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1 Introduction

Fluctuation limits of particle systems (with or without branching) have been studied extensively.
Usually they lead to generalized Ornstein-Uhlenbeck processes; see e.g. Bojdecki and Gorostiza
[1, 2], Dawson et al [5], Dawson and Gorostiza [6], Gorostiza [10], Holley and Stroock [12], and
It6 [14]. Since the branching particle systems can be unstable, non-stationary scalings are em-
ployed in studying their fluctuation limits, which yield time-inhomogeneous Ornstein-Uhlenbeck
processes. Fluctuation limits of measure-valued branching processes with immigration were
studied in Gorostiza and Li [11], and Li [16], which gave time-homogeneous Ornstein-Uhlenbeck
processes. The measure-valued processes considered in [11, 16] are superprocess-type limits
of a class of branching particle systems with immigration. In this paper we consider high-
density fluctuation limits for the branching particle systems with immigration. The Ornstein-
Uhlenbeck processes obtained here are different from the ones in [11, 16], and we shall see that
the superprocess-type limit and the high-density fluctuation limit are interchangeable. We will
consider in particular the stationary case.

Let us recall some basic facts on the branching particle systems. We refer the reader to
Dawson [4] for the necessary background. Let R? be the d-dimensional Euclidean space. We
denote by C(R?) the set of bounded continuous functions on R?, and Co(IR?) the set of functions
in C(Rd) vanishing at infinity. Suppose that & = (Q, F, F, &, P,) is a diffusion process with
semigroup (P;):>0 generated by a differential operator A. Throughout the paper we fix a strictly
positive reference function p € D(A) with Ap € C,(R?), where C,(R?) denotes the set of
functions f € C(R?) satisfying |f| < const - p. We assume further that p~'g is bounded for
every rapidly decreasing function g € C (Rd). The subsets of non-negative elements of the above
function spaces are indicated by the superscript ‘*’, e.g. Cp(Rd)+. Let Mp(Rd) be the space of



o-finite Borel measures p on (R, B(RY)) such that u(f) := J fdp < oo for all f e Cp(Rdﬁ.
We equip Mp(Rd) with the topology defined by pp — p if and only if ug(f) — w(f) for all
fe Cp(Rd). Let N, p(Rd) be the subspace of M p(Rd) consisting of integer-valued measures.

Let € C(RDT and let g(z,z) be a continuous function of (z,z) € R? x [0,1]. Suppose
that for each fixed z € R?, g(z,-) coincides on [0, 1] with the probability generating function
of a critical branching law. Throughout this paper we assume that c(z) := B(x)g"(z,17) is a
bounded continuous function on R%. For any f € CP(Rd) the evolution equation

t
exp{—u(2)} = Pooxp{—f(&)} - /0 P, [B(6r) oxp{—us(€r_)}] ds
t
+ / P [B(6s)9(Er s expl—us(€s)})] ds, ¢ >0,
0

has a unique positive solution u; = Uz f € Cp(Rd). In the sequel we shall simply write the above
equation as

t
e U = Pef —/ P, [ﬁ (e_“S — g(e_uS))] ds, t>0. (1.1)
0
It is well-known that the formula

/ e NQu(0,dv) = exp{—o(Urf)}, f € C,(RY), (1.2)
N, (RY)

defines a transition semigroup (Q:)¢>0 on Np(Rd). A Markov process X is called a branching
particle system with parameters (€, 3, g) if its transition probabilities are determined by (1.1)
and (1.2).

For f € Cp(Rd) let

Jiof (z) =1 —exp{-U;f(z)}, t>0,zecR% (1.3)
Then from (1) we have
i@+ [ ds [ o d g w)Pestedy) = P (1= o) @), (14)
where
o(z,2) = B(@)[g(x,1—2) — (1—2)], zeR,0<z<1. (1.5)

Note that ¢”(z,0%) = c(x) by our assumption.

2 Immigration particle systems

Suppose that X is a branching particle system with transition semigroup (Q¢)s>0 as described
in the last section. Let (N¢);>0 be a family of probability measures on Np(Rd). We call (Ni)¢>0
a skew convolution semigroup associated with X or (Q¢)¢>o provided that

Niyt = (NpQt) * Ny, 1,8 >0, (2.6)



where ‘x” denotes the operation of convolution. The relation (2.6) is necessary and sufficient to
ensure that

QN(o,) == Qi(0,-) * Ny, t>0, o € N,(RY, (2.7)

defines a transition semigroup (Q});>o on N, p(Rd). A Markov process Y is naturally called an
immigration particle system associated with X if it has (Q);>0 as transition semigroup. The
intuitive meaning of the immigration particle system is clear from (2.7), that is, Q¢(c,-) is the
distribution of descendants of the people distributed at time zero as o € N,)(Rd)7 and V; is
the distribution of descendants of the people immigrating to R? during the time interval (0,¢].
We refer to Li [15] for the basic facts and characterizations about skew convolution semigroups
and immigration particle systems. (In [15] only particle systems taking finite measure values
were considered, but all the results there remain valid in the present context under obvious
modifications.)

Now we consider a particular form of the immigration particle system. Let v € Mp(Rd)
be a purely excessive measure for £&. Then there is an entrance law (k¢);~o for £ such that
v = [, kedt; see Dynkin [8]. For t >0 and f € Cp(Rd) we let

Ri(k, f) = ke (1 — e*f) - /Ot Ki—s (p(Jsf)) ds. (2.8)

Let N,(RY° = N,(R?) \ {0}, where 0 denotes the null measure, and let (QF);>0 be the
restriction of (Q¢)i>0 to N,,(Rd)o. By Theorem 3.3 of [15] we see that

/ e VDK (dv) = exp{—Ri(x, f)}, f € Cp(RY),
N, (R%)°

defines an infinitely divisible probability entrance law (Ki;);~o for (Qf)i>0. It follows from
Theorem 3.2 of [15] that there is a finite entrance law (H;)¢~o such that

[ = e D)Han) = Rl ), £ € CRY,
No(RY)e
Then using Theorem 3.1 of [15] we see that the formula

/N e NQW (g, dv) = exp{—U(Ut e /0 "Rus, f)ds}, feC,®RY,  (29)

p(RY)

defines a transition semigroup (Qgﬁ))tzg on Np(Rd), which is a special case of the one defined
by (2.7). In the sequel, a Markov process Y will be called an immigration particle system with
parameters (£, 3, g, k) if it has transition semigroup determined by (2.9).

A special excessive measure for £ is given by v = fooo v P;dt for some v € M, (Rd). In this case
we have Ri(k, f) = v(Jef) by (1.4) and (2.8), and the immigration is governed by a time-space
Poisson random measure with intensity dsv(dz); see e.g. Dawson and Ivanoff [7].

We will need the following lemmas.

Lemma 2.1 For anyt >0, 0 € Np(Rd) and f € CP(Rd) we have

/ vuw@wﬂwzdaﬁ+/Vunm. (2.10)
Np(Rd) 0



Proof. From (1.1) and (2.8) we get

0 d
%Ut(ef)bzo =P f, %Rt(/‘éﬁf)’e:o = rt(f).
Using these results and (2.9) we obtain (2.10). O

Let QEZ% denote the law of the immigration particle system {Y; : ¢ > 0} given that Y} is a

Poisson random measure with intensity € M,(R?). Then we have from (2.4)

QEZ% exp{=Yi(f)} = exp{ — pu(Jef) = /O Ry (k, f)dS}, f € CyRY). (2.11)

Lemma 2.2 Fort >0 and f € Cp(Rd) we have QE’;;Y;(]’) = ~(f) and

Q) =21+ + [ 2(elPf)s. (212)

Proof. This is similar to the proof of Lemma 2.1. From (1.4) and (2.8) it follows that

9 1 0Dmo = Py LRk, 05) om0 = re(f),

90 00
O 1O lsmo = B + [ Proale(Puf)?)d
0D lema = PP + [ PalelPup )
82

t
O Rk, 0 o= = Ru(1%) + /0 bt u(c(Puf)?)du.

Replacing f by 6f in (2.11), differentiating with respect to 6 at zero and using (2.8) we get

t
QY =P+ [ (s,

and
t 2 t
QY = [u<Ptf>+ /0 »es(f)ds} () + /0 HPs(e(Pof)*)ds

v t )+ [P

Setting p = -y, the results are clear by the entrance law property ksP; = ksq¢ and the integral
representation for +. O

Let S (Rd) be the space of infinitely differentiable, rapidly decreasing functions all of whose
derivatives are also rapidly decreasing.

Lemma 2.3 Suppose that {Y;, F; : t > 0} is a realization of the immigration particle system
with parameters (§,3,9,k). If f € S(Rd), then the limit Ko+ (f) = lim, o &, (f) exists and

Mi(f) = Yilf) - /0 Yo(Af)ds — thgs (f), 120, (2.13)

is a martingale. In particular {Y;(f),t > 0} has a right—continuous modification for any f €

S(RY).



Proof. Under the hypothesis we have Af € S(Rd) and f = P, f — fg P;Afds for any t > 0. It
follows immediately from the entrance law property that

n0+(f):nt(f)—/0 ko(Af)ds, 0. (2.14)

If t > r >0, using (2.10) we get

B{vi(7) - [ Vitanas - e ()|}

:YT(PtTf)+/0_Tms(f)ds—/orYs(Af)ds—/ E{Y.(Af)|F,}ds — trigs (f).

r

By (2.10) and (2.14) it follows that
/ E{Y,(Af)|F}ds — / [m(PHAfH /0 S_Tmu(Af)du]ds
= YPirf = 1)+ [ () = o (Pl

= VPerf =D+ [ m(ds = (= Do ()

Now it is clear that
t r
E{xft(f) - [ Yanas = tro-(1) fr} V() = [ Ve(Afds = rroe (1),

That is, (2.13) is a martingale. O

We conclude this section by observing that the measure-valued immigration processes con-
sidered in [16] arise as superprocess-type limits of the immigration particle systems. Let {Y;(k) :
t >0}, k=1,2,... be asequence of immigration particle systems with parameters (£, kf3, g, k).
Suppose that Yy(k) is a Poisson random measure with intensity kvy € Mp(Rd). Since for any
[ > 0 we have

Ko(w,z/k) = K*B(x)[g(x, 1 — 2/k) = (1 = 2/k)] — c(2)2*/2
uniformly on the set R? x [0,1] as k — oo, by a theorem in [15] the sequence {k~Y;(k) : t > 0}
converges as k — oo to a Markov process {Y;(O) :t > 0} with YOO = v and with transition
semigroup (Qf):>0 determined by

t
/ D (1, dv) = exp {—mvtf)— / Sulr, f)d“}uf € CRYY,  (2.15)
Mp,(RY) 0

where V; f is the solution to

1 ! 2 d
Vif@)+ g [ s [ Vil @PPeedy) = Pf@). 1> 0.0 R,

and Sy (k, f) is defined by
1

Sulk, ) = k) — 5 /O s (c(Val)?)ds, u>0,f € Cp(RY*,

The process {Yt(o) : ¢ > 0} has a diffusion realization, which is called a measure-valued immigra-
tion diffusion process; see [16].



3 Fluctuation limits

In this section we consider the high density fluctuation limits of the immigration particle systems.
Let v and k be given as in the last section and let {Y;(k) :t>0},k=1,2,... be a sequence of
immigration particle systems with corresponding parameters (&, 3, g, k). Suppose that Yo(k) is
a Poisson random measure with intensity kvy. We define the fluctuation process {Zt(k) it >0}
by

1
7% = —_iv® — k], t>o0. (3.16)

VEk

Then {Zt(k) :t > 0} is a Markov process taking signed-measure values from the space Ny (Rd) =

{1/Vk — Vky : p € N,y(RY)}.

Lemma 3.1 The Markov process {Zt(k) :t > 0} has transition semigroup (ng))tzo which is
determined by

/N (W?_"(f)Rﬁ’“) (1. dv) = (3.17)
k

— exp { 0P+ AP+ kwws(f/m»ds},
0

where Ut(k)f = VEU(f/VE) and
AP () = ky(f/VE = 1+ IYEY — k(U V) = J(f/VE)). (3.18)

Proof. Let us compute the conditional Laplace functional of the process {Zt(k) :t > 0}. Take
t >0 and r > 0. Using the Markov property of {Yt(k) :t >0} and (9) we have

E [exp{- 2, (£)}120) +s <]
= e (VIV} E [exp{ =¥, 00/ VRIYE s <1

= e {VEr()} exp{ YOV - | Rk fNE)ds}
= exp (VI (1)~ ZWRUT VD)~ K01V - Rl FVRYs)
That is, {Z*) : t > 0} is a Markov process with transition semigroup (R\*));=0 given by
[ OB Gar) = e { < U4V ARV
- /Ot Ry (kr, f/\/E)ds}. (3.19)
In addition to A% (f) given by (3.18), let

BM(f) = ky(1 — eI VR) — ky(B(f/VE)) — /0 ' Ruk, £/VR)ds,

6



where J; is defined by (1.3). We may rewrite (3.19) as

/ Y >R<’“><u,du>—exp{ u(Ut(k)f)+A§k)(f)+3§k)(f)}- (3.20)

Using the equation (1.4) we have

o0

ki (1 — e~ VRYAr — k(1 (F/VR))

/Ooim,,(Pt f/f))dr—/ooknT(Jt(f/\/%))dr
0

0

= /Ooodr/t/wH F(p(Js(f/VE)))ds

0

- / ds [ (e VR du
t—s
On the other hand, by (2.8) it follows that

/otkm(l—ef/ﬂ)dT / r(kr, f/f)dr_/ dr/ bV
/ds/t k To(F/VR)))du

t

Summing the two last equations we get

B0 = [ ket VR (321

Then (3.17) follows from (3.21) and (3.20). O
Lemma 3.2 The one-dimensional distributions of the process {Zt(k) :t > 0} are determined by

Bexp{~Z"(f)} = (3.22)

= exp (VR =1+ €)1 [ b VRN |
Proof. By (2.11) and the present assumption we have
Bexp(-¥, (1)} = exp { ~ 1)+ [ Rl s}
Then for (3.16) we get
Bexp{~Z"(f)} = exp{ — kR = 1 VR) = [ Bk, f/mds}.
Using the notation in the proof of the last lemma we have
Bexp{~2{"(1)} = exp {n 7V~ 1+ %) 1 1) .

Then (3.22) follows by (3.21). O

Let S'(R?) be the dual space of S(R?) and write (, ) for the duality on (S'(RY), S(R?)).
We may also regard {Zt(k) .t >0} as a process in S'(R?).

7



Theorem 3.3 The finite dimensional distributions of {Zt(k) : t > 0} converge as k — oo to
those of a Markov process {Z, : t > 0} with state space S'(R?). The transition semigroup

(Rgﬁ))tzo of {Z; : t > 0} is given by

/ e~ AR (4, dv) (3.23)
S’(]Rd)

= e { = AH + 5 - B+ g [P As,

and its one dimensional distribution is determined by

3+ 5 [ aerpas). (3.24)

Eexp{—(Z, f)} = exp{

Proof. Take any bounded sequence {f;} € S(R?) such that f, — f € S(RY). Using the
equations (1.1) and (1.4), and criticality of g one can check that

Jim VEU(fr/VE) = Jim VEJ(fr/VE) = P.f. (3.25)
By Taylor’s expansion,

Jim KU (fu/VE) = J(fe/VE)] = Jm kU (fe/VE) = 1+exp{~Ui(fi/Vk)}]

= S(BIP
Then by (3.18) it follows that
Tim AP () = A4f) = 21() — 52(PD)?). (3.26)

Since " (x,07) = ¢(x) by the assumption, using (3.26) and Taylor’s expansion we get
t
i B = Jim [/ V) / (3.27)
— 00 —00 0

By (3.22) the one-dimensional distributions of {Zt(k) :t > 0} converge to those of {Z; : t > 0}.
ForO=ty<t; <---<tpand f1,---, fn € S(Rd) let

=[fi+ J+1 —t; (fimr+-+ Utn—t n)-
Using (3.17) inductively we get

Boxp{ - Y204} = exo {kv<h§“/¢% 1 eV

Jj=1

+ZAtf tj— 1 h(k +Z/

J=1

Jo(h® VR } (3.28)



By (3.25) it is clear that

k

boundedly as k — oo. Applying (3.26), (3.27) and (3.29) to (3.28) we have

lim E exp { - Z Zt(f)(fj)}
j=1

k—oo
1, - 1 e [ttt )
= e { S ) g X [ s
j=1 j=2

As in Iscoe [13], we see that the finite-dimensional distributions of {Zt(k) : t > 0} converge to
those of the Markov process {Z; : t > 0}. O

Observe that if {Z;(k) : ¢ > 0} is given by the last theorem with the parameters (&, c¢,)
replaced by (¢, ke, kv), then {k=1Z;(k) : t > 0} converges to a Markov process {Zt(o) :t >0}
with Z(()O) = 0 and with semigroup (Ry):>0 given by

t
/ e N RE(u, dv) = exp{ —{u, Pf) + ;/ ’Y(C(Psf)2>d8}-
S’ (RY) 0

This together with the result in [16] shows that the superprocess—type limit and the fluctuation
limit are interchangeable.
For any f € S(RY) define Qf € &'(R) by

(QFf,9) = 7(cfg) —v(fAg + gAf), geSRY. (3.30)
Then we have

Theorem 3.4 The fluctuation limit process {Z; : t > 0} obtained in Theorem 3.3 has a con-
tinuous realization which solves the Langevin equation

dz, = A*Zdt+ dW, t>0, (331)

Zy = white noise based on 7,

where A* denotes the adjoint operator of A and {W; : t > 0} is an S'(R%)-valued Wiener process
with covariance functional

E{(W,, /)(Wi,9)} = (r At){(Qf.g), rt>0, f,geSRY. (3.32)

Proof. Observe that {Z, : t > 0} is an S'(R%)-valued mean zero Gaussian process. Set
K(r, f;t,9) = E{{(Z,, f)(Z:,9)}. By a standard argument one may check from (3.8) that

/ (v, FYR® (4, dv) = u(Pof),
’(Rd)
and

t
K(t, f;t,9) =v(fg)+/0 Y(cPs fPsg)ds.

9



It follows from these results and the Markov property that
K(r, f;t,9) =v(fPi—rg) +/ V(ePsfPi—risg)ds, t=712>0. (3.33)
0

By (3.33) and the fact ||f — P—.f|| < ||Af||(t — ) (where | || denotes sup norm) one easily
sees that

B{(Z, f) = (Ze )2} = 29(fIf — Prrf)) + / F(e(Pof)?)ds

+ 2 /Or Y(ePsf[Psf — Pi—rysf])ds
AL (£ — ) + comst - [lef |y (o)t — r)
L2l eAf|(t - 1) / A(Puf)ds

0

IN

for t > r > 0. Then {Z; : t > 0} has a continuous realization; see e.g. Walsh [17, p. 274].
Observe that

t
/0 ’Y(C[PsfPsAg + PsgPsAf])dS = V(CPtfPtg) - V(Cfg)' (334)

By (3.33) one checks that

0

EK(t’ fit,g) = v(cPfPg). (3.35)
Using (3.33), (3.34) and (3.35) we get

0

gK(t, fit,g) — K(t,Af;t,g) — K(t, fit, Ag) = v(cfg) —v(fAg + gAf).

By the results of [1, p.234] (see also [2]) we conclude that {Z; : t > 0} satisfies the generalized
Langevin equation (3.16) with {W; : ¢ > 0} given by (3.17). O

Since it may happen that ¢ = 0, (3.30) and (3.32) indicate that v(fAf) < 0. To see that
this is true observe that

1d
Af) = =7 ((Pf)?
AT = 5 g (2P|

and

Y(PS)?) < A(Pf) < (f2),

where the second inequality holds because 7 is an excessive measure for (P;):>0.

Note that the Ornstein-Uhlenbeck process Z is different from the ones obtained in [11, 16]
as small branching fluctuation limits, where the distribution of the driving process {W; : ¢t > 0}
does not involve the generator A.

10



4 Weak convergence

We already have the convergence of the finite-dimensional distributions. Since the limit process
is continuous, the tightness and consequently the weak convergence of the sequence {Zt(k) 1t >0}
in the cadlag space D(]0,00),S'(R%)) can be obtained easily as follows.

Theorem 4.1 The sequence {Zt(k) :t > 0} converges weakly to the process {Z; : t > 0} in the
space D(]0, 00),S'(RY)).

Proof. By a theorem in [9], due to the continuity of the limit and the martingale structure in
Lemma 2.3 it suffices to show that

supE sup {(ZF), f)?} < (4.36)
k>1  0<s<t

for all t > 0 and f € S(R?). Let
t
NO(f) = (29, ) - /0 (2%, Afyds, t>0. (4.37)

Since y(f) = [, ws(f)ds < 0o, we have limy_.o0 £¢(f) = 0. Letting ¢ — oo in (2.14) gives that
Y(Af) = —ko+(f). Then (3.1) and (4.2) yield that

VENI() = ¥ ) - [ O anas ke (ar),
0
v ¥ (f) — k(f) - /0 Y. (Af)ds — thrgs (f).

By Lemma 2.3 we see that {Nt(k)(f) :t > 0} is a martingale. On the other hand, by Lemma 2.2
we get,

E{(ZY, )%} = () + /0 Y(e(Puf)?)ds, 20, f € Cp(RY). (4.38)

By (4.2) and Doob’s inequality we see that

s 2
E sup {(Z®, )2} < 2B sup {N§k)(f)2}+2E{ sup [ / <Z£ﬁ),Af>du] }
0

0<s<t 0<s<t 0<s<t

< 8E{N§’“><f>2}+2E{ o s [ 8<Z£k),Af>2dU}
0

0<s<t

IN

16E{(Zz") )2} + 16tE{ /t<Z§ﬁ>, Af>2du} + 2tE{ /t<Z§ﬁ>, Af>2du}
0 0

t
< const - E{(Zt(k)7 f)?} + const - tE{ / (ZF), Af>2du}.
0

Then (4.1) follows from (4.3). O

Example. A typical example is where A = A — b is the generator of a killed Brownian motion
with b € C(R%)" bounded away from zero. In this case, we may let p(z) = 1/(1 + |z[P) for any
p>dand let v € Mp(Rd) be the Lebesgue measure.

11



As in [11] and [16] one may take a sequence by | 0 and replace A by A — by in taking the
fluctuation limit. By doing so one includes the situation where v € M, (Rd) is a general excessive
(not necessarily purely excessive) measure. In particular, one may include the case A = A and
v = Lebesgue measure in the above example.

5 Stationary processes

We now give a brief discussion of the fluctuation limit for stationary particle systems. Let
(an))tzo be the semigroup determined by (2.9). By the definition (2.8) it is easy to check that

| Rt e =51 - e - [T aatn s
0 0

It follows from (2.4) and the fact Uyp < P;p that if o(P,p) — 0 as t — oo, then QEH)(U, )= Qg’é)
as t — oo, where Qg;) is the stationary distribution of (QEH))QO given by

[e.o]

/ Q) (dv) = exp {— y(1—e )+ / 7(<P(Usf))d8}, f € Cp(RY)*.
M, (RY) 0

On the other hand, if {Z; : ¢ > 0} is the process obtained in Theorem 3.3, then from (3.8) the

distribution of Z; converges as t — oo to R(()'g) given by

/ e_<V’f>Rgz) (dv) = exp {1,7(1"2) + i /oo V(C(Psff)ds}, VS S(Rd).
S’(Rd) 2 2 0

It follows that RE,’;) is a stationary distribution of the semigroup (Rgﬁ))tzo given by (3.23).
Moreover, if (i, Pp) — 0 as t — oo, then Rgn)(u, ) = R ast — oo.

If we consider a sequence of stationary immigration processes {Yt(k) :t > 0} with semigroup
(ngﬁ))tzo and one-dimensional distribution Qg’;ﬁ), and if we take the fluctuation limit as in
section 3, then we get a stationary S'(R%)-valued Markov process with semigroup (REH))QO

and one-dimensional distribution Rg’é). That is, the fluctuation limit and the long—time limit
are interchangeable. We refer the reader to Bojdecki and Jakubowski [3] for discussions on
invariant measures of generalized Ornstein-Uhlenbeck processes in conuclear spaces.
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