valued catalysts.
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