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ORNSTEIN-UHLENBECK TYPE PROCESSES AND

BRANCHING PROCESSES WITH IMMIGRATION
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Abstract. It is shown that an Ornstein-Uhlenbeck type process associated with a
spectrally positive Lévy process can be obtained as the fluctuation limits of both
discrete state and continuous state branching processes with immigration.
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1. Introduction

Suppose that b ≥ 0 and c ≥ 0 are constants and that m(du) is a σ-finite measure on
(0,∞) such that ∫ ∞

0

(u ∧ u2)m(du) < ∞. (1.1)

Let ϕ be a function on [0,∞) with the representation

ϕ(λ) = cλ2 +
∫ ∞

0

(e−λu − 1 + λu)m(du), λ ≥ 0. (1.2)

By an Ornstein-Uhlenbeck type process we mean a real-valued cádlág Markov process
{zt : t ≥ 0} with transition function πt(x, dy) given by

∫

R

e−λyπt(x, dy) = exp
{
− xe−btλ +

∫ t

0

ϕ(e−bsλ)ds

}
, λ ≥ 0. (1.3)

It is well-known that {zt : t ≥ 0} is the unique solution of the stochastic differential
equation

dzt = dlt − bztdt, t ≥ 0,
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where {lt : t ≥ 0} is a spectrally positive cádlág Lévy process with l0 = 0 and with
increment distributions determined by

E exp {−λ(lr+t − lr)} = exp {−tϕ(λ)} , λ ≥ 0.

Ornstein-Uhlenbeck type processes associated with general Lévy processes were intro-
duced by Sato and Yamazato (1984) and Wolfe (1982) in studying the class of limit
distributions of sums of certain random variables and have been studied by many au-
thors since then; see e.g. Hadjiev (1985), Samorodnitsky and Taqqu (1994) and Shiga
(1990).

In this note, we show that the Ornstein-Uhlenbeck type process may arise as the
fluctuation limits of both discrete state and continuous state branching processes with
immigration, giving interpretations for the process from the viewpoint of applications.
The particular case b = 0 corresponds to the situation where the immigration rate is zero
and {zt : t ≥ 0} itself is a Lévy process. Therefore, the results reveal new connections
between branching processes and Lévy processes; see Bingham (1976), Lamperti (1967)
and Le Gall and Le Jan (1998a,b) for earlier results on the connections between those
processes. We refer to Bertoin (1996) and Sato (1990) for the basic theory of Lévy
processes.

2. Branching process with immigration
Let γ > 0 be a constant and g(s) =

∑∞
i=0 pis

i be a probability generating function.
We shall always assume that g is non-supercritical, that is g′(1−) ≤ 1. Then there is a
unique solution Ft(s) to the equation

∂

∂t
Ft(s) = γ[g(Ft(s))− Ft(s)], F0(s) = s, t ≥ 0, s ∈ [0, 1]. (2.1)

Moreover, there is a continuous time Markov transition function pt(i, j) on N defined
by

∞∑

j=0

pt(i, j)sj = Ft(s)i, t ≥ 0, s ∈ [0, 1]. (2.2)

A Markov chain {xt : t ≥ 0} with transition function pt(i, j) is called a discrete state
branching process (DB-process) with parameters (γ, g); see e.g. Arthreya and Ney
(1972; pp102-106). Instead of the generating function given by (2.1) and (2.2), it is
sometimes more convenient to consider the Laplace transform of the transition function.
So we rewrite (2.2) as

∞∑

j=0

pt(i, j)e−jλ = e−iut(λ), t ≥ 0, λ ≥ 0. (2.3)

where
ut(λ) = − log Ft(e−λ), t ≥ 0, λ ≥ 0. (2.4)
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Let a ≥ 0 be another constant. A Markov chain {yt : t ≥ 0} is called a discrete
state branching process with immigration (DBI-process) with parameters (γ, g, a) if it
has transition semigroup qt(i, j) defined by

∞∑

j=0

qt(i, j)e−jλ = exp
{
− iut(λ)− a

∫ t

0

ws(λ)ds

}
, t ≥ 0, λ ≥ 0, (2.5)

where wt(λ) = 1 − exp{−ut(λ)}. It is clear that the immigration of {yt : t ≥ 0} here
is governed by a Poisson process with parameter a ≥ 0. By (2.1) and (2.4) we get the
equation

∂

∂t
wt(λ) = −ψ(wt(λ)), w0(λ) = 1− e−λ, t ≥ 0, λ ≥ 0, (2.6)

where
ψ(z) = γ[g(1− z)− (1− z)], 0 ≤ z ≤ 1.

Integrating both sides of (2.6) we get

wt(λ) +
∫ t

0

ψ(ws(λ))ds = 1− e−λ, t ≥ 0, λ ≥ 0. (2.7)

Let b = γ[1− g′(1)] and let ψ0(z) = ψ(z)− bz. We may rewrite (2.7) into the following
equivalent form

wt(λ) +
∫ t

0

e−b(t−s)ψ0(ws(λ))ds = e−bt(1− e−λ), t ≥ 0, λ ≥ 0. (2.8)

By (2.5) and (2.8) it is easy to check that

∞∑

j=1

jqt(i, j) = ie−bt + a

∫ t

0

e−bsds, t ≥ 0. (2.9)

Now let us describe a continuous state analogue of the DBI-process introduced by
Kawazu and Watanabe (1971). Suppose that ϕ is given by (1.2) and let a ≥ 0 and
b ≥ 0 be constants. A Markov process {yt : t ≥ 0} on [0,∞) is called a continuous
state branching process with immigration (CBI-process) with parameters (b, ϕ, a) if it
has transition function qt(x, dy) given by

∫ ∞

0

e−λyqt(x,dy) = exp
{
− xvt(λ)− a

∫ t

0

vs(λ)ds

}
, t ≥ 0, λ ≥ 0, (2.10)

where vt(λ) is the unique positive solution to the equation

∂

∂t
vt(λ) = −bvt(λ)− ϕ(vt(λ)), v0(λ) = λ, t ≥ 0, λ ≥ 0; (2.11)
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see Kawazu and Watanabe (1971). Note that (2.11) is equivalent to the integral equation

vt(λ) +
∫ t

0

e−b(t−s)ϕ(vs(λ))ds = e−btλ, t ≥ 0, λ ≥ 0. (2.12)

Based on (2.10) and (2.12) it is easy to check that
∫ ∞

0

yqt(x, dy) = xe−bt + a

∫ t

0

e−bsds, t ≥ 0. (2.13)

Suppose that {yk,t : t ≥ 0} is a sequence of DBI-processes with parameters (γk, gk, ka).
We assume that yk,0 is a Poisson random variable with parameter kx for some x ≥ 0.
Let

φk(z) = kγk[gk(1− z/k)− (1− z/k)], 0 ≤ z ≤ k. (2.14)

Lemma 2.1. If φ(z) = limk→∞ φk(z) uniformly on [0, l] for each finite l ≥ 0, then the
limit function must be of the form φ(z) = bz + ϕ(z), where b ≥ 0 and ϕ is a function
with the representation (1.2).

Proof. By a result of Li (1991) the limit function has the representation

φ(z) = b1z + cz2 +
∫ ∞

0

(
e−zu − 1 +

zu

1 + u2

)
m(du), z ≥ 0,

for some constants c ≥ 0 and b1, and a σ-finite measure m(du) on (0,∞) such that
∫ ∞

0

(1 ∧ u2)m(du) < ∞.

By hypothesis, each gk is non-supercritical, so φk(z) and hence φ(z) is non-decreasing
in z ≥ 0. Then we have

φ′(0+) = b1 −
∫ ∞

0

u3

1 + u2
m(du) ≥ 0.

Therefore, m(du) satisfies the integral condition (1.1), so the assertion follows with
b = φ′(0+). ¤

Under the condition of the above lemma, if we assume further that the sequence {φk}
is uniformly Lipschitz on each finite interval [0, l], then {k−1yk,t : t ≥ 0} converges as
k → ∞ to the CBI-process {yt : t ≥ 0} with y0 = x; see e.g. Li (1998) for the proof
of this convergence in the measure-valued setting. This describes a connection between
the DBI- and the CBI-processes.

3. High density fluctuation limits
In this section, we show that the Ornstein-Uhlenbeck type process may arise as the

high density fluctuation limit of a suitable sequence of DBI-processes. The arguments
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here have been inspired by those of Holley and Stroock (1978) and Li (1999). Let us
consider a sequence of DBI-processes {yk,t : t ≥ 0} with parameters (γk, gk, kbka), where
bk = γk[1− g′k(1−)] ≥ 0. Assume that yk,0 is a Poisson random variable with parameter
ka. By (2.9) one may check that Eyk,t = ka for all t ≥ 0. Let uk,t(λ) be defined by (2.1)
and (2.4) with (γ, g) replaced by (γk, gk) and let wk,t(λ) = 1 − exp{−uk,t(λ)}. Then
wk,t(λ) is the solution to

wk,t(λ) +
∫ t

0

e−bk(t−s)ψk(wk,s(λ))ds = e−bkt(1− e−λ), t ≥ 0, λ ≥ 0, (3.1)

where
ψk(z) = γk[gk(1− z)− (1− z)]− bkz, 0 ≤ z ≤ 1.

Lemma 3.1. Let Nk = {−ka,−ka+1, · · · }. Define the Nk-valued process {zk,t : t ≥ 0}
by zk,t = yk,t − ka. Then we have

E exp{−λzk,t}

=exp
{

ka(λ− 1 + e−λ) + ka

∫ t

0

ψk(wk,s(λ))ds

}
. t ≥ 0, λ ≥ 0.

(3.2)

Furthermore, {zk,t : t ≥ 0} is a Markov process with transition function qk,t(x, dy)
determined by

∫

Nk

e−λyqk,t(x, dy)

= exp
{
− xuk,t(λ) + ak,t(λ) + ka

∫ t

0

ψk(wk,s(λ))ds

}
, t ≥ 0, λ ≥ 0.

(3.3)

where
ak,t(λ) = ka(λ− 1 + e−λ)− ka(uk,t(λ)− wk,t(λ)).

Proof. We first observe that, by (3.1),

bk

∫ t

0

wk,s(λ)ds

=bk

∫ t

0

(1− e−λ)e−bksds− bk

∫ t

0

ds

∫ s

0

e−bk(s−u)ψk(wk,u(λ))du

=(1− e−bkt)(1− e−λ)−
∫ t

0

(1− e−bk(t−u))ψk(wk,u(λ))du

=(1− e−λ)− wk,t(λ)−
∫ t

0

ψk(wk,u(λ))du.

(3.4)
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By the definition of zk,t we have

E exp{−λzk,t} =exp
{

kaλ− kawk,t(λ)− kabk

∫ t

0

wk,s(λ)ds

}
.

Then (3.2) follows from (3.4). On the other hand, from (2.5) we see that {zk,t : t ≥ 0}
is a Markov process with transition function qk,t(x, dy) such that

∫

Nk

e−λyqk,t(x, dy) = exp
{

kaλ− (x + a)uk,t(λ)− kabk

∫ t

0

wk,s(λ)ds

}
,

which yields (3.3) by (3.4). ¤
Let N (k) = {(−ka)/

√
k, (−ka + 1)/

√
k, · · · }. What we are really interested is the

N (k)-valued Markov process {z(k)
t : t ≥ 0} defined by

z
(k)
t = (yk,t − ka)/

√
k, t ≥ 0. (3.5)

To give a characterization of this process let

w
(k)
t (λ) =

√
k(1− exp{−uk,t(λ/

√
k)}), t ≥ 0, λ ≥ 0. (3.6)

Then we have

w
(k)
t (λ) +

1√
k

∫ t

0

e−bk(t−s)ϕk(w(k)
s (λ))ds =

√
ke−bkt(1− e−λ/

√
k), t ≥ 0, (3.7)

where

ϕk(z) = k{γk[gk(1− z/
√

k)− (1− z/
√

k)]− bkz/
√

k}, 0 ≤ z ≤
√

k. (3.8)

By Lemma 3.1 we see that

E exp{−λz
(k)
t }

=exp
{

ka(λ/
√

k − 1 + e−λ/
√

k) + a

∫ t

0

ϕk(w(k)
s (λ))ds

}
.

(3.9)

and {z(k)
t : t ≥ 0} is a Markov process with transition function q

(k)
t (x, dy) determined

by ∫

N(k)
e−λyq

(k)
t (x,dy)

= exp
{
− x

√
kuk,t(λ/

√
k) + a

(k)
t (λ) + a

∫ t

0

ϕk(w(k)
s (λ))ds

}
.

(3.10)

where

a
(k)
t (λ) = ka(λ/

√
k − 1 + e−λ/

√
k)− ka(uk,t(λ/

√
k)− wk,t(λ/

√
k)).



7

Lemma 3.2. Assume that ϕ(z) = limk→∞ ϕk(z) uniformly on [0, l] for each finite l ≥ 0
and ϕ′(0+) = 0, then the limit function has the representation (1.2).

Proof. Let βk = 1−g′k(1−) and fk(s) = gk(s)+βks−βk. Then fk is a critical generating
function and

ϕk(z) = kγk[fk(1− z/
√

k)− (1− z/
√

k)], 0 ≤ z ≤
√

k.

By applying Lemma 2.1 to the sequence {ϕk2} and using the assumption ϕ′(0+) = 0
we see that ϕ has the representation (1.2). ¤
Theorem 3.1. Under the conditions of Lemma 3.2, assume further that b = limk→∞ bk.
Then {z(k)

t : t ≥ 0} converges weakly in D([0,∞), R) to an Ornstein-Uhlenbeck type
process{zt : t ≥ 0} such that

E exp{−λzt} =exp
{

aλ2 + a

∫ t

0

ϕ(e−bs)ds

}
, t ≥ 0, λ ≥ 0, (3.11)

and the transition semigroup πt(x, dy) of {zt : t ≥ 0} is given by

∫

IR

e−λyπt(x, dy)

= exp
{
− xe−btλ + a

∫ t

0

[ϕ(e−bsλ) + be−2btλ2]ds

}
, t ≥ 0, λ ≥ 0.

(3.12)

Proof. By (3.6) and (3.7) it is easy to see that

lim
k→∞

w
(k)
t (λ) = lim

k→∞

√
kuk,t(λ/

√
k) = e−btλ.

It follows that
lim

k→∞
a
(k)
t (λ) = (1− e−2bt)λ2/2.

Then the desired convergence follows by an application of the result of Ethier and Kurtz
(1986; p172). ¤

We conclude this section by observing that, for any b ≥ 0 and any ϕ given by (1.2), we
can always choose {γk} and {gk} as described above so that b = limk→∞ γk[1− g′k(1−)]
and the sequence ϕk defined by (3.8) converges uniformly on each finite interval [0, l] to
ϕ. In order to do so, take any

γk > b + 2c +
1√
k

∫ ∞

0

(
e−
√

ku − 1 +
√

ku
)

m(du),
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and define

gk(s) =s + b(1− s)/γk + c(1− s)2/γk

+
1

kγk

∫ ∞

0

(
exp{−

√
k(1− s)u} − 1 +

√
k(1− s)u

)
m(du).

Then one may check that {gk} is a sequence of probability generating functions, b =
γk[1− g′k(1−)] and

k{γk[gk(1− z/
√

k)− (1− z/
√

k)]− bz/
√

k} = ϕ(z), 0 ≤ z ≤
√

k,

providing more than we wanted.

4. Low density fluctuation limits
In this section, we show that the Ornstein-Uhlenbeck type process may arise as

the small branching low density fluctuation limit of the CBI-process. This kind of
fluctuation limits of branching models have been considered by Gorostiza (1996) and
Li (1999). Let a ≥ 0 and b ≥ 0 and ϕ be given by (1.2). For any integer k ≥ 1 let
ϕk(z) = ϕ(z/k). Clearly, we have ϕk(z) → 0 as k → ∞. Let {yk,t : t ≥ 0} be a
continuous state branching process with immigration with parameters (b, ϕk, ba) and
let zk,t = k(yk,t − a). By similar arguments as in the last section one may check that
{zk,t : t ≥ 0} is a Markov process on [−ka,∞) with transition function τk,t(x, dy)
determined by

∫ ∞

−ka

e−λyτk,t(x, dy) = exp
{
− xvk,t(kλ)/k + a

∫ t

0

ϕ(vk,s(kλ)/k)ds

}
, (4.1)

where vk,t(kλ)/k satisfies

vk,t(kλ)/k + k−1

∫ t

0

e−b(t−s)ϕ(vk,s(kλ)/k)ds = e−btλ, t ≥ 0, λ ≥ 0.

It is clear that vk,t(kλ)/k ≤ e−btλ and vk,t(kλ)/k → e−btλ as k →∞. By the result of
Ethier and Kurtz (1986; p172) we get

Theorem 4.1. Suppose that zk,0 → z0 in distribution as k → ∞. Then {zk,t : t ≥ 0}
converges weakly in D([0,∞), R) to an Ornstein-Uhlenbeck type process {zt : t ≥ 0}
with transition function πt(x, dy) given by

∫

IR

e−λyπt(x, dy) = exp
{
− xe−btλ + a

∫ t

0

ϕ(e−bsλ)ds

}
, λ ≥ 0, x ∈ R.
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