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Abstract. We prove some limit theorems for continuous time and state
branching processes. The non-degenerate limit laws are obtained in critical
and non-critical cases by conditioning or introducing immigration processes.
The limit laws in non-critical cases are characterized in terms of the canonical
measure of the cumulant semigroup. The proofs are based on estimates of
the cumulant semigroup derived from the forward and backward equations,
which are easier than the proofs in the classical setting.
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1. Introduction

Limit theorems constitute an important part of the theory of branching processes.
Since the processes are unstable, people have derived limit theorems for them through
devices such as modifying factors, conditioning, supporting immigration, etc. A stan-
dard reference on the limit theorems for discrete state branching processes is Arthreya
and Ney [1]. Recently, Pakes [17] studied various conditional limit theorems for the pro-
cesses in a unified setting by introducing some general conditioning events. A number
of limit theorems for continuous state branching processes have also been proved in the
literature; see for example [4,15,16,18,20,21], etc.

An important feature of the continuous state branching process is that the conver-
gence to a non-degenerate limit law can occur in supercritical, critical and subcritical
cases, in contrast to the discrete state processes. Suppose that {xt : t ≥ 0} is a con-
tinuous time and state branching process with x0 = 1 defined on a probability space
(Ω,F ,P). Let τ0 = inf{t ≥ 0 : xt = 0} denote the extinction time of {xt : t ≥ 0}
and let q0 = P{τ0 < ∞} be the probability of extinction. The asymptotic behavior of
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{xt : t ≥ 0} when q0 < 1 was studied by Grey [4]. Under certain hypotheses, the author
showed that there are positive constants {ηt : t ≥ 0} such that ηtxt converges almost
surely to a non-degenerate random variable as t →∞, and it holds under some moment
condition that ηt ∼ cemt for constants c and m. These give the analogue of the classical
results of Seneta and Vere-Jones [21] in the discrete time situation. In the subcritical
case, the hypotheses of [4] imply that the process {xt : t ≥ 0} never becomes extinct.
Indeed, Pakes and Trajstman [18] showed that, under the restriction m((0, 1]) < ∞, a
random time τ exists after which the process decays exponentially. That is, there exist
a constant c > 0 and a random variable ζ > 0 such that xt = e−ctζ almost surely for
all t ≥ τ . Some limit laws of the process conditioned on {τ ≥ t} and on {xt ≥ ε} were
studied in [16,18]; see also [2] for related work.

In this paper, we prove some conditional limit theorems for the continuous time and
state branching processes which extinguish with positive probability. In the non-critical
cases, we shall see a symmetry between subcritical and supercritical processes for the
conditional limit theorems, which follows from the fact that a supercritical branching
process conditioned on extinction is equivalent to a subcritical one. In the critical
case, we consider two simplest special cases of the conditioning events of Pakes [17]
and show that suitable modifications of the process lead to some universal limit laws
independent of the explicit form of the branching mechanism. The analogues of those
results in the discrete state situation form the core of the classical conditional limit
theorems for branching processes. The continuous time and state versions are usually
more complete and their proofs are more enlightening. In the non-critical cases, the
conditional limit laws can be characterized in terms of the canonical measure of the
cumulant semigroup. In this sense, the continuous time and state model provides a
more economical way to establish the nicest conditional limit theorems for branching
processes. The greater tractability of these processes arises because both their time
and state space are smooth, and the distributions which appear are infinitely divisible.
The proofs of the limit theorems are based on the asymptotic estimates of the cumulant
semigroup derived from the forward and backward equations, which should be of interest
in their own right. As an additional application of those estimates, we prove a limit
theorem for the continuous time and state process with immigration, giving an analogue
of the results of Foster [3] and Yamazato [22].

2. Preliminaries

Throughout this paper we consider a conservative continuous state branching process
X = (Ω,G,Gt, xt,Qx) with branching mechanism determined by the function

F (z) = −bz − cz2 +
∫ ∞

0

(1− e−zu − zu)m(du), z ≥ 0, (2.1)

where c ≥ 0 and b are constants, and (u ∧ u2)m(du) is a finite measure on (0,∞). For
notational convenience, we define φ(z) = −F (z), which is a non-negative function when
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the branching mechanism is critical or subcritical. Let (Qt)≥0 denote the transition
semigroup of X. Then

∫ ∞

0

e−λyQt(x, dy) = exp{−xvt(λ)}, λ ≥ 0, x ≥ 0, (2.2)

where vt(λ) is the unique positive solution to the backward equation

∂

∂t
vt(λ) = −φ(vt(λ)), v0(λ) = λ, t ≥ 0, λ ≥ 0. (2.3)

From (2.3) we can derive the forward equation

∂

∂t
vt(λ) = −φ(λ)

∂

∂λ
vt(λ), v0(λ) = λ, t ≥ 0, λ ≥ 0. (2.4)

We may write v′t(λ) for (∂/∂λ)vt(λ) in the sequel. Note that our moment condition on
m(du) implies that Exxt < ∞ for all x ≥ 0 and t ≥ 0. Since vt(λ) is the cumulant of an
infinitely divisible non-negative random variable with finite mean, it has the canonical
representation

vt(λ) = dtλ +
∫ ∞

0

(1− e−λu)lt(du), t ≥ 0, λ ≥ 0, (2.5)

where dt ≥ 0 and ult(du) is a finite measure on (0,∞). It is well-known that the
functions (vt)t≥0 on [0,∞) form a semigroup under composition, which is called the
cumulant semigroup of X. By (2.1) and (2.3) we have (∂/∂t)vt(λ) ≤ −bvt(λ) and
(∂/∂t)v′t(0) = −bv′t(0). It follows that vt(λ) ≤ e−btλ and v′t(0) = e−bt for all λ ≥ 0 and
t ≥ 0; see for example [1;p259].

Let us consider the following condition on the branching mechanism:
[H] There exists θ > 0 such that φ(z) > 0 for all z > θ and

∫∞
θ

φ(z)−1dz < ∞.
Clearly, under this condition φ(z) is a strictly convex function of z ≥ 0. In the sequel,

we shall write b =↓ limx↑a f(x) to mean that f(x) decreases to b as x increases to a.
The arrows in ↑ limx↑a, ↓ limx↓a and ↑ limx↓a should be interpreted in similar ways. The
following result was proved in [4].

Theorem 2.1. (Grey, 1974) For any x > 0 and t > 0, Qx{xt = 0} > 0 if and only if
[H] holds. Under this condition, we have

Qx{xt = 0} = exp{−xv̄t} and

Qx{xt = 0 for some t > 0} = exp{−xv̄},
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where v̄t :=↑ limλ↑∞ vt(λ), and v̄ :=↓ limt↑∞ v̄t is the largest root of φ(z) = 0, so v̄ > 0
if and only if b = φ′(0+) < 0.

Note that [H] is satisfied if φ(z) = cz1+β for c > 0 and 0 < β ≤ 1, a special case
excluded in [16] and [18]. In the sequel of the paper we shall always assume [H] holds.
By the above theorem, we have dt = 0 and 0 < lt(0,∞) = v̄t < ∞ in (2.5), that is,

vt(λ) =
∫ ∞

0

(1− e−λu)lt(du), t > 0, λ ≥ 0, (2.6)

By (2.3), for t ≥ 0 and λ > v̄ we have

∫ λ

vt(λ)

φ(z)−1dz = t. (2.7)

Letting λ →∞ in the above equation gives
∫ ∞

v̄t

φ(z)−1dz = t, t > 0. (2.8)

Therefore, v̄t = vt(∞) solves the equation

d
dt

v̄t = −φ(v̄t), v̄0 = ∞, t > 0. (2.9)

Corollary 2.2. For any t > 0, the function vt(λ) of λ ≥ 0 is strictly increasing and
concave, and v̄ is the largest solution to the equation vt(λ) = λ. For 0 < λ < v̄ we have
v̄ =↑ limt↑∞ vt(λ), and for λ > v̄ we have v̄ =↓ limt↑∞ vt(λ).

Proof. By (2.6), vt(λ) is a strictly increasing and concave function of λ ≥ 0. Using the
semigroup property of (vt)t≥0 one may check that v̄t+r = vt(v̄r). Letting r →∞ we get
v̄ = vt(v̄). Then v̄ is the largest solution to the equation obviously. If b ≥ 0, then we
have v̄ = 0. If b < 0 and 0 < λ < v̄, then λ < vt(λ). Iterating this inequality we see that
vt(λ) is an increasing function of t > 0 bounded above by v̄. Let v∞(λ) =↑ limt↑∞ vt(λ).
By the relation vt(vs(λ)) = vt+s(λ) we have vt(v∞(λ)) = v∞(λ), and hence v∞(λ) = v̄
since v̄ is the unique solution to vt(λ) = λ in (0,∞). The assertion for λ > v̄ can be
proved similarly. ¤

3. Asymptotic estimates of the cumulant semigroup
Recall that limt→∞ vt(λ) = 0 for all λ ≥ 0 in the critical and subcritical cases. In this

section, we investigate the rate of this convergence, which is useful in the discussions
of limit theorems. By virtue of the backward and forward equations (2.3) and (2.4)
and the canonical representation (2.6), the proofs in our setting are easier and more
enlightening than the classical results as developed in [1]. We start with the subcritical
case.



5

Theorem 3.1. Assume that b > 0. Then for any λ ≥ 0, the limit g(λ) :=↑ limt→∞
v̄−1

t vt(λ) exists and 0 = g(0) = g(0+) ≤ g(λ) ≤ g(∞−) = 1. Consequently, v̄−1
t lt

converges as t →∞ to a probability measure π0 on (0,∞) with Laplace transform 1− g.

Proof. Let gt(λ) = v̄−1
t vt(λ) and ht(λ) = λ−1vt(λ). Then we have 0 ≤ gt(λ) ≤ 1 and

gt+s(λ) = vs(v̄t)
−1

vs(vt(λ)) = hs(v̄t)
−1

hs(vt(λ))gt(λ), s ≥ 0, t ≥ 0. (3.1)

Since vt(0) = 0 and vt(λ) is a concave function of λ ≥ 0, we have h′t(λ) = λ−2[v′t(λ)λ−
vt(λ)] ≤ 0, and hence ht(λ) is non-increasing in λ ≥ 0. Thus gt(λ) is non-decreasing in
t ≥ 0, so the limit g(λ) =↑ limt→∞ gt(λ) exists and 0 ≤ g(λ) ≤ 1 for all λ ≥ 0. Since
gt(∞−) = 1, we have g(∞−) = 1. Observe that

gt(vs(λ)) = gt+s(λ)hs(v̄t), s ≥ 0, t ≥ 0, (3.2)

and limt→∞ hs(v̄t) = v′s(0) = e−bs. Then letting t →∞ in (3.2) we get

g(vs(λ)) = e−bsg(λ), λ ≥ 0, s ≥ 0. (3.3)

It follows that g(0+) = g(0) = 0. From the relation

lim
t→∞

∫ ∞

0

e−λuv̄−1
t lt(du) = 1− lim

t→∞
v̄−1

t vt(λ) = 1− g(λ)

we see that v̄−1
t lt converges as t →∞ to a probability measure π0 on (0,∞) with Laplace

transform 1− g. ¤
Based on (2.3) and (2.4) it is easy to check that

∂

∂t
[log v′t(λ)] = −φ′(vt(λ)). (3.4)

Since v′0(λ) = 1 clearly, we have

v′t(λ) = exp
{
−

∫ t

0

φ′(vs(λ))ds

}
. (3.5)

Let qt(λ) = ebtvt(λ) for t ≥ 0 and λ ≥ 0. By (3.5) it follows that

q′t(λ) = exp
{
−

∫ t

0

φ′0(vs(λ))ds

}
, (3.6)

where φ0(z) = φ(z)− bz by definition.
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Theorem 3.2. Assume that b > 0. Then for any λ ≥ 0, the limit q′(λ) :=↓ limt→∞
q′t(λ) exists and 0 ≤ q′(λ) ≤ q′(0) = 1. Moreover, q′(λ) > 0 for some (and hence all)
λ > 0 if and only if

∫∞
1

u log um(du) < ∞. Under this condition, we have q′(0+) =
q′(0) = 1.

Proof. By (3.6), the first assertion follows with

q′(λ) = exp
{
−

∫ ∞

0

φ′0(vs(λ))ds

}
. (3.7)

Since b > 0 and vs(λ) ≤ e−bsλ, we see easily that q′(λ) > 0 holds if and only if

∫ ∞

0

ds

∫ ∞

0

u (1− exp{−vs(λ)u})m(du) =
∫ ∞

0

uh(u, λ)m(du) < ∞, (3.8)

where
h(u, λ) :=

∫ ∞

0

(1− exp{−vs(λ)u}) ds.

Observe that
∂

∂u
h(0, λ) =

∫ ∞

0

vs(λ)ds < λ/b,

and hence h(u, λ) ≤ const · λu for sufficiently small u ≥ 0. Now by our assumption on
the branching mechanism we get

∫ 1

0
uh(u, λ)m(du) < ∞. On the other hand, by (2.3)

we may change the integral variable to see that

∂

∂u
h(u, λ) =

∫ ∞

0

vs(λ) exp{−vs(λ)u}ds =
∫ λ

0

vφ(v)−1 exp{−vu}dv.

Noticing that φ′(0) = b we have

lim
u→∞

u
∂

∂u
h(u, λ) = lim

u→∞

∫ λu

0

(s/u)φ(s/u)−1 exp{−s}ds = 1/b

for any λ > 0. Then l’Hospital’s rule implies that limu→∞ h(u, λ)/ log u = 1/b. There-
fore, (3.8) holds if and only if

∫∞
1

u log um(du) < ∞. The last assertion follows imme-
diately by dominated convergence. ¤
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Corollary 3.3. Assume that b > 0. Then uebtlt(du) converges as t →∞ to a probabil-
ity measure η(du) on (0,∞) if and only if

∫∞
1

u log um(du) < ∞. Under this condition,
η(du) has Laplace transform q′.

Proof. By the representation (2.6) we have

qt(λ) =
∫ ∞

0

(
1− e−λu

)
ebtlt(du), (3.9)

and hence
q′t(λ) =

∫ ∞

0

ue−λuebtlt(du). (3.10)

We first regard ue−btlt(du) as a probability measure on [0,∞]. Then Theorem 3.2
asserts that uebtlt(du) converges as t → ∞ to a probability measure η on [0,∞] such
that

q′(λ) =
∫

[0,∞]

e−λuη(du), λ ≥ 0. (3.11)

Since q′t(∞−) = 0, we have q′(∞−) = 0 by the monotone convergence, and hence
η({0}) = 0. Therefore, η(0,∞) = 1 holds if and only if q′t(0

+) = 1, and the results
follow by further applications of Theorem 3.2. ¤

In the next theorem, we make the convention that qt(∞) = ebtv̄t for t > 0.

Theorem 3.4. Assume that b > 0. Then for any 0 ≤ λ ≤ ∞, the limit q(λ) :=↓
limt→∞ qt(λ) exists. Moreover, q(λ) > 0 for some (and hence all) 0 < λ ≤ ∞ if and
only if

∫∞
1

u log um(du) < ∞.

Proof. By Theorem 3.2 and dominated convergence, we have q(λ) =↓ limt→∞ qt(λ) for
all 0 ≤ λ ≤ ∞, where

q(λ) :=
∫ λ

0

q′(u)du.

Since q(∞) ≥ q(λ) for all 0 < λ < ∞, the second assertion is immediate. ¤
As an easy consequence of Theorems 3.1 and 3.4, we get

Corollary 3.5. Assume that b > 0. Then ebtlt(du) converges as t →∞ to q(∞)π0(du),
which is non-degenerate if and only if

∫∞
1

u log um(du) < ∞.

Now we consider the critical case. By virtue of the backward equation (2.3), the
proof of the following result is much simpler than the one in the Galton-Watson setting
given by Kesten et al [7].
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Theorem 3.6. Assume b = 0 and σ2 = φ′′(0) < ∞. Then as t →∞ we have

1
t

[
1

vt(λ)
− 1

λ

]
→ 1

2
σ2

uniformly on 0 < λ ≤ ∞ with the convention 1/∞ = 0.

Proof. For 0 < λ ≤ ∞ and t > 0, we may use (2.3) and (2.9) to see that

1
t

[
1

vt(λ)
− 1

λ

]
= − 1

t

∫ t

0

1
vs(λ)2

∂

∂s
vs(λ)ds =

1
t

∫ t

0

φ(vs(λ))
vs(λ)2

ds. (3.12)

By l’Hospital’s rule,
lim
z↓0

φ(z)/z2 = lim
z↓0

φ′′(z)/2 = σ2/2. (3.13)

But by Theorem 2.1, we have limt→∞ v̄t = 0, and hence limt→∞ vt(λ) = 0 uniformly on
0 < λ ≤ ∞. Then the assertion follows from (3.12) and (3.13). ¤
Corollary 3.7. Assume b = 0 and σ2 = φ′′(0) < ∞. Then we have

↓ lim
t→∞

v′t(λ/t) =
1

(1 + σ2λ/2)2
, λ ≥ 0. (3.14)

Proof. From (2.3) and (2.4) we have v′t(λ/t) = φ(λ/t)−1φ(vt(λ/t)). Then (3.14) follows
from Theorem 3.6. ¤

4. Conditional limit theorems for the non-critical case

Let τ0 be the extinction time of the continuous state branching process {xt : t ≥ 0}.
By Theorem 2.1, in the non-supercritical cases we have τ0 < ∞ almost surely. In this
section we give some conditional limit theorems of {xt : t ≥ 0} based on the random
time τ0.

We first consider a transformation of the continuous state branching process. It is
easy to check that Rt(x, dy) := ebtx−1yQt(x, dy) defines a Markov semigroup on (0,∞).
By differentiating both sides of (2.2) we see that

∫ ∞

0

e−λyRt(x, dy) = exp{−xvt(λ)}q′t(λ), λ ≥ 0. (4.1)

By (3.6) the Laplace transform of (Rt)t≥0 is given by

∫ ∞

0

e−λyRt(x, dy) = exp
{
− xvt(λ)−

∫ t

0

φ′0(vs(λ))ds

}
, λ ≥ 0. (4.2)
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Using (4.2) we may extend (Rt)t≥0 to a transition semigroup on [0,∞), which corre-
sponds to a special form of the continuous state branching processes with immigration
studied by Kawazu and Watanabe [6], Pinsky [19], etc. In the Galton-Watson case, it
was introduced by F. Spitzer (unpublished) and Lamperti and Ney [8]. The following
theorem states that in the critical and subcritical cases Rt(x, ·) is intuitively the law of
xt conditioned on large extinction times.

Theorem 4.1. Assume that b ≥ 0. Then for any x > 0 and t ≥ 0, the distribution of
xt under Qx{·|t + r < τ0} converges as r →∞ to Rt(x, ·).
Proof. By the Markov property we have

Qx [exp{−λxt}|t + r < τ0] =
Qx [exp{−λxt}(1− exp{−xtv̄r})]

1− exp{−xv̄t+r} . (4.3)

Recall that v̄t+r = vt(v̄r) and v′t(0) = e−bt. Under the hypotheses, we have limr→∞ v̄r =
0 by Theorem 2.1. It follows that

lim
r→∞

Qx [exp{−λxt}|t + r < τ0] = lim
r→∞

x−1v̄rvt(v̄r)−1Qx [xt exp{−λxt}]
=x−1ebtQx [xt exp{−λxt}] ,

giving the desired result. ¤
Theorem 4.2. Assume that b > 0. Then Rt(x, ·) converges as t →∞ to a probability
measure η on (0,∞) if and only if

∫∞
1

u log um(du) < ∞. Under this condition, η(du)
is also the limit distribution of uebtlt(du) described in Corollary 3.3.

Proof. Since b > 0, we have vt(λ) → 0 as t →∞. By (4.1) and Theorem 3.2 we see that

lim
t→∞

∫ ∞

0

e−λyRt(x, dy) = lim
t→∞

ebtv′t(λ) = q′(λ),

which together with Corollary 3.3 yields the desired results. ¤
Let (Q◦t )t≥0 denote the restriction to (0,∞) of the semigroup (Qt)t≥0. The following

theorem states that (Q◦t )t≥0 has a e−b-invariant measure in the subcritical case. This
confirms an observation of Pakes [16;p86]. It is also closely related to the work of Pakes
and Trajstman [18].
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Theorem 4.3. Assume that b > 0. Then for any x > 0 and r ≥ 0 the distribution
of xt under Qx{·|t + r < τ0} converges as t → ∞ to a probability measure πr on
(0,∞) independent of x. Moreover, π0 is also the limit distribution of v̄−1

t lt(du) and
π0Q

◦
t = e−btπ0 for all t > 0.

Proof. Taking r = 0 in (4.3) we see that

Qx[exp{−λxt}|t < τ0] = 1− 1− exp{−xvt(λ)}
1− exp{−xv̄t} . (4.4)

By this and Theorem 3.1 it follows that

lim
t→∞

Qx[exp{−λxt}|t < τ0] = 1− lim
t→∞

v̄−1
t vt(λ) = 1− g(λ), (4.5)

so we get π0 = limt→∞Qx{·|t < τ0}. In view of (3.3) we have

∫ ∞

0

(1− exp{−vt(λ)u}) π0(du) =
∫ ∞

0

(
1− e−λu

)
e−btπ0(du),

and hence π0Q
◦
t = e−btπ0. By (4.3),

Qx[exp{−λxt}|t + r < τ0] =
exp{−xvt(λ)} − exp{−xvt(λ + v̄r)}

1− exp{−xv̄t+r} . (4.6)

As t →∞, the right hand side of (4.6) is equivalent to

v̄−1
t+r(vt(λ + v̄r)− vt(λ)) = vt(v̄r)−1(vt(λ + v̄r)− vt(λ)).

Using the canonical representation we may write this into

( ∫ ∞

0

(
1− e−v̄ru

)
lt(du)

)−1 ∫ ∞

0

e−λu
(
1− e−v̄ru

)
lt(du),

which converges as t →∞ to

( ∫ ∞

0

(
1− e−v̄ru

)
π0(du)

)−1 ∫ ∞

0

e−λu
(
1− e−v̄ru

)
π0(du), (4.7)

giving the Laplace transform of a probability πr on (0,∞). ¤
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Corollary 4.4. Assume that b > 0 and let π0 be given by Theorem 4.3. Then we have∫∞
0

uπ0(du) = q(∞)−1. Thus π0 has finite mean if and only if
∫∞
1

u log um(du) < ∞.

Proof. By the proof of Theorem 4.3, the measure π0 has Laplace transform 1 − g(λ).
Letting λ →∞ in (3.3) we have g(v̄s) = e−bs. It follows that

∫ ∞

0

uπ0(du) = g′(0) = lim
s→∞

v̄−1
s e−bs = lim

s→∞
qs(∞)−1 = q(∞)−1,

which together with Theorem 3.4 gives the desired conclusion. ¤
The above conditional limit theorems are not restricted to the subcritical cases. In

fact, there is a symmetry in the limit theorems between the subcritical and supercritical
processes if we use suitable conditioning. In the supercritical case, we have b < 0 and

Qx[exp{−λxt}|τ0 < ∞] = exp{−xwt(λ)}, λ ≥ 0, (4.8)

where wt(λ) = vt(λ + v̄)− v̄. Setting φv̄(λ) = φ(λ + v̄) one may see that wt(λ) satisfies

∂

∂t
wt(λ) = −φv̄(wt(λ)), w0(λ) = λ, t ≥ 0, λ ≥ 0. (4.9)

It is not hard to check that −φv̄(λ) := φ(v̄) − φ(λ + v̄) has the representation (2.1)
with parameters bv̄ := φ′(v̄), cv̄ := c and mv̄(du) := e−v̄um(du). Recall that v̄ > 0
is the largest root of φ(z) = z, so we have bv̄ > 0. Therefore, (4.8) implies that
{xt : t ≥ 0} conditioned on τ0 < ∞ is a subcritical continuous state branching process
with cumulant semigroup (wt)t≥0. In particular, wt(λ) has the representation (2.6) with
canonical measure e−v̄ult(du). Using Theorems 4.1, 4.2 and 4.3 we get the following

Theorem 4.5. Assume that b < 0. Then for any x > 0 the distribution of xt under
Qx{·|t + r < τ0 < ∞} converges as r → ∞ to a probability measure Tt(x, ·) on (0,∞).
Moreover, Tt(x, ·) converges as t →∞ to a probability measure η(du) on (0,∞), which
is also the limit distribution of uebv̄te−v̄ult(du).

Theorem 4.6. Assume that b < 0. Then for x > 0 and r ≥ 0 the distribution of
xt under Qx{·|t + r < τ0 < ∞} converges as t → ∞ to a probability measure πr on
(0,∞) which is independent of x. Moreover, π0(du) is also the limit distribution of
(v̄t − v̄)−1e−v̄ult(du).

5. Conditional limit theorems for the critical case

Now we consider the critical case. The following theorems shows that suitable con-
ditioning of the critical process may lead to some universal limit laws independent of
the explicit form of the branching mechanism. We first give an analogue of the result
of Harris [5].
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Theorem 5.1. Assume that b = 0 and σ2 = φ′′(0) < ∞. Let {yt : t ≥ 0} be a Markov
process with transition semigroup (Rt)t≥0. Then the distribution of yt/t converges as
t →∞ to the one on [0,∞) with density 4x exp{−2x/σ2}/σ4.

Proof. Since b = 0, we have q′t(λ) = v′t(λ) by (2.6) and (3.10). By (4.1) and Corollary
3.7 we see that

lim
t→∞

∫ ∞

0

e−λy/tRt(x, dy) = lim
t→∞

q′t(λ/t) = (1 + σ2λ/2)−2,

which is the Laplace transform of the desired limit distribution. ¤
A number of conditional limit theorems for Galton-Watson processes were proved in

[17] by introducing some general conditioning events, which unify the known results.
The following theorems treat two simplest special cases of the conditional events of [17].
The results will be used in the next section to draw a limit theorem for the branching
process with state dependent immigration. We shall give the sketches of their proofs,
for they are simpler than those of [17] in the more sophisticated situation.

Theorem 5.2. Assume that b = 0 and σ2 = φ′′(0) < ∞. Then for any fixed x > 0 and
r ≥ 0,

lim
t→∞

Qx{xt/t > z|t + r < τ0} = exp{−2z/σ2}, z ≥ 0. (5.1)

Proof. By (4.3) we have

Qx [exp{−λxt/t}|t + r < τ0] =
exp{−xvt(λ/t)} − exp{−xvt(λ/t + v̄r)}

1− exp{−xv̄t+r} . (5.2)

As t →∞, the right hand side is equivalent to

(vt(λ/t + v̄r)− vt(λ/t))/v̄t+r.

By Theorem 3.6 we have limt→∞ tv̄t+r = 2/σ2 and limt→∞ tvt(λ/t) = (1/λ + σ2/2)−1.
From the uniform convergence we get

σ2/2 = lim
t→∞

1
t

[
1

vt(λ/t + v̄r)
− 1

λ/t + v̄r

]
= lim

t→∞
[tvt(λ/t + v̄r)]−1.

Then it follows immediately that

lim
t→∞

Qx [exp{−λxt/t}|t + r < τ0] = (1 + σ2λ/2)−1,

yielding the desired result. ¤
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Theorem 5.3. Assume that b = 0 and σ2 = φ′′(0) < ∞. Then for any x > 0 and
α ≥ 0 the distribution of xt/t under Qx{·|(1+α)t < τ0} converges as t →∞ to the one
on [0,∞) with density

2(1 + α) exp{−2x/σ2}[1− exp{−2x/σ2α}]/σ2. (5.3)

Proof. Taking r = αt in (4.2) we get

Qx [exp{−λxt/t}|(1 + α)t < τ0] =
exp{−xvt(λ/t)} − exp{−xvt(λ/t + v̄αt)}

1− exp{−xv̄(1+α)t}
,

which is equivalent to
(vt(λ/t + v̄αt)− vt(λ/t))/v̄(1+α)t

as t →∞. Using Theorem 3.6 one can show that

lim
t→∞

Qx [exp{−λxt/t}|(1 + α)t < τ0] =
1 + α

(1 + σ2λ/2)(1 + α + ασ2λ/2)
,

which is the Laplace transform of the distribution with density (5.3). ¤

6. A limit theorem for the immigration process

In this section, we consider a modification of the continuous state branching pro-
cess, which allows immigration after the population becomes extinct. Its discrete state
analogues have been studied by Foster [3], Pakes [12,13,14], Mitov and Yanev [9,10], Ya-
mazato [22] and many others. Suppose that q > 0 is a constant and G is a probability
measure on (0,∞) satisfying

g :=
∫ ∞

0

yG(dy) < ∞. (6.1)

Let {τ i : i = 0, 1, 2, · · · } be a family of i.i.d exponential random variables with parameter
q > 0 and let {xi(t) : t ≥ 0; i = 1, 2, · · · } be a family of i.i.d. continuous state branching
processes with initial distribution G. We define another continuous state branching
process {x0(t) : t ≥ 0} with the same transition semigroup as {xi(t) : t ≥ 0; i = 1, 2, · · · },
but its initial distribution is not specified. Suppose that the families {τ i : i = 0, 1, 2, · · · },
{xi(t) : t ≥ 0; i = 1, 2, · · · } and {x0(t) : t ≥ 0} are independent of each other. Let
τ i
0 := inf{t ≥ 0 : xi(t) = 0} denote the extinction time of {xi(t) : t ≥ 0}. Let

σn :=
n∑

i=0

[τ i
0 + τ i]. (6.2)
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Then σn →∞ almost surely as n →∞. We define the process {yt : t ≥ 0} by

yt =
{

x0(t) for 0 ≤ t < τ0
0 + τ0,

xn(t− σn−1) for σn−1 ≤ t < σn and n ≥ 1.
(6.3)

It is not hard to check that {yt : t ≥ 0} is a time homogeneous Markov process, which will
be called an immigration process with waiting parameter q and returning distribution G.
Note that the immigration process started with zero is a special case of the regenerative
process of Mitov et al [11], which was constructed by restarting independent copies of
a general stochastic process after the hitting times to zero.

The transition semigroup (Rt)t≥0 of {yt : t ≥ 0} can be computed based on the
construction (6.3). For any x > 0 the increasing function Qt(x, {0}) of t ≥ 0 determines
a probability measure Q(dt, x, {0}) on (0,∞] with density xφ(v̄t) exp{−xv̄t}. Then

h(t) =
∫ t

0

qe−qsds

∫ ∞

0

x exp{−xv̄t−s}φ(v̄t−s)G(dx), t ≥ 0, (6.4)

defines the density of a probability measure H(dt) on [0,∞). Indeed, H(dt) gives the
distribution of the random variables {τ i

0 + τ i : i = 1, 2, · · · }. We define the renewal
measure U(dt) on [0,∞) by

U(dt) =
∞∑

n=0

H∗n(dt), t ≥ 0, (6.5)

where H∗n denotes the n-fold convolution of H with H∗0 = δ0 by convention. Set
H(t) = H([0, t]) and U(t) = U([0, t]). Observe that for any t ≥ 0 we have

U(t) ≤
∞∑

n=0

H(t)n =
1

1−H(t)
. (6.6)

A characterization for the transition semigroup of the immigration process {yt : t ≥ 0}
is given as follows.

Theorem 6.1. For any bounded Borel function f on [0,∞) we have

Rtf(0) = f(0)−
∫ t

0

U(ds)
∫ t−s

0

qe−qrdr

∫ ∞

0

[f(0)−Qt−s−rf(y)]G(dy), (6.7)

and

Rtf(x) = Qtf(x)−
∫ t

0

[f(0)−Rt−sf(0)]Q(ds, x, {0}), x > 0. (6.8)
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Proof. In the sequel we may write G(f) for
∫∞
0

f(y)G(dy). Since σn →∞ almost surely
as n →∞, for any t ≥ 0 we have

P{0 ≤ t ≤ σ0 or σn−1 < t ≤ σn for some n ≥ 1} = 1.

If f(0) = 0, an easy computation based on (6.3) leads to

Rtf(0) =
∫ t

0

U(ds)
∫ t−s

0

qe−qrG(Qt−s−rf)dr. (6.9)

Similarly we have

Rt(0, {0}) =
∫ t

0

eq(s−t)U(ds). (6.10)

For a general bounded Borel function f on [0,∞) we can combine the above to get

Rtf(0) =
∫ t

0

U(ds)
∫ t−s

0

qe−qrG(Q◦
t−s−rf)dr +

∫ t

0

eq(s−t)U(ds)f(0).

Using this we can compute that

Rtf(0) =
∫ t

0

U(ds)
∫ t−s

0

qe−qrG(Qt−s−rf)dr

−
∫ t

0

H(t− s)U(ds)f(0) +
∫ t

0

eq(s−t)U(ds)f(0)

=
∫ t

0

U(ds)
∫ t−s

0

qe−qr[G(Qt−s−rf)− f(0)]dr

+
∫ t

0

[1−H(t− s)]U(ds)f(0).

Then (6.7) follows from the renewal equation

∫ t

0

[1−H(t− s)]U(ds) =
∞∑

n=0

[H∗n(t)−H∗(n+1)(t)] = 1.

By the strong Markov property of the process {yt : t ≥ 0},

Rtf(x) = Q◦
t f(x) +

∫ t

0

Rt−sf(0)Q(ds, x, {0}), x > 0.

Then (6.8) is immediate. ¤
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Lemma 6.1. Assume b = 0 and σ2 = φ′′(0) < ∞. Then, as t →∞,

t2h(t) → 2g/σ2 and t[1−H(t)] → 2g/σ2

where g is defined by (6.1).

Proof. We first rewrite (6.4) as

h(t) =
∫ ∞

0

qe−qs1{s≤t}ds

∫ ∞

0

x exp{−xv̄t−s}φ(v̄t−s)G(dx), t ≥ 0.

By Theorem 3.6 and (3.13) we have t2φ(v̄t−s) → 2/σ2 as t → ∞. Then the results
follow by dominated convergence theorem and l’Hospital’s rule. ¤

Now we present a limit theorem for the immigration process. The following result
gives a continuous time and space version of the theorems of Foster [3] and Yamazato
[22].

Theorem 6.2. Assume that b = 0 and σ2 = φ′′(0) < ∞. Let Y = (Ω,G,Gt, yt,Rx) be
a realization of the semigroup (Rt)t≥0. Then for any x ≥ 0 and 0 < β < 1 we have

lim
t→∞

Rx {log yt/ log t ≤ β} = β. (6.11)

Proof. Under R0, the process {yt : t ≥ 0} has the same law as the one constructed
by (6.3) with x0

t = 0 for all t ≥ 0, which is a special form of the regenerative process
studied by Mitov et al [11]. With the results in the previous sections, it is not hard to
check that all the conditions in Theorem 2 of [11] are satisfied. Consequently, we have

lim
t→∞

R0 {δ(yt)/δ(t) ≤ β} = β,

where δ(t) :=
∫ t

0
(1−H(s))ds. By Lemma 6.1 we see that (6.11) holds for x = 0. Then

the desired result follows by (6.8). ¤
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