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Abstract. It is well-known that derived equivalences preserve tensor products and trivial
extensions. We disprove both constructions for stable equivalences of Morita type.

1. Introduction

Let k be a field and let A be a finite dimensional k-algebra. We denote by modA the
category of all finite dimensional left A-modules, and by modA the stable module category
of modA modulo projective modules. Two finite dimensional k-algebras A and B are said
to be stably equivalent if modA and modB are equivalent as k-categories ([2]). The stable
category modA is a natural quotient of the module category modA by the ideal of maps that
factor through projective modules, and in case that A is self-injective it is also a natural
quotient (in the sense of triangulated categories) of the bounded derived module category
Db(modA) ([10][19]). Examples of stable equivalences naturally arise in the representation
theory of groups and algebras (see [2][1][16][5][13][14]).

However, unlike the classical Morita theory for module categories and the Morita theory
for derived categories ([18]), it is not known how to describe stable equivalences in terms
of generators of stable categories (cf. [12]). For this reason, much less is known for stable
equivalences comparing to Morita and derived equivalences. In practice, one often uses
stable equivalences of Morita type, which form a class of stable equivalences with properties
needed in most applications and which are close to derived equivalences.

Definition 1.1. ([5]) Two finite dimensional algebras A and B are said to be stably equi-
valent of Morita type if there are two bimodules AMB and BNA which are projective as left
modules and as right modules such that there are bimodule isomorphisms:

AM ⊗B NA ' AAA ⊕ APA, BN ⊗A MB ' BBB ⊕ BQB

where APA and BQB are projective bimodules.

Clearly, in the above situation, the exact functors N ⊗A− and M ⊗B − induce mutually
inverse equivalences between modA and modB. In fact, any stable equivalence that is
induced by an exact functor between the module categories of two self-injective algebras is
isomorphic to a stable equivalence of Morita type ([21]); Under some mild condition, this
even holds for general finite dimensional algebras ([7]). All derived equivalences between
self-injective k-algebras induce stable equivalences of Morita type ([20]). On the other
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hand, there do exist stable equivalences of Morita type which are not induced by derived
equivalences (see [5][13] and Section 3).

Although we have a better understanding of stable equivalences of Morita type than on
general stable equivalences, we still cannot answer some basic questions about them. For
example, one of the most important open problems is the following fundamental conjecture
of Auslander and Reiten:

Conjecture 1.2. [2][17] Two stably equivalent algebras have the same number of isomor-
phism classes of non-projective simple modules.

This conjecture is largely open even for stable equivalences of Morita type. We refer the
reader to [15][11] for some equivalent descriptions of this conjecture in this situation.

In the present paper, we will study two basic questions on stable equivalences of Morita
type. Before stating these questions, we first recall two classical results of Rickard on derived
equivalences. To state Rickard’s result, we need to recall the notion of trivial extensions.

Definition 1.3. Let A be a finite dimensional k-algebra. Let D(A) = Homk(A, k) be its
k-dual. Denote T (A) = A⊕D(A) as k-vector spaces, and define the multiplication by

(a, f)(b, g) = (ab, ag + fb)

for a, b ∈ A and f, g ∈ D(A). It is easy to see that this is a k-algebra and this algebra T (A)
is called the trivial extension of A and is denoted sometimes by T (A) = AnD(A).

Theorem 1.4. ([19][20]) Let A and B be two derived equivalent finite dimensional k-
algebras and assume the same condition for C and D. Then

(1) the trivial extension algebras T (A) and T (B) are derived equivalent;
(2) the tensor product algebras A⊗k C and B ⊗k D are derived equivalent.

It is natural to ask whether the same is true for stable equivalences of Morita type. In
fact, such questions are closely related to the Auslander-Reiten conjecture 1.2.

Proposition 1.5. Let k be an algebraically closed field of characteristic p > 0 and let Cp

be the cyclic group of order p. Let A and B be two indecomposable, non-semisimple finite
dimensional algebras which are stably equivalent of Morita type. Then the assertion that
A ⊗k kCp and B ⊗k kCp are stably equivalent of Morita type implies the validity of the
Auslander-Reiten conjecture 1.2 for A and B.

Proof (Compare with the proof of [21, Theorem 3.7]) We first observe that A and A⊗kkCp

have the same number of non-isomorphic simple modules. Let CA be the Cartan matrix of
A. The Cartan matrix of A ⊗k kCp is equal to pCA, so its p-rank is zero. The statement
follows from Theorem 4.1 of [15] which says that the invariance of the p-rank of the Cartan
matrix under a stable equivalence of Morita type is equivalent to the Auslander-Reiten
conjecture 1.2.

One can also give a proof by computing the degree zero stable Hochschild homology (see
[15]) of A⊗k kCp and of B ⊗k kCp. The details are left to the reader.

�
In [21], Rickard raised the following question.
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Question 1.6. ([21]) Let A and B be two indecomposable, non-semisimple self-injective
k-algebras which are stably equivalent of Morita type and assume the same condition for C
and D. Are A⊗k C and B ⊗k D stably equivalent of Morita type?

There would be trivial counterexamples if we do not request that algebras are indecom-
posable, since A and A×k are stably equivalent of Morita type. If the stable equivalences are
all induced by derived equivalences, then the answer is “yes” since the derived equivalence
preserves tensor product. If they are not, Rickard mentions that the answer is probably
“no” in general. However, as Rickard stated, the simplest possible counterexamples are
already quite complicated.

Note that in case p = 2 and A is symmetric, the above construction is just the trivial
extension, as the following more general proposition shows.

Proposition 1.7. Let k be a field and A be a symmetric k-algebra. Then the tensor algebra
A⊗k k[x]/(x2) is isomorphic to the trivial extension algebra T (A) = AnD(A) of A.

Proof Since A is symmetric, we can fix an A-A-bimodule isomorphism A → D(A) (map-
ping a ∈ A to a′ ∈ D(A)). Define a map

α : A⊗k k[x]/(x2)→ T (A) by α(a⊗ 1 + b⊗ x) = (a, b′).

It is straightforward that α is an algebra isomorphism.

�

Remark 1.8. Note that following Definition 1.3 one can define the trivial extension algebra
T (A) of arbitrary finite dimensional k-algebra A. It is well-known that T (A) is always a
symmetric k-algebra, that is, T (A) ∼= D(T (A)) as T (A)-T (A)-bimodules.

In [11], König and the first two named authors proved the following result relating the
Auslander-Reiten conjecture to trivial extensions.

Proposition 1.9. ([11, Corollary 8.2]) Let A and B be two symmetric k-algebras over an
algebraically closed field of characteristic p > 0. Suppose that A and B are stably equivalent
of Morita type. Then the condition that T (A) and T (B) are stably equivalent of Morita
type implies the validity of the Auslander-Reiten conjecture for A and B.

This motivates the following question in [11].

Question 1.10. ([11, Question 8.3]) Let A and B be two indecomposable, non-simple finite
dimensional algebras which are stably equivalent of Morita type. Are their trivial extensions
algebras T (A) and T (B) stably equivalent of Morita type?

In the present paper, we will answer Question 1.6 and Question 1.10 to the negative
for general finite dimensional algebras. More precisely, in Section 2, we prove that if two
algebras are stably equivalent (even of Morita type), then their corresponding triangular
matrix algebras are usually not stably equivalent of Morita type. Since the triangular
matrix algebras are special cases of tensor algebras, we get a negative answer to Question
1.6. In Section 3, starting from the group algebra of the dihedral group of order 8 in
characteristic 2, we first use a method in [14] to construct two algebras Λ and Γ which are
stably equivalent of Morita type, and then form their trivial extensions T (Λ) and T (Γ);
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although Λ and Γ have isomorphic (stable-) centers, the (stable-) centers of T (Λ) and T (Γ)
are non-isomorphic, this shows that T (Λ) and T (Γ) are not stably equivalent of Morita
type and we get a negative answer to Question 1.10.

Using a GAP [9] computer program and the ideas of the present paper Bouc and the
last named author proved in [4] that Rickard’s original question has a negative answer in
general. However, the proof there heavily depends on a computation by GAP.
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2. Triangular matrix algebras

In this section, we answer Question 1.6 to the negative for general finite dimensional
algebras.

Recall that for a finite dimensional k-algebra A, the stable category modA of modA
modulo injective modules can be defined similarly. There is an equivalence τ from modA
to modA, which is called the Auslander-Reiten translation. If F : modA → modB is a
stable equivalence, then there is an induced stable equivalence (modulo injectives) τBFτ

−1
A :

modA→ modB.
Given a finite dimensional k-algebra A, we denote by T2(A) the lower triangular matrix

algebra

(
A 0
A A

)
. Note that there is an algebra isomorphism between the tensor algebra

A⊗k T2(k) and T2(A) given by the map a⊗
(
u 0
v w

)
7→

(
au 0
av aw

)
. We refer to [2] for

the description of T2(A)-modules in terms of A-modules.

Theorem 2.1. Let A and B be two self-injective algebras with no semisimple summands.
If Λ := T2(A) and Γ := T2(B) are stably equivalent, then A and B are Morita equivalent.

Proof First we observe that although A and B are self-injective algebras, Λ and Γ are not
self-injective any more. Suppose now that there is a stable equivalence F : modΛ→ modΓ.
Let H = τΓFτ

−1
Λ : modΛ→ modΓ be the induced stable equivalence modulo injectives. By

[1, Corollary 3.2], H induces a one-to-one correspondence between the isomorphism classes
of indecomposable non-simple non-injective projective modules in modΛ and those in modΓ.
Under our assumption, there are no simple projective modules over Λ and Γ. Therefore H
induces a one-to-one correspondence between the isomorphism classes of indecomposable
non-injective projective modules in modΛ and those in modΓ.

Each Λ-module can be described as a triple (X, Y, f), where X and Y in modA, and f is
an A-module homomorphism from X to Y . A homomorphism from (X, Y, f) to (X ′, Y ′, f ′)
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is precisely a pair (α, β) in HomA(X,X ′) × HomA(Y, Y ′) such that βf = f ′α. From this
description we see that the indecomposable projective Λ-modules are isomorphic to mod-
ules of the form (P, P, 1P ) and (0, P, 0) where P is an indecomposable projective A-module.
Dually, the indecomposable injective Λ-modules are isomorphic to modules of the form
(P, P, 1P ) and (P, 0, 0) where P is an indecomposable projective A-module. By the pre-
vious discussion, we see that under the stable equivalence H, each indecomposable non-
injective projective Λ-module (0, P, 0) corresponds to some indecomposable non-injective
projective Γ-module (0, Q, 0), and this gives a bijection between the isomorphism classes
of indecomposable non-injective projective modules in modΛ and those in modΓ. Ob-
serve that we have the following easy fact: for any two A-modules X and X ′, we have
HomΛ((0, X, 0), (0, X ′, 0)) ∼= HomΛ((0, X, 0), (0, X ′, 0)) ∼= HomA(X,X ′). Without loss of
generality we may assume that both A and B are basic algebras. Then we have that

H((0, A, 0)) ∼= (0, B, 0) and EndΛ((0, A, 0)) ∼= EndΓ((0, B, 0)).

Therefore we have the following algebra isomorphisms:

EndA(A) ∼= EndΛ((0, A, 0)) ∼= EndΛ((0, A, 0)) ∼=
∼= EndΓ((0, B, 0)) ∼= EndΓ((0, B, 0)) ∼= EndB(B).

It follows that the algebras A and B are isomorphic.

�

Remark 2.2. The above result shows that Question 1.6 has a negative answer for general
finite dimensional algebras. Indeed, we can easily find two self-injective algebras A and
B which are derived equivalent but not Morita equivalent. Clearly A and B are stably
equivalent of Morita type, but T2(A) ' A ⊗k T2(k) and T2(B) ' B ⊗k T2(k) cannot be
stably equivalent of Morita type by Theorem 2.1.

Remark 2.3. From the proof of Theorem 2.1, we obtain that the stable category of the
triangular matrix algebra T2(A) determines the original algebra A in the following way: it
is the (stable) endomorphism algebra of the sum of indecomposable non-projective injective
modules over triangular matrix algebra.

3. Trivial extensions

In this section, we answer Question 1.10 to the negative for general finite dimensional
algebras.

Let k be an algebraically closed field of characteristic 2. Then it is well-known (see for
example, [8]) that the group algebra A = kD8 of the dihedral group of order 8 is given by
the following quiver

•��
��

�
α ��

��
M

β
a
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with relations
α2 = β2 = 0, (αβ)2 = (βα)2.

This is a local symmetric algebra with basis (for simplicity, we write α for its class α in
A, etc.) 1 = ea, α, β, αβ, βα, αβα, βαβ, αβαβ = βαβα. The Loewy diagram of the regular
module AA looks like

a a

a a

a
�� @@
α β

β α

α β
a a

a@@ ��β α

The Cartan matrix CA of A is given by CA = (8), and the center Z(A) of A is a radical
square zero local algebra with basis 1, αβα, βαβ, αβαβ, αβ + βα. Let S be the unique
simple A-module (which is also the trivial module k of the group algebra A) and let Λ
be the endomorphism algebra EndA(A ⊕ S)op. One can compute that Λ is given by the
following quiver

•��
��
/

τ1

��
��

Kτ2

1 -1 τ3

�
τ4

• 2

with relations

τ1
2 = τ2

2 = τ3τ4 = τ2τ4 = τ1τ4 = τ3τ1 = τ3τ2 = 0, (τ1τ2)2 = (τ2τ1)2 = τ4τ3.

This is an 11-dimensional algebra with basis (remind that we write τ1 for its equivalences
class τ1 in Λ, etc.)

e1, e2, τ1, τ2, τ3, τ4, τ2τ1, τ1τ2, τ1τ2τ1, τ2τ1τ2, τ2τ1τ2τ1 = τ1τ2τ1τ2 = τ4τ3.

The regular module ΛΛ has the following decomposition

1 1

1 1

1
Q
Q
Q
QQ

�
�

�
��

2

τ3

τ4

�� @@
τ1

τ2

τ2 τ1

τ1 τ2
1 1

1@@ ��τ2
τ1

⊕
2

1

τ4

The Cartan matrix CΛ of Λ is given by CΛ =

(
8 1
1 1

)
, and the center Z(Λ) of Λ is

a 5-dimensional algebra with basis 1, τ2τ1 + τ1τ2, τ1τ2τ1, τ2τ1τ2, τ2τ1τ2τ1 = τ1τ2τ1τ2 = τ4τ3.
Since chark = 2, it is easy to verify that Z(Λ) is also a radical square zero local algebra.
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Next we want to compute the center Z(T (Λ)) of the trivial extension T (Λ) = Λ n D(Λ).
According to a result of Bessenrodt, Holm and the third named author (see [3, Proposition
3.2]), Z(T (Λ)) = Z(Λ)nAnnD(Λ)(K(Λ)), where K(Λ) is the k-subspace of Λ spanned by all
commutators λµ − µλ (λ, µ ∈ Λ) and where AnnD(Λ)(K(Λ)) = {f ∈ D(Λ)|f(K(Λ)) = 0}.
By a straightforward calculation we have the following (write e1

∗ as the dual basis element
corresponding to e1, etc.):

K(Λ) = 〈τ2τ1 + τ1τ2, τ3, τ4, τ1τ2τ1, τ2τ1τ2, τ4τ3〉,
AnnD(Λ)(K(Λ)) = 〈e1

∗, e2
∗, τ1

∗, τ2
∗, (τ2τ1)∗ + (τ1τ2)∗〉.

Again char k = 2 forces that Z(T (Λ)) is a (10-dimensional) radical square zero local algebra.
Now we come back to the group algebra A of the dihedral group D8. According to [6],

each direct summand of the module

radA/rad4A = ⊕a a

a a

a a

β α

α β

is an endotrivial module. Recall that for a group algebra kG of a finite group G, a kG-
module X is called endotrivial if D(X) ⊗k X ' k ⊕ {projective} as kG-modules (where
k is the trivial module). It follows easily that X ⊗k − induces a stable self-equivalence
of Morita type of modkG (here the defining kG-kG-bimodule is given by X ⊗k kG where
the left kG-module structure is defined by diagonal G-action and the right kG-module
structure is defined by by multiplication on the right factor). Let now X be one of any
direct summand of radA/rad4A. Then X induces a stable self-equivalence of Morita type
over modA such that the trivial module S corresponds to X. Since X is not of the form
Ωi(S), this stable self-equivalence is not induced from a derived equivalence (cf. [13, Remark
3.10] or [22, Theorem 2.11]). Let Γ be the endomorphism algebra EndA(A⊕X)op. Then by
the construction in [14, Theorem 1.1], there is a stable equivalence of Morita type between
Λ and Γ. One can compute that Γ has the same quiver as Λ (but here we use new notations
to name the arrows)

•��
��
/

σ1

��
��

Kσ2

1 -1 σ3

�
σ4

• 2

with relations

σ1
2 = σ2

2 = σ3σ1 = σ2σ4 = σ3σ2σ1σ2 = 0, σ2σ1 = σ4σ3,

(σ2σ1)2 = (σ1σ2)2 = (σ4σ3)2 = σ1σ4σ3σ2.

This is a 16-dimensional algebra with basis

e1, e2, σ1, σ2, σ3, σ4, σ2σ1 = σ4σ3, σ1σ2, σ3σ2, σ3σ4, σ1σ4, σ1σ2σ1, σ2σ1σ2,

σ3σ2σ1 = σ3σ4σ3, σ4σ3σ4 = σ2σ1σ4, (σ2σ1)2 = (σ1σ2)2 = (σ4σ3)2.

The regular module ΓΓ has the following decomposition
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1
���
HHH

σ1 σ3
σ2

1 2 1
@@ �� �� @@σ2 σ4 σ1

σ3

1 1 2
�� @@ @@ ��

σ1 σ3 σ2 σ4

1 2 1
HHH

���σ2
σ4

σ1

1

⊕

2
σ4

1
�
�

@
@

σ1 σ3

1 2
@
@

�
�σ2 σ4

1

The Cartan matrix of Γ is given by CΓ =

(
8 3
3 2

)
. From this we can deduce that Λ and Γ

are not derived equivalent, since their Cartan matrices are not congruent over the integers.
The fact that the Cartan matrices of two derived equivalent algebras are congruent over
the integers is one of few known invariants to distinguish between derived equivalence and
stable equivalence of Morita type. Our next aim is to show that the trivial extensions T (Λ)
and T (Γ) are also not stably equivalent of Morita type. We will verify this fact by proving
that their stable centers are not isomorphic as algebras.

Let us first recall the definition of the stable center. For an algebra A, we can identify
any A-A-bimodule with a left Ae-module where Ae = A⊗kA

op. In particular, the algebra A
itself is naturally an Ae-module, and the endomorphism algebra EndAe(A,A) is canonically
isomorphic to the center Z(A) of A (by f 7→ f(1)). Set Zpr(A) to be the ideal of Z(A)
consisting of Ae-homomorphisms from A to A which factor through a projective Ae-module
and we call it the projective center of A. The stable center of A is defined to be the quotient
algebra Zst(A) = Z(A)/Zpr(A). It is well-known that a stable equivalence of Morita type
preserves the stable centers of algebras (see [5]).

Theorem 3.1. Let k be an algebraically closed field of characteristic 2, let D8 be the dihedral
group of order 8 and let A = kD8. Denote by S the trivial kD8-module. Then radA/rad4A =
X ⊕ Y for X 6= 0 6= Y . Let Λ = EndA(A⊕ S)op and Γ = EndA(A⊕X)op. Then the stable
centers of T (Λ) and T (Γ) are not isomorphic as algebras. In particular, T (Λ) and T (Γ)
are not stably equivalent of Morita type.

Proof The Cartan matrices of Λ and Γ are given by CΛ =

(
8 1
1 1

)
and CΓ =

(
8 3
3 2

)
,

respectively. It follows easily that the Cartan matrices of T (Λ) and T (Γ) are given by

CT (Λ) =

(
16 2
2 2

)
and CT (Γ) =

(
16 6
6 4

)
, respectively. By [15, Proposition 2.3 and

Corollary 2.7], the dimension of the projective center of a symmetric algebra over an alge-
braically closed field k of characteristic p ≥ 0 is equal to the p-rank of the Cartan matrix.
Since now p = 2, both 2-ranks of CT (Λ) and CT (Γ) are zero, and therefore the stable centers
of T (Λ) and T (Γ) are the same as the centers of T (Λ) and T (Γ), respectively.

We have seen that the center Z(T (Λ)) is a 10-dimensional radical square zero local
algebra. Similarly we can compute the center Z(T (Γ)) using the formula Z(T (Γ)) = Z(Γ)n
AnnD(Γ)(K(Γ)). The center Z(Γ) of Γ is a 5-dimensional algebra with basis 1, σ2σ1 +σ1σ2 +
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σ3σ4, σ1σ2σ1, σ2σ1σ2, (σ2σ1)2. Since chark = 2, it is easy to verify that Z(Γ) is also a radical
square zero local algebra. We also have the following:

K(Γ) = 〈σ3, σ4, σ1σ4, σ3σ2, σ3σ2σ1 = σ3σ4σ3, σ4σ3σ4, σ2σ1 + σ1σ2, σ3σ4 + σ4σ3,

σ2σ1σ2, σ1σ2σ1 = σ1σ4σ3, (σ2σ1)2 = (σ1σ2)2 = (σ4σ3)2〉,
AnnD(Γ)(K(Γ)) = 〈e1

∗, e2
∗, σ1

∗, σ2
∗, (σ2σ1)∗ + (σ1σ2)∗ + (σ3σ4)∗〉.

We perform the following multiplication in Z(T (Γ)):

(σ2σ1 + σ1σ2 + σ3σ4)((σ2σ1)∗ + (σ1σ2)∗ + (σ3σ4)∗) = 2e1
∗ + e2

∗ = e2
∗.

Since char k = 2, the above multiplication is not equal to zero and therefore Z(T (Γ)) is
not radical square zero. So Z(T (Λ)) and Z(T (Γ)) are not isomorphic as algebras.

�

Remark 3.2. Suppose that k is of characteristic 2. Then the center Z(T (Γ)) is a 10-
dimensional local algebra such that the regular module has the following Loewy structure

•
• • • • • • • •

•
�
�

@
@

@
@
�
�
�
�

HH
HH

PPPPPP

XXXXXXXX

��
��

������

��������

Parallel edges correspond to multiplication with the same element. Here, in the square in
the centre one direction corresponds to multiplication with (σ2σ1 + σ1σ2 + σ3σ4), whereas
the other direction of the square in the centre corresponds to multiplication with (σ2σ1)∗+
(σ1σ2)∗ + (σ3σ4)∗. The product of these two corresponds to multiplication with e∗2.
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Université de Picardie,
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