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Abstract. We realize explicitly the well-known additive decomposition of

the Hochschild cohomology ring of a group algebra at the chain level. As a

result, we describe the cup product, the Batalin-Vilkovisky operator and the
Lie bracket in the Hochschild cohomology ring of a group algebra.

1. Introduction

Let k be a field and G a finite group. Then the Hochschild cohomology ring of
the group algebra kG admits an additive decomposition:

HH∗(kG) '
⊕
x∈X

H∗(CG(x), k)

where X is a set of representatives of conjugacy classes of elements of G and CG(x)
is the centralizer of x ∈ G. The proof of this isomorphism can be found in [2] or
[17]. The usual proof is abstract rather than giving an explicit isomorphism. For
example, one of the key steps is to use the so-called Eckmann-Shapiro Lemma,
one needs to construct some comparison maps between two projective resolutions
in order to write it down explicitly, and this is usually difficult. In [17], Siegel and
Witherspoon used techniques and notations from group representation theory to
interpret the above additive decomposition explicitly. For our purpose, we need
to give an explicit isomorphism at the chain level.

A priori, the additive decomposition gives an isomorphism of graded vector
spaces. The left side has a graded commutative algebra structure given by the cup
product, a graded Lie algebra structure given by the Gerstenhaber Lie bracket
([8]), and a Batalin-Vilkovisky (BV) algebra structure given by the 4 operator
([19]). It would be interesting to describe these structures in terms of pieces from
the right side.

For graded algebra structure, it was done by Holm for abelian groups using
computations ([10]), then Cibils and Solotar gave a conceptual proof in ([4]). The
general case was dealt with by Siegel and Witherspoon ([17]), they described the
cup product formula by notations from group representation theory. Our goal in
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the present paper is to represent the cup product, the Lie bracket and the BV
operator in the Hochschild cohomology ring in terms of the additive decomposi-
tion. This is based on the explicit construction of an isomorphism in the additive
decomposition (although there is no canonical choice for such an isomorphism).

The main obstruction in realizing an isomorphism in the additive decomposition
comes from the fact that, it is usually difficult to construct the comparison map
between two projective resolutions of modules. There is a way to simplify such
construction, namely, one can reduce it to construct a setwise self-homotopy over
one projective resolution, which is often much easier. This method was already
used in a recent paper by the second author jointly with Le ([12]). For convenience,
we shall give a brief introduction to this idea in Section 2.

This article is organized as follows. In Section 2, we recall Le and Zhou’s method
on constructing comparison maps. In Section 3 and 4, we review the definitions of
various structures over Hochschild cohomology and group cohomology, using the
normalized bar resolutions. We always use the normalized bar resolutions since
they are easy to describe and can greatly simplify the computations.

In Section 5, we give a way to realize explicitly the additive decomposition of the
Hochschild cohomology of a group algebra. The main line of our method follows
from [17]. In Section 6, we shall use some idea from [4] to give another way to
realize the additive decomposition.

We give the cup product formula in Section 7. Our formula shows that the group
cohomology H∗(G, k) can be seen as a subalgebra of the Hochschild cohomology
HH∗(kG) at the complex level, and that the additive decomposition naturally
gives an isomorphism of graded H∗(G, k)-modules.

We deal with the 4 operator and the graded Lie bracket in the next section.
In particular, we show that the operator 4 restricts to each summand under the
additive decomposition, and thatH∗(G, k) is indeed a BV subalgebra of HH∗(kG).

In the final section, we use our formulae to compute the BV structure of the
Hochschild cohomology ring for symmetric group of degree 3 over F3. This paper,
with [11], should be the first attempts of concrete computation for the BV structure
of a non-commutative algebra.
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2. How to construct comparison morphisms? [12, Appendix]

Definition 2.1. (cf. [1]) Let A be an algebra over a field k. Let

C∗ : · · · −→ Cn+1
dn+1−→ Cn

dn−→ Cn−1 −→ · · ·
be a chain complex of A-modules. If there are maps (just as maps between sets)
sn : Cn −→ Cn+1 such that sn−1dn+dn+1sn = idCn for all n, then the maps {sn}
are called a setwise self-homotopy over the complex C∗.

Remark 2.2. (i) There is a setwise self-homotopy over a complex C∗ of A-
modules if and only if C∗ is an exact complex, that is, C∗ is a zero object
in the derived category D(ModA). Compare this with the usual self-
homotopy, which is equivalent to saying that C∗ is split exact, and hence
it is a zero object in the homotopy category K(ModA).

(ii) Usually a setwise self-homotopy can be taken to be linear maps, so it is a
self-homotopy in the usual sense in the category of complexes of k-vector
spaces. In case that the exact complex is a right bounded complex of A-A-
bimodules, a setwise self-homotopy can even be chosen as homomorphisms
of one-sided modules.

We will show how to use a setwise self-homotopy to construct a comparison
map. Let M and N be two A-modules, and let f : M −→ N be an A-module
homomorphism. Suppose that P ∗ = (Pi, ∂i) is a free resolution of M , and that
Q∗ = (Qi, di) is a projective resolution of N . Suppose further that there is a
setwise self-homotopy s = {sn} over Q∗ (including N):

· · · d3 // Q2
d2 //

s2
~~

id

��

Q1

id

��
s1~~

d1 // Q0

id

��
s0~~

d0 // N

id

��
s−1~~

// 0

· · ·
d3

// Q2
d2

// Q1
d1

// Q0
d0

// N // 0.

For each i ≥ 0, choose a basis Xi for the free A-module Pi (the i-th term of P ∗).
We define inductively the maps fi : Xi −→ Qi as follows: for x ∈ X0, f0(x) =
s−1f∂0(x); for i > 1 and for x ∈ Xi, fi(x) = si−1fi−1∂i(x). Extending A-linearly
the maps fi we get A-homomorphisms fi : Pi −→ Qi. It is easy to verify that
{fi} gives a chain map between the complexes P ∗ and Q∗. We illustrate the above
procedure in the following diagram:

Pn

fn

��

∂n // Pn−1

fn−1

��

x

fn

��

∂n // ∂n(x)

fn−1

��
Qn−1

sn−1
||

fn−1∂n(x)

sn−1ww
Qn sn−1fn−1∂n(x)

We shall use the following standard homological fact.
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Lemma 2.3. Let A and B be two rings and let F : ModA −→ ModB be an
additive contravariant (resp., covariant) functor. If C∗ and D∗ are two projective
resolutions of an A-module M , then the cochain complexes FC∗ and FD∗ of B-
modules are homotopic. In particular, if ϕ : C∗ −→ D∗ and ψ : D∗ −→ C∗ are
two chain maps inducing identity maps idM : M −→M , then Fϕ : FD∗ −→ FC∗

(resp., Fϕ : FC∗ −→ FD∗) and Fψ : FC∗ −→ FD∗ (resp., Fψ : FD∗ −→ FC∗)
are inverse homotopy equivalences.

3. Reminder on Hochschild cohomology

In this section, we recall the definitions of various structures over Hochschild
cohomology. For the cup product and the Lie bracket in the Hochschild cohomol-
ogy ring, we refer to Gerstenhaber’s original paper [8]; for the Batalin-Vilkovisky
algebra structure, we refer to Tradler [19].

Let k be a field and A an associative k-algebra with identity 1A. Denote by A
the quotient space A/(k · 1A). We shall write ⊗ for ⊗k and A⊗n for the n-fold
tensor product A ⊗ · · · ⊗ A. The normalized bar resolution (Bar∗(A), d∗) of A is
a free resolution of A as A-A-bimodules, where

Bar−1(A) = A, and for n ≥ 0, Barn(A) = A⊗A⊗n ⊗A,
d0 : Bar0(A) = A⊗A −→ A, a0⊗a1 7−→ a0a1(multiplication map), and for n ≥ 1,

dn : Barn(A) −→ Barn−1(A) sends a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1 to

a0a1 ⊗ a2 ⊗ · · · ⊗ an ⊗ an+1 +

n−1∑
i=1

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

+(−1)na0 ⊗ a1 ⊗ · · · ⊗ an−1 ⊗ anan+1.

The normalized bar resolution is a natural quotient complex of the usual bar
resolution. The exactness of the normalized bar resolution is an easy consequence
of the following fact: there is a setwise self-homotopy sn : Barn(A) −→ Barn+1(A)
over Bar∗(A) given by

sn(a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1) = 1⊗ a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1.

Notice that here each sn is just a right A-module homomorphism. For simplicity,
in the following we will write ai for ai.

Let AMA be an A-A-bimodule. Remember that any A-A-bimodule can be
identified with a left module over the enveloping algebra Ae = A⊗Aop. We have
the Hochschild cohomology complex (C∗(A,M), δ∗):

Cn(A,M) = HomAe(Barn(A),M) ' Homk(A
⊗n
,M), for n ≥ 0,

δn : Cn(A,M) −→ Cn+1(A,M), f 7−→ δn(f),where δn(f) sends a1⊗· · ·⊗an+1 to

a1f(a2 ⊗ · · · ⊗ an+1) +

n∑
i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)

+(−1)n+1f(a1 ⊗ · · · ⊗ an)an+1.
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For n ≥ 0, the degree-n Hochschild cohomology group of the algebra A with coeffi-
cients in M is defined to be

HHn(A,M) = Hn(C∗(A,M)) ' ExtnAe(A,M).

If in particular, A = kG the group algebra of a finite group G, then the
Hochschild cohomology complex (C∗(A,M), δ∗) has the following form:

Cn(kG,M) ' Homk(kG
⊗n
,M) 'Map(G

n
,M), for n ≥ 0,

where G = G−{1} and Map(G
×n
,M) denotes all the maps between the sets G

×n

and M , and the differential is given by

δn : Map(G
×n
,M) −→Map(G

×n+1
,M), f 7−→ δn(f),

where δn(f) sends (g1, · · · , gn+1) ∈ Gn+1
to

g1f(g2, · · · , gn+1)+

n∑
i=1

(−1)if(g1, · · · , gigi+1, · · · , gn+1)+(−1)n+1f(g1, · · · , gn)gn+1.

When M = A with the obvious A-A-bimodule structure, we write Cn(A) (resp.
HHn(A)) for Cn(A,A) (resp. HHn(A,A)). Let f ∈ Cn(A), g ∈ Cm(A). Then
the cup product f ∪ g ∈ Cn+m(A) is defined as follows:

f ∪g : A
⊗(n+m) −→ A, a1⊗· · ·⊗an+m 7−→ f(a1⊗· · ·⊗an)g(an+1⊗· · ·⊗an+m).

This cup product is associative and induces a well-defined product over

HH∗(A) =
⊕
n≥0

HHn(A) =
⊕
n≥0

ExtnAe(A,A),

which is called the Hochschild cohomology ring of A. Moreover, HH∗(A) is graded
commutative, that is, α ∪ β = (−1)mnβ ∪ α for α ∈ HHn(A) and β ∈ HHm(A).
As usual, we call an element α ∈ HHn(A) homogeneous of degree n, and its degree
will be denoted by |α|.

The Lie bracket is defined as follows. Let f ∈ Cn(A,M), g ∈ Cm(A). If
n,m ≥ 1, then for 1 ≤ i ≤ n, the so-called brace operation f ◦i g ∈ Cn+m−1(A,M)
is defined by

f◦ig(a1⊗· · · an+m−1) = f(a1⊗· · ·⊗ai−1⊗g(ai⊗· · ·⊗ai+m−1)⊗ai+m⊗· · ·⊗an+m−1);

if n ≥ 1 and m = 0, then g ∈ A and for 1 ≤ i ≤ n, set

f ◦i g(a1 ⊗ · · · an−1) = f(a1 ⊗ · · · ⊗ ai−1 ⊗ g ⊗ ai ⊗ · · · ⊗ an−1);

for any other case, set f ◦i g to be zero. Define

f ◦ g =

n∑
i=1

(−1)(m−1)(i−1)f ◦i g ∈ Cn+m−1(A,M)

and for f ∈ Cn(A), g ∈ Cm(A), define

[f, g] = f ◦ g − (−1)(n−1)(m−1)g ◦ f ∈ Cn+m−1(A).

The above [ , ] induces a well-defined (graded) Lie bracket in Hochschild cohomol-
ogy

[ , ] : HHn(A)×HHm(A) −→ HHn+m−1(A)
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such that (HH∗(A),∪, [ , ]) is a Gerstenhaber algebra, that is, for homogeneous
elements α, β, γ in HH∗(A), the following three conditions hold:

• (HH∗(A),∪) is an associative algebra and it is graded commutative, that
is, the cup product ∪ is an associative multiplication and satisfies α∪β =
(−1)|α||β|β ∪ α;
• (HH∗(A), [ , ]) is a graded Lie algebra, that is, the Lie bracket [ , ] satisfies

[α, β] = −(−1)(|α|−1)(|β|−1)[β, α] and the graded Jacobi identity;
• Poisson rule: [α ∪ β, γ] = [α, γ] ∪ β + (−1)|α|(|γ|−1)α ∪ [β, γ].

We now assume that A is a symmetric k-algebra, that is, A is isomorphic to its
dual D(A) = Homk(A, k) as Ae-modules, or equivalently, if there exists a sym-
metric associative non-degenerate bilinear form 〈 , 〉 : A× A −→ k. This bilinear
form induces a duality between the Hochschild cohomology and the Hochschild
homology. In fact, for any n ≥ 0 there is an isomorphism between HHn(A) and
HHn(A) induced by the following canonical isomorphisms

Homk(A⊗Ae Barn(A), k) ' HomAe(Barn(A), D(A)) ' HomAe(Barn(A), A).

Via this duality, we have, for n ≥ 1, an operator 4 : Cn(A) −→ Cn−1(A) which
corresponds to the Connes’ B-operator (denoted by B) on the Hochschild homol-
ogy complex. More precisely, for any f ∈ Cn(A), 4(f) ∈ Cn−1(A) is given by the
equation

〈4(f)(a1⊗· · ·⊗an−1), an〉 =

n∑
i=1

(−1)i(n−1)〈f(ai⊗· · ·⊗an−1⊗an⊗a1⊗· · ·⊗ai−1), 1〉.

From the well-known properties of the Connes’ B-operator B (cf. [13, Chapter
2]), it is easy to see that the operator 4 is a chain map such that the induced
operation 4 on Hochschild cohomology HH∗(A) squares to zero (in fact, 42 = 0
holds on normalized Hochschild cochain complex level). It turns out that the
Gerstenhaber algebra (HH∗(A),∪, [ , ]) together with the operator4 is a Batalin-
Vilkovsky algebra (BV-algebra), that is, in addition to be a Gerstenhaber algebra,
(HH∗(A),4) is a complex and

[α, β] = −(−1)(|α|−1)|β|(4(α ∪ β)−4(α) ∪ β − (−1)|α|α ∪4(β))

for all homogeneous elements α, β ∈ HH∗(A).

Remark 3.1. The sign in the definition of a BV-algebra depends on the choice of
the definitions of cup product and Lie bracket. If we define α∪′β = (−1)|α||β|α∪β
and 4′(α) = (−1)(|α|−1) 4 (α), then we get

[α, β] = (−1)|α|(4′(α∪′β)−4′(α)∪′β − (−1)|α|α∪′4′(β)),

which is the equality in the usual definition of a BV-algebra (see, for example
[9, 15]). We choose the sign convention from [19] because of our convention of the
definitions of cup product and Connes’ B-operator in the Hochschild (co)homology
theory.
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4. Reminder on group cohomology

Let G be a finite group and U a left kG-module. The group cohomology of
G with coefficient in U is defined to be Hn(G,U) = ExtnkG(k, U). The complex
Bar∗(kG) ⊗kG k is the standard resolution of the trivial module k. In fact, as
the setwise self-homotopy sn over Bar∗(kG) are right module homomorphisms,
Bar∗(kG) ⊗kG k is exact and thus a projective resolution of kG ⊗kG k ' k. We
write the complex C∗(G,U) = HomkG(Bar∗(kG)⊗kG k, U). Therefore, for n ≥ 0,

Cn(G,U) ' HomkG((kG⊗ kG⊗n ⊗ kG)⊗kG k, U) ' HomkG(kG⊗ kG⊗n, U)

' Homk(kG
⊗n
, U) 'Map(G

×n
, U),

and the differential is given by

δ0(x)(g) = gx− x (for x ∈ U and g ∈ G)

and (for ϕ : G
×n −→ U and g1, · · · , gn+1 ∈ G)

δn(ϕ)(g1, · · · , gn+1) = g1ϕ(g2, · · · , gn+1)+
n∑
i=1

(−1)iϕ(g1, · · · , gigi+1, · · · , gn+1) + (−1)n+1ϕ(g1, · · · , gn).

Of particular interest to us are the following two cases which relate group coho-
mology to Hochschild cohomology and in fact which underly our two realisations
of the additive decomposition of the Hochschild cohomology of a group algebra.

Note that we have an algebra isomorphism (kG)e ' k(G × G) given by g1 ⊗
g2 7−→ (g1, g

−1
2 ), for g1, g2 ∈ G. Thus we can also identify each kG-kG-bimodule

M as a left k(G × G)-module by (g1, g2) · x = g1xg
−1
2 . In the sequel, we shall

write the Hochschild cohomology complex for the group algebra kG in terms of
k(G×G)-modules.

Case 1. M = kG, the module kG with the obvious kG-kG-bimodule, or
equivalently, the k(G×G)-module kG with action: (g1, g2)·x = g1xg

−1
2 for g1, g2 ∈

G. Consider G as a subgroup of G × G via the diagonal embedding G → G ×
G, g 7→ (g, g), and it is easy to verify that there is a k(G×G)-module isomorphism

IndG×GG k = k(G×G)⊗kG k ' kG, (g1, g2)⊗ 1 7−→ g1g
−1
2 . So we have

HHn(kG, kG) ' Extnk(G×G)(kG, kG) ' Extnk(G×G)(Ind
G×G
G k, kG)

' ExtnkG(k,ResG×GG kG) = ExtnkG(k, ckG)
= Hn(G, ckG),

where the third isomorphism is given by the adjoint equivalence and ckG is consid-
ered as a left kG-module by conjugation: g · x = gxg−1 for g, x ∈ G. This verifies
a well-known fact observed by Eilenberg and Mac Lane ([5]): the Hochschild coho-
mology HHn(kG, kG) of kG with coefficients in kG is isomorphic to the ordinary
group cohomology Hn(G, kG) of G with coefficients in kG under the conjugation.

Case 2. M = k, the trivial kG-kG-bimodule, or equivalently, the k(G × G)-
module k with action: (g1, g2) · 1 = 1 for g1, g2 ∈ G. Since we have

HHn(kG, k) ' Extnk(G×G)(kG, k) ' Extnk(G×G)(k(G×G)⊗kG k, k)

' ExtnkG(k, k) = Hn(G, k),
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the Hochschild cohomology HHn(kG, k) of kG with coefficients in k is isomorphic
to the ordinary group cohomology Hn(G, k). Another way to see this lies in the
fact that the two complexes C∗(kG, k) and C∗(G, k) coincide.

We can deduce the second case from the first one. In fact, the subspace
k(
∑
g∈G g) ⊆ kG is a sub-(G × G)-module of kG (and also sub-G-module of

ckG), which is isomorphic to the trivial module. Via the isomorphisms in Case 1,
HH∗(kG, k(

∑
g∈G g)) corresponds to H∗(G, k(

∑
g∈G g)).

We can in fact define a cup product and Lie bracket over

H∗(G, k) =
⊕
n≥0

Hn(G, k)

such that it becomes a Gerstenhaber algebra. One sees that the cup product
and the Lie bracket over HH∗(kG) restrict to H∗(G, k) by [7, Corollary 2.2], so
H∗(G, k) is a Gerstenhaber subalgebra of HH∗(kG). In fact, as in [7, Proof of
Theorem 1.8], there is a chain map at the cohomology complex level:

HomkG(Barn(kG)⊗kG k, k) = Cn(kG, k) ↪→ Cn(kG)

= Homk(G×G)(Barn(kG), kG),

(ϕ : G
×n −→ k) 7−→ (ψ : G

×n −→ kG), ψ(g1, · · · , gn) = ϕ(g1, · · · , gn)g1 · · · gn.
This inclusion map preserves the brace operations in the following sense:

Let ϕ1 ∈ Cn(kG, k) 'Map(G
×n
, k), ϕ2 ∈ Cm(kG, k), and let ϕ̂1 ∈ Cn(kG), ϕ̂2 ∈

Cm(kG) be the corresponding elements under the above inclusion map. Then

ϕ̂1 ◦i ϕ̂2 = ̂ϕ1 ◦i ϕ̂2 ∈ Cm+n−1(kG).
Recall that kG is a symmetric algebra with the bilinear form

〈 , 〉 : kG× kG −→ k,

〈g, h〉 =

{
1 if g = h−1

0 otherwise

for g, h ∈ G. So there is a well-defined BV-algebra structure on HH∗(kG). We
shall see later that H∗(G, k) is furthermore a sub-BV-algebra of HH∗(kG).

5. The first realization of the additive decomposition

Let k be a field and G a finite group. Then the Hochschild cohomology ring of
the group algebra kG admits an additive decomposition:

HH∗(kG) '
⊕
x∈X

H∗(CG(x), k),

where X is a set of representatives of conjugacy classes of elements of G and
CG(x) = {g ∈ G | gx = xg} is the centralizer subgroup of G. In this section, we
give an explicit construction of the additive decomposition. The main technique we
used here is to construct comparison maps based on some setwise self-homotopies.

The following is a proof of the additive decomposition which consists of a series
of isomorphisms. Our first realization of the additive decomposition will follow



HOCHSCHILD COHOMOLOGY RING 9

this series of isomorphisms.

HH∗(kG, kG) = Ext∗(kG)e(kG, kG) ' Ext∗k(G×G)(kG, kG)
(1)
' Ext∗k(G×G)(Ind

G×G
G k, kG)

because k(G×G)kG ' IndG×GG k = k(G×G)k(G×G)⊗kG k where k(G×G)
is endowed with the right kG−module structure via the diagonal map
G→ G×G, g 7→ (g, g)

(2)
' Ext∗kG(k,ResG×GG kG) = Ext∗kG(k,Homk(G×G)(k(G×G), kG)) =

Ext∗kG(k, ckG) = H∗(G, ckG) by the adjoint pair
(k(G×G)k(G×G)⊗kG −, Homk(G×G)(k(G×G)k(G×G)kG,−))

(3)
' ⊕x∈XExt∗kG(k, ckCx) because ckG = ⊕x∈X ckCx whereckCx is the

kG−module generated by the elements in the conjugacy class
Cx = {gxg−1|g ∈ G}

(4)
' ⊕x∈XExt∗kG(k,CoindGCG(x)k)

because as left kG−modules, ckCx ' CoindGCG(x)k = HomkCG(x)(kG, k)
(5)
' ⊕x∈XExt∗kCG(x)(Res

G
CG(x)k, k)

by the adjoint pair (kCG(x)kG⊗kG −, HomkCG(x)(kCG(x)kGkG,−))
(6)
' ⊕x∈XExt∗kCG(x)(k, k)) = ⊕x∈XH∗(CG(x), k)

We shall express explicitly these isomorphisms step by step using the bar reso-
lution.

The first step. By definition, the Hochschild cohomology groups HH∗(kG, kG)
can be computed using the bar resolution Bar∗(kG). On the other hand,
Bar∗(kG)⊗kG k is a free resolution of k as left kG-module, and therefore

k(G×G)⊗kG Bar∗(kG)⊗kG k
is also a free resolution of the k(G × G)-module k(G × G) ⊗kG k ' kG. Notice
that the terms in Bar∗(kG) are still viewed as the usual kG-kG-bimodules when
we do the above tensor products.

Let us write explicitly the resolution k(G×G)⊗kGBar∗(kG)⊗kG k. Under the
identification

k(G×G)⊗kG Barn(kG)⊗kG k ' k(G×G)⊗kG (kG⊗ kG⊗n ⊗ kG)⊗kG k
' k(G×G)⊗ kG⊗n

' kG⊗ kG⊗ kG⊗n,
and the differential is as follows (we only write down the maps on base elements
here and later):

kG⊗ kG −→ kG, x⊗ y 7−→ xy−1;

kG⊗ kG⊗ kG −→ kG⊗ kG, x⊗ y ⊗ g1 7−→ xg1 ⊗ yg1 − x⊗ y;

· · · · · · · · ·
kG⊗ kG⊗ kG⊗n −→ kG⊗ kG⊗ kG⊗n−1, x⊗ y ⊗ g1 ⊗ · · · ⊗ gn 7−→
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xg1 ⊗ yg1 ⊗ g2 ⊗ · · · ⊗ gn +

n−1∑
i=1

(−1)ix⊗ y ⊗ g1 ⊗ · · · ⊗ gigi+1 ⊗ · · · ⊗ gn

+(−1)nx⊗ y ⊗ g1 ⊗ · · · ⊗ gn−1.
We also have

Homk(G×G)(k(G×G)⊗kG Barn(kG)⊗kG k, kG) ' Homk(kG
⊗n
, kG)

'Map(G
×n
, kG).

Using this identification, H∗(Homk(G×G)(k(G×G)⊗kG Bar∗(kG)⊗kG k, kG)) is
given by the following cochain complex:

0 −→ kG
δ0−→Map(G, kG)

δ1−→ · · · −→Map(G
×n
, kG)

δn−→ · · · ,
where the differential is given by

δ0(x)(g) = gxg−1 − x for x ∈ kG and g ∈ G,

and for ϕ : G
×n −→ kG and g1, · · · , gn+1 ∈ G,

δn(ϕ)(g1, · · · , gn+1) = g1ϕ(g2, · · · , gn+1)g−11 +
n∑
i=1

(−1)iϕ(g1, · · · , gigi+1, · · · , gn+1) + (−1)n+1ϕ(g1, · · · , gn).

We will show that the two complexes k(G × G) ⊗kG Bar∗(kG) ⊗kG k and
Bar∗(kG) are isomorphic and therefore there is an isomorphism

(1) H∗(Homk(G×G)(Bar∗(kG), kG)) '
H∗(Homk(G×G)(k(G×G)⊗kG Bar∗(kG)⊗kG k, kG)).

To do this, we need to construct the comparison maps between the two free resolu-
tions Bar∗(kG) and k(G×G)⊗kGBar∗(kG)⊗kG k of the above k(G×G)-module
kG. As explained in Section 2, this is reduced to construct setwise self-homotopys
over these resolutions. Our principle here is to choose those setwise self-homotopys
so that the computations and results are as simple as possible.

We choose a setwise self-homotopy over Bar∗(kG) as follows:

u−1 : kG→ kG⊗ kG, g 7→ g ⊗ 1,

and for n ≥ 0,

un : kG⊗ kG⊗n ⊗ kG −→ kG⊗ kG⊗n ⊗ kG,
g0 ⊗ g1 ⊗ · · · ⊗ gn+1 7−→ (−1)n+1g0 ⊗ g1 ⊗ · · · ⊗ gn+1 ⊗ 1.

Using {un} we can construct a comparison map

α∗ : k(G×G)⊗kG Bar∗(kG)⊗kG k = kG⊗ kG⊗ kG⊗∗ −→ Bar∗(kG)

= kG⊗ kG⊗∗ ⊗ kG
as follows (as before we only write down the maps on base elements):

α−1 : kG −→ kG, x 7−→ x,

α0 : kG⊗ kG −→ kG⊗ kG, x⊗ y 7−→ x⊗ y−1,
α1 : kG⊗ kG⊗ kG −→ kG⊗ kG⊗ kG, x⊗ y ⊗ g1 7−→ −xg1 ⊗ g−11 ⊗ y−1,
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· · · · · · · · ·
αn : kG⊗ kG⊗ kG⊗n −→ kG⊗ kG⊗n ⊗ kG, x⊗ y ⊗ g1 ⊗ · · · ⊗ gn 7−→

(−1)
n(n+1)

2 xg1 · · · gn ⊗ g−1n ⊗ · · · ⊗ g−11 ⊗ y−1.
Similarly, we choose a setwise self-homotopy over k(G×G)⊗kGBar∗(kG)⊗kGk

as follows:
v−1 : kG→ kG⊗ kG, g 7→ g ⊗ 1,

and for n ≥ 0,

vn : kG⊗ kG⊗ kG⊗n −→ kG⊗ kG⊗ kG⊗n,
x⊗ y ⊗ g1 ⊗ · · · ⊗ gn 7−→ xy−1 ⊗ 1⊗ y ⊗ g1 ⊗ · · · ⊗ gn.

Using {vn} we can construct a comparison map

β∗ : Bar∗(kG) = kG⊗kG⊗∗⊗kG −→ k(G×G)⊗kGBar∗(kG)⊗kGk = kG⊗kG⊗kG⊗∗

as follows:
β−1 : kG −→ kG, x 7−→ x,

β0 : kG⊗ kG −→ kG⊗ kG, x⊗ y 7−→ x⊗ y−1,
β1 : kG⊗ kG⊗ kG −→ kG⊗ kG⊗ kG, x⊗ g1 ⊗ y 7−→ −xg1 ⊗ y−1 ⊗ g−11 ,

· · · · · · · · ·
βn : kG⊗ kG⊗n ⊗ kG −→ kG⊗ kG⊗ kG⊗n, x⊗ g1 ⊗ · · · ⊗ gn ⊗ y 7−→

(−1)
n(n+1)

2 xg1 · · · gn ⊗ y−1 ⊗ g−1n ⊗ · · · ⊗ g−11 .

It is easy to check that the chain maps {αn} and {βn} are inverse to each other,
and therefore we get an isomorphism

Homk(G×G)(Bar∗(kG), kG) −→ Homk(G×G)(k(G×G)⊗kGBar∗(kG)⊗kG k, kG),

(ϕ : G
×n −→ kG) 7−→ (ϕ1 : G

×n −→ kG),

ϕ1(g1, · · · , gn) = (−1)
n(n+1)

2 g1 · · · gnϕ(g−1n , · · · , g−11 ).

Its inverse is given by

Homk(G×G)(k(G×G)⊗kGBar∗(kG)⊗kG k, kG) −→ Homk(G×G)(Bar∗(kG), kG),

(ϕ1 : G
×n −→ kG) 7−→ (ϕ : G

×n −→ kG),

ϕ(g1, · · · , gn) = (−1)
n(n+1)

2 g1 · · · gnϕ1(g−1n , · · · , g−11 ).

Passing to the cohomology, we realize an isomorphism in (1) and its inverse.

The second step. Since

(k(G×G)k(G×G)⊗kG −, Homk(G×G)(k(G×G)k(G×G)kG,−))

is an adjoint pair, we have an isomorphism (here k(G × G) is viewed as a right
kG-module by diagonal action)

Homk(G×G)(k(G×G)⊗kGBar∗(kG)⊗kGk, kG) ' HomkG(Bar∗(kG)⊗kGk, ckG).

Passing to the cohomology, we get an isomorphism

(2) H∗(Homk(G×G)(k(G×G)⊗kG Bar∗(kG)⊗kG k, kG)) '
H∗(HomkG(Bar∗(kG)⊗kG k, ckG)).
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Remind that the right hand side is just the ordinary group cohomology H∗(G, kG)
of G with coefficients in ckG. We also have

HomkG(Barn(kG)⊗kG k, kG) ' HomkG(kG⊗ kG⊗n, kG) '

Homk(kG
⊗n
, kG) 'Map(G

×n
, kG).

Using this identification, H∗(G, kG) = H∗(HomkG(Bar∗(kG)⊗kGk, kG)) is given
by the following cochain complex:

0 −→ kG
δ0−→Map(G, kG)

δ1−→ · · · −→Map(G
×n
, kG)

δn−→ · · · ,
where the differential is given by

δ0(x)(g) = gxg−1 − x (for x ∈ kG and g ∈ G),

and (for ϕ : G
×n −→ kG and g1, · · · , gn+1 ∈ G)

δn(ϕ)(g1, · · · , gn+1) = g1ϕ(g2, · · · , gn+1)g−11 +
n∑
i=1

(−1)iϕ(g1, · · · , gigi+1, · · · , gn+1) + (−1)n+1ϕ(g1, · · · , gn).

So formally the left hand side and the right hand side in (2) are identical, though
they have different meaning. It is also easy to check that under the above identi-
fications, the adjoint isomorphisms are identity maps:

Homk(G×G)(k(G×G)⊗kGBar∗(kG)⊗kGk, kG) −→ HomkG(Bar∗(kG)⊗kGk, ckG),

(ϕ1 : G
×n −→ kG) 7−→ (ϕ2 : G

×n −→ kG), ϕ2(g1, · · · , gn) = ϕ1(g1, · · · , gn).

Its inverse is given by

HomkG(Bar∗(kG)⊗kGk, ckG) −→ Homk(G×G)(k(G×G)⊗kGBar∗(kG)⊗kGk, kG),

(ϕ2 : G
×n −→ kG) 7−→ (ϕ1 : G

×n −→ kG), ϕ1(g1, · · · , gn) = ϕ2(g1, · · · , gn).

Passing to the cohomology, we realize an isomorphism in (2) and its inverse.

The third step. We choose a complete set X of representatives of the conju-
gacy classes in the finite group G. Take x ∈ X. Then Cx = {gxg−1|g ∈ G} is
the conjugacy class corresponding to x and CG(x) = {g ∈ G|gxg−1 = x} is the
centralizer subgroup. Clearly the k-space kCx generated by the elements in Cx is
a left kG-module under the conjugation action. We choose a right coset decompo-
sition of CG(x) in G: G = CG(x)γ1,x ∪CG(x)γ2,x ∪ · · · ∪CG(x)γnx,x (equivalently,

G = γ−11,xCG(x)∪γ−12,xCG(x)∪· · ·∪γ−1nx,xCG(x) is a left coset decomposition of CG(x)

in G), and such that Cx = {x = γ−11,xxγ1,x, γ
−1
2,xxγ2,x, · · · , γ−1nx,xxγnx,x}. (We will

always take γ1,x = 1, and we write xi for γ−1i,xxγi,x.) Then we have the following
kG-module isomorphisms:

ckCx ' IndGCG(x)k = kGkG⊗kCG(x) k, xi 7−→ γ−1i,x ⊗ 1,

ckCx ' CoindGCG(x)k = HomkCG(x)(kCG(x)kGkG, kCG(x)k),

xi 7−→ γi : kG −→ k, γi(γj,x) = δij ,
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where in the first isomorphism, the left kG-module structure on kG is the usual left
multiplication and the right kCG(x)-module structure on kG is given by restriction,
and k is the trivial kCG(x)-module, and the same as in the second isomorphism.

In the second step, we have arrived at the ordinary group cohomologyH∗(G, kG)
of G with coefficients in ckG. This ckG has a kG-module decomposition:

ckG =
⊕
x∈X

ckCx.

Denote by πx : kG −→ kCx and ix : kCx −→ kG the canonical projection and the
canonical injection, respectively. Then we have the following isomorphism

HomkG(Bar∗(kG)⊗kG k, ckG) −→
⊕
x∈X

HomkG(Bar∗(kG)⊗kG k, ckCx),

(ϕ2 : G
×n −→ kG) 7−→ ϕ3 = {ϕ3,x|x ∈ X}, where ϕ3,x = πxϕ2 : G

×n −→ kCx.

Its inverse is given by⊕
x∈X

HomkG(Bar∗(kG)⊗kG k, kCx) −→ HomkG(Bar∗(kG)⊗kG k, kG),

ϕ3 = {ϕ3,x : G
×n −→ kCx|x ∈ X} 7−→ (ϕ2 =

∑
x∈X

ixϕ3,x : G
×n −→ kG).

Passing to the cohomology, we realize an isomorphism:

(3) H∗(G, ckG) '
⊕
x∈X

H∗(G, ckCx).

The fourth step. We have stated in the third step the following kG-module
isomorphism

ckCx ' HomkCG(x)(kG, k), xi 7−→ γi : kG −→ k, γi(γj,x) = δij .

Therefore we have the following isomorphism

HomkG(Bar∗(kG)⊗kGk, ckCx) −→ HomkG(Bar∗(kG)⊗kGk,HomkCG(x)(kG, k)),

(ϕ3,x : G
×n −→ kCx) 7−→ (ϕ4,x : G

×n −→ HomkCG(x)(kG, k)),

where if we write ϕ3,x(g1, g2, · · · , gn) =
∑nx

i=1 ai,xxi, then ϕ4,x(g1, g2, · · · , gn) maps
γi,x to ai,x for any i. The inverse isomorphism is given by

HomkG(Bar∗(kG)⊗kGk,HomkCG(x)(kG, k)) −→ HomkG(Bar∗(kG)⊗kGk, ckCx),

(ϕ4,x : G
×n −→ HomkCG(x)(kG, k)) 7−→ (ϕ3,x : G

×n −→ kCx),

where if ϕ4,x(g1, g2, · · · , gn) maps γi,x to ai,x for any i, then ϕ3,x(g1, g2, · · · , gn) =∑nx

i=1 ai,xxi. Passing to the cohomology, we realize an isomorphism:

(4) H∗(G, kCx) ' H∗(HomkG(Bar∗(kG)⊗kG k,HomkCG(x)(kG, k))).

The fifth step. Since (kG⊗kG−, HomkCG(x)(kG,−)) is an adjoint pair (restric-
tion and coinduction), we have the following isomorphism

HomkG(Bar∗(kG)⊗kGk,HomkCG(x)(kG, k)) −→ HomkCG(x)(Bar∗(kG)⊗kGk, k).
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Passing to the cohomology, we get an isomorphism

(5) H∗(HomkG(Bar∗(kG)⊗kG k,HomkCG(x)(kG, k))) '
H∗(HomkCG(x)(Bar∗(kG)⊗kG k, k)),

where the right hand side is isomorphic to the ordinary group cohomology
H∗(CG(x), k) of CG(x) with coefficients in the trivial module k. Since there are
kCG(x)-module isomorphisms

Bar∗(kG)⊗kG k '
nx⊕
i=1

kCG(x)γi,x ⊗ kG
⊗∗
,

we have

HomkCG(x)(Bar∗(kG)⊗kGk, k) ' Homk(

nx⊕
i=1

kγi,x⊗kG
⊗n
, k) 'Map(Sx×G

×n
, k),

where Sx = {γ1,x, · · · , γnx,x} (cf. The third step). Using this identification, the
adjoint isomorphism is given by

HomkG(Bar∗(kG)⊗kGk,HomkCG(x)(kG, k)) −→ HomkCG(x)(Bar∗(kG)⊗kGk, k),

(ϕ4,x : G
×n −→ HomkCG(x)(kG, k)) 7−→ (ϕ5,x : Sx ×G

×n −→ k),

where if ϕ4,x(g1, g2, · · · , gn) maps γi,x to ai,x for any i, then ϕ5,x(γi,x, g1, g2, · · · , gn)
= ai,x for any i. The inverse isomorphism is given by

HomkCG(x)(Bar∗(kG)⊗kGk, k) −→ HomkG(Bar∗(kG)⊗kGk,HomkCG(x)(kG, k)),

(ϕ5,x : Sx ×G
×n −→ k) 7−→ (ϕ4,x : G

×n −→ HomkCG(x)(kG, k)),

where if ϕ5,x(γi,x, g1, g2, · · · , gn) = ai,x for any i, then ϕ4,x(g1, g2, · · · , gn) maps
γi,x to ai,x for any i. Passing to the cohomology, we realize an isomorphism in (5)
and its inverse.

The sixth step. In the fifth step, we have arrived at the ordinary group co-
homology H∗(CG(x), k) of CG(x) with coefficients in the trivial module k, where
H∗(CG(x), k) is computed by the cochain complexHomkCG(x)(Bar∗(kG)⊗kGk, k).
By the identification in fifth step, this is given by the following cochain complex:

0 −→ k×nx
δ0−→Map(Sx ×G, k)

δ1−→ · · · −→Map(Sx ×G
×n
, k)

δn−→ · · · ,
where the differential is given by δ0({ai,x})((γj,x, g1)) = asj ,x − aj,x, such that

asj ,x is determined as follows: for {ai,x} ∈ k×nx , γj,x ∈ Sx, g1 ∈ G, we have

γj,xg1 = hj,1γsj ,x for some hj,1 ∈ CG(x) and for some 1 ≤ sj ≤ nx,

and (for ϕ : Sx × G
×n −→ k, γj,x ∈ Sx, g1, · · · , gn+1 ∈ G such that γj,xg1 =

hj,1γsj ,x)

δn(ϕ)(γj,x, g1, · · · , gn+1) = ϕ(γsj ,x, g2, · · · , gn+1)+

n∑
i=1

(−1)iϕ(γj,x, g1, · · · , gigi+1, · · · , gn+1) + (−1)n+1ϕ(γj,x, g1, · · · , gn).

(Remark that for a fixed g1 ∈ G, {s1, s2, · · · , snx} is a permutation of {1, 2, · · · , nx}.)
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The above computation for H∗(CG(x), k) uses the projective resolution
Bar∗(kG)⊗kGk of the trivial kCG(x)-module k, which is identified as the following
complex (It is in fact a projective resolution of the trivial kG-module k, but we
view it as a complex of kCG(x)-modules by restriction)

· · · −→ kG⊗ kG⊗n dn−→ · · · −→ kG⊗ kG d1−→ kG
d0−→ k −→ 0,

where the differential is given by

d0(g0) = 1 (for g0 ∈ G)

and (for g0 ∈ G, g1, · · · , gn ∈ G)

dn(g0, g1, · · · , gn) = g0g1⊗g2⊗· · ·⊗gn+

n−1∑
i=1

(−1)ig0 ⊗ · · · ⊗ gigi+1 ⊗ · · · ⊗ gn + (−1)ng0 ⊗ g1 ⊗ · · · ⊗ gn−1.

We now use another projective resolution Bar∗(kCG(x)) ⊗kCG(x) k of the trivial
kCG(x)-module k, which is identified as the following complex

· · · −→ kCG(x)⊗kCG(x)
⊗n dn−→ · · · −→ kCG(x)⊗kCG(x)

d1−→ kCG(x)
d0−→ k −→ 0,

where the differential is given by

d0(h0) = 1 (for h0 ∈ CG(x))

and (for h0 ∈ CG(x), h1, · · · , hn ∈ CG(x))

dn(h0, h1, · · · , hn) = h0h1⊗h2⊗· · ·⊗hn+

n−1∑
i=1

(−1)ih0⊗ · · · ⊗ hihi+1⊗ · · · ⊗ hn + (−1)nh0⊗ h1⊗ · · · ⊗ hn−1.

We have

HomkCG(x)(Bar∗(kCG(x))⊗kCG(x) k, k) 'Map(CG(x)
×n
, k),

so H∗(CG(x), k) can also be computed by the following cochain complex

0 −→ k
δ0−→Map(CG(x), k)

δ1−→ · · · −→Map(CG(x)
×n
, k)

δn−→ · · · ,
where the differential is given by

δ0(a)(h1) = 0 (for a ∈ k, h1 ∈ CG(x))

and (for ϕ : CG(x)
×n
−→ k, h1, · · · , hn+1 ∈ CG(x))

δn(ϕ)(h1, · · · , hn+1) = ϕ(h2, · · · , hn+1)+
n∑
i=1

(−1)iϕ(h1, · · · , hihi+1, · · · , hn+1) + (−1)n+1ϕ(h1, · · · , hn).

Clearly, we have

(6) H∗(HomkCG(x)(Bar∗(kG)⊗kG k, k)) '
H∗(HomkCG(x)(Bar∗(kCG(x))⊗kCG(x) k, k)).
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To give an explicit isomorphism in (6), we need to construct the comparison maps
between two projective resolutions Bar∗(kG)⊗kG k and Bar∗(kCG(x))⊗kCG(x) k
of the trivial kCG(x)-module k.

The comparison map from Bar∗(kCG(x))⊗kCG(x) k to Bar∗(kG)⊗kG k is just
the inclusion map

ι : kCG(x)⊗ kCG(x)
⊗n

↪→ kG⊗ kG⊗n.
This is obvious or can be obtained using a setwise self-homotopy onBar∗(kG)⊗kGk
(see below for its explicit form).

To construct the comparison map on the reverse direction, we use a setwise

self-homotopy over kCG(x) ⊗ kCG(x)
⊗∗

as follows (for h0 ∈ CG(x), h1, · · · , hn ∈
CG(x)):

kCG(x)⊗ kCG(x)
⊗n
−→ kCG(x)⊗ kCG(x)

⊗n+1
,

h0 ⊗ h1 ⊗ · · · ⊗ hn 7−→ 1⊗ h0 ⊗ h1 ⊗ · · · ⊗ hn.
Then we get a comparison map

ρ : Bar∗(kG)⊗kG k −→ Bar∗(kCG(x))⊗kCG(x) k

as follows:
ρ−1 : k −→ k, 1 7−→ 1,

ρ0 : kG −→ kCG(x), hγi,x 7−→ h, for h ∈ CG(x),

ρ1 : kG⊗ kG −→ kCG(x)⊗ kCG(x), hγi,x ⊗ g1 7−→ h⊗ hi,1,
where γi,xg1 = hi,1γsi,x for hi,1 ∈ CG(x),

· · · · · · · · ·
ρn : kG⊗kG⊗n −→ kCG(x)⊗kCG(x)

⊗n
, hγi,x⊗g1⊗· · ·⊗gn 7−→ h⊗hi,1⊗· · ·⊗hi,n,

where hi,1, · · · , hi,n ∈ CG(x) are determined by the sequence {g1, · · · , gn} as fol-
lows:

γi,xg1 = hi,1γs1i ,x, γs1i ,xg2 = hi,2γs2i ,x, · · · , γsn−1
i ,xgn = hi,nγsni ,x.

Notice that ρ◦ ι = Id and ι◦ρ 6= Id. It follows that we have two homomorphisms:

HomkCG(x)(Bar∗(kG)⊗kG k, k) −→ HomkCG(x)(Bar∗(kCG(x))⊗kCG(x) k, k),

(ϕ5,x : Sx ×G
×n −→ k) 7−→ (ϕ6,x : CG(x)

×n
−→ k),

ϕ6,x(h1, · · · , hn) = ϕ5,x(1, h1, · · · , hn) = a1,x,

where a1,x is the cofficients of x in ϕ3,x(h1, · · · , hn) =

nx∑
i=1

ai,xxi;

and

HomkCG(x)(Bar∗(kCG(x))⊗kCG(x) k, k) −→ HomkCG(x)(Bar∗(kG)⊗kG k, k),

(ϕ6,x : CG(x)
×n
−→ k) 7−→ (ϕ5,x : Sx ×G

×n −→ k),

ϕ5,x(γi,x, g1, · · · , gn) = ϕ6,x(hi,1, · · · , hi,n),
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where for hi,1, · · · , hi,n ∈ CG(x) are determined by the sequence {g1, · · · , gn} as
follows:

γi,xg1 = hi,1γs1i ,x, γs1i ,xg2 = hi,2γs2i ,x, · · · , γsn−1
i ,xgn = hi,nγsni ,x.

Since both ι and ρ induce the identity map 1 : k −→ k, by Lemma 2.3, we have
inverse isomorphisms between H∗(HomkCG(x)(Bar∗(kG)⊗kG k, k)) and

H∗(HomkCG(x)(Bar∗(kCG(x))⊗kCG(x) k, k)).

The correspondence is induced by ϕ5,x ←→ ϕ6,x, as we stated above. So we realize
an isomorphism in (6) and its inverse.

Summarizing the above six steps, we get the following main result in this section.

Theorem 5.1. Let k be a field and G a finite group. Consider the additive de-
composition of Hochschild cohomology ring of the group algebra kG:

HH∗(kG) '
⊕
x∈X

H∗(CG(x), k),

where X is a set of representatives of conjugacy classes of elements of G and CG(x)
is the centralizer subgroup of G. Recall that we choose a right coset decomposition
of CG(x) in G:

G = CG(x)γ1,x ∪ CG(x)γ2,x ∪ · · · ∪ CG(x)γnx,x

equivalently,
G = γ−11,xCG(x) ∪ γ−12,xCG(x) ∪ · · · ∪ γ−1nx,xCG(x)

is a left coset decomposition of CG(x) in G, and such that

Cx = {x = γ−11,xxγ1,x, γ
−1
2,xxγ2,x, · · · , γ−1nx,xxγnx,x}.

We will always take γ1,x = 1, and we write xi for γ−1i,xxγi,x.
We compute the Hochschild cohomology

HH∗(kG) = H∗(Homk(G×G)(Bar∗(kG), kG))

by the classical normalized bar resolution, and we compute the group cohomology
H∗(CG(x), k) by

H∗(HomkCG(x)(Bar∗(kCG(x))⊗kCG(x) k, k)).

Then, we can realize an isomorphism in additive decomposition as follows:

HH∗(kG)
∼−→
⊕
x∈X

H∗(CG(x), k),

[ϕ : G
×n −→ kG] 7−→ [ϕ̂] =

⊕
x∈X

[ϕ̂x], ϕ̂x : CG(x)
×n
−→ k,

ϕ̂x(h1, · · · , hn) = a1,x, where πx((−1)
n(n+1)

2 h1 · · ·hnϕ(h−1n , · · · , h−11 )) =

nx∑
i=1

ai,xxi.

In other words, ϕ̂x(h1, · · · , hn) is just the coefficient of x in

(−1)
n(n+1)

2 h1 · · ·hnϕ(h−1n , · · · , h−11 ) ∈ kG.
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The inverse of the above isomorphism is given as follows:⊕
x∈X

H∗(CG(x), k)
∼−→ HH∗(kG),

[ϕ̂] =
⊕
x∈X

[ϕ̂x], ϕ̂x : CG(x)
×n
−→ k 7−→ [ϕ : G

×n −→ kG],

ϕ(g1, · · · , gn) = (−1)
n(n+1)

2 g1 · · · gn
∑
x∈X

nx∑
i=1

ϕ̂x(h′i,1, · · · , h′i,n)xi,

where for x ∈ X,h′i,1, · · · , h′i,n ∈ CG(x) are determined by the sequence

{g−1n , · · · , g−11 } as follows:

γi,xg
−1
n = h′i,1γs1i ,x, γs1i ,xg

−1
n−1 = h′i,2γs2i ,x, · · · , γsn−1

i ,xg
−1
1 = h′i,nγsni ,x.

Proof This is a direct consequence by applying the above isomorphisms from

(1) to (6) and their inverses. For an element ϕ : G
×n −→ kG in the n-th term

Cn(kG) 'Map(G
×n
, kG) of the Hochschild cohomology complex, [ϕ] denotes the

corresponding element in the Hochschild cohomology group HHn(kG). Note that
the elements h′i,1, · · · , h′i,n depend on x ∈ X and the sequence {g−1n , · · · , g−11 }. For
the simplicity of notations, we avoid to write them down explicitly.

�

Remark 5.2. (a) The correspondence in Theorem 5.1 makes use of the same
line employed by Siegel and Witherspoon in [17]. The difference is: they realize
each step between cohomology groups using standard operations like restriction,
induction, conjugation, etc., while we construct maps directly in each step on the
cohomology complex level.

(b) In [17], as the authors proved that HH∗(kG) ' H∗(G,CkG) as graded
algebras, they concentrated on H∗(G, ckG) instead of HH∗(kG) in most part of
their paper. If we only consider the isomorphisms (2)-(5), then the correspondence
in Theorem 5.1 become simpler:

H∗(G, ckG)
∼−→
⊕
x∈X

H∗(CG(x), k),

[ϕ : G
×n −→ kG] 7−→ [ϕ̂] =

⊕
x∈X

[ϕ̂x], ϕ̂x : CG(x)
×n
−→ k,

ϕ̂x(h1, · · · , hn) = a1,x, the coefficient of x in ϕ(h1, · · · , hn) ∈ kG;⊕
x∈X

H∗(CG(x), k)
∼−→ H∗(G, ckG),

[ϕ̂] =
⊕
x∈X

[ϕ̂x], ϕ̂x : CG(x)
×n
−→ k 7−→ [ϕ : G

×n −→ kG],

ϕ(g1, · · · , gn) =
∑
x∈X

nx∑
i=1

ϕ̂x(hi,1, · · · , hi,n)xi,
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where for x ∈ X,hi,1, · · · , hi,n ∈ CG(x) are determined by the sequence {g1, · · · , gn}
as follows:

γi,xg1 = hi,1γs1i ,x, γs1i ,xg2 = hi,2γs2i ,x, · · · , γsn−1
i ,xgn = hi,nγsni ,x.

6. Another realization of the additive decomposition

In [4], Cibils and Solotar constructed a subcomplex of the Hochschild coho-
mology complex for each conjugacy class, and then they showed that for a finite
abelian group, the subcomplex is isomorphic to the complex computing group co-
homology. We will generalize this to any finite group: for each conjugacy class,
this complex computes the cohomology of the corresponding centralizer subgroup.
As a result, we give a second way to realize the additive decomposition.

As before, let k be a field and G a finite group. Recall that the Hochschild
cohomology HH∗(kG) of the group algebra kG can be computed by the following
(cochain) complex:

(H∗) 0 −→ kG
δ0−→Map(G, kG)

δ1−→ · · · −→Map(G
×n
, kG)

δn−→ · · · ,
where the differential is given by

δ0(x)(g) = gx− xg (for x ∈ kG and g ∈ G)

and (for ϕ : G
×n −→ kG and g1, · · · , gn+1 ∈ G)

δn(ϕ)(g1, · · · , gn+1) = g1ϕ(g2, · · · , gn+1)+
n∑
i=1

(−1)iϕ(g1, · · · , gigi+1, · · · , gn+1) + (−1)n+1ϕ(g1, · · · , gn)gn+1.

We keep the following notations in Section 3: X is a complete set of representatives
of the conjugacy classes in the finite group G. For x ∈ X, Cx = {gxg−1|g ∈ G}
is the conjugacy class corresponding to x and CG(x) = {g ∈ G|gxg−1 = x} is the
centralizer subgroup. Now take a conjugacy class Cx and define

H0
x = kCx, and for n ≥ 1,

Hnx = {ϕ : G
×n −→ kG|ϕ(g1, · · · , gn) ∈ k[g1 · · · gnCx] ⊂ kG, ∀g1, · · · , gn ∈ G},

where g1 · · · gnCx denotes the subset of G by multiplying g1 · · · gn on Cx and
k[g1 · · · gnCx] is the k-subspace of kG generated by this set. Note that we have
g1 · · · gnCx = Cxg1 · · · gn and k[g1 · · · gnCx] = k[Cxg1 · · · gn]. Let H∗x =

⊕
n≥0Hnx .

Cibils and Solotar ([4, Page 20, Proof of the theorem]) observed that H∗x is a
subcomplex of H∗ and H∗ =

⊕
x∈X H∗x.

Lemma 6.1. H∗x is canonically isomorphic to the complex HomkG(Bar∗(kG)⊗kG
k, kCx), which computes the group cohomology H∗(G, kCx) of G with coefficients
in kCx, where kCx is a left kG-module under conjugation.
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Proof We know from Section 3 that the complex HomkG(Bar∗(kG)⊗kG k, kCx)
is identified as the following complex:

0 −→ kCx
δ0−→Map(G, kCx)

δ1−→ · · · −→Map(G
×n
, kCx)

δn−→ · · · ,
where the differential is given by

δ0(x)(g) = gxg−1 − x (for x ∈ kCx and g ∈ G)

and (for ϕ : G
×n −→ kCx and g1, · · · , gn+1 ∈ G)

δn(ϕ)(g1, · · · , gn+1) = g1ϕ(g2, · · · , gn+1)g−11 +
n∑
i=1

(−1)iϕ(g1, · · · , gigi+1, · · · , gn+1) + (−1)n+1ϕ(g1, · · · , gn).

A direct computation shows that the following map is an isomorphism of com-
plexes:

H∗x −→ HomkG(Bar∗(kG)⊗kG k, kCx),

(ϕ1 : G
×n −→ kG) 7−→ (ϕ2 : G

×n −→ kCx),

ϕ2(g1, · · · , gn) = ϕ1(g1, · · · , gn)g−1n · · · g−11 .

Its inverse is given by

HomkG(Bar∗(kG)⊗kG k, kCx) −→ H∗x,

(ϕ2 : G
×n −→ kCx) 7−→ (ϕ1 : G

×n −→ kG),

ϕ1(g1, · · · , gn) = ϕ2(g1, · · · , gn)g1 · · · gn.
Passing to the cohomology, we have H∗(H∗x) ' H∗(G, kCx).

�

Remark 6.2. Since the first three steps of the previous section realize

HH∗(kG) ' H∗(G, ckG) ' ⊕x∈XH∗(CG(x), k),

these isomorphisms also give a decomposition of the complex H∗, which computes
HH∗(kG). In fact, during these three steps, we establish the following isomor-
phisms of complexes

H∗ = Homk(G×G(Bar∗(kG), kG)
(1)
' Homk(G×G)(k(G×G)⊗kG Bar∗(kG)⊗kG k, kG)
(2)
' HomkG(Bar∗(kG)⊗kG k, ckG)
(3)
=

⊕
x∈X HomkG(Bar∗(kG)⊗kG k, ckCx).

So the complex HomkG(Bar∗(kG) ⊗kG k, ckCx) is isomorphic to a subcomplex
of H∗ and we verify easily that this subcomplex is just the above defined H∗x.
However, the isomorphism between these two complexes is as follows:

H∗x −→ HomkG(Bar∗(kG)⊗kG k, kCx),

(ϕ1 : G
×n −→ kG) 7−→ (ϕ2 : G

×n −→ kCx),

ϕ2(g1, · · · , gn) = (−1)
n(n+1)

2 g1 · · · gnϕ1(g−1n , · · · , g−11 ).
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Its inverse is given by

HomkG(Bar∗(kG)⊗kG k, kCx) −→ H∗x,

(ϕ2 : G
×n −→ kCx) 7−→ (ϕ1 : G

×n −→ kG),

ϕ1(g1, · · · , gn) = (−1)
n(n+1)

2 g1 · · · gnϕ1(g−1n , · · · , g−11 ).

Note that this isomorphism differs from the one in Lemma 6.1 by an automorphism

of the complex HomkG(Bar∗(kG) ⊗kG k, ckCx), which sends ϕ : G
×n → kCx to

ϕ′ : G
×n → kCx with

ϕ′(g1, · · · , gn) = (−1)
n(n+1)

2 g1 · · · gnϕ(g−1n , · · · , g−11 )g−1n · · · g−11 .

On the other hand, we have shown that the complex HomkG(Bar∗(kG) ⊗kG
k, kCx) is isomorphic to the complex HomkCG(x)(Bar∗(kCG(x)) ⊗kCG(x) k, k),
which computes the group cohomology H∗(CG(x), k) of the centralizer subgroup
CG(x) with coefficients in the trivial module k. (cf. Section 5, from the fourth
step to the six step.) Therefore we get another realization to the additive decom-
position:

Theorem 6.3. Let k be a field and G a finite group. Consider the additive de-
composition of Hochschild cohomology ring of the group algebra kG:

HH∗(kG) '
⊕
x∈X

H∗(CG(x), k)

where X is a set of representatives of conjugacy classes of elements of G and
CG(x) is the centralizer subgroup of G. We compute the Hochschild cohomology
HH∗(kG) = H∗(Homk(G×G)(Bar∗(kG), kG)) by the classical normalized bar res-
olution, and we compute the group cohomology H∗(CG(x), k) by

H∗(HomkCG(x)(Bar∗(kCG(x))⊗kCG(x) k, k)).

Then, we can realize an isomorphism in additive decomposition as follows:

HH∗(kG)
∼−→
⊕
x∈X

H∗(CG(x), k),

[ϕx : G
×n −→ kG], ϕx ∈ Hnx 7−→ [ϕ̂x : CG(x)

×n
−→ k],

ϕ̂x(h1, · · · , hn) = a1,x, where ϕx(h1, · · · , hn)h−1n · · ·h−11 =

nx∑
i=1

ai,xxi ∈ kCx.

In other word, ϕ̂x(h1, · · · , hn) is just the coefficient of x in ϕx(h1, · · · , hn)h−1n · · ·h−11 ∈
kCx. The inverse of the above isomorphism is given as follows:⊕

x∈X
H∗(CG(x), k)

∼−→ HH∗(kG),

[ϕ̂x : CG(x)
×n
−→ k] 7−→ [ϕx : G

×n −→ kG], ϕx ∈ Hnx ,

ϕx(g1, · · · , gn) =

nx∑
i=1

ϕ̂x(hi,1, · · · , hi,n)xig1 · · · gn,

where hi,1, · · · , hi,n ∈ CG(x) are determined by the sequence {g1, · · · , gn} as follows:
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γi,xg1 = hi,1γs1i ,x, γs1i ,xg2 = hi,2γs2i ,x, · · · , γsn−1
i ,xgn = hi,nγsni ,x.

Proof This is a combination of Lemma 6.1 and the correspondence from the
fourth step to the six step in Section 3.

�

By Remark 6.2, the two realizations of the additive decomposition in Theo-
rem 5.1 and Theorem 6.3 are essentially the same on the cohomology group level.
In the sequel, we prefer to the second realization since it is simpler.

7. The cup product formula

We keep the notations of the previous sections: k is a field, and G is a fi-
nite group, and so on. We describe the cup product formula for the Hochschild
cohomology ring HH∗(kG) in terms of the additive decomposition.

We shall define a product over
∑
x∈X H

∗(CG(x), k) such that the isomorphism

HH∗(kG) '
⊕
x∈X

H∗(CG(x), k)

realized in Theorem 6.3 becomes an isomorphism of graded algebras.
Let [ϕ̂x] ∈ H∗(CG(x), k) (respectively [ϕ̂y] ∈ Hm(CG(y), k)) represented by the

map ϕ̂x : CG(x)
×n
−→ k (respectively by ϕ̂y : CG(y)

×m
−→ k). Define

[ϕ̂x ∪ ϕ̂y] =
∑
z∈X

[(ϕ̂x ∪ ϕ̂y)z] ∈
⊕
z∈X

H∗(CG(z), k)

with (ϕ̂x ∪ ϕ̂y)z : CG(z)
×n+m

→ k as follows:

(ϕ̂x∪ϕ̂y)z(h1, · · · , hn, hn+1, · · · , hn+m) =
∑

(i,j)∈I′1

ϕ̂x(hi,1, · · · , hi,n)ϕ̂y(hj,1, · · · , hj,m),

where

• I ′1 is the set of pairs (i, j) such that

xih1 · · ·hnyj(h1 · · ·hn)−1 = z;

•
γi,xh1 = hi,1γs1i ,x, γs1i ,xh2 = hi,2γs2i ,x, · · · , γsn−1

i ,xhn = hi,nγsni ,x;

•
γj,yhn+1 = hj,1γs1j ,y, γs1j ,yhn+2 = hj,2γs2j ,y, · · · , γsm−1

j ,jhn+m = hj,mγsmj ,y.

Theorem 7.1. With the product defined above, the isomorphism in Theorem 6.3
is an isomorphism of graded algebras.

Proof We shall show that with respect to the isomorphism in Theorem 6.3, the
product defined above coincide with the cup product on the cohomology complex
level.

Let [ϕ̂x](ϕ̂x : CG(x)
×n
−→ k) and [ϕ̂y](ϕ̂y : CG(y)

×m
−→ k) be two elements

in Hn(CG(x), k) and in Hm(CG(y), k), respectively. Denote by [ϕx : G
×n −→
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kG](ϕx ∈ Hnx) and [ϕy : G
×m −→ kG](ϕy ∈ Hmy ) be the corresponding elements

in HH∗(kG). By Theorem 6.3,

ϕx : G
×n −→ kG,

(g1, · · · , gn) 7→
∑nx

i=1 ϕ̂x(hi,1, · · · , hi,n)xig1 · · · gn,
with

γi,xg1 = hi,1γs1i ,x, γs1i ,xg2 = hi,2γs2i ,x, · · · , γsn−1
i ,xgn = hi,nγsni ,x.

A similar formula for ϕy works as well.

Now denote by ϕx ∪ ϕy : G
×(n+m) −→ kG the cup product. By the definition

of the cup product, for any z ∈ X, we obtain (ϕx ∪ ϕy)z ∈ Hn+mz given by

(ϕx ∪ ϕy)z : G
×(n+m) −→ kG, (g1, · · · , gn, · · · , gn+m) 7→

nz∑
k=1

∑
(i,j)∈Ik

ϕ̂x(hi,1, · · · , hi,n)ϕ̂y(hj,1, · · · , hj,m)zkg1 · · · gn+m,

where

• Ik is the set of pairs (i, j) such that

xig1 · · · gnyj(g1 · · · gn)−1 = zk;

•
γi,xg1 = hi,1γs1i ,x, γs1i ,xg2 = hi,2γs2i ,x, · · · , γsn−1

i ,xgn = hi,nγsni ,x;

•
γj,ygn+1 = hj,1γs1j ,y, γs1j ,ygn+2 = hj,2γs2j ,y, · · · , γsm−1

j ,jgn+m = hj,mγsmj ,y.

Note that Ik depends on the elements g1, · · · , gn. Again by Theorem 6.3, we obtain
an element in H∗(CG(z), k) of the following form:

CG(z)
×(n+m)

−→ k
(h1, · · · , hn, hn+1, · · · , hn+m) 7−→

∑
(i,j)∈I1 ϕ̂x(hi,1, · · · , hi,n)ϕ̂y(hj,1, · · · , hj,m),

which is just (ϕ̂x ∪ ϕ̂y)z defined before.

�

Similarly we can prove the following result.

Theorem 7.2. The isomorphism in Theorem 5.1 is an isomorphism of graded
algebras with respect to the following product defined on

⊕
x∈X H

m(CG(x), k).

Let [ϕ̂x](ϕ̂x : CG(x)
×n
−→ k) and [ϕ̂y](ϕ̂y : CG(y)

×m
−→ k) be two elements

in Hn(CG(x), k) and in Hm(CG(y), k), respectively. Define

[ϕ̂x ∪ ϕ̂y] =
∑
z∈X

[(ϕ̂x ∪ ϕ̂y)z] ∈
⊕
z∈X

H∗(CG(z), k)

with (ϕ̂x ∪ ϕ̂y)z : CG(z)
×n+m

−→ k as follows:

(ϕ̂x ∪ ϕ̂y)z(h1, · · · , hn, hn+1, · · · , hn+m) =

(−1)nm
∑

(i,j)∈I1

ϕ̂x(h′i,1, · · · , h′i,n)ϕ̂y(h′j,1, · · · , h′j,m),
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where

• I1 is the set of pairs (i, j) such that

h1 · · ·hmxi(h1 · · ·hm)−1yj = z1 = z;

•
γi,xhm+1 = h′i,1γs1i ,x, γs1i ,xhm+2 = h′i,2γs2i ,x, · · · , γsn−1

i ,xhn+m = h′i,nγsni ,x;

•
γj,yh1 = h′j,1γs1j ,y, γs1j ,yh2 = h′j,2γs2j ,y, · · · , γsm−1

j ,jhm = h′j,mγsmj ,y.

Remark 7.3. (1) By Remark 5.2 (a), our cup product formulae in Theorems 7.1
and 7.2 are consistent with Siegel and Witherspoon’s formula in [17, Theorem 5.1]
up to an isomorphism.

(2) From our realization of the graded algebra isomorphism

HH∗(kG) '
⊕
x∈X

H∗(CG(x), k) = H∗(G, k)⊕ (
⊕

x∈X−{1}

H∗(CG(x), k)),

it is clear that H∗(G, k) can be seen as a graded subalgebra of HH∗(kG) and
each H∗(CG(x), k) is a graded H∗(G, k)-submodule of HH∗(kG). Therefore, the
additive decomposition gives an isomorphism of graded H∗(G, k)-modules.

8. The 4 operator formula

Let k be a field and G a finite group. Recall that the group algebra kG is a
symmetric algebra with the bilinear form

〈 , 〉 : kG× kG −→ k,

〈g, h〉 =

{
1 if g = h−1

0 otherwise

for g, h ∈ G. For n ≥ 1, the operator 4 : HHn(kG) −→ HHn−1(kG) on the
Hochschild cohomology is defined by the equation

〈4(ϕ)(g1, · · · , gn−1), gn〉 =

n∑
i=1

(−1)i(n−1)〈ϕ(gi, · · · , gn−1, gn, g1, · · · , gi−1), 1〉,

where ϕ ∈ Cn(kG) ' Map(G
×n
, kG), 4(ϕ) ∈ Cn−1(kG) ' Map(G

×n−1
, kG).

Equivalently,

4(ϕ)(g1, · · · , gn−1) =
∑
gn∈G

n∑
i=1

(−1)i(n−1)〈ϕ(gi, · · · , gn−1, gn, g1, · · · , gi−1), 1〉g−1n .

For example, when n = 1, 4 : HH1(kG) −→ HH0(kG) is given by 4(ϕ) =∑
g∈G〈ϕ(g), 1〉g−1. This operator together with the cup product ∪ and the Lie

bracket [ , ] defines a BV algebra structure on HH∗(kG).
We know from Section 4 that, for a conjugacy class Cx of G, H∗x =

⊕
n≥0Hnx

is a subcomplex of the Hochschild cohomology complex H∗, where

Hnx = {ϕ : G
×n −→ kG|ϕ(g1, · · · , gn) ∈ k[g1 · · · gnCx] ⊂ kG, ∀g1, · · · , gn ∈ G}.
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Lemma 8.1. The operator 4 : Hn −→ Hn−1 restricts to 4x : Hnx −→ Hn−1x for
each conjugacy class Cx.

Proof We need to show that 4(ϕ) ∈ Hn−1x for each ϕ ∈ Hnx . Let g1, · · · , gn−1 ∈
G. Since

4(ϕ)(g1, · · · , gn−1) =
∑
gn∈G

n∑
i=1

(−1)i(n−1)〈ϕ(gi, · · · , gn−1, gn, g1, · · · , gi−1), 1〉g−1n ,

it suffices to prove the following statement: if 〈ϕ(gi, · · · , gn−1, gn, g1, · · · , gi−1), 1〉 6=
0 for some i, then g−1n ∈ g1 · · · gn−1Cx. Indeed, 〈ϕ(gi, · · · , gn−1, gn, g1, · · · , gi−1), 1〉 6=
0 implies that 1 ∈ gi · · · gn−1gng1 · · · gi−1Cx, or equivalently

g−1n ∈ g1 · · · gi−1Cxgi · · · gn−1 = g1 · · · gn−1Cx.
�

Now we can determine the behavior of the operator 4 under the additive de-
composition.

Theorem 8.2. Let 4̂x : Hn(CG(x), k) −→ Hn−1(CG(x), k) be the map induced
by the operator 4x : HHn(kG) −→ HHn−1(kG) via the isomorphism established

in Lemma 6.1. Then 4̂x is defined as follows:

4̂x(ψ)(h1, · · · , hn−1) =

n∑
i=1

(−1)i(n−1)ψ(hi, · · · , hn−1, h−1n−1 · · ·h
−1
1 x−1, h1, · · · , hi−1)

for ψ : CG(x)
×n
−→ k and for h1, · · · , hn−1 ∈ CG(x). For example. when n = 1,

4̂x : H1(CG(x), k) −→ H0(CG(x), k) sends ψ : CG(x) −→ k to ψ(x−1).

Proof We shall prove that the following diagram

Hn(H∗x)
4x //

o
��

Hn−1(H∗x)

o
��

Hn(CG(x), k)
4̂x // Hn−1(CG(x), k)

is commutative, where the vertical isomorphisms are given in Lemma 6.1.

Take an element ψ : CG(x)
×n
−→ k in HomkCG(x)(Barn(kCG(x))⊗kCG(x) k, k)

and denote by ϕ : G
×n −→ kG the corresponding element in Hnx . By Theorem

6.3, for any h1, · · · , hn ∈ CG(x), ψ(h1, · · · , hn) is equal to the coefficient of x

in ϕ(h1, · · · , hn)h−1n · · ·h−11 ∈ kCx. We should prove that 4̂x(ψ) corresponds to
4x(ϕ) via the isomorphism in Lemma 6.1.

Now

4x(ϕ)(g1, · · · , gn−1) =
∑
gn∈G

n∑
i=1

(−1)i(n−1)〈ϕ(gi, · · · , gn−1, gn, g1, · · · , gi−1), 1〉g−1n .

For any h1, · · · , hn−1 ∈ CG(x), consider the coefficient of x in

4x(ϕ)(h1, · · · , hn−1)h−1n−1 · · ·h
−1
1 ∈ kCx,
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or equivalently the coefficient of xh1 · · ·hn−1 in

4x(ϕ)(h1, · · · , hn−1) ∈ k[h1 · · ·hn−1Cx].

This coefficient is equal to

〈4x(ϕ)(h1, · · · , hn−1), h−1n−1 · · ·h
−1
1 x−1〉

=

n∑
i=1

(−1)i(n−1)〈ϕ(hi, · · · , hn−1, h−1n−1 · · ·h
−1
1 x−1, h1, · · · , hi−1), 1〉.

On the other hand, we also know that

ψ(hi, · · · , hn−1, h−1n−1 · · ·h
−1
1 x−1, h1, · · · , hi−1)

is equal to the coefficient of x in

ϕ(hi, · · · , hn−1, h−1n−1 · · ·h
−1
1 x−1, h1, · · · , hi−1)h−1i−1 · · ·h

−1
1 xh1 · · ·hn−1h−1n−1 · · ·h

−1
i

= ϕ(hi, · · · , hn−1, h−1n−1 · · ·h
−1
1 x−1, h1, · · · , hi−1)x ∈ kCx,

which is again equal to 〈ϕ(hi, · · · , hn−1, h−1n−1 · · ·h
−1
1 x−1, h1, · · · , hi−1), 1〉. It fol-

lows that

4̂x(ψ)(h1, · · · , hn−1) =

n∑
i=1

(−1)i(n−1)ψ(hi, · · · , hn−1, h−1n−1 · · ·h
−1
1 x−1, h1, · · · , hi−1).

We have proved that 4̂x(ψ) corresponds to 4x(ϕ) via the isomorphism in
Lemma 6.1 and the diagram is commutative (even at the cohomology complex
level).

�

Remark 8.3. By [7, Corollary 2.2], we know that H∗(G, k) is a Gerstenhaber
subalgebra of HH∗(kG) under the inclusion map:

HomkG(Bar∗(kG)⊗kG k, k) ↪→ Homk(G×G)(Bar∗(kG), kG),

(ϕ : G
×n −→ k) 7−→ (ψ : G

×n −→ kG), ψ(g1, · · · , gn) = ϕ(g1, · · · , gn)g1 · · · gn,
which is in fact induced by the isomorphism in Lemma 6.1 corresponding to x = 1.

Notice that by notations in Section 6, ψ ∈ Hn1 . So motivated by Theorem 8.2,
we can similarly define an operator 41 : Hn(G, k) −→ Hn−1(G, k) in the group
cohomology H∗(G, k) as follows:

41(ϕ)(g1, · · · , gn−1) =

n∑
i=1

(−1)i(n−1)ϕ(gi, · · · , gn−1, g−1n−1 · · · g
−1
1 , g1, · · · , gi−1)

for ϕ : G
×n −→ k and for g1, · · · , gn−1 ∈ G. In particular, 41 : H1(G, k) −→

H0(G, k) is given by ϕ 7→ ϕ(1).

We prove that H∗(G, k) is in fact a BV subalgebra of HH∗(kG).

Corollary 8.4. Let k be a field and G a finite group. Then H∗(G, k) ↪→ HH∗(kG)
is a BV subalgebra.
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Proof The inclusion in known to preserve the product structure. In fact this is
a direct consequence of Theorem 7.1. In that result, taking x = 1 = y, we always
has z = 1 if the set I ′1 is not empty.

As the inclusionHn(G, k) ↪→ HH∗(kG) induced by the isomorphism in Lemma 6.1
corresponding to x = 1, Theorem 8.2 shows that it preserves the4-operator. Since
this operator together with the cup product ∪ and the Lie bracket [ , ] define a
BV algebra structure on HH∗(kG), via the isomorphism in Lemma 6.1, we deduce
that the Lie bracket [ , ] restricts to H∗(G, k) = H∗(CG(1), k).

�

Now we specialize to the case of abelian groups. Let G be an abelian group.
In this case, the Hochschild cohomology ring HH∗(kG) of the group algebra kG
is isomorphic to the tensor product algebra of kG and the group cohomology ring
H∗(G, k): HH∗(kG) ' kG ⊗k H∗(G, k). According to [4], this isomorphism is
given as follows. For G an abelian group, conjugacy classes are elements of G,
hence a cochain ϕx of Hnx for x ∈ G attributes a scalar multiple of g1 · · · gnx for

each (g1, · · · , gn) ∈ G×n and we obtain in this way a map ϕx : G
×n −→ k. It is

easy to see that the map ϕ̂x in Theorem 6.3 is just this scalar.
Now Theorem 7.1 shows that the map ϕ 7−→ Σx∈G(x ⊗ ϕx) defines a ring

isomorphism C∗(kG) −→ kG ⊗ C∗(kG, k) compatible with the differentials, and
therefore it induces the above isomorphism. Theorem 8.2 specializes to the follow-
ing statement.

Proposition 8.5. Let k be a field and G a finite abelian group. Under the above
isomorphism HH∗(kG) ' kG ⊗k H∗(G, k), the operator 4 : HHn(kG) −→
HHn−1(kG) corresponds to the sum of operators x ⊗ 4x : x ⊗ Hn(G, k) −→
x ⊗ Hn−1(G, k), where x ∈ G and 4x : Hn(G, k) −→ Hn−1(G, k) is defined as
follows:

4x(ϕ)(g1, · · · , gn−1) =

n∑
i=1

(−1)i(n−1)ϕ(gi, · · · , gn−1, g−1n−1 · · · g
−1
1 x−1, g1, · · · , gi−1)

for ϕ : G
×n −→ k and for g1, · · · , gn−1 ∈ G. When n = 1, 4x : H1(G, k) −→

H0(G, k) is given by ϕ 7→ ϕ(x−1).

Remark 8.6. We could also use the first realization to deduce a formula of the
4 operator. However, this formula is much more complicated than that of Theo-
rem 8.2. We refrain from giving it here.

In a BV-algebra, we have the following equation (see [9]; Here we have changed
the original equation according to the sign convention in Remark 3.1 and we omit
the sign ∪ in the equation):

4(αβγ) = (−1)|α||β||γ|[(−1)|γ| 4 (αβ)γ + α4 (βγ) + (−1)|α||β|β 4 (αγ)

−(−1)|α| 4 (α)βγ − (−1)|α|+|β|−|α||γ|α(4(β))γ − (−1)|α|+|β|+|γ|αβ 4 (γ)],

where α, β, γ ∈ HH∗(A) are homogeneous elements. So in order to compute the
4 operator in HH∗(A), it suffices to find the value of 4 on each generator and
on the cup product of every two generators. Finally, let us mention that we can
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use the cup product formula, the 4 operator formula and the following formula
to compute the Lie bracket:

[α, β] = −(−1)(|α|−1)|β|(4(α ∪ β)−4(α) ∪ β − (−1)|α|α ∪4(β)).

9. The symmetric group of degree 3

There are a few computations in literature on the BV structures of the Hochschild
cohomology rings of some commutative algebras, see for example, [20]. As far as we
know, there is no concrete computation in non-commutative case. In this section,
we use our method to compute the BV structure of the Hochschild cohomology
rings of the group algebra F3S3. The associative ring structure has been deter-
mined by Siegel and Witherspoon [17] using their cup product formula. So we
only need to compute the 4 operator and the Lie bracket.

Let G = S3 = 〈a, b | a3 = 1 = b2, bab = a−1〉. Choose the conjugacy class
representatives as 1, a, b. The corresponding centralizers are H1 = G,H2 = 〈a〉
and H3 = 〈b〉. So HH∗(F3S3) ' H∗(S3) ⊕ H∗(〈a〉) ⊕ H∗(〈b〉). The ring struc-
tures of H∗(S3), of H∗(〈a〉), and of H∗(〈b〉) are well-known (see for example,
[6]). H∗(S3) = F3[u, v]/(u2), where u and v have degrees of 3 and 4, respec-
tively. H∗(〈a〉) = F3[w1, w2]/(w1

2), where w1 and w2 have degrees of 1 and
2, respectively. H∗(〈b〉) = F3, since F3〈b〉 is semisimple. Identify the elements
u, v with their images in HH∗(F3S3) and denote by X1, X2 the images of the
elements (resp.) w1, w2 under the additive decomposition. Then Siegel and
Witherspoon proved in [17] the following presentation for the Hochschild coho-
mology ring HH∗(F3S3): HH∗(F3S3) is generated as an algebra by elements
u, v, C1 = 1 + a+ a2, C2 = b(1 + a+ a2), X1, X2 of degrees (resp.) 3, 4, 0, 0, 1 and
2, subject to the relations

uX1 = 0, vX1 = uX2, uC2 = 0 = vC2,

CiXj = 0 = CiCj(i, j ∈ {1, 2}), X1X2 = uC1, X2
2 = vC1

in addition to the graded commutative relations.

Our formula in Theorem 8.2 for 4 operator is based on the normalized bar
resolution. However, the real computations of the Hochschild cohomology or the
group cohomology are based on the minimal projective resolutions. So we need
to construct comparison maps between the minimal projective resolution and nor-
malized bar resolution (by the same technique introduced in Section 2), and then
we can transfer our formula in Theorem 8.2 to the minimal Hochschild cohomology
level. By Theorem 8.2, the operator 4 : HHn(F3S3) −→ HHn−1(F3S3) restricts

to the operators 4̂b : Hn(〈b〉) −→ Hn−1(〈b〉), 4̂a : Hn(〈a〉) −→ Hn−1(〈a〉), and

4̂1 : Hn(S3) −→ Hn−1(S3). Since F3〈b〉 is semisimple and H∗(〈b〉) is concentrated

in degree zero, 4̂b is trivial.

To compute 4̂a, we first recall the minimal projective resolution P ∗a of the
trivial F3〈a〉-module F3:

· · · −→ F3〈a〉
a−1−→ F3〈a〉

1+a+a2−→ F3〈a〉
a−1−→ F3〈a〉

ε−→ F3 −→ 0,
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where the differential ε is given by ε(λ1 + λ2a + λ3a
2) = λ1 + λ2 + λ3, and the

differential a−1 means multiplying by a−1, etc.. There is a setwise self-homotopy
over P ∗a as follows:

t−1 : F3 → F3〈a〉, 1 7→ 1,

t0 : F3〈a〉 → F3〈a〉, 1 7→ 0, a 7→ 1, a2 7→ 1 + a,

t1 : F3〈a〉 → F3〈a〉, 1 7→ 0, a 7→ 0, a2 7→ 1,

t2 : F3〈a〉 → F3〈a〉, 1 7→ 0, a 7→ 1, a2 7→ 1 + a,

t3 : F3〈a〉 → F3〈a〉, 1 7→ 0, a 7→ 0, a2 7→ 1,

· · · · · · · · ·
We also have the normalized bar resolution Bar∗(F3〈a〉) ⊗F3〈a〉 F3 of the trivial
F3〈a〉-module F3, which is identified as the following complex

· · · −→ F3〈a〉 ⊗ F3〈a〉
⊗n dn−→ · · · −→ F3〈a〉 ⊗ F3〈a〉

d1−→ F3〈a〉
d0−→ F3 −→ 0,

where the differential is given by

d0(g0) = 1 (for g0 ∈ 〈a〉)

and (for g0 ∈ 〈a〉, g1, · · · , gn ∈ 〈a〉)
dn(g0, g1, · · · , gn) = g0g1⊗g2⊗· · ·⊗gn+

n−1∑
i=1

(−1)ig0 ⊗ · · · ⊗ gigi+1 ⊗ · · · ⊗ gn + (−1)ng0 ⊗ g1 ⊗ · · · ⊗ gn−1.

There is a setwise self-homotopy over Bar∗(F3〈a〉)⊗F3〈a〉 F3 as follows:

sn : F3〈a〉 ⊗ F3〈a〉
⊗n
−→ F3〈a〉 ⊗ F3〈a〉

⊗n+1
,

g0 ⊗ g1 ⊗ · · · ⊗ gn 7−→ 1⊗ g0 ⊗ g1 ⊗ · · · ⊗ gn,
where g0 ∈ 〈a〉, g1, · · · , gn ∈ 〈a〉. Using {sn} and {tn} we get comparison maps
Φ : P ∗a −→ Bar∗(F3〈a〉)⊗F3〈a〉F3 and Ψ : Bar∗(F3〈a〉)⊗F3〈a〉F3 −→ P ∗a . We write
down the maps up to degree 4 explicitly:

Φ : P ∗a −→ Bar∗(F3〈a〉)⊗F3〈a〉 F3

Φ−1 = id : F3 −→ F3,

Φ0 = id : F3〈a〉 −→ F3〈a〉,
Φ1 : F3〈a〉 −→ F3〈a〉 ⊗ F3〈a〉, g 7→ g ⊗ a, for g = 1, a, a2,

Φ2 : F3〈a〉 −→ F3〈a〉 ⊗ F3〈a〉
⊗2
, g 7→ g ⊗ a⊗ a+ g ⊗ a2 ⊗ a, for g = 1, a, a2,

Φ3 : F3〈a〉 −→ F3〈a〉⊗F3〈a〉
⊗3
, g 7→ g⊗a⊗a⊗a+g⊗a⊗a2⊗a, for g = 1, a, a2,

Φ4 : F3〈a〉 −→ F3〈a〉 ⊗ F3〈a〉
⊗4
, g 7→ g ⊗ a⊗ a⊗ a⊗ a+ g ⊗ a⊗ a⊗ a2 ⊗ a+

g ⊗ a2 ⊗ a⊗ a⊗ a+ g ⊗ a2 ⊗ a⊗ a2 ⊗ a, for g = 1, a, a2;

Ψ : Bar∗(F3〈a〉)⊗F3〈a〉 F3 −→ P ∗a
Ψ−1 = id : F3 −→ F3,

Ψ0 = id : F3〈a〉 −→ F3〈a〉,
Ψ1 : F3〈a〉 ⊗ F3〈a〉 −→ F3〈a〉, g ⊗ a 7→ g, g ⊗ a2 7→ g(1 + a), for g = 1, a, a2,

Ψ2 : F3〈a〉 ⊗ F3〈a〉
⊗2
−→ F3〈a〉, g ⊗ a⊗ a 7→ 0,
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g ⊗ a⊗ a2 7→ g, g ⊗ a2 ⊗ a 7→ g, g ⊗ a2 ⊗ a2 7→ g, for g = 1, a, a2,

Ψ3 : F3〈a〉 ⊗ F3〈a〉
⊗3
−→ F3〈a〉, g ⊗ a⊗ a⊗ a 7→ 0, g ⊗ a⊗ a⊗ a2 7→ 0,

g ⊗ a⊗ a2 ⊗ a 7→ 0, g ⊗ a⊗ a2 ⊗ a2 7→ 0, g ⊗ a2 ⊗ a⊗ a 7→ 0,

g ⊗ a2 ⊗ a⊗ a2 7→ g(1 + a), g ⊗ a2 ⊗ a2 ⊗ a 7→ g(1 + a),

g ⊗ a2 ⊗ a2 ⊗ a2 7→ ga, for g = 1, a, a2,

Ψ4 : F3〈a〉 ⊗F3〈a〉
⊗4
−→ F3〈a〉, g⊗ a⊗ a⊗ a⊗ a 7→ 0, g⊗ a⊗ a⊗ a⊗ a2 7→ 0,

g ⊗ a⊗ a⊗ a2 ⊗ a 7→ 0, g ⊗ a⊗ a⊗ a2 ⊗ a2 7→ 0, g ⊗ a⊗ a2 ⊗ a⊗ a 7→ 0,

g ⊗ a⊗ a2 ⊗ a⊗ a2 7→ g, g ⊗ a⊗ a2 ⊗ a2 ⊗ a 7→ g, g ⊗ a⊗ a2 ⊗ a2 ⊗ a2 7→ g,

g ⊗ a2 ⊗ a⊗ a⊗ a 7→ 0, g ⊗ a2 ⊗ a⊗ a⊗ a2 7→ 0, g ⊗ a2 ⊗ a⊗ a2 ⊗ a 7→ 0,

g ⊗ a2 ⊗ a⊗ a2 ⊗ a2 7→ 0, g ⊗ a2 ⊗ a2 ⊗ a⊗ a 7→ 0, g ⊗ a2 ⊗ a2 ⊗ a⊗ a2 7→ g,

g ⊗ a2 ⊗ a2 ⊗ a2 ⊗ a 7→ g, g ⊗ a2 ⊗ a2 ⊗ a2 ⊗ a2 7→ 0, for g = 1, a, a2.

We have the following commutative diagram:

F3〈a〉 -

F3
w1

�
���

F3〈a〉
a− 1 ε- F3

- 0

- 0F3〈a〉 ⊗ F3〈a〉
d1- F3〈a〉

d0- F3

6Ψ1 Φ1
?

Ψ0
?

Φ0
6 ‖

‖
‖

?
6Ψ2 Φ2

1 + a+ a2

d2-

-F3〈a〉

F3
w2

�
���

F3〈a〉 ⊗ F3〈a〉
⊗2

Clearly both the representatives of w1 and w2 in the group cohomology H∗(〈a〉) =
F3[w1, w2]/(w1

2) can be chosen as ε : F3〈a〉 −→ F3, λ1+λ2a+λ3a
2 7→ λ1+λ2+λ3.

By abuse of notation, we have

4̂a(w1) = 4̂a(w1Ψ1) ◦ Φ0,

4̂a(w2) = 4̂a(w2Ψ2) ◦ Φ1.

A straightforward calculation shows that 4̂a(w1) = −1 and 4̂a(w2) = 0. Simi-
larly, we can get that

4̂a(w1w2) = 4̂a((w1Ψ1)(w2Ψ2)) ◦ Φ2,

4̂a(w2
2) = 4̂a((w2Ψ2)2) ◦ Φ3.

By direct computation, we have (w1Ψ1)(w2Ψ2)Φ3(1) = 1 and (w2Ψ2)2)Φ4(1) = 1,
which imply that both the representatives of w1w2 and w2

2 in the group cohomology
H∗(〈a〉) = F3[w1, w2]/(w1

2) are given by ε. So again a straightforward calculation

shows that 4̂a(w1w2) = −w2 and 4̂a(w2
2) = 0.

Next we compute 4̂1. First of all, we need to construct a minimal projective
resolution P ∗1 of the trivial F3S3-module F3. Recall that the group algebra F3S3

can be identified as the F3-algebra A given by the following quiver and relations:

1◦ 2◦ ,-
�
α

β
αβα = βαβ = 0.
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Let AA = Ae1⊕Ae2 = 〈e1, α, βα〉⊕〈e2, β, αβ〉 be the decomposition of the regular
module into the indecomposable projective modules. Then we have the following
(Remind that all the computations take place over F3):

e1 = −(1 + b), e2 = −(1− b),
α = −a(1− a)(1 + b) = −(1− b)a(1− a) = −(a− a2 + ab− a2b),
β = −a(1− a)(1− b) = −(1 + b)a(1− a) = −(a− a2 − ab+ a2b),

βα = (1 + b)(1 + a+ a2)(1 + b) = −(1 + a+ b+ a2 + ab+ a2b),

αβ = (1− b)(1 + a+ a2)(1− b) = −(1 + a− b+ a2 − ab− a2b),
1 = e1 + e2, a = e1 + e2 − α− β − αβ − βα, b = e1 − e2,

a2 = e1 + e2 + α+ β − αβ − βα, ab = e1 − e2 − α+ β + αβ − βα,
a2b = e1 − e2 + α− β + αβ − βα.

Ae1 is the projective cover of the trivial module F3 since a and b act trivially on
Ae1/rad(Ae1); Ae2 is the projective cover of the sign module sgn since a (resp.,
b) acts trivially (resp., by multiplying −1) on Ae2/rad(Ae2). Now it is easy to
write down the minimal projective resolution P ∗1 of the trivial F3S3-module F3 is
as follows:

· · · −→ Ae1
∂4−→ Ae1

∂3−→ Ae2
∂2−→ Ae2

∂1−→ Ae1
∂0−→ F3 −→ 0,

where the differential is given as follows:

∂0 : e1 7→ 1, α 7→ 0, βα 7→ 0,

∂1 : e2 7→ α, β 7→ βα, αβ 7→ 0,

∂2 : e2 7→ αβ, β 7→ 0, αβ 7→ 0,

∂3 : e1 7→ β, α 7→ αβ, βα 7→ 0,

∂4 : e1 7→ βα, α 7→ 0, βα 7→ 0,

∂5 : e2 7→ α, β 7→ βα, αβ 7→ 0,

∂6 : e2 7→ αβ, β 7→ 0, αβ 7→ 0,

∂7 : e1 7→ β, α 7→ αβ, βα 7→ 0,

∂8 : e1 7→ βα, α 7→ 0, βα 7→ 0,

· · · · · · · · ·
Using the Lowey diagram structures of Ae1 and Ae2, we can easily construct a
setwise self-homotopy over P ∗1 as follows:

t−1 : F3 → Ae1, 1 7→ e1,

t0 : Ae1 → Ae2, e1 7→ 0, α 7→ e2, βα 7→ β,

t1 : Ae2 → Ae2, e2 7→ 0, β 7→ 0, αβ 7→ e2,

t2 : Ae2 → Ae1, e2 7→ 0, β 7→ e1, αβ 7→ α,

t3 : Ae1 → Ae1, e1 7→ 0, α 7→ 0, βα 7→ e1,

t4 : Ae1 → Ae2, e1 7→ 0, α 7→ e2, βα 7→ β,

t5 : Ae2 → Ae2, e2 7→ 0, β 7→ 0, αβ 7→ e2,

t6 : Ae2 → Ae1, e2 7→ 0, β 7→ e1, αβ 7→ α,

t7 : Ae1 → Ae1, e1 7→ 0, α 7→ 0, βα 7→ e1,
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t8 : Ae1 → Ae2, e1 7→ 0, α 7→ e2, βα 7→ β,

· · · · · · · · ·
We also have the normalized bar resolution Bar∗(A)⊗AF3 of the trivial A-module
F3, which is identified as the following complex

· · · −→ A⊗A⊗n dn−→ · · · −→ A⊗A d1−→ A
d0−→ F3 −→ 0,

where the differential is given by

d0(g0) = 1 (for g0 ∈ S3)

and (for g0 ∈ S3, g1, · · · , gn ∈ S3)

dn(g0, g1, · · · , gn) = g0g1 ⊗ g2 ⊗ · · · ⊗ gn+

n−1∑
i=1

(−1)ig0 ⊗ · · · ⊗ gigi+1 ⊗ · · · ⊗ gn + (−1)ng0 ⊗ g1 ⊗ · · · ⊗ gn−1.

There is a setwise self-homotopy over Bar∗(A)⊗A F3 as follows:

sn : A⊗A⊗n −→ A⊗A⊗n+1
,

g0 ⊗ g1 ⊗ · · · ⊗ gn 7−→ 1⊗ g0 ⊗ g1 ⊗ · · · ⊗ gn,
where g0 ∈ S3, g1, · · · , gn ∈ S3. As before, we want to use {sn} and {tn} to get
comparison maps Λ : P ∗1 −→ Bar∗(A) ⊗A F3 and Θ : Bar∗(A) ⊗A F3 −→ P ∗1 .
Here the situation is a bit different, since P ∗1 is not a free resolution. However, if
we replace sn(x) by s̃n(x) = e1sn(e1x) + e2sn(e2x), then the method introduced
in Section 2 still works. We write down the comparison maps up to degree 8
explicitly:

Λ : P ∗1 −→ Bar∗(A)⊗A F3

Λ−1 = id : F3 −→ F3,

Λ0 : Ae1 −→ A,

ae1 7→ ae1,

Λ1 : Ae2 −→ A⊗A,
e2 7→ e2 ⊗ α, β 7→ β ⊗ α, αβ 7→ αβ ⊗ α,

Λ2 : Ae2 −→ A⊗A⊗2,
e2 7→ e2 ⊗ αβ ⊗ α, β 7→ β ⊗ αβ ⊗ α, αβ 7→ αβ ⊗ αβ ⊗ α,

Λ3 : Ae1 −→ A⊗A⊗3,
e1 7→ e1 ⊗ β ⊗ αβ ⊗ α, α 7→ α⊗ β ⊗ αβ ⊗ α, βα 7→ βα⊗ β ⊗ αβ ⊗ α,

Λ4 : Ae1 −→ A⊗A⊗4,
e1 7→ e1⊗βα⊗β⊗αβ⊗α, α 7→ α⊗βα⊗β⊗αβ⊗α, βα 7→ βα⊗βα⊗β⊗αβ⊗α,

Λ5 : Ae2 −→ A⊗A⊗5,
e2 7→ e2 ⊗ α⊗ βα⊗ β ⊗ αβ ⊗ α, β 7→ β ⊗ α⊗ βα⊗ β ⊗ αβ ⊗ α,

αβ 7→ αβ ⊗ α⊗ βα⊗ β ⊗ αβ ⊗ α,
Λ6 : Ae2 −→ A⊗A⊗6,

e2 7→ e2 ⊗ αβ ⊗ α⊗ βα⊗ β ⊗ αβ ⊗ α, β 7→ β ⊗ αβ ⊗ α⊗ βα⊗ β ⊗ αβ ⊗ α,
αβ 7→ αβ ⊗ αβ ⊗ α⊗ βα⊗ β ⊗ αβ ⊗ α,
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Λ7 : Ae1 −→ A⊗A⊗7,
e1 7→ e1⊗ β ⊗αβ ⊗α⊗ βα⊗ β ⊗αβ ⊗α, α 7→ α⊗ β ⊗αβ ⊗α⊗ βα⊗ β ⊗αβ ⊗α,

βα 7→ βα⊗ β ⊗ αβ ⊗ α⊗ βα⊗ β ⊗ αβ ⊗ α,
Λ8 : Ae1 −→ A⊗A⊗8,

e1 7→ e1⊗βα⊗β⊗αβ⊗α⊗βα⊗β⊗αβ⊗α, α 7→ α⊗βα⊗β⊗αβ⊗α⊗βα⊗β⊗αβ⊗α,
βα 7→ βα⊗ βα⊗ β ⊗ αβ ⊗ α⊗ βα⊗ β ⊗ αβ ⊗ α;

Θ : Bar∗(A)⊗A F3 −→ P ∗1
Θ−1 = id : F3 −→ F3,

Θ0 : A −→ Ae1,

a 7→ ae1, for a ∈ A,
Θ1 : A⊗A −→ Ae2,

1⊗ g1 7→ −e2 − β, 0, e2 − β,−e2 − β, e2 − β, for g1 = a, b, a2, ab, a2b,

Θ2 : A⊗A⊗2 −→ Ae2,

1⊗ g1 ⊗ g2 7→ −e2, 0, 0, 0, e2 for g1 = a, b, a2, ab, a2b,

and where Θ1(1⊗ g2) = −e2 − β,
1⊗ g1 ⊗ g2 7→ 0, 0, e2,−e2, 0 for g1 = a, b, a2, ab, a2b,

and where Θ1(1⊗ g2) = e2 − β,
1⊗ g1 ⊗ g2 7→ 0, for any other case,

Θ3 : A⊗A⊗3 −→ Ae1,

1⊗ g1 ⊗ g2 ⊗ g3 7→ −e1 − α, 0, e1 − α, e1 + α,−e1 + α, for g1 = a, b, a2, ab, a2b,

and where Θ2(1⊗ g2 ⊗ g3) = e2,

1⊗ g1 ⊗ g2 ⊗ g3 7→ e1 + α, 0,−e1 + α,−e1 − α, e1 − α, for g1 = a, b, a2, ab, a2b,

and where Θ2(1⊗ g2 ⊗ g3) = −e2,
1⊗ g1 ⊗ g2 ⊗ g3 7→ 0, for any other case,

Θ4 : A⊗A⊗4 −→ Ae1,

1⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 7→ e1, 0, 0, 0, e1 for g1 = a, b, a2, ab, a2b,

and where Θ3(1⊗ g2 ⊗ g3 ⊗ g4) = e1 + α,

1⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 7→ 0, 0, e1, e1, 0 for g1 = a, b, a2, ab, a2b,

and where Θ3(1⊗ g2 ⊗ g3 ⊗ g4) = e1 − α,
1⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 7→ −e1, 0, 0, 0,−e1 for g1 = a, b, a2, ab, a2b,

and where Θ3(1⊗ g2 ⊗ g3 ⊗ g4) = −e1 − α,
1⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 7→ 0, 0,−e1,−e1, 0 for g1 = a, b, a2, ab, a2b,

and where Θ3(1⊗ g2 ⊗ g3 ⊗ g4) = −e1 + α,

1⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 7→ 0, for any other case,

Θ5 : A⊗A⊗5 −→ Ae2,

1⊗g1⊗g2⊗g3⊗g4⊗g5 7→ −e2−β, 0, e2−β,−e2−β, e2−β, for g1 = a, b, a2, ab, a2b,

and where Θ4(1⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5) = e1,

1⊗g1⊗g2⊗g3⊗g4⊗g5 7→ e2+β, 0,−e2+β, e2+β,−e2+β, for g1 = a, b, a2, ab, a2b,
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and where Θ4(1⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5) = −e1,
1⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 7→ 0, for any other case,

Θ6 : A⊗A⊗6 −→ Ae2,

1⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6 7→ e2, 0, 0, 0,−e2 for g1 = a, b, a2, ab, a2b,

and where Θ5(1⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6) = e2 + β,

1⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6 7→ 0, 0, e2,−e2, 0 for g1 = a, b, a2, ab, a2b,

and where Θ5(1⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6) = e2 − β,
1⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6 7→ −e2, 0, 0, 0, e2 for g1 = a, b, a2, ab, a2b,

and where Θ5(1⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6) = −e2 − β,
1⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6 7→ 0, 0,−e2, e2, 0 for g1 = a, b, a2, ab, a2b,

and where Θ5(1⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6) = −e2 + β,

1⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6 7→ 0, for any other case,

Θ7 : A⊗A⊗7 −→ Ae1,

1⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6 ⊗ g7 7→ −e1 − α, 0, e1 − α, e1 + α,−e1 + α

for g1 = a, b, a2, ab, a2b, and where Θ6(1⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6 ⊗ g7) = e2,

1⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6 ⊗ g7 7→ e1 + α, 0,−e1 + α,−e1 − α, e1 − α
for g1 = a, b, a2, ab, a2b, and where Θ6(1⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6 ⊗ g7) = −e2,

1⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6 ⊗ g7 7→ 0, for any other case,

Θ8 : A⊗A⊗8 −→ Ae1,

1⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6 ⊗ g7 ⊗ g8 7→ e1, 0, 0, 0, e1 for g1 = a, b, a2, ab, a2b,

and where Θ7(1⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6 ⊗ g7 ⊗ g8) = e1 + α,

1⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6 ⊗ g7 ⊗ g8 7→ 0, 0, e1, e1, 0 for g1 = a, b, a2, ab, a2b,

and where Θ7(1⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6 ⊗ g7 ⊗ g8) = e1 − α,
1⊗ g1⊗ g2⊗ g3⊗ g4⊗ g5⊗ g6⊗ g7⊗ g8 7→ −e1, 0, 0, 0,−e1 for g1 = a, b, a2, ab, a2b,

and where Θ7(1⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6 ⊗ g7 ⊗ g8) = −e1 − α,
1⊗ g1⊗ g2⊗ g3⊗ g4⊗ g5⊗ g6⊗ g7⊗ g8 7→ 0, 0,−e1,−e1, 0 for g1 = a, b, a2, ab, a2b,

and where Θ7(1⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6 ⊗ g7 ⊗ g8) = −e1 + α,

1⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5 ⊗ g6 ⊗ g7 ⊗ g8 7→ 0, for any other case.

Note that both the representatives of u and v in the group cohomology H∗(S3) =
F3[u, v]/(u2) can be chosen as Ae1 −→ F3, e1 7→ 1, α 7→ 0, βα 7→ 0. Since |u| = 3

and |v| = 4, we have 4̂1(u) = 0 and 4̂1(v) = λu for some λ ∈ F3. We have

4̂1(v) = 4̂1(vΘ4) ◦ Λ3,

and 4̂1(vΘ4) can be computed by our formula in Theorem 8.2. Since

4̂1(vΘ4) ◦ Λ3(e1) = e14̂1(vΘ4)(β ⊗ αβ ⊗ α)

= −4̂1(vΘ4)(β ⊗ αβ ⊗ α)− b4̂1(vΘ4)(β ⊗ αβ ⊗ α)

= −24̂1(vΘ4)(β ⊗ αβ ⊗ α) = 4̂1(vΘ4)(β ⊗ αβ ⊗ α).

By a MAPLE calculation (see [14]: A MAPLE program for computing 4̂1.), we

obtain that 4̂1(vΘ4)(β ⊗ αβ ⊗ α) = 0, and therefore 4̂1(v) = 0. Since |uv| = 7
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and |v2| = 8, we have 4̂1(uv) = µu2 and 4̂1(v2) = µ′uv for some µ, µ′ ∈ F3. Since

u2 = 0, 4̂1(uv) = 0, and we only need to compute 4̂1(v2). The representative of
v2 in the group cohomology H∗(S3) = F3[u, v]/(u2) can also be chosen (up to a
sign) as Ae1 −→ F3, e1 7→ 1, α 7→ 0, βα 7→ 0. We have

4̂1(v2) = 4̂1(v2Θ8) ◦ Λ7,

4̂1(v2Θ8) ◦ Λ7(e1) = e14̂1(v2Θ7)(β ⊗ αβ ⊗ α⊗ βα⊗ β ⊗ αβ ⊗ α)

= 4̂1(v2Θ7)(β ⊗ αβ ⊗ α⊗ βα⊗ β ⊗ αβ ⊗ α).

Similarly by a MAPLE calculation (see[14]: A MAPLE program for computing

4̂1), we obtain that 4̂1(v2Θ8) ◦ Λ7(e1) = 0, and therefore 4̂1(v2) = 0.
Finally, based on the above computations, we deal with the Lie brackets. Since

we have the following Possion rule: [α∪β, γ] = [α, γ]∪β+(−1)|α|(|γ|−1)α∪ [β, γ], it
suffices to write down the Lie brackets between generators in HH∗(F3S3). Recall
that HH∗(F3S3) is generated as an algebra by elements u, v, C1 = 1+a+a2, C2 =
b(1 + a+ a2), X1, X2 of degrees (resp.) 3, 4, 0, 0, 1 and 2, subject to the relations

uX1 = 0, vX1 = uX2, uC2 = 0 = vC2,

CiXj = 0 = CiCj(i, j ∈ {1, 2}), X1X2 = uC1, X2
2 = vC1

in addition to the graded commutative relations. Using the formulas (Here we
omit the sign ∪ in the equation)

[α, β] = −(−1)(|α|−1)|β|(4(αβ)−4(α)β − (−1)|α|α4 (β))

and
[α, β] = −(−1)(|α|−1)(|β|−1)[β, α],

we do the concrete computations as follows:

[u, u] = 0, [u, v] = 4̂1(uv)− 4̂1(u)v + u4̂1(v) = 0, [v, u] = 0,

[u,C1] = −(4(uC1)−4(u)C1 + u4 (C1)) = −4̂a(X1X2) = X2, [C1, u] = −X2,

[u,C2] = −(4(uC2)−4(u)C2 + u4 (C2)) = 0, [C2, u] = 0,

[u,X1] = −(4(uX1)−4(u)X1 + u4 (X1)) = u, [X1, u] = −u,
[u,X2] = −(4(uX2)−4(u)X2 + u4 (X2)) = −4̂(uX2) = 0, [X2, u] = 0,

[v, v] = −(4(v2)−4(v)v − v4 (v)) = 0,

[v, C1] = −(4(vC1)−4(v)C1 + v4 (C1)) = −4̂a(X2
2 ) = 0, [C1, v] = 0,

[v, C2] = −(4(vC2)−4(v)C2 + v4 (C2)) = 0, [C2, v] = 0,

[v,X1] = 4(vX1)−4(v)X1 − v4 (X1) = −v, [X1, v] = v,

[v,X2] = −(4(vX2)−4(v)X2 − v4 (X2)) = ±4̂a(X3
2 ) = 0, [X2, v] = 0,

[C1, C1] = [C1, C2] = [C2, C1] = [C2, C2] = 0,

[C1, X1] = 4(C1X1)−4(C1)X1 − C1 4 (X1) = C1, [X1, C1] = −C1,

[C1, X2] = −(4(C1X2)−4(C1)X2 − C1 4 (X2)) = 0, [X2, C1] = 0,

[C2, X1] = 4(C2X1)−4(C2)X1 − C2 4 (X1) = C2, [X1, C2] = −C2,

[C2, X2] = −(4(C2X2)−4(C2)X2 − C2 4 (X2)) = 0, [X2, C2] = 0,

[X1, X1] = 0, [X1, X2] = −(4(X1X2)−4(X1)X2 +X14 (X2)) = 0, [X1, X2] = 0,

[X2, X2] = −(4(X2
2 )−4(X2)X2 −X2 4 (X2)) = 0.
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In the fifth line of the above computation, we use the fact that 4̂(uX2) =
0. The reason is as follows: uX2 is an element of degree 5, under the additive
decompositon, it corresponds to an element in H∗(〈a〉) and has the form ±w1w2

2.

It follows from the formula in the last paragragh of Section 8 that 4̂(uX2) =

4̂a(±w1w2
2) = 0.

Remark 9.1. By a recent result of Menichi (see [16, p. 321]), the Lie bracket
of the group cohomology H∗(G) for a finite group G must be trivial. The above
computation shows that this is indeed the case for H∗(S3) = F3[u, v]/(u2). Note
that to verify [v, v] = 0, we have used the MAPLE program in [14].

Remark 9.2. Observe in the above example that the generators ofHH∗(F3S3) are
“multiplicative closed” under Lie bracket: the Lie bracket [α, β] of two generators
α and β is a scalar multiple of another generator. Also if [α, β] 6= 0, then [α, β] is
equal to −[β, α].

References

[1] N.Bian, P.Zhang and G.Zhang, Setwise homotopy category. Appl. Categ. Structures 17(6)
(2009), 561-565.

[2] D.Benson, Representations and cohomology II: Cohomology of groups and modules. Cam-

bridge University Press, 1991.
[3] C.Cibils, Tensor product of Hopf bimodules over a group. Proc. Amer. Math. Soc. 125

(1997), 1315-1321.
[4] C.Cibils and A.Solotar, Hochschild cohomology algebra of abelian groups. Arch. Math.

68 (1997), 17-21.

[5] S.Eilenberg and S.Mac Lane, Cohomology theory in abstract groups I. Ann. Math. 48
(1947), 51-78.

[6] L.Evens, The cohomology of groups. Clarendon Press, 1991.

[7] M.A.Farinati and A.L.Solotar, G-structure on the cohomology of Hopf algebras. Proc.
Amer. Math. Soc. 132 (2004), 2859-2865.

[8] M.Gerstenhaber, The cohomology structure of an associative ring. Ann. Math. 78(2)

(1963), 267-288.
[9] E.Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories.

Comm. Math. Phys. 159(2) (1994), 265-285.

[10] T.Holm, The Hochschild cohomology ring of a modular group algebra: the commutative
case. Comm. Algebra 24 (1996), 1957-1969.

[11] A.Ivanov, S.O.Ivanov, Y.Volkov and G.D.Zhou, On the Hochschild cohomology ring of
the quaternion group of order eight in characteristic two. J. Algebra 435(2015), 174-203.

[12] J.Le and G.D.Zhou, On the Hochschild cohomology of tensor product of algebras. J. Pure

Appl. Algebra 218(8) (2014), 1463-1477.
[13] J.L.Loday, Cyclic Homology. Grundlehren der mathematischen Wissenschaften Vol. 301,

Springer, 1998.

[14] Y.M.Liu and G.D.Zhou, A Maple program, avalible at http://math.bnu.edu.cn/ liuym/
[15] L.Menichi, Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras. K-Theory

32(3) (2004), 231-251.

[16] L.Menichi, Connes-Moscovici characteristic map is a Lie algebra morphism. J. Algebra 331
(2011), 311-337.

[17] S.S.Siegel and S.J.Witherspoon, The Hochschild cohomology ring of a group algebra.

Proc. London Math. Soc. 79(3) (1999), 131-157.
[18] R.Taillefer, Injective Hopf bimodules, cohomologies of infinite dimensional Hopf algebras

and graded-commutativity of the Yoneda product. J. Algebra 276 (2004), 259-279.



HOCHSCHILD COHOMOLOGY RING 37

[19] T.Tradler, The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinitely

inner products. Ann. Inst. Fourier (Grenoble) 58(7) (2008), 2351-2379.

[20] T.Yang, A Batalin-Vilkovisky Algebra Structure on the Hochschild Cohomology of Trun-
cated Polynomials. Topology and its Applications 160(13) (2013), 1633-1651.


