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A variety of limit theorems have been proved for Dawson-Watanabe superprocesses.

Dawson [1] obtained a spatial central limit theorem for the stationary state of a (α, d, β)-

superprocess with underlying dimension number d > α/β. Iscoe [6] proved central limit

theorems for the associated weighted occupation time process in the same situation. A

central limit theorem of super-Brownian motion was given in Li [10], which leads to

non-degenerate limit distributions for all dimension numbers. Immigration structures

associated with Dawson-Watanabe superprocesses have been studied by several authors;

see Gorostiza and Lopez-Mimbela [3], Li [7, 8, 9], Li and Wang [12] and the references

therein. Limit theorems for immigration processes were studied in Li and Shiga [11], where

the immigration is governed by a deterministic measure. Hong and Li [5] considered a

super-Brownian motion with immigration governed by the trajectory of another super-

Brownian motion and proved a central limit theorem for such process, which lead to

Gaussian random fields for dimension numbers d ≥ 3. For d = 3 the field is spatially

uniform; for d ≥ 5 its covariance is given by the potential operator of the underlying

Brownian motion; and for d = 4 the limit field involves a mixture of the two kinds of
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fluctuations mentioned above, which exhibits a departure from the phenomenon in Li [10]

and Li and Shiga [11]. Hong [4] investigated the asymptotic behavior of the model for

d = 2.

To find new situations where non-degenerate limit theorems for a superprocess can be

obtained, we consider in this paper a super-Brownian motion with immigration controlled

by the trajectory of a stationary immigration process. The main result is a central limit

theorem for the process. We shall see that the limit theorem gives the same limit laws as

the ones in Li [10] and Li and Shiga [11], in the contrast to the result of Hong and Li [5].

The study has been stimulated by the work of Dawson and Fleischmann [2], who studied

a super-Brownian motion with random branching mechanism governed by another super-

Brownian motion. The process considered here can also be regarded as a special form

of the multi-type branching-immigration model studied by Gorostiza and Lopez-Mimbela

[3] and Li [7].

1. Super Brownian motion with immigration
Let C(IRd) denote the space of continuous bounded functions on IRd. We fix a constant

p > d and let φp(x) := (1 + |x|2)−p/2 for x ∈ IRd. Let Cp(IR
d) := {f ∈ C(IRd) : |f(x)| ≤

const·φp(x)}. In duality, let Mp(IR
d) be the space of Radon measures µ on IRd such that

〈µ, f〉 :=
∫

f(x)µ(dx) < ∞ for all f ∈ Cp(IR
d). We endow Mp(IR

d) with the p-vague

topology, that is, µk → µ if and only if 〈µk, f〉 → 〈µ, f〉 for all f ∈ Cp(IR
d). Then

Mp(IR
d) is metrizable. Throughout this note, λ denotes the Lebesgue measure on IRd.

Suppose that (Pt)t≥0 is the semigroup of a standard Brownian motion in IRd. For

any b ≥ 0 we let P b
t = e−btPt. Let γ := {γt : t ≥ 0} be a continuous path from [0,∞)

to Mp(IR
d). In this note, a Markov process {Xγ

t : t ≥ 0} with state space Mp(IR
d) is

called a non-supercritical super-Brownian motion with immigration controlled by γ if it

has transition semigroup (Qγ
r,t)t≥r≥0 such that

∫
Mp(IRd)

e−〈ν,f〉Qγ
r,t(µ, dν) = exp

{
− 〈µ, v(t− r, ·)〉 −

∫ t

r
〈γs, v(t− s, ·)〉ds

}
(1)

for f ∈ C+
p (IRd), where v(·, ·) is the unique solution of the evolution equation

v(t, x) = P b
t f(x)−

∫ t

0
P b

t−sv(s, ·)2(x)ds, t ≥ 0; (2)

see e.g. Dawson [2] and Li and Wang [12]

Let Qγ
µ denote the conditional law of {Xγ

t : t ≥ 0} given that Xγ
0 = µ. Suppose that

{φ(t, ·) : t ≥ 0} is a continuous path from [0,∞) to C+
p (IRd) bounded above by const·φp.
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By an approximating procedure as Iscoe [6], one may show

Qγ
µ exp

{
−

∫ t

0
〈Xγ

s , φ(s)〉ds
}

= exp
{
− 〈µ, w(t, ·)〉 −

∫ t

0
〈γs, w(s, ·)〉ds

}
, (3)

for f ∈ C+
p (IRd), where w(·, ·) satisfies

w(r, x) =
∫ r

0
P b

r−sφ(t− s)(x)ds−
∫ r

0
P b

r−sw(s, ·)2(x)ds, 0 ≤ r ≤ t. (4)

In particular, (1) defines a homogeneous semigroup (Qλ
t )t≥0 if γt ≡ λ. Observe that,

when b > 0, we have∫ ∞

0
〈λ, v(s, ·)〉ds ≤

∫ ∞

0
〈λ, P b

t f〉ds = 〈λ, f〉/b < ∞

for all f ∈ C+
p (IRd). It follows that Qλ

t (0, ·) → Qλ as t → ∞, where Qλ is a stationary

distribution for (Qλ
t )t≥0 given by∫
Mp(IRd)

e−〈ν,f〉Qλ(dν) = exp
{
−

∫ ∞

0
〈λ, v(s, ·)〉ds

}
. (5)

Now it is not difficult to construct a probability space (Ω,F ,Q) on which the two

processes {%t : t ≥ 0} and {Yt : t ≥ 0} are defined, where {%t : t ≥ 0} is a stationary

subcritical super-Brownian motion with immigration having one-dimensional distribution

Qλ, and given {%t : t ≥ 0} the process {Yt : t ≥ 0} is a critical super-Brownian motion

with immigration controlled by {%t : t ≥ 0} and Y0 = 0.

One particular choice for the space (Ω,F ,Q) is given as follows. Let C[0,∞) denote the

totality of continuous paths {w(·) : t ≥ 0} from [0,∞) to Mp(IR
d), with the Skorokhod

topology and the Borel σ-algebra G. Suppose that Qλ is the distribution on (C[0,∞),G)

of the stationary immigration process with one-dimensional distribution Qλ and that Qγ
0

is the distribution of the critical super-Brownian motion with immigration controlled by

{γt : t ≥ 0} and Y0 = 0. Let Ω = C[0,∞)×C[0,∞) and F = G×G and define the probability

measure Q on F by

Q(dw1, dw2) = Qλ(dw1)Q
w1
0 (dw2), w1, w2 ∈ C[0,∞).

Let %t(w1, w2) = w1(t) and Yt(w1, w2) = w2(t). Then {(%t, Yt) : t ≥ 0} has the pre-

described distribution property.

By (1) we have

Q[exp{−〈Yt, f〉}|{%t : t ≥ 0}] = exp
{
−

∫ t

0
〈%s, u(t− s)〉ds

}
, (6)
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where u(·, ·) is the solution of

u(t, x) = Ptf(x)−
∫ t

0
Pt−su(s, ·)2(x)ds, t ≥ 0. (7)

Taking the expectation of (6) and using (3) and (5) we get

Q exp{−〈Yt, f〉} =
∫

Mp(IRd)
exp

{
− 〈µ, w(t, ·)〉 −

∫ t

0
〈λ, w(r, ·)〉dr

}
Qλ(dµ)

= exp
{
−

∫ ∞

0
〈λ, v(r, ·)〉dr −

∫ t

0
〈λ, w(r, ·)〉dr

}
, (8)

where w(·, ·) and v(·, ·) are defined respectively by

w(r, x) =
∫ r

0
P b

r−su(s, ·)(x)ds−
∫ r

0
P b

r−sw
2(s, ·)(x)ds, r ≥ 0, (9)

and

v(r, x) = P b
r w(t, ·)(x)−

∫ r

0
P b

r−sv
2(s, ·)(x)ds, r ≥ 0. (10)

2. A central limit theorem
We present here a central limit theorem for the process {Yt : t ≥ 0} defined in the last

section. It is not difficult to check by using (7) – (10) that Q{Yt(f)} = tλ(f)/b for t ≥ 0

and f ∈ Cp(IR
d). Let S(IRd) be the space of rapidly decreasing, infinitely differentiable

functions on IRd whose all partial derivatives are also rapidly decreasing, and let S ′(IRd)

be the dual space of S(IRd). We define the S ′(IRd)-valued process {Zt : t > 0} by

〈Zt, f〉 := ad(t)
−1[〈Yt, f〉 − t〈λ, f〉/b], f ∈ S(IRd), (11)

where a1(t) = t3/4, a2(t) = (t log t)1/2 and ad(t) = t1/2 for d ≥ 3. Then we have

Theorem 1. As t →∞, the distribution of Zt converges to a centered Gaussian random

variable Z∞ in S ′(IRd) with covariance

Cov(Z∞, f〉, 〈Z∞, g〉) =


2〈λ, f〉〈λg〉/3bπ1/2, d = 1,
〈λ, f〉〈λ, g〉/4πb, d = 2,
〈λ, fGg〉/2b, d ≥ 3,

where G denotes the potential operator of the Brownian motion.

Now we proceed to the proof of Theorem 1 by an argument adapted from [10]. Let

ft := ad(t)
−1f . In the following lemmas and proofs, ut(s), wt(s) and vt(s) are the solutions
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of equations (7), (9) and (10), respectively, with f being replaced by ft, and C denotes a

constant which may take different values in different lines.

Lemma 2. For f ∈ S(IRd)+ let

Ad(t, f) :=
∫ t

0
dr

∫ r

0
ds

∫ s

0
e−b(r−s)〈λ, (Ps−qft)

2〉dq.

Then we have

lim
t→∞

Ad(t, f) =


2〈λ, f〉2/3b

√
π, d = 1,

〈λ, f〉2/4πb, d = 2,
〈λ, fGf〉/2b, d ≥ 3.

Proof. We have clearly

Ad(t, f) = ad(t)
−2

∫ t

0
e−brdr

∫ r

0
ebsds

∫ s

0
dq

∫
IRd

Ps−qf(x)2dx.

When d ≥ 3, we use l’Hospital’s rule to get

lim
t→∞

Ad(t, f) = lim
t→∞

1

t

∫ t

0
e−brdr

∫ r

0
ebsds

∫ s

0
dq

∫
IRd

Ps−qf(x)2dx

= lim
t→∞

1

ebt

∫ t

0
ebsds

∫ s

0
dq

∫
IRd

Ps−qf(x)2dx

= lim
t→∞

1

b

∫ t

0
dq

∫
IRd

Ps−qf(x)2dx

= 〈λ, fGf〉/2b,

For d = 1 we have

lim
t→∞

A1(t, f) = lim
t→∞

1

t3/2

∫ t

0
e−brdr

∫ r

0
ebsds

∫ s

0
dq

∫
IRd

Ps−qf(x)2dx

= lim
t→∞

2

3
√

t ebt

∫ t

0
ebsds

∫ s

0
dq

∫
IRd

Ps−qf(x)2dx

= lim
t→∞

2

3b
√

t

∫ t

0
dq

∫
IRd

Pqf(x)2dx

= lim
t→∞

2

3b
√

t

∫ t

0

1√
4πq

dq
∫

IR2
exp{−(y − x)2

4q
}f(x)f(y)dxdy

= lim
t→∞

2

3b

∫ 1

0

1√
4πr

dr
∫

IR2
exp{−(y − x)2

4tr
}f(x)f(y)dxdy

= 2〈λ, f〉2/3b
√

π,

where we used the change of variables q = tr in the fifth step. Similarly, by setting

q = t1−r for d = 2, one may see that limt→∞ A2(t, f) = 〈λ, f〉2/4πb. 2
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Lemma 3. For f ∈ S(IRd)+ let

Bd(t, f) :=
∫ t

0
dr

∫ r

0
ds

∫ s

0
e−b(r−s)〈λ, (Ps−qft)

2 − ut(s− q, ·)2〉dq.

Then we have limt→∞ Bd(t, f) = 0.

Proof. Note that for any f ∈ S(IRd)+ we have

||Psf || ≤ C · (1 ∧ s−d/2),

where C = C(f) ≥ 0. From equation (7) we can see that

(Prft)
2 − ut(r)

2 = 2ut(r)
∫ r

0
Pr−sut(s)

2ds +
( ∫ r

0
Pr−sut(s)

2ds
)2

≤ 3Prft ·
∫ r

0
Pr−s(Psft)

2ds

≤ C · ad(t)
−3(Prf)2 ·

∫ r

0
(1 ∧ s−d/2)ds.

It follows that

Bd(t, f) ≤ C · ad(t)
−3

∫ t

0
dr

∫ r

0
e−b(r−s)ds

∫ s

0
dq

∫
IRd

Ps−qf(x)2dx
∫ t

0
(1 ∧ l−d/2)dl

≤ C · ad(t)
−3

∫ t

0
dr

∫ r

0
e−b(r−s)ds

∫ t

0
(1 ∧ q−d/2)dq

∫ t

0
(1 ∧ l−d/2)dl.

Then we have for dimension one

lim sup
t→∞

B1(t, f) ≤ C · lim sup
t→∞

1

t9/4

∫ t

0
dr

∫ r

0
e−bsds

∫ t

0
(1 ∧ q−d/2)dq

∫ t

0
(1 ∧ l−d/2)dl

≤ C · lim sup
t→∞

1

t5/4

∫ t

0
(1 ∧ q−d/2)dq

∫ t

0
(1 ∧ l−d/2)dl

= 0.

The proof for other dimension numbers are similar. 2

Proof of Theorem 1. From (7) – (9) and (11) we get the Laplace functional

Q exp{−〈Zt, f〉} = exp
{
t〈λ, ft〉/b−

∫ ∞

0
〈λ, vt(r)〉dr −

∫ t

0
〈λ, wt(r)〉dr

}
= exp

{
t〈λ, ft〉/b−

∫ ∞

0
〈λ, vt(r)〉dr −

∫ t

0
dr

∫ r

0
e−b(r−s)〈λ, ut(s)〉ds

+
∫ t

0
dr

∫ r

0
e−b(r−s)〈λ, wt(s)

2〉ds
}

= exp
{
t〈λ, ft〉/b−

∫ ∞

0
〈λ, vt(r)〉dr −

∫ t

0
dr

∫ r

0
e−b(r−s)〈λ, ft〉ds

+
∫ t

0
dr

∫ r

0
ds

∫ s

0
e−b(r−s)〈λ, ut(s− q)2〉dq

+
∫ t

0
dr

∫ r

0
e−b(r−s)〈λ, wt(s)

2〉ds
}
, (12)

6



where

t〈λ, ft〉/b−
∫ t

0
dr

∫ r

0
e−b(r−s)〈λ, ft〉ds = b−1

∫ t

0
e−br〈λ, ft〉ds → 0 (13)

as t →∞. By equations (7), (9) and (10), we have

vt(s) ≤ P b
s wt(t) ≤

∫ t

0
P b

s+t−rut(r)dr ≤ e−bs
∫ t

0
e−b(t−r)Ps+tftdr ≤ e−bsPs+tft.

It follows that

lim sup
t→∞

∫ ∞

0
〈λ, vt(s)〉ds ≤ lim

t→∞
ad(t)

−1〈λ, f〉 = 0. (14)

Similarly, one may check that

lim
t→∞

∫ t

0
dr

∫ r

0
e−b(r−s)〈λ, wt(s)

2〉ds = 0. (15)

On the other hand, combining Lemmas 2 and 3, we have

lim
t→∞

∫ t

0
dr

∫ r

0
ds

∫ s

0
e−b(r−s)〈λ, ut(s− q)2〉dq =


2〈λ, f〉2/3bπ1/2, d = 1,
〈λ, f〉2/4πb, d = 2,
〈λ, fGf〉/2b, d ≥ 3.

(16)

Combining (12) – (16) we obtain the desired convergence. 2

An immediate consequence of Theorem 1 is the following

Corollary 4. For d ≥ 1 we have t−1Zt → λ in probability.
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