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1 Introduction

Fluctuation limits of particle systems (with or without branching) have been studied extensively.
Usually they lead to generalized Ornstein-Uhlenbeck processes; see e.g. Bojdecki and Gorostiza
[1, 2], Dawson et al [5], Dawson and Gorostiza [6], Gorostiza [10], Holley and Stroock [12], and
Itô [14]. Since the branching particle systems can be unstable, non-stationary scalings are em-
ployed in studying their fluctuation limits, which yield time-inhomogeneous Ornstein-Uhlenbeck
processes. Fluctuation limits of measure-valued branching processes with immigration were
studied in Gorostiza and Li [11], and Li [16], which gave time-homogeneous Ornstein-Uhlenbeck
processes. The measure-valued processes considered in [11, 16] are superprocess-type limits
of a class of branching particle systems with immigration. In this paper we consider high-
density fluctuation limits for the branching particle systems with immigration. The Ornstein-
Uhlenbeck processes obtained here are different from the ones in [11, 16], and we shall see that
the superprocess-type limit and the high-density fluctuation limit are interchangeable. We will
consider in particular the stationary case.

Let us recall some basic facts on the branching particle systems. We refer the reader to
Dawson [4] for the necessary background. Let Rd be the d-dimensional Euclidean space. We
denote by C(Rd) the set of bounded continuous functions on Rd, and C0(Rd) the set of functions
in C(Rd) vanishing at infinity. Suppose that ξ = (Ω,F ,Ft, ξt,Px) is a diffusion process with
semigroup (Pt)t≥0 generated by a differential operator A. Throughout the paper we fix a strictly
positive reference function ρ ∈ D(A) with Aρ ∈ Cρ(Rd), where Cρ(Rd) denotes the set of
functions f ∈ C(Rd) satisfying |f | ≤ const · ρ. We assume further that ρ−1g is bounded for
every rapidly decreasing function g ∈ C(Rd). The subsets of non-negative elements of the above
function spaces are indicated by the superscript ‘+’, e.g. Cρ(Rd)+. Let Mρ(Rd) be the space of
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σ-finite Borel measures µ on (Rd,B(Rd)) such that µ(f) :=
∫

fdµ < ∞ for all f ∈ Cρ(Rd)+.
We equip Mρ(Rd) with the topology defined by µk → µ if and only if µk(f) → µ(f) for all
f ∈ Cρ(Rd). Let Nρ(Rd) be the subspace of Mρ(Rd) consisting of integer-valued measures.

Let β ∈ C(Rd)+ and let g(x, z) be a continuous function of (x, z) ∈ Rd × [0, 1]. Suppose
that for each fixed x ∈ Rd, g(x, ·) coincides on [0, 1] with the probability generating function
of a critical branching law. Throughout this paper we assume that c(x) := β(x)g′′(x, 1−) is a
bounded continuous function on Rd. For any f ∈ Cρ(Rd) the evolution equation

exp{−ut(x)} = Px exp{−f(ξt)} −
∫ t

0
Px [β(ξt−s) exp{−us(ξt−s)}] ds

+
∫ t

0
Px [β(ξt−s)g(ξt−s, exp{−us(ξt−s)})] ds, t ≥ 0,

has a unique positive solution ut = Utf ∈ Cρ(Rd). In the sequel we shall simply write the above
equation as

e−ut = Pte−f −
∫ t

0
Pt−s

[
β

(
e−us − g(e−us)

)]
ds, t ≥ 0. (1.1)

It is well-known that the formula∫
Nρ(Rd)

e−ν(f)Qt(σ,dν) = exp{−σ(Utf)}, f ∈ Cρ(Rd), (1.2)

defines a transition semigroup (Qt)t≥0 on Nρ(Rd). A Markov process X is called a branching
particle system with parameters (ξ, β, g) if its transition probabilities are determined by (1.1)
and (1.2).

For f ∈ Cρ(Rd) let

Jtf(x) = 1− exp{−Utf(x)}, t ≥ 0, x ∈ Rd. (1.3)

Then from (1) we have

Jtf(x) +
∫ t

0
ds

∫
Rd

ϕ(x, Jsf(y))Pt−s(x,dy) = Pt

(
1− e−f

)
(x), (1.4)

where

ϕ(x, z) = β(x)[g(x, 1− z)− (1− z)], x ∈ Rd, 0 ≤ z ≤ 1. (1.5)

Note that ϕ′′(x, 0+) = c(x) by our assumption.

2 Immigration particle systems

Suppose that X is a branching particle system with transition semigroup (Qt)t≥0 as described
in the last section. Let (Nt)t≥0 be a family of probability measures on Nρ(Rd). We call (Nt)t≥0

a skew convolution semigroup associated with X or (Qt)t≥0 provided that

Nr+t = (NrQt) ∗Nt, r, t ≥ 0, (2.6)
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where ‘∗’ denotes the operation of convolution. The relation (2.6) is necessary and sufficient to
ensure that

QN
t (σ, ·) := Qt(σ, ·) ∗Nt, t ≥ 0, σ ∈ Nρ(Rd), (2.7)

defines a transition semigroup (QN
t )t≥0 on Nρ(Rd). A Markov process Y is naturally called an

immigration particle system associated with X if it has (QN
t )t≥0 as transition semigroup. The

intuitive meaning of the immigration particle system is clear from (2.7), that is, Qt(σ, ·) is the
distribution of descendants of the people distributed at time zero as σ ∈ Nρ(Rd), and Nt is
the distribution of descendants of the people immigrating to Rd during the time interval (0, t].
We refer to Li [15] for the basic facts and characterizations about skew convolution semigroups
and immigration particle systems. (In [15] only particle systems taking finite measure values
were considered, but all the results there remain valid in the present context under obvious
modifications.)

Now we consider a particular form of the immigration particle system. Let γ ∈ Mρ(Rd)
be a purely excessive measure for ξ. Then there is an entrance law (κt)t>0 for ξ such that
γ =

∫∞
0 κtdt; see Dynkin [8]. For t > 0 and f ∈ Cρ(Rd) we let

Rt(κ, f) = κt

(
1− e−f

)
−

∫ t

0
κt−s (ϕ(Jsf)) ds. (2.8)

Let Nρ(Rd)◦ = Nρ(Rd) \ {0}, where 0 denotes the null measure, and let (Q◦
t )t≥0 be the

restriction of (Qt)t≥0 to Nρ(Rd)◦. By Theorem 3.3 of [15] we see that∫
Nρ(Rd)◦

e−ν(f)Kt(dν) = exp{−Rt(κ, f)}, f ∈ Cρ(Rd),

defines an infinitely divisible probability entrance law (Kt)t>0 for (Q◦
t )t≥0. It follows from

Theorem 3.2 of [15] that there is a finite entrance law (Ht)t>0 such that∫
Nρ(Rd)◦

(1− eν(f))Ht(dν) = Rt(κ, f), f ∈ Cρ(Rd).

Then using Theorem 3.1 of [15] we see that the formula∫
Nρ(Rd)

e−ν(f)Q
(κ)
t (σ,dν) = exp

{
−σ(Utf)−

∫ t

0
Rs(κ, f)ds

}
, f ∈ Cρ(Rd), (2.9)

defines a transition semigroup (Q(κ)
t )t≥0 on Nρ(Rd), which is a special case of the one defined

by (2.7). In the sequel, a Markov process Y will be called an immigration particle system with
parameters (ξ, β, g, κ) if it has transition semigroup determined by (2.9).

A special excessive measure for ξ is given by γ =
∫∞
0 νPtdt for some ν ∈ Mρ(Rd). In this case

we have Rt(κ, f) = ν(Jtf) by (1.4) and (2.8), and the immigration is governed by a time-space
Poisson random measure with intensity dsν(dx); see e.g. Dawson and Ivanoff [7].

We will need the following lemmas.

Lemma 2.1 For any t ≥ 0, σ ∈ Nρ(Rd) and f ∈ Cρ(Rd) we have∫
Nρ(Rd)

ν(f)Q(κ)
t (σ,dν) = σ(Ptf) +

∫ t

0
κs(f)ds. (2.10)
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Proof. From (1.1) and (2.8) we get

∂

∂θ
Ut(θf)|θ=0 = Ptf,

∂

∂θ
Rt(κ, θf)|θ=0 = κt(f).

Using these results and (2.9) we obtain (2.10). �

Let Q(κ)
(µ) denote the law of the immigration particle system {Yt : t ≥ 0} given that Y0 is a

Poisson random measure with intensity µ ∈ Mρ(Rd). Then we have from (2.4)

Q(κ)
(µ) exp{−Yt(f)} = exp

{
− µ(Jtf)−

∫ t

0
Rs(κ, f)ds

}
, f ∈ Cρ(Rd). (2.11)

Lemma 2.2 For t ≥ 0 and f ∈ Cρ(Rd) we have Q(κ)
(γ)Yt(f) = γ(f) and

Q(κ)
(γ){Yt(f)2} = γ(f)2 + γ(f2) +

∫ t

0
γ(c(Psf)2)ds. (2.12)

Proof. This is similar to the proof of Lemma 2.1. From (1.4) and (2.8) it follows that

∂

∂θ
Jt(θf)|θ=0 = Ptf,

∂

∂θ
Rt(κ, θf)|θ=0 = κt(f),

− ∂2

∂θ2
Jt(θf)|θ=0 = Pt(f2) +

∫ t

0
Pt−u(c(Puf)2)du,

− ∂2

∂θ2
Rt(κ, θf)|θ=0 = κt(f2) +

∫ t

0
κt−u(c(Puf)2)du.

Replacing f by θf in (2.11), differentiating with respect to θ at zero and using (2.8) we get

Q(κ)
(µ)Yt(f) = µ(Ptf) +

∫ t

0
κs(f)ds,

and

Q(κ)
(µ){Yt(f)2} =

[
µ(Ptf)+

∫ t

0
κs(f)ds

]2

+µ(Pt(f2))+
∫ t

0
µPt−s(c(Psf)2)ds

+
∫ t

0

[
κs(f2) +

∫ s

0
κs−u(c(Puf)2)du

]
ds.

Setting µ = γ, the results are clear by the entrance law property κsPt = κs+t and the integral
representation for γ. �

Let S(Rd) be the space of infinitely differentiable, rapidly decreasing functions all of whose
derivatives are also rapidly decreasing.

Lemma 2.3 Suppose that {Yt,Ft : t ≥ 0} is a realization of the immigration particle system
with parameters (ξ, β, g, κ). If f ∈ S(Rd), then the limit κ0+(f) := limr↓0 κr(f) exists and

Mt(f) := Yt(f)−
∫ t

0
Ys(Af)ds− tκ0+(f), t ≥ 0, (2.13)

is a martingale. In particular {Yt(f), t ≥ 0} has a right–continuous modification for any f ∈
S(Rd).
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Proof. Under the hypothesis we have Af ∈ S(Rd) and f = Ptf −
∫ t
0 PsAfds for any t ≥ 0. It

follows immediately from the entrance law property that

κ0+(f) = κt(f)−
∫ t

0
κs(Af)ds, t ≥ 0. (2.14)

If t ≥ r ≥ 0, using (2.10) we get

E
{

Yt(f)−
∫ t

0
Ys(Af)ds− tκ0+(f)

∣∣∣∣Fr

}
= Yr(Pt−rf) +

∫ t−r

0
κs(f)ds−

∫ r

0
Ys(Af)ds−

∫ t

r
E{Ys(Af)|Fr}ds− tκ0+(f).

By (2.10) and (2.14) it follows that∫ t

r
E{Ys(Af)|Fr}ds =

∫ t

r

[
Yr(Ps−rAf) +

∫ s−r

0
κu(Af)du

]
ds

= Yr(Pt−rf − f) +
∫ t

r
[κs−r(f)− κ0+(f)]ds

= Yr(Pt−rf − f) +
∫ t−r

0
κs(f)ds− (t− r)κ0+(f).

Now it is clear that

E
{

Yt(f)−
∫ t

0
Ys(Af)ds− tκ0+(f)

∣∣∣∣Fr

}
= Yr(f)−

∫ r

0
Ys(Af)ds− rκ0+(f).

That is, (2.13) is a martingale. �

We conclude this section by observing that the measure-valued immigration processes con-
sidered in [16] arise as superprocess-type limits of the immigration particle systems. Let {Yt(k) :
t ≥ 0}, k = 1, 2, . . . be a sequence of immigration particle systems with parameters (ξ, kβ, g, kκ).
Suppose that Y0(k) is a Poisson random measure with intensity kγ ∈ Mρ(Rd). Since for any
l ≥ 0 we have

k2ϕ(x, z/k) = k2β(x)[g(x, 1− z/k)− (1− z/k)] → c(x)z2/2

uniformly on the set Rd × [0, l] as k →∞, by a theorem in [15] the sequence {k−1Yt(k) : t ≥ 0}
converges as k → ∞ to a Markov process {Y (0)

t : t ≥ 0} with Y
(0)
0 = γ and with transition

semigroup (Qκ
t )t≥0 determined by∫
Mρ(Rd)

e−ν(f)Qκ
t (µ,dν) = exp

{
−µ(Vtf)−

∫ t

0
Su(κ, f)du

}
, f ∈ Cρ(Rd)+, (2.15)

where Vtf is the solution to

Vtf(x) +
1
2

∫ t

0
ds

∫
Rd

c(y)Vsf(y)2Pt−s(x,dy) = Ptf(x), t ≥ 0, x ∈ Rd,

and Su(κ, f) is defined by

Su(κ, f) = κu(f)− 1
2

∫ u

0
κu−s(c(Vsf)2)ds, u > 0, f ∈ Cρ(Rd)+.

The process {Y (0)
t : t ≥ 0} has a diffusion realization, which is called a measure-valued immigra-

tion diffusion process; see [16].
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3 Fluctuation limits

In this section we consider the high density fluctuation limits of the immigration particle systems.
Let γ and κ be given as in the last section and let {Y (k)

t : t ≥ 0}, k = 1, 2, . . . be a sequence of
immigration particle systems with corresponding parameters (ξ, β, g, kκ). Suppose that Y

(k)
0 is

a Poisson random measure with intensity kγ. We define the fluctuation process {Z(k)
t : t ≥ 0}

by

Z
(k)
t =

1√
k
[Y (k)

t − kγ], t ≥ 0. (3.16)

Then {Z(k)
t : t ≥ 0} is a Markov process taking signed-measure values from the space Nk(Rd) :=

{µ/
√

k −
√

kγ : µ ∈ Nρ(Rd)}.

Lemma 3.1 The Markov process {Z(k)
t : t ≥ 0} has transition semigroup (R(k)

t )t≥0 which is
determined by∫

Nk(Rd)
e−ν(f)R

(k)
t (µ,dν) = (3.17)

= exp
{
− µ(U (k)

t f) + A
(k)
t (f) +

∫ t

0
kγ(ϕ(Js(f/

√
k)))ds

}
,

where U
(k)
t f =

√
kUt(f/

√
k) and

A
(k)
t (f) = kγ(f/

√
k − 1 + e−f/

√
k)− kγ(Ut(f/

√
k)− Jt(f/

√
k)). (3.18)

Proof. Let us compute the conditional Laplace functional of the process {Z(k)
t : t ≥ 0}. Take

t ≥ 0 and r ≥ 0. Using the Markov property of {Y (k)
t : t ≥ 0} and (9) we have

E
[
exp{−Z

(k)
r+t(f)}|Z(k)

s : s ≤ r
]

= exp
{√

kγ(f)
}

E
[
exp{−Y

(k)
r+t(f/

√
k)}|Y (k)

s : s ≤ r
]

= exp
{√

kγ(f)
}

exp
{
− Y (k)

r (Ut(f/
√

k))−
∫ t

0
Rs(kκ, f/

√
k)ds

}
= exp

{√
kγ(f)−Z(k)

r (
√

kUt(f/
√

k))−γ(kUt(f/
√

k))−
∫ t

0
Rs(kκ, f/

√
k)ds

}
.

That is, {Z(k)
t : t ≥ 0} is a Markov process with transition semigroup (R(k)

t )t≥0 given by∫
Nk(Rd)

e−ν(f)R
(k)
t (µ,dν) = exp

{
− µ(U (k)

t f) + γ(
√

kf)− γ(kUt(f/
√

k))

−
∫ t

0
Rs(kκ, f/

√
k)ds

}
. (3.19)

In addition to A
(k)
t (f) given by (3.18), let

B
(k)
t (f) = kγ(1− e−f/

√
k)− kγ(Jt(f/

√
k))−

∫ t

0
Rs(kκ, f/

√
k)ds,
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where Jt is defined by (1.3). We may rewrite (3.19) as∫
Nk(Rd)

e−ν(f)R
(k)
t (µ,dν) = exp

{
− µ(U (k)

t f) + A
(k)
t (f) + B

(k)
t (f)

}
. (3.20)

Using the equation (1.4) we have∫ ∞

t
kκr(1− e−f/

√
k)dr − kγ(Jt(f/

√
k))

=
∫ ∞

0
kκr(Pt(1− e−f/

√
k))dr −

∫ ∞

0
kκr(Jt(f/

√
k))dr

=
∫ ∞

0
dr

∫ t

0
κr+t−sk(ϕ(Js(f/

√
k)))ds

=
∫ t

0
ds

∫ ∞

t−s
kκu(ϕ(Js(f/

√
k)))du.

On the other hand, by (2.8) it follows that∫ t

0
kκr(1−e−f/

√
k)dr−

∫ t

0
Rr(kκ, f/

√
k)dr=

∫ t

0
dr

∫ r

0
kκr−s(ϕ(Js(f/

√
k)))ds

=
∫ t

0
ds

∫ t−s

0
kκu(ϕ(Js(f/

√
k)))du.

Summing the two last equations we get

B
(k)
t (f) =

∫ t

0
kγ(ϕ(Js(f/

√
k)))ds. (3.21)

Then (3.17) follows from (3.21) and (3.20). �

Lemma 3.2 The one-dimensional distributions of the process {Z(k)
t : t ≥ 0} are determined by

E exp{−Z
(k)
t (f)} = (3.22)

= exp
{

kγ(f/
√

k − 1 + e−f/
√

k) +
∫ t

0
kγ(ϕ(Js(f/

√
k)))ds

}
.

Proof. By (2.11) and the present assumption we have

E exp{−Y
(k)
t (f)} = exp

{
− kγ(Jtf) +

∫ t

0
Rs(kκ, f)ds

}
.

Then for (3.16) we get

E exp{−Z
(k)
t (f)} = exp

{
− kγ(Jt(f/

√
k)− f/

√
k)−

∫ t

0
Rs(kκ, f/

√
k)ds

}
.

Using the notation in the proof of the last lemma we have

E exp{−Z
(k)
t (f)} = exp

{
kγ(f/

√
k − 1 + e−f/

√
k) + B

(k)
t (f)

}
.

Then (3.22) follows by (3.21). �

Let S ′(Rd) be the dual space of S(Rd) and write 〈 , 〉 for the duality on (S ′(Rd), S(Rd)).
We may also regard {Z(k)

t : t ≥ 0} as a process in S ′(Rd).
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Theorem 3.3 The finite dimensional distributions of {Z(k)
t : t ≥ 0} converge as k → ∞ to

those of a Markov process {Zt : t ≥ 0} with state space S ′(Rd). The transition semigroup

(R(κ)
t )t≥0 of {Zt : t ≥ 0} is given by∫

S′(Rd)
e−〈ν,f〉R

(κ)
t (µ,dν) (3.23)

= exp
{
− 〈µ, Ptf〉+

1
2

γ(f2 − (Ptf)2) +
1
2

∫ t

0
γ(c(Psf)2)ds

}
,

and its one dimensional distribution is determined by

E exp{−〈Zt, f〉} = exp
{

1
2

γ(f2) +
1
2

∫ t

0
γ(c(Psf)2)ds

}
. (3.24)

Proof. Take any bounded sequence {fk} ∈ S(Rd) such that fk → f ∈ S(Rd). Using the
equations (1.1) and (1.4), and criticality of g one can check that

lim
k→∞

√
kUt(fk/

√
k) = lim

k→∞

√
kJt(fk/

√
k) = Ptf. (3.25)

By Taylor’s expansion,

lim
k→∞

k[Ut(fk/
√

k)− Jt(fk/
√

k)] = lim
k→∞

k[Ut(fk/
√

k)−1+exp{−Ut(fk/
√

k)}]

=
1
2

(Ptf)2.

Then by (3.18) it follows that

lim
k→∞

A
(k)
t (fk) = At(f) :=

1
2

γ(f2)− 1
2

γ((Ptf)2). (3.26)

Since ϕ′′(x, 0+) = c(x) by the assumption, using (3.26) and Taylor’s expansion we get

lim
k→∞

B
(k)
t (fk) = lim

k→∞

∫ t

0
kγ(ϕ(Js(fk/

√
k)))ds =

1
2

∫ t

0
γ(c(Psf)2)ds. (3.27)

By (3.22) the one-dimensional distributions of {Z(k)
t : t ≥ 0} converge to those of {Zt : t ≥ 0}.

For 0 = t0 ≤ t1 < · · · < tn and f1, · · · , fn ∈ S(Rd) let

h
(k)
j = fj + U

(k)
tj+1−tj

(fj+1 + · · ·+ U
(k)
tn−tn−1

fn).

Using (3.17) inductively we get

E exp
{
−

n∑
j=1

〈Z(k)
tj

, fj〉
}

= exp
{

kγ(h(k)
1 /

√
k − 1 + e−h

(k)
1 /

√
k)

+
n∑

j=1

A
(k)
tj−tj−1

(h(k)
j ) +

n∑
j=1

∫ tj−tj−1

0
kγ(ϕ(Js(h

(k)
j /

√
k))ds

}
. (3.28)
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By (3.25) it is clear that

h
(k)
j → hj := fj + Ptj+1−tj (fj+1 + · · ·+ Ptn−tn−1fn) (3.29)

boundedly as k →∞. Applying (3.26), (3.27) and (3.29) to (3.28) we have

lim
k→∞

E exp
{
−

n∑
j=1

Z
(k)
tj

(fj)
}

= exp
{

1
2

γ(f2
1 ) +

n∑
j=1

Atj−tj−1(hj) +
1
2

n∑
j=2

∫ tj−tj−1

0
γ(c(Pshj)2)ds

}
.

As in Iscoe [13], we see that the finite-dimensional distributions of {Z(k)
t : t ≥ 0} converge to

those of the Markov process {Zt : t ≥ 0}. �

Observe that if {Zt(k) : t ≥ 0} is given by the last theorem with the parameters (ξ, c, γ)
replaced by (ξ, kc, kγ), then {k−1Zt(k) : t ≥ 0} converges to a Markov process {Z(0)

t : t ≥ 0}
with Z

(0)
0 = 0 and with semigroup (Rκ

t )t≥0 given by∫
S′(Rd)

e−〈ν,f〉Rκ
t (µ,dν) = exp

{
− 〈µ, Ptf〉+

1
2

∫ t

0
γ(c(Psf)2)ds

}
.

This together with the result in [16] shows that the superprocess–type limit and the fluctuation
limit are interchangeable.

For any f ∈ S(Rd) define Qf ∈ S ′(Rd) by

〈Qf, g〉 = γ(cfg)− γ(fAg + gAf), g ∈ S(Rd). (3.30)

Then we have

Theorem 3.4 The fluctuation limit process {Zt : t ≥ 0} obtained in Theorem 3.3 has a con-
tinuous realization which solves the Langevin equation

dZt = A∗Ztdt + dWt, t ≥ 0, (3.31)
Z0 = white noise based on γ,

where A∗ denotes the adjoint operator of A and {Wt : t ≥ 0} is an S ′(Rd)-valued Wiener process
with covariance functional

E{〈Wr, f〉〈Wt, g〉} = (r ∧ t)〈Qf, g〉, r, t ≥ 0, f, g ∈ S(Rd). (3.32)

Proof. Observe that {Zt : t ≥ 0} is an S ′(Rd)-valued mean zero Gaussian process. Set
K(r, f ; t, g) = E{〈Zr, f〉〈Zt, g〉}. By a standard argument one may check from (3.8) that∫

S′(Rd)
〈ν, f〉R(κ)

t (µ,dν) = µ(Ptf),

and

K(t, f ; t, g) = γ(fg) +
∫ t

0
γ(cPsfPsg)ds.
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It follows from these results and the Markov property that

K(r, f ; t, g) = γ(fPt−rg) +
∫ r

0
γ(cPsfPt−r+sg)ds, t ≥ r ≥ 0. (3.33)

By (3.33) and the fact ‖f − Pt−rf‖ ≤ ‖Af‖(t − r) (where ‖ ‖ denotes sup norm) one easily
sees that

E{|〈Zt, f〉 − 〈Zr, f〉|2} = 2γ(f [f − Pt−rf ]) +
∫ t

r
γ(c(Psf)2)ds

+ 2
∫ r

0
γ(cPsf [Psf − Pt−r+sf ])ds

≤ 2‖Af‖γ(|f |)(t− r) + const · ‖cf‖γ(ρ)(t− r)

+ 2‖cAf‖(t− r)
∫ r

0
γ(Psf)ds

for t ≥ r ≥ 0. Then {Zt : t ≥ 0} has a continuous realization; see e.g. Walsh [17, p. 274].
Observe that ∫ t

0
γ(c[PsfPsAg + PsgPsAf ])ds = γ(cPtfPtg)− γ(cfg). (3.34)

By (3.33) one checks that

∂

∂t
K(t, f ; t, g) = γ(cPtfPtg). (3.35)

Using (3.33), (3.34) and (3.35) we get

∂

∂t
K(t, f ; t, g)−K(t, Af ; t, g)−K(t, f ; t, Ag) = γ(cfg)− γ(fAg + gAf).

By the results of [1, p. 234] (see also [2]) we conclude that {Zt : t ≥ 0} satisfies the generalized
Langevin equation (3.16) with {Wt : t ≥ 0} given by (3.17). �

Since it may happen that c = 0, (3.30) and (3.32) indicate that γ(fAf) ≤ 0. To see that
this is true observe that

γ(fAf) =
1
2

d
dt

γ((Ptf)2)
∣∣∣∣
t=0

and

γ((Ptf)2) ≤ γ(Pt(f2)) ≤ γ(f2),

where the second inequality holds because γ is an excessive measure for (Pt)t≥0.
Note that the Ornstein-Uhlenbeck process Z is different from the ones obtained in [11, 16]

as small branching fluctuation limits, where the distribution of the driving process {Wt : t ≥ 0}
does not involve the generator A.
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4 Weak convergence

We already have the convergence of the finite-dimensional distributions. Since the limit process
is continuous, the tightness and consequently the weak convergence of the sequence {Z(k)

t : t ≥ 0}
in the cadlag space D([0,∞),S ′(Rd)) can be obtained easily as follows.

Theorem 4.1 The sequence {Z(k)
t : t ≥ 0} converges weakly to the process {Zt : t ≥ 0} in the

space D([0,∞),S ′(Rd)).

Proof. By a theorem in [9], due to the continuity of the limit and the martingale structure in
Lemma 2.3 it suffices to show that

sup
k≥1

E sup
0≤s≤t

{〈Z(k)
s , f〉2} < ∞ (4.36)

for all t > 0 and f ∈ S(Rd). Let

N
(k)
t (f) := 〈Z(k)

t , f〉 −
∫ t

0
〈Z(k)

s , Af〉ds, t ≥ 0. (4.37)

Since γ(f) =
∫∞
0 κs(f)ds < ∞, we have limt→∞ κt(f) = 0. Letting t → ∞ in (2.14) gives that

γ(Af) = −κ0+(f). Then (3.1) and (4.2) yield that

√
kN

(k)
t (f) = Y

(k)
t (f)− kγ(f)−

∫ t

0
Y (k)

s (Af)ds + tkγ(Af),

= Y
(k)
t (f)− kγ(f)−

∫ t

0
Y (k)

s (Af)ds− tkκ0+(f).

By Lemma 2.3 we see that {N (k)
t (f) : t ≥ 0} is a martingale. On the other hand, by Lemma 2.2

we get

E{〈Z(k)
t , f〉2} = γ(f2) +

∫ t

0
γ(c(Psf)2)ds, t ≥ 0, f ∈ Cρ(Rd). (4.38)

By (4.2) and Doob’s inequality we see that

E sup
0≤s≤t

{〈Z(k)
s , f〉2} ≤ 2E sup

0≤s≤t
{N (k)

s (f)2}+ 2E
{

sup
0≤s≤t

[ ∫ s

0
〈Z(k)

u , Af〉du

]2}
≤ 8E{N (k)

t (f)2}+ 2E
{

sup
0≤s≤t

s

∫ s

0
〈Z(k)

u , Af〉2du

}
≤ 16E{〈Z(k)

t , f〉2}+ 16tE
{ ∫ t

0
〈Z(k)

u , Af〉2du

}
+ 2tE

{ ∫ t

0
〈Z(k)

u , Af〉2du

}
≤ const ·E{〈Z(k)

t , f〉2}+ const · tE
{ ∫ t

0
〈Z(k)

u , Af〉2du

}
.

Then (4.1) follows from (4.3). �

Example. A typical example is where A = ∆− b is the generator of a killed Brownian motion
with b ∈ C(Rd)+ bounded away from zero. In this case, we may let ρ(x) = 1/(1 + |x|p) for any
p > d and let γ ∈ Mρ(Rd) be the Lebesgue measure.

11



As in [11] and [16] one may take a sequence bk ↓ 0 and replace A by A − bk in taking the
fluctuation limit. By doing so one includes the situation where γ ∈ Mρ(Rd) is a general excessive
(not necessarily purely excessive) measure. In particular, one may include the case A = ∆ and
γ = Lebesgue measure in the above example.

5 Stationary processes

We now give a brief discussion of the fluctuation limit for stationary particle systems. Let
(Q(κ)

t )t≥0 be the semigroup determined by (2.9). By the definition (2.8) it is easy to check that∫ ∞

0
Rt(κ, f)dt = γ(1− e−f )−

∫ ∞

0
γ(ϕ(Jsf))ds.

It follows from (2.4) and the fact Utρ ≤ Ptρ that if σ(Ptρ) → 0 as t →∞, then Q
(κ)
t (σ, ·) → Q

(κ)
∞

as t →∞, where Q
(κ)
∞ is the stationary distribution of (Q(κ)

t )t≥0 given by∫
Mρ(Rd)

e−ν(f)Q(κ)
∞ (dν) = exp

{
− γ(1− e−f )+

∫ ∞

0
γ(ϕ(Usf))ds

}
, f ∈ Cρ(Rd)+.

On the other hand, if {Zt : t ≥ 0} is the process obtained in Theorem 3.3, then from (3.8) the
distribution of Zt converges as t →∞ to R

(κ)
∞ given by∫

S′(Rd)
e−〈ν,f〉R(κ)

∞ (dν) = exp
{

1
2

γ(f2) +
1
2

∫ ∞

0
γ(c(Psf)2)ds

}
, f ∈ S(Rd).

It follows that R
(κ)
∞ is a stationary distribution of the semigroup (R(κ)

t )t≥0 given by (3.23).
Moreover, if 〈µ, Ptρ〉 → 0 as t →∞, then R

(κ)
t (µ, ·) → R

(κ)
∞ as t →∞.

If we consider a sequence of stationary immigration processes {Y (k)
t : t ≥ 0} with semigroup

(Q(kκ)
t )t≥0 and one-dimensional distribution Q

(kκ)
∞ , and if we take the fluctuation limit as in

section 3, then we get a stationary S ′(Rd)-valued Markov process with semigroup (R(κ)
t )t≥0

and one-dimensional distribution R
(κ)
∞ . That is, the fluctuation limit and the long–time limit

are interchangeable. We refer the reader to Bojdecki and Jakubowski [3] for discussions on
invariant measures of generalized Ornstein-Uhlenbeck processes in conuclear spaces.
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