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Abstract. Let A and B be two finite dimensional algebras over an algebraically closed field,

related to each other by a stable equivalence of Morita type. We prove that A and B have the

same number of isomorphism classes of simple modules if and only if their 0-degree Hochschild
Homology groups HH0(A) and HH0(B) have the same dimension. The first of these two equivalent

conditions is claimed by the Auslander-Reiten conjecture. For symmetric algebras we will show that

the Auslander-Reiten conjecture is equivalent to other dimension equalities, involving the centers
and the projective centers of A and B. This motivates our detailed study of the projective center,

which now appears to contain the main obstruction to proving the Auslander-Reiten conjecture

for symmetric algebras. As a by-product, we get several new invariants of stable equivalences of
Morita type.

1. Introduction

Equivalences between stable module categories occur in many places in representation theory
and algebra and are closed related to derived equivalences. A result by Rickard ([32]) and Keller-
Vossieck ([12]) says that a derived equivalence between self-injective algebras induces an equivalence
of their stable categories. This result actually says that a stable equivalence induced from a derived
equivalence between self-injective algebras has a special form. More precisely, suppose that A and
B are two self-injective algebras which are derived equivalent, then there are two bimodules AMB

and BNA which are projective as left modules and as right modules such that we have bimodule
isomorphisms:

AM ⊗B NA
∼= AAA ⊕ APA, BN ⊗A MB

∼= BBB ⊕ BQB

where APA and BQB are projective bimodules. Tensoring with M or N provides stable equivalences,
which Broué ([4]) called “stable equivalences of Morita type”. Many stable equivalences constructed
in modular representation theory happen to be of Morita type (see, for example, [4], [19], [36]).

The Auslander-Reiten conjecture asserts that if the stable categories of two Artin algebras are
equivalent, then the algebras have the same number of isomorphism classes of non-projective simple
modules (cf. [1, Page 409]). This conjecture has been studied by many authors (see, for instance, [26],
[27], [30], [37]) and it has been established for some special classes of algebras. Based on a complete
classification of representation-finite self-injective algebras, the conjecture was solved for this class
of algebras in [34]. Subsequently, Martinez-Villa ([26]) proved the conjecture for all algebras of finite
representation type. PogorzarÃly ([30]) gave a proof of this conjecture for self-injective special biserial
algebras, and Tang ([37]) proved it for some class of radical cube zero self-injective algebras. All of
these proofs rely heavily on the knowledge of the Auslander-Reiten quiver of the algebras in question.
Martinez-Villa ([27]) reduced the general problem to the case where both algebras are self-injective.

If two Artin algebras are derived equivalent, then they have isomorphic Hochschild (co)homology
groups HH∗ and HH∗ for ∗ ≥ 0. If two Artin algebras are stably equivalent of Morita type, then they
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have the same global dimension and isomorphic Hochschild (co)homology groups HH∗ and HH∗ for
∗ ≥ 1 ([31],[22],[39]). In degree zero, it is only known that the stable centers are isomorphic. The
stable center is a quotient of the 0-degree Hochschild cohomology, that is, of the center. It is not
known whether the 0-degree Hochschild (co)homology groups HH0 and HH0 are preserved by a
stable equivalence of Morita type. In this article, we will show that roughly speaking, the invariance
of the dimension of the 0-degree Hochschild (co)homology group under stable equivalences of Morita
type is equivalent to the Auslander-Reiten conjecture. More precisely, we will prove the following

Theorem 1.1. Let k be an algebraically closed field. Let A and B be two finite dimensional k-
algebras which are stably equivalent of Morita type. Then the following statements are equivalent.

(1) A and B have the same number of isomorphism classes of simple modules.
(2) The 0-degree Hochschild homology groups HH0(A) and HH0(B) have the same dimension

(over the ground field k).
If A and B have no semisimple direct summands, these two conditions are further equivalent to the
following

(3) A and B have the same number of non-isomorphic non-projective simple modules.

We remark that there are also many stable equivalences of Morita type between non-self-injective
algebras ([23], [22], [24]). We will give an example showing that the assumption of the stable
equivalence to be of Morita type cannot be dropped; there are stably equivalent algebras that have
non-isomorphic 0-degree Hochschild homology groups.

Denote by Z(A) the center of an algebra A. It can be considered as the set of homomorphisms
as Ae := A ⊗k Aop-modules from A to A, that is, Z(A) = HomAe(A,A). The projective center
Zpr(A) ⊂ Z(A) is, by definition, the subset of homomorphisms which factor through projective
Ae-modules. The stable center Zst(A) is defined to be the quotient Z(A)/Zpr(A).

For symmetric algebras, we get further equivalent versions of the Auslander-Reiten conjecture,
refining the characterisation given in Theorem 1.1.

Corollary 1.2. Suppose that in the setup of Theorem 1.1, one of the algebras A or B is symmetric.
Then the following statements are equivalent.

(1) A and B have the same number of isomorphism classes of simple modules.
(2) The 0-degree Hochschild homology groups HH0(A) and HH0(B) have the same dimension.
(3) The centers Z(A) and Z(B) have the same dimension.
(4) The projective centers Zpr(A) and Zpr(B) have the same dimension.

If A and B have no semisimple summands, these conditions are further equivalent to the following
(5) A and B have the same number of non-isomorphic non-projective simple modules.

This result indicates that the main obstruction to the Auslander-Reiten conjecture lies in the
projective center; this concept will be studied in detail in the first part of this article. The statements
of the corollary and further details to be given later, in particular on Cartan matrices, may lead to
applications in modular representation theory. In a subsequent paper of the first two authors joint
with Steffen König ([15]), we continue the study in this paper and found some more invariants
detecting the validity of the Auslander-Reiten conjecture. Some applications of the results of this
paper are already achieved: In a recent paper [40] the last two authors proved the Auslander-Reiten
conjecture for stable equivalences of Morita type between the algebras of dihedral, semidihedral or
quaternion type in the sense of Erdmann ([7]). The main tool there, in particular for semidihedral
and quaternion type, are Theorem 1.1 and its Corollary. Moreover, again using at essential points
Theorem 1.1 and its corollary, in [41] the last two authors show that the Auslander-Reiten conjecture
holds for a stable equivalence of Morita type between two indecomposable tame symmetric algebras
with only periodic modules, as well as for indecomposable tame symmetric algebras of polynomial
growth.

The key point of the proof of the main theorem is to define the concept of the 0-degree stable
Hochschild homology group HHst

0 (A) which is analogous to its counterpart in Hochschild cohomol-
ogy, the stable center Zst(A) = Z(A)/Zpr(A). This stable Hochschild homology group HHst

0 (A)
is a subspace of the usual 0-degree Hochschild homology group HH0(A) and its definition uses the
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Hattori-Stallings trace map. We then prove that HHst
0 (A) is invariant under stable equivalences of

Morita type. Moreover, we deduce the equality

dimHHst
0 (A) + rankpCA = dimHH0(A),

where CA is the Cartan matrix and where rankpCA is its p-rank, that is, the rank of CA over k. By
analyzing the stable Grothendieck group, we are able to prove that the Auslander-Reiten conjecture
for stable equivalences of Morita type is equivalent to the invariance of the p-rank of the Cartan
matrices. The theorem thus follows.

We will also study the notions of the projective center and the p-rank of the Cartan matrix for
Frobenius algebras. More precisely, let A be a Frobenius k-algebra with a non-degenerate associative
bilinear form ( , ) : A×A → k. Let {a1, · · · , an} and {b1, · · · , bn} be a pair of dual bases of A, that
is, (ai, bj) = δij . We define two linear maps τ : A → A by τ(x) =

∑n
i=1 bixai and θ : A → A by

θ(x) =
∑

aixbi, respectively.

Proposition 1.3. Suppose that k is an algebraically closed field and that A is a Frobenius k-algebra.
Then we have the following.

(1) The projective center Zpr(A) is equal to the image Im(τ) of the above map τ .
(2) The p-rank of the Cartan matrix CA is equal to the dimension of the image Im(θ) of the

above map θ.
(3) ⊥Im(θ)/K(A) = HHst

0 (A), where ⊥Im(θ) is the left orthogonal of Im(θ) in A and K(A) is
the commutator subspace of A.

This article is organized as follows. In the second section, we study the notion of the projective
center, or equivalently, the Higman ideal. We define the stable Hochschild homology group in the
third section. The fourth section contains an analysis of the stable Grothendieck groups. The main
theorem and its corollary are proved in the fifth section. The last section contains an alternative
proof of the main result in case that the ground field has positive characteristic.

2. Higman ideal and projective center

Throughout this paper, we denote by k a commutative ring. In certain cases we shall need to
restrict the nature of k further. All algebras considered are Noetherian k-algebras with identity which
are k-free of finite rank as k-module. When k is a field, they are just finite dimensional k-algebras
over k. By a module over a k-algebra, we always mean a finitely generated unitary left module,
unless stated otherwise. Given a k-algebra A, we give the list of some usual notations.

• A-mod the category of left A-modules
• A-mod the stable category of A-mod
• l(A) the number of isomorphism classes of simple A-modules
• Z(A) the center of A
• J(A) the Jacobson radical of A
• Soc(A) the socle of A
• R(A) := Soc(A) ∩ Z(A) the Reynolds ideal of A
• Ae := A⊗k Aop the enveloping algebra of A

Recall that the stable category A-mod is defined as follows: The objects of A-mod are the same
as those of A-mod, and the morphisms between two objects X and Y are given by the quotient k-
module HomA(X, Y ) = HomA(X, Y )/P(X, Y ), where P(X, Y ) is the k-submodule of HomA(X, Y )
consisting of those homomorphisms from X to Y which factor through a projective A-module. Two
k-algebras A and B are said to be stably equivalent if there is an equivalence F : A-mod →B-mod
between the stable categories.

Note that we can identify any A-A-bimodule with an Ae-module. As we have a canonical k-algebra
isomorphism EndAe(A,A) ' Z(A) (f 7→ f(1)), for each Ae-module V , the group Ext1Ae(A, V ) has
a natural right Z(A)-module structure defined as follows. We interpret elements of Ext1Ae(A, V ) as
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equivalence classes of extensions of V by A. Let ξ ∈ Ext1Ae(A, V ) correspond to the class of a short
exact sequence of Ae-modules

ξ : 0 −→ V −→ X
ϕ−→ A −→ 0.

Given any a ∈ EndAe(A,A), the class ξa corresponds to the upper short exact sequence of the
pullback diagram:

ξa : 0 −−−−→ V −−−−→ X1 −−−−→ A −−−−→ 0

1
y

y a
y

ξ : 0 −−−−→ V −−−−→ X
ϕ−−−−→ A −−−−→ 0.

In analogy to the Higman ideal in the study of orders (see [10] and [35]), we give the following

Definition 2.1. Let k be a commutative ring and A be a k-algebra. Define the Higman ideal to be

H(A) := {a ∈ Z(A)| Ext1Ae(A, V ) · a = 0, ∀ V ∈ Ae-mod}.
Remark 2.2. Clearly H(A) is an ideal of Z(A). Denote by Duniv the following universal exact
sequence

0 −→ ΩAe(A) −→ Ae −→ A −→ 0,

where Ae −→ A is given by the multiplication map. Then it is easy to show that the definition of
the Higman ideal can be simplified as follows

H(A) := {a ∈ Z(A)| Duniv · a = 0 ∈ Ext1Ae(A,ΩAe(A))}.
Set Zpr(A) to be the subset of Z(A) consisting of Ae-homomorphisms from A to A which factor

through a projective Ae-module. Clearly Zpr(A) is an ideal of Z(A) and we call it the projective
center of A. It is now easily observed that the Higman ideal is nothing else but the projective center
Zpr(A).

Proposition 2.3. Let k be a commutative ring and A a k-algebra. Then we have H(A) = Zpr(A).

Proof In fact, define the k-linear homomorphism

µ : HomAe(A,Ae)⊗Ae A −→ EndAe(A), µ(f ⊗ a) : a′ 7→ f(a′)a

where a′ ∈ A, f ∈ HomAe(A,Ae), a ∈ A. Using [6, Proposition 29.15] by taking M = A and Λ = Ae,
we see that the image of µ coincides with H(A).

Since we have a canonical k-isomorphism

HomAe(A,Ae)⊗Ae HomAe(Ae, A) ' HomAe(A,Ae)⊗Ae A,

then
H(A) = Im(µ) = {g ◦ f ∈ EndAe(A) | f ∈ HomAe(A,Ae), g ∈ HomAe(Ae, A)}.

Since any f ∈ HomAe(A,A) factors through a projective Ae-module if and only if f factors through
the regular Ae-module Ae, we know that H(A) is just another formulation of the projective center
Zpr(A).

¤
For a symmetric k-algebra A over a field k with symmetrizing bilinear form ( , ), Héthelyi et al.

(see [9]) have defined the Higman ideal H(A) as the image of the following map

τ : A → A, x 7→
n∑

i=1

bixai,

where a1, · · · , an and b1, · · · , bn are a pair of dual bases of A. This definition can be generalized to
the case of a Frobenius k-algebra over a field k. Recall that a Frobenius k-algebra A is endowed with
a non-degenerate associative bilinear form ( , ): A×A → k. Let a1, · · · , an and b1, · · · , bn be a pair
of dual bases of A defined by the relations (ai, bj) = δij , where δij is the Kronecker symbol. Then
it is easy to see that the image of the above map τ is independent of the choice of dual bases. So
we can define the Higman ideal for a Frobenius k-algebra A as in [9]. Note that for non-symmetric
Frobenius k-algebras, we can not reverse the order of the dual bases in the definition of τ : A → A
in general (see Example 2.9).
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Next we show that the above definition for Frobenius k-algebras coincides with our Definition 2.1.
We are grateful to the referee who suggested the following proof which is much simpler than the one
proposed in the original version.

Proposition 2.4. Suppose that k is a field and that A is a Frobenius k-algebra. Then the Higman
ideal H(A) in Definition 2.1 is equal to the image Im(τ) of the above map τ .

Proof A key observation is that the map f : A → A ⊗k A sending 1 to
∑

i bi ⊗ ai is an injective
homomorphism of bimodules. In fact, the injectivity is easy as the elements ai form a basis and the
bilinear form is non degenerate. Suppose that for a ∈ A, abi =

∑
j λijbj , then it is easy to see that

aia =
∑

j λijaj . So
∑

i

abi ⊗ ai =
∑

ij

λijbj ⊗ ai =
∑

ij

λjibi ⊗ aj =
∑

i

bi ⊗ aia.

As A is self-injective, then each homomorphism of bimodules from A to itself factoring through
a projective bimodule actually factor through f . Notice furthermore that any bimodules homomor-
phism A⊗k A → A is of the form gx : b⊗ a 7→ bxa for some x ∈ A. Therefore, the image of 1 under
the composition of f with gx is just τ(x). This proves that Im(τ) = Zpr(A).

¤
Remark 2.5. In the case of a symmetric algebra A over a field k, Broué has proven that Zpr(A) =
Im(τ), where τ : A → A is defined as above ([5, 3.13 Proposition]).

For the completeness of our discussion, we should mention that Héthelyi et al. (see [9]) obtained
another description of the Higman ideal for a symmetric k-algebra over a field k. To state it one
needs some notations. Let A be a symmetric k-algebra over a field k. Then A is endowed with a
non-degenerate associative symmetric bilinear form ( , ). With respect to this bilinear form, one can
define the orthogonal V ⊥ of a subspace V ⊆ A by V ⊥ := {a ∈ A | (a, b) = 0, ∀ b ∈ V }. One proves
easily ([17]) that J(A)⊥ = Soc(A) and K(A)⊥ = Z(A), where K(A) is the k-subspace of A spanned
by all commutators ab− ba (a, b ∈ A). Moreover for the map τ : A → A, we have Im(τ) ⊆ R(A) and
J(A) + K(A) ⊆ Ker(τ) ([9, Lemma 4.1]).

Let a1 = e1, a2 = e2, · · · , al = el be a set of representatives of conjugacy classes of primitive
idempotents in A (this means that Ae1, · · · , Ael are representatives for the isomorphism classes of
indecomposable projective left A-modules). Let al+1, · · · , an denote a basis of J(A)+K(A). Then we
can prove that a1, · · · , an is a basis of A. Let b1, · · · , bn be the dual basis. Then r1 = b1, · · · , rl = bl is
a basis of (J(A)+K(A))⊥ = Soc(A)∩Z(A) = R(A). As J(A)+K(A) ⊂ Ker(τ), Im(τ) is k-spanned
by τ(ei) with 1 ≤ i ≤ l. It follows that we only need to know τ(ei) (1 ≤ i ≤ l) for computing the
Higman ideal.

Lemma 2.6. [9, Lemma 4.3] With the notations above, for 1 ≤ i ≤ l,

τ(ei) =
l∑

j=1

(dimeiAej) · rj .

Before stating some interesting application of this lemma, we first recall the definition of the Cartan
matrix. Let A be a finite dimensional k-algebra over a field k. Suppose that P1 = Ae1, · · · , Pl = Ael

are representatives for the isomorphism classes of indecomposable projective left A-modules and that
S1, · · · , Sl are the corresponding simple modules. By definition, the Cartan matrix CA = (cij)l

i,j=1

of A is a l× l integer matrix, where cij is given by the number of composition factors of Pj which are
isomorphic to Si. It is well known that cij = dimeiAej/dimEndA(Si) and therefore cij = dimeiAej

over an algebraically closed field k. Let p ≥ 0 be the characteristic of k. If CA is the Cartan matrix
of A, then we denote the p-rank of CA by rankp(CA) which, by definition, is the rank of the Cartan
matrix over k. Of course, when p = 0 this is just the usual rank of CA.

Corollary 2.7. If A is a symmetric algebra over an algebraically closed field k of characteristic
p ≥ 0, then rankp(CA) = dimH(A).
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Remark 2.8. If A is a symmetric algebra over an algebraically closed field k of characteristic 0,
then clearly rankp(CA) 6= 0. This implies that the Higman ideal H(A) and therefore the projective
center Zpr(A) are always nonzero in this case.

Example 2.9. Let k be an algebraically closed field. Consider the 4-dimensional local Frobenius
k-algebra

A = k〈x, y〉/(x2, y2, xy − ryx), 0 6= r ∈ k.

One can define a non-degenerate associative bilinear form over A by posing

(x, y) = (1, xy) = (xy, 1) = 1, (y, x) = 1/r, (1, 1) = (1, x) = (x, 1) = (1, y) = (y, 1) = 0

(for a construction of such bilinear forms for weakly symmetric algebras, see Proposition 3.1 of [11]).
Note that A is symmetric if and only if r = 1. It follows that {a1 = 1, a2 = x, a3 = y, a4 = xy}
and {b1 = xy, b2 = y, b3 = rx, b4 = 1} are a pair of dual bases of A. Then Im(τ) = 〈(2 + r + 1

r )xy〉,
the subspace generated by (2 + r + 1

r )xy. However, if we define θ : A → A by x 7→ ∑n
i=1 aixbi,

then Im(θ) = 〈4xy〉. So, if char(k) 6= 2, the two images are different for r = −1; if char(k) = 2,
the two images are different for all r with r 6= 1. On the other hand, the Cartan matrix of A is
a 1 × 1 matrix (4). Notice that if char(k) 6= 2 and r = −1 or if char(k) = 2 and r 6= 1, then
rankp(CA) 6= dimH(A). This means that Corollary 2.7 is in general not true for non-symmetric
algebras. Clearly in this example rankp(CA) = dimIm(θ). This is not a coincidence. In fact, this is
true for arbitrary Frobenius algebras (Proposition 3.16).

Finally, we state some useful properties of the Higman ideal. We thank Shengyong Pan for pointing
out an inaccuracy in the original proof of the following proposition.

Proposition 2.10. Suppose that B and C are two k-algebras over a commutative ring k.
(1) Put A = B × C. Then H(A) = H(B) ×H(C) and this decomposition is compatible with the

decomposition of centers Z(B × C) = Z(B)× Z(C).
(2) If B and C are two derived equivalent algebras which are projective over k as k-modules, then

there is an algebra isomorphism of centers of B and C mapping H(B) to H(C).

Proof (1) By Proposition 2.3, the Higman ideal is equal to the projective center. But the latter
clearly satisfies the decomposition property.

(2) Since the Higman ideal is equal to the projective center, it suffices to show that the projective
center is a derived invariant. The latter has been proven by Broué [4, 4.4 Corollary] for self-injective
algebras. In fact, the idea in Broué’s proof can be applied to arbitrary k-algebras which are projective
over k. For the convenience of the reader, we shall give the detailed proof here.

By a result of Rickard [33] (see also [16]), there is a complex X• ∈ Db(B ⊗k Cop) so that

X• ⊗LC − : Db(C) −→ Db(B)

is an equivalence as triangulated categories. The (bounded) complex X• is called a two-sided tilting
complex if it satisfies the following equalities in Db(Be) and in Db(Ce) respectively,

X• ⊗LC HomB(X•, B) ' B, HomB(X•, B)⊗LB X• ' C.

Now since B and C are projective over k, we may assume that X• is a complex of bimodules each of
which is projective as left-modules and projective as right-modules. Therefore the left derived tensor
product can be replaced by the ordinary tensor product, which then is associative. It follows that
tensor product with X• from the left and with HomB(X•, B) from the right is associative and

X• ⊗C −⊗C HomB(X•, B) : Db(Ce) −→ Db(Be)

is an equivalence between the derived categories of enveloping algebras over C and B. Under this
equivalence, the Ce-module C corresponds to Be-module B, and the Ce-homomorphisms from C
to C correspond to Be-homomorphisms from B to B. Moreover, any Ce-homomorphism f from C
to C factoring through a projective Ce-module corresponds to a Be-homomorphism g from B to
B factoring through a complex P • of projective Be-modules in Db(Be). But the homomorphism
from P • to B can be seen as a homomorphism in Kb(Be) and it factors through the canonical
multiplication map Be −→ B. It follows that g is a homomorphism which factors through the
regular Be-module Be and therefore g lies in Zpr(B). Thus there is an algebra isomorphism of
centers of B and C mapping Zpr(B) to Zpr(C).
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¤

3. The stable Hochschild homology

Let A and B be two algebras over a commutative ring k. Let M be an A-B-bimodule such that
MB is finitely generated and projective. Then MB is isomorphic to a direct summand of some free
right B-module Bs and there exist elements mi ∈ M and ϕi ∈ HomB(M, B) with 1 ≤ i ≤ s such
that for each m ∈ M , m =

∑s
i=1 miϕi(m). We define the transfer map as follows.

tM : A/K(A) → (M ⊗B HomB(M, B))/[A,M ⊗B HomB(M, B)] → B/K(B)

a 7→
s∑

i=1

ami ⊗ ϕi 7→
s∑

i=1

ϕi(ami),

where [A,M ⊗B HomB(M, B)] = {ax − xa | a ∈ A, x ∈ M ⊗B HomB(M, B)}. Notice that this
map is just the composition of a map induced by the ring homomorphism A → EndB(M) ' M ⊗B

HomB(M, B) and a map induced by the Hattori-Stallings trace map EndB(M) → B/K(B).
We summarize some well known properties of the transfer map in the following

Lemma 3.1. ([3, Section 3]) Let A, B and C be k-algebras over a commutative ring k.
(1) If M is an A-B-bimodule and N is a B-C-bimodule such that MB and NC are finitely generated

and projective, then we have tN ◦ tM = tM⊗BN .
(2) Let

0 → L → M → N → 0
be a short exact sequence of A-B-bimodules which are finitely generated and projective as right B-
modules. Then tM = tL + tN .

(3) Consider A as an A-A-bimodule by left and right multiplications, then tA is the identity map.

Example 3.2. (1) Let k be a field and A be a finite dimensional k-algebra. Let e ∈ A be an
idempotent. Considering an indecomposable projective A-module Ae as an A-k-bimodule, we have
the transfer map tAe : A/K(A) → k. Choose a basis {x1, · · · , xs} of Ae. Then its dual basis
{x∗1, · · · , x∗s} ⊂ (Ae)∗ = Homk(Ae, k). By construction, tAe(a + K(A)) =

∑s
i=1 x∗i (axi). Observe

that
∑s

i=1 x∗i (axi) is just the trace of the linear map from Ae to Ae induced by the left multiplication
by a.

(2) Let A be a Frobenius k-algebra with a non-degenerate associative bilinear form ( , ) : A×A →
k. Let {ai} and {bi} be a pair of dual bases of A, that is, (ai, bj) = δij . Note that in this case {( , bi) =:
a∗i } ⊂ A∗ = Homk(A, k) gives the usual dual basis of {ai}. We define a linear map θ : A → A by
θ(a) =

∑
aiabi for any a ∈ A (cf. next section). Let Ae ⊆ A be a projective A-module. We can

choose {ai} as a union of a basis of Ae and that of A(1−e). By (1), tAe(a+K(A)) =
∑

ai∈Ae a∗i (aai).
On the other hand, (a, θ(e)) = (a,

∑
aiebi) =

∑
(aaie, bi) =

∑
ai∈Ae(aai, bi) =

∑
ai∈Ae a∗i (aai). It

follows that tAe(a + K(A)) = (a, θ(e)).

Remark 3.3. In the definition of trace map given above, we use an A-B-bimodule M which is
finitely generated and projective as a right B-module. We can also define another transfer map
tM : A/K(A) → B/K(B) for a bimodule BMA which is finitely generated and projective as a left
B-module. The definition is similar and we omit it.

Remark 3.4. The construction of transfer maps was generalized to higher degree Hochschild ho-
mology by Bouc ([3]) and Keller ([13]). We shall use and refer to this generalization in a subsequent
paper [15]. For transfer maps in higher degree Hochschild homology groups, except the properties
in Lemma 3.1, there is an additional one:

(4) Suppose that k is an algebraically closed field and that A and B are finite dimensional k-
algebras. Then for a finitely generated projective A-B-bimodule P , the transfer map tP : HHn(A) →
HHn(B) is zero for each n > 0.

Let k be an algebraically closed field and let A and B be two finite dimensional k-algebras.
Suppose that two bimodules M and N define a stable equivalence of Morita type between A and B
by M ⊗B N ' A⊕P, N ⊗A M ' B⊕Q. Since tA = 1HHn(A) and tB = 1HHn(B), the transfer maps
tM : HHn(A) → HHn(B) and tN : HHn(B) → HHn(A) are mutually inverse group isomorphisms
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for all n > 0 by the properties (1)-(4). This gives a different approach for the result in [22, Theorem
4.4]. We also notice that Example 3 of [22, Section 5] is in fact not a counterexample for the non-
invariance of the 0-degree Hochschild homology group since the commutator subspace K(A) = [A,A]
of A is not an ideal in general.

From now on, k denotes a field and all algebras are supposed to be finite dimensional over k.
In the following, we define a dual notion of the stable center and prove that it is invariant under

stable equivalences of Morita type. We remind the reader that the invariance of the stable centers
under stable equivalences of Morita type has been shown by Broué ([4]).

Given a k-algebra A, recall that the center Z(A) of A is equal to the 0-degree Hochschild cohomol-
ogy algebra HH0(A) and the stable center Zst(A) is defined to be the quotient algebra Z(A)/Zpr(A)
where Zpr(A) is the projective center. Motivated by this fact, we introduce the following

Definition 3.5. Let A be a finite dimensional k-algebra over a field k with the decomposition AA =⊕r
i=1 Aei, where Aei (1 ≤ i ≤ r) are indecomposable projective A-modules. We define the (left)

stable Hochschild homology group HHst
0 (A) of degree zero to be a subgroup of the 0-degree Hochschild

homology group HH0(A) = A/K(A), namely

HHst
0 (A) =

r⋂

i=1

Ker{tAei
: A/K(A) → k},

where tAei
is the transfer map determined by the projective A-k-bimodule Aei.

Remark 3.6. By Example 3.2 (1), we have

HHst
0 (A) = {a ∈ A | the trace of the map Aei → Aei(b 7→ ab) vanishes for any 1 ≤ i ≤ r}/K(A).

Remark 3.7. In the above definition, we used the transfer maps defined by the left indecompos-
able modules Aei considered as right k-modules. If we use the transfer maps defined by the right
indecomposable projective modules eiA as in Remark 3.3, then we have a notion of right stable
Hochschild homology of degree zero. In the following, we shall mainly study the left Hochschild
homology of degree zero. The corresponding properties of the right version are similar and the
necessary modifications are left to the reader.

Theorem 3.8. Let A be a finite dimensional k-algebra over an algebraically closed field k of char-
acteristic p ≥ 0. Then

dimHHst
0 (A) + rankp(CA) = dimHH0(A).

Proof By Lemma 3.1 (2), if two indecomposable projective modules Aei and Aej are isomorphic,
then tAei

= tAej
: A/K(A) → k. Since HH0(A) is invariant under Morita equivalences, so is

HHst
0 (A). Now all terms in the assertion are Morita invariant. So we can assume that A is basic.

Now K(A) ⊆ J(A) and by the Wedderburn-Malcev theorem, A = J(A)⊕⊕
i kei, where {e1, · · · , el}

is a complete list of orthogonal primitive idempotents. So we can take a basis of A/K(A) consisting
all ei and the classes of some elements of J(A) in J(A)/K(A).

Since each element a in J(A) is nilpotent, for each j, the trace of the map Aej → Aej , b 7→ ab
is zero; now for 1 ≤ i, j ≤ l, the trace of the map Aej → Aej , b 7→ eib is the dimension of the
space eiAej , which is the Cartan invariant cij . We have proved that the matrix of the map tAei

:
A/K(A) → k under the chosen basis of A/K(A) is the vector (c1i, c2i, · · · , cli, 0, · · · , 0) where cij is
the (i, j)-entry of the Cartan matrix CA and therefore the matrix of (tAe1 , · · · , tAel

) : A/K(A) → kl

is equal to (CT
A , 0). The result thus follows.

¤
Corollary 3.9. Let A and B be two derived equivalent finite dimensional algebras over an alge-
braically closed field. Then

dimHHst
0 (A) = dimHHst

0 (B).

Proof This follows easily from Theorem 3.8 and the fact that both the p-rank of the Cartan matrix
and the 0-degree Hochschild homology group are invariant under a derived equivalence. Indeed,
a derived equivalence induces a mapping on the Grothendieck groups of the algebras. It is well-
known that this mapping commutes with the Cartan mapping. Hence, the same holds tensoring the
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Grothendieck groups with the base field over the integers. This shows that the p-rank of the Cartan
matrix is a derived invariant.

¤
Remark 3.10. (1) The proof of Theorem 3.8 implies we have a short exact sequence

0 → (J(A) + K(A))/K(A) → HHst
0 (A) → Ker(CT

A) → 0,

where Ker(CT
A) is the kernel of the linear map from kl(A) to itself defined by the transpose of the

Cartan matrix. If we consider the right version of the stable Hochschild homology, then there is a
short exact sequence

0 → (J(A) + K(A))/K(A) → HHst
0 (A) → Ker(CA) → 0.

(2) It is well known that the 0-degree Hochschild homology group HH0(A) has a natural Z(A)-
module structure. At least for k an algebraically closed field, we can show that the stable Hochschild
homology group HHst

0 (A) is a Z(A)-submodule of HH0(A). In fact, we can assume that A is
indecomposable and thus Z(A) is local. Let x ∈ HHst

0 (A). Then tAei
(x) = 0 for each i. Let

z ∈ Z(A), write z = λ + u where λ ∈ k and u is nilpotent. Now tAei
(zx) = tAei

(λx) + tAei
(ux).

We have tAei
(λx) = λtAei

(x) = 0 and since u is nilpotent, the left multiplication by ux on Aei is a
nilpotent linear map, tAei(ux) = 0. Therefore tAei(zx) = 0 for each i and zx ∈ HHst

0 (A).

Theorem 3.11. Suppose that there is a stable equivalence of Morita type between two finite dimen-
sional k-algebras A and B over an algebraically closed field k. Then their stable Hochschild homology
groups HHst

0 (A) and HHst
0 (B) are isomorphic.

Proof Suppose that the stable equivalence of Morita type between A and B are defined by

M ⊗B N ' A⊕ P, N ⊗A M ' B ⊕Q.

Then we have the transfer maps tM : HH0(A) → HH0(B) and tN : HH0(B) → HH0(A). Moreover,

tN ◦ tM = tM⊗BN = tA + tP = 1HH0(A) + tP : HH0(A) → HH0(A).

First we show that the restriction of tP to the stable Hochschild homology group HHst
0 (A) is zero,

that is, tP |HHst
0 (A)= 0. Since P is a projective A-A-bimodule and therefore is isomorphic to a direct

sum of bimodules of the form Aei ⊗k ejA, where ei and ej are primitive idempotents in A. By
definition of HHst

0 (A), we know that

tAei⊗kejA |HHst
0 (A)= tejA ◦ tAei

|HHst
0 (A)= 0

by Lemma 3.1. It follows that tP |HHst
0 (A)= 0.

Next we show that tM (HHst
0 (A)) ⊆ HHst

0 (B). For any indecomposable projective B-module Bf ,
we have

tM⊗BBf = tBf ◦ tM : HH0(A) → HH0(B) → HH0(k) = k.

Since M ⊗B Bf is a projective A-module, we have that tM⊗BBf |HHst
0 (A)= 0. This implies that

tM (HHst
0 (A)) ⊆ HHst

0 (B). Similarly, we can show that

tQ |HHst
0 (B)= 0 and tN (HHst

0 (B)) ⊆ HHst
0 (A).

Combing our discussion above, we have proved that the transfer maps tM and tN induce inverse
group isomorphisms between HHst

0 (A) and HHst
0 (B).

¤
Remark 3.12. The algebraically closed field condition is necessary in Theorem 3.11. For example,
let k = R. Consider two k-algebras A = R and B = C. Since they are separable algebras, they are
stably equivalent of Morita type, but we see easily that dimHHst

0 (A) = 0 and dimHHst
0 (B) = 1.

We will establish a realization of the stable Hochschild homology group for Frobenius algebras.
Let A be a Frobenius k-algebra with a non-degenerate associative bilinear form ( , ) : A × A → k.
Since this bilinear form is not necessarily symmetric, we have the notions of left orthogonal and right
orthogonal. Let V ⊆ A be a subspace. Then we define the subspaces

⊥V := {x ∈ A : (x, a) = 0,∀ a ∈ V }, V ⊥ := {x ∈ A : (a, x) = 0,∀ a ∈ V }.
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The following lemma is easy and its proof is left to the reader.

Lemma 3.13. (1) If I is a left ideal of A, then II⊥ = 0. (2) J(A)⊥ = Soc(A).

Let {ai} and {bi} be a pair of dual bases of A, that is, (ai, bj) = δij . We define a linear map
θ : A → A by θ(x) =

∑
aixbi for any x ∈ A. It is readily seen that the definition does not depend on

the choice of the dual bases. However, this map depends on the choice of the bilinear form, as can
be seen in the following example given by Ohtake and Fukushima. We present it in a more general
form than the original one.

Example 3.14. ([29]). Let k be an algebraically closed field of characteristic two and A = M2(k)
the algebra of 2× 2 matrices. For 1 ≤ i, j ≤ 2, denote by Eij the matrix whose entry at the position
(i, j) is 1 and is zero elsewhere. Let P be an invertible matrix. Define two bilinear form ( , ) and
( , )′ on A by posing (Eij , Est) = δitδjs and (M, N)′ = (M, NP−1) for M, N ∈ M2(k). It is readily
seen that the image of θ corresponding to the first bilinear form is the one-dimensional vector space
generated by the identity matrix and the image of θ′ corresponding to the second bilinear form is
the one-dimensional space generated by P .

We can nevertheless prove the following

Lemma 3.15. Let A be a Frobenius algebra with two non-degenerate associative bilinear forms ( , )
and ( , )′. Denote by θ, θ′ the maps defined above corresponding to the two bilinear forms. Then
dimIm(θ) = dimIm(θ′).

Proof Indeed, there is an invertible element u ∈ A such that (a, b)′ = (a, bu−1) for any a, b ∈ A.
So if {xi}, {yi} is a pair of dual bases for ( , ), then {xi}, {yiu} is a pair of dual bases for ( , )′.
Computing Im(θ) and Im(θ′) using these bases, one get Im(θ′) = Im(θ)u ⊆ A. So their dimensions
are equal.

¤
The following proposition summarizes some properties of the above map θ. Some idea of our proof

comes from [9, Section 4]. Notice that ⊥Im(θ) in the following proposition is independent to the
choice of bilinear forms.

Proposition 3.16. Let A be a Frobenius algebra over an algebraically closed field k of characteristic
p ≥ 0. Then we have the following.

(1) Im(θ) ⊆ Soc(A) and J(A) ⊆ Ker(θ).
(2) K(A) ⊆ ⊥Im(θ) and ⊥Im(θ)/K(A) = HHst

0 (A).
(3) dim Im(θ) = rankpCA.
(4) If A is basic, then under suitable bases of A/J(A) and Soc(A), the matrix of the map θ :

A/J(A) → Soc(A) induced from θ is the transpose of the Cartan matrix CA.

Proof We choose carefully a basis {ai} and its dual basis {bi} in A. Suppose that

A/J(A) ' Mu1(k)× · · ·Mur
(k).

Write Et
ij for the matrix in Mut(k) whose entry at the position (i, j) is 1 and is zero elsewhere.

Then take a1 = e1, a2 = e2, · · · , am = em ∈ A such that their images in A/J(A) correspond to the
matrices Et

ii for 1 ≤ i ≤ ut and 1 ≤ t ≤ r and take am+1, · · · , an such that their images in A/J(A)
correspond to Et

ij for 1 ≤ i 6= j ≤ ut and 1 ≤ t ≤ r. Then {a1 · · · , an} are linearly independent in A
and their images in A/J(A) form a basis of A/J(A) as a vector space. Notice that for m+1 ≤ u ≤ n,
au ∈ eiAej for some 1 ≤ i 6= j ≤ m. Moreover let an+1, · · · , as ∈ J(A) such that their images in
J(A)/J2(A) form a basis of J(A)/J2(A) as a vector space, let as+1, · · · , at ∈ J2(A) such that their
images in J2(A)/J3(A) form a basis of J2(A)/J3(A) as a vector space, etc. Let b1, b2, · · · be the
dual basis. Then {r1 = b1, · · · , rn = bn} is a basis of J(A)⊥ = Soc(A), {b1, · · · , bs} is a basis of
J2(A)⊥, {b1, · · · , bt} is a basis of J3(A)⊥, etc.

Now we can prove the first assertion. Since for any x ∈ A,

J(A)x = 0 ⇐⇒ x ∈ Soc(A) ⇐⇒ xJ(A) = 0,

we need to prove that J(A) · Im(θ) = 0. Let y ∈ J(A) and x ∈ A. For 1 ≤ i ≤ n, we get

yaixbi ∈ J(A) ·A ·A · Soc(A) = J(A) · Soc(A) = 0;
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for n + 1 ≤ i ≤ s, we get

yaixbi ∈ J(A) · J(A) ·A · J2(A)⊥ = J2(A) · J2(A)⊥ = 0;

for s + 1 ≤ i ≤ t, we get

yaixbi ∈ J(A) · J2(A) ·A · J3(A)⊥ = J3(A) · J3(A)⊥ = 0;

etc. This proves that Im(θ) ⊆ Soc(A).
Now let x ∈ J(A). Then for 1 ≤ i ≤ n, we get

aixbi ∈ A · J(A) · Soc(A) = J(A) · Soc(A) = 0;

for n + 1 ≤ i ≤ s, we get

aixbi ∈ J(A) · J(A) · J2(A)⊥ = J2(A) · J2(A)⊥ = 0;

for s + 1 ≤ i ≤ t,
aixbi ∈ J2(A) · J(A) · J3(A)⊥ = J3(A) · J3(A)⊥ = 0;

etc. This proves that J(A) ⊆ Ker(θ).
Next we come to the second and the third assertions. We prove first that am+1, · · · , an ∈ Ker(θ).

We will choose another basis of A and its dual basis. Let Xij ⊂ eiAej be a basis of eiAej for
1 ≤ i, j ≤ m. Then X = ∪Xij is a basis of A. If x ∈ Xij , denote by x∗ the corresponding element
in the dual basis and it is easy to see that x∗ ∈ ejA. Now for m + 1 ≤ u ≤ n, θ(au) =

∑
x∈X xaux∗.

Note that au ∈ esAet for some s 6= t. Since xaux∗ ∈ eiAejesAetejA = 0 for x ∈ Xij , we have
θ(au) = 0. This implies that am+1, · · · , an ∈ Ker(θ) and that θ(e1), · · · , θ(em) generate Im(θ) as a
vector space.

Since by Example 3.2(2), tAei
(x) = (x, θ(ei)), for x ∈ A and 1 ≤ i ≤ m where x is the class

of x in A/K(A), we have x ∈ HHst
0 (A) ⇐⇒ x ∈ ⊥Im(θ). This proves that K(A) ⊆ ⊥Im(θ) and

⊥Im(θ)/K(A) = HHst
0 (A). Thus the second assertion holds. For the third assertion, by Theorem

3.8,
dim(A/K(A)) = dim(⊥Im(θ)/K(A)) + rankpCA

and we see that

dim(Im(θ)) = dim(A)− dim(⊥Im(θ)) = dim(A/K(A))− dim(⊥Im(θ)/K(A)) = rankpCA.

Now suppose that A is basic. As above let e1, · · · , em be a complete set of orthogonal primitive
idempotents and extend them to a basis of A and take the dual basis {b1 = r1, · · · , bm = rm, · · · }.
Remark that now the images of e1, · · · , em in A/J(A) are a basis of A/J(A) and {r1, · · · , rm} is a
basis of J(A)⊥ = Soc(A). By (1), we have an induced map θ : A/J(A) → Soc(A). Note that the
source and the target of this map are both of dimension l(A). We will prove that its matrix under
the basis {e1, · · · , em} of A/J(A) and the basis {r1, · · · , rm} of Soc(A) is just the transpose of the
Cartan matrix CA. Suppose that θ(ei) =

∑
λijrj . Then λij = (ej , θ(ei)) = (1, ejθ(ei)). To compute

the latter, as above, choose a basis Xij of eiAej and let X = ∪Xij . Now

ejθ(ei) =
∑

x∈X

ejxeix
∗ =

∑

x∈Xji

xx∗.

We have thus

λij = (1, ejθ(ei)) = (1,
∑

x∈Xji

xx∗) =
∑

x∈Xji

(x, x∗) = dim(ejAei) · 1.

¤
For a symmetric k-algebra A, we can give a simple description for the stable Hochschild homology

group HHst
0 (A).

Proposition 3.17. Let A be a finite dimensional symmetric k-algebra over an algebraically closed
field k. Then we have that HHst

0 (A) = Zpr(A)⊥/K(A), where Zpr(A)⊥ is the orthogonal space of
the projective center Zpr(A).
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Proof For symmetric algebras, the map θ is the same as the map τ introduced in Section 2. So by
Proposition 3.16 (2) and Proposition 2.3, we have that

HHst
0 (A) = ⊥Im(θ)/K(A) = ⊥Im(τ)/K(A) = H(A)⊥/K(A) = Zpr(A)⊥/K(A).

¤
Remark 3.18. (1) Let k be an algebraically closed field. If A is a finite dimensional k-algebra of
finite global dimension, then HHst

0 (A) = 0. In fact, in this case the determinant of the Cartan matrix
is invertible in Z, so the p-rank of the Cartan matrix is full, that is, rankpCA = l(A) = dimA/(J(A)+
K(A)) where the last equality is Formula (5) of [17]. So we have the equality HHst

0 (A) = (J(A) +
K(A))/K(A) by Remark 3.10 (1). On the other hand, according to [18], (J(A) + K(A))/K(A) = 0
since A has finite global dimension.

(2) In [8], Eu and Schedler also defined a notion of stable Hochschild (co)-homology groups for
any Frobenius k-algebra. In particular, for a Frobenius algebra A over a field k, the 0-degree stable
Hochschild homology group of A is defined there as the kernel of the canonical homomorphism
A⊗Ae A → A⊗Ae I, where I is the injective envelope of the Ae-module A. We point out that even
for symmetric k-algebras, the two definitions of 0-degree stable Hochschild homology group may be
different. For example, let k be a field of characteristic 0 and let A = k[x]/(x2). Then it is easy
to compute that the 0-degree stable Hochschild homology group in our sense is a one dimensional
k-space but it is zero in Eu and Schedler’s sense.

Example 3.19. Let A be an indecomposable non-simple self-injective Nakayama algebra over an
algebraically closed field k of characteristic p ≥ 0. That is, there is a cyclic oriented quiver Q with
s vertices such that A = kQ/kQ≥sn+t with n ≥ 0, 0 < t ≤ s and sn + t ≥ 2 and where kQ≥sn+t is
the ideal generated by all paths of length ≥ sn + t. We can prove that

dimHHst
0 (A) =

{
n + u− 1, if p - sn+t

u
n + u, if p | sn+t

u ,

where u is the greatest common divisor of s and t. Notice that the dimension of the degree zero
stable Hochschild homology group depends on p. In fact, since dimA/K(A) = s+n, by Theorem 3.8,
one only needs to compute the p-rank of the Cartan matrix CA. This has been done in [28] which
gives the following formula

rankpCA =
{

s− u + 1, if p - sn+t
u

s− u, if p | sn+t
u .

4. Cartan matrices and stable Grothendieck groups

Let k be a field and A be a finite-dimensional k-algebra. The stable Grothendieck group Gst
0 (A)

is by definition the cokernel of the Cartan map. In other words, we have the following short exact
sequence

K0(A) CA→ G0(A) → Gst
0 (A) → 0,

where CA is the Cartan matrix of A and where K0(A) (respectively, G0(A)) is a free abelian group
of finite rank generated by isomorphism classes of indecomposable projective modules (respectively,
isomorphism classes of simple modules). Suppose that the invariant factors of the Cartan matrix are
{0, · · · , 0, 1, · · · , 1, δ1, δ2, · · · , δr}, where δi ≥ 2. Denote by mi (i = 0, 1) the number of i in the above
sequence. Then the stable Grothendieck group is isomorphic to Zm0 ⊕ Z/δ1Z ⊕ · · · ⊕ Z/δrZ. We
remark that the stable Grothendieck group gives the precise values of m0 and r but cannot detect
m1 which is the number of 1 in the sequence of invariant factors of CA.

Now we consider two finite dimensional k-algebras A and B. If they are stably equivalent of
Morita type, then it is known that their stable Grothendieck groups are isomorphic (see [39, Section
5]). Note that for a self-injective k-algebra, its stable category is naturally triangulated and the
stable Grothendieck group is just the Grothendieck group of the stable category as a triangulated
category (see [38, Proposition 1]). Thus if the stable categories of two self-injective k-algebras are
triangle equivalent, then their stable Grothendieck groups are isomorphic. Our aim is to prove the
following result.



AUSLANDER-REITEN CONJECTURE 13

Proposition 4.1. Let A and B be two finite dimensional k-algebras over a field k. Suppose that A
and B are stably equivalent of Morita type or that they are self-injective and their stable categories
are triangle equivalent. Then the following statements are equivalent.

(1) A and B have the same number of isomorphism classes of simple modules, that is, l(A) =
l(B);

(2) rankp(CA) = rankp(CB);
(3) The number of 1 in the set of invariant factors of the Cartan matrix of A and that of B are

the same, that is, m1(A) = m1(B).

Proof By the discussion above, the stable Grothendieck groups of A and B are isomorphic, so are
the stable Grothendieck groups with coefficients in k, that is, Gst

0 (A)⊗Z k ' Gst
0 (B)⊗Z k. Tensoring

by k on the short exact sequence defining the stable Grothendieck group, we have

K0(A)⊗Z k
CA⊗Zk−→ G0(A)⊗Z k → Gst

0 (A)⊗Z k → 0.

Note that the rank of the map CA ⊗Z k is just the p-rank of CA and G0(A) ⊗Z k is a vector space
over k whose dimension is the number l(A) of isomorphism classes of simple modules. We have

rankp(CA) = l(A)− dim(Gst
0 (A)⊗Z k).

This establishes the equivalence of (1) and (2).
The equivalence of (1) and (3) follows from the facts that m0 + m1(A) + r = l(A) and that stable

Grothendieck groups can detect m0 and r.
¤

Remark 4.2. In case of a block A of a group algebra kG over an algebraically closed field k of
positive characteristic p > 0, the invariant factors of the Cartan matrix CA are always powers of p.
So the number of 1 in the set of invariant factors of CA is just the p-rank of CA and thus is the
dimension of the Higman ideal, since A is symmetric.

Corollary 4.3. Let k be an algebraically closed field. Suppose that A and B are two Frobenius k-
algebras which are stably equivalent of Morita type. Then they have the same number of isomorphism
classes of simple modules if and only if dim(Im(θA)) = dim(Im(θB)) where θA and θB are the maps
introduced in Section 4.

Proof This follows from Proposition 3.16 (3) and Proposition 4.1 .
¤

Corollary 4.4. Let k be an algebraically closed field. Suppose that A and B are two finite dimen-
sional k-algebras which are stably equivalent of Morita type. Then

dim (J(A) + K(A))/K(A) = dim (J(B) + K(B))/K(B).

Proof We have

dim A/K(A) = dim A/(J(A)+K(A))+dim (J(A)+K(A))/K(A) = l(A)+dim (J(A)+K(A))/K(A).

By the proof of Proposition 4.1, we have

l(A) = rankpCA + dim(Gst
0 (A)⊗Z k)

and by Theorem 3.8,
dim HHst

0 (A) + rankp(CA) = dim HH0(A).
Combining these three equalities, we obtain

dim (J(A) + K(A))/K(A) = dim HHst
0 (A)− dim(Gst

0 (A)⊗Z k)

and the result follows from the fact that both dimHHst
0 (A) and dim(Gst

0 (A)⊗Zk) are invariant under
stable equivalences of Morita type.

¤
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5. Equivalent conditions of the Auslander-Reiten conjecture

Using our results in previous sections, we can now give some easily expressed equivalent conditions
of the Auslander-Reiten conjecture for stable equivalences of Morita type.

Theorem 5.1. Let k be an algebraically closed field. Let A and B be two finite dimensional k-algebras
which are stably equivalent of Morita type. Then the following two statements are equivalent.

(1) A and B have the same number of isomorphism classes of simple modules;
(2) dimHH0(A) = dimHH0(B).
Moreover, if A and B have no semisimple summand, then (1) and (2) are again equivalent to the

following
(3) A and B have the same number of isomorphism classes of non-projective simple modules.

Proof The equivalence of (1) and (2) follows from Theorem 3.8, Theorem 3.11 and Proposition 4.1.
If A and B have no semisimple summand, then by [20], the stable equivalence of Morita type induces
a bijection between the isomorphism classes of simple projective modules over A and B, and therefore
(1) and (3) are equivalent in this case.

¤
Now we specialize to symmetric algebras. Let A be a symmetric k-algebra with a non-degenerate

associative symmetric bilinear form ( , ). Since K(A)⊥ = Z(A) (cf. Section 2), the form ( , ) induces
a well-defined non-degenerate bilinear form

Z(A)×A/K(A) → k, (z, a + K(A)) 7→ (z, a).

It follows that we have a duality between Hochschild homology and cohomology, that is,

HH0(A) = A/K(A) ' Homk(Z(A), k) = Z(A)∗ = HH0(A)∗.

In particular, dimHH0(A) = dimHH0(A). We obtain the following

Corollary 5.2. Let k be an algebraically closed field. Suppose that two finite dimensional k-algebras
A and B are stably equivalent of Morita type and that A is symmetric. Then they have the same
number of isomorphism classes of simple modules if and only if dimH(A) = dimH(B), and if and
only if dimZ(A) = dimZ(B).

Proof By [21, Corollary 2.4], a stable equivalence of Morita type preserves the property of being
symmetric. Thus B is also symmetric. On the other hand, we know that dimH(A) = dimZpr(A) =
dimZ(A)−dimZst(A) and that dimZst(A) is an invariant under a stable equivalence of Morita type.
Now the conclusion follows from Theorem 5.1 and the remark before this corollary.

¤
Remark 5.3. By Theorem 5.1, for stable equivalences of Morita type, the Auslander-Reiten con-
jecture is equivalent to the invariance of 0-degree Hochschild homology groups. This is not true,
however, for general stable equivalences. For example, let A be the path algebra over a field k given
by the quiver

1◦ α−→ 2◦ β−→ 3◦. If we glue the source vertex 1 and the sink vertex 3 and put a zero
relation in the above quiver, then we get a subalgebra B of A which is given by the following quiver

1◦ 2◦-¾
α

β

with relations αβ = 0. By [25], A and B are stably equivalent. In [14], it was shown that such stable
equivalence is not of Morita type, but still induced by tensoring a pair of bimodules. On the other
hand, we have dimHH0(A) = 3 and dimHH0(B) = 2. Thus dimHH0(A) 6= dimHH0(B).
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6. Power-p maps and the Auslander-Reiten conjecture

In this section, we work over an algebraically closed field k of positive characteristic p > 0 and
in this special case we will give another proof of the main Theorem 5.1. As an application, we get
some new computable invariants of stable equivalences of Morita type.

One of the properties of the 0-degree Hochschild homology group is that it admits a power-p map,
that is,

µA
p : A/K(A) → A/K(A), x + K(A) 7→ xp + K(A).

The above map is well-defined and additive (see, for example, [17]). We shall prove that this map
restricts to the stable 0-degree Hochschild homology group. We begin with a lemma.

Lemma 6.1. Let B be a finite dimensional k-algebra over a field k of characteristic p > 0. For a
finitely generated projective right B-module M , the trace map

trM : EndB(M) ' M ⊗B HomB(M, B) → B/K(B)

satisfies that for any f ∈ EndB(M), we have tr(fp) = tr(f)p. Consequently, the same holds for the
degree zero transfer map tM : A/K(A) → B/K(B).

Proof The first assertion should be well known, but we could not find a proof in the literature,
so we include one. Suppose that M ' (e1B ⊕ e2B ⊕ · · · ⊕ enB) for some primitive idempotents
e1, · · · , en ∈ B. We can write an element f ∈ EndB(M) ' EndB(e1B⊕e2B⊕· · ·⊕enB) as a matrix
(fij)1≤i,j≤n where fij ∈ HomB(eiB, ejB). The trace map gives trM (f) =

∑
i fii in B/K(B). We

want to prove that trM (fp) =
∑

i fp
ii ∈ B/K(B), therefore trM (fp) = (trM (f))p in B/K(B) and we

are done. In fact, the trace of fp is the sum of terms of the form

fi1i2fi2i3 · · · fip−1ipfipi1

for 1 ≤ i1, · · · , ip ≤ n. If all the indices i1, · · · , ip are equal to some i for 1 ≤ i ≤ n, then the term
is fp

ii. We shall prove that the sum of all other terms is zero in B/K(B). Consider the sequence of
pairs

((i1, i2), (i2, i3), · · · , (ip−1, ip), (ipi1))
which corresponds to a term above. The cyclic group of order p acts on such a sequence by permuting
cyclically the pairs in this sequence. If not all of the indices are equal, then the action is free
and an orbit contains p sequences. Notice that any non-trivial cyclic permutation of this sequence
corresponds to a different expressed term, but these terms are all equal in B/K(B). So the sum of
all the terms corresponding to the cyclic permutations of a sequence is zero in B/K(B) in case that
not all the indices are equal. The fixed points of this action are just the sequences in which all of
the indices are equal. We have now trM (fp) =

∑
i fp

ii in B/K(B). The proof is complete.
The second assertion follows from the first and the construction of the transfer map.

¤
We now prove that the power-p map can restrict to the stable Hochschild homology group.

Corollary 6.2. µA
p (HHst

0 (A)) ⊆ HHst
0 (A).

Proof For x ∈ HHst
0 (A), tAei

(xp) = tAei
(x)p = 0 for each i.

¤
Recall that Tn(A) = {x ∈ A |xpn ∈ K(A)} is a k-subspace of A and that (see [17, (9)])

∞⋃
n=0

Tn(A) = J(A) + K(A).

Lemma 6.3. For each n ≥ 0, Tn(A) ⊆ HHst
0 (A). As a consequence, (J(A) + K(A))/K(A) ⊆

HHst
0 (A).

Proof Indeed, Tn(A)/K(A) = {x ∈ A/K(A)|xpn

= 0}. So for x ∈ Tn(A)/K(A) and for any
projective A-module Ae, tAe(x)pn

= tAe(xpn

) = 0. It follows that tAe(x) = 0 for each Ae and
x ∈ HHst

0 (A).
¤
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Combining Corollary 6.2 and Lemma 6.1, we obtain the main result of this section.

Proposition 6.4. Let k be an algebraically closed field of characteristic p > 0. Given an A-B bimod-
ule AMB which is finitely generated and projective as right B-module, then we have a commutative
diagram:

HHst
0 (A)

µA
p //

tM

²²

HHst
0 (A)

tM

²²
HHst

0 (B)
µB

p // HHst
0 (B).

Corollary 6.5. Let k be an algebraically closed field of characteristic p > 0. Let A and B be two
finite dimensional k-algebras which are stably equivalent of Morita type. Then dim(Tn(A)/K(A)) =
dim(Tn(B)/K(B)).

Proof This follows from Proposition 6.4, Theorem 3.11 and the following commutative diagram:

0 // Tn(A)/K(A)

'
²²Â
Â
Â

// HHst
0 (A)

(µA
p )◦n

//

tM '
²²

HHst
0 (A)

tM '
²²

0 // Tn(B)/K(B) // HHst
0 (B)

(µB
p )◦n

// HHst
0 (B),

where (µA
p )◦n denotes the composition of µA

p with itself n times.
¤

Remark 6.6. Let A and B be two finite dimensional algebras over an algebraically closed field of
positive characteristic. If they are derived equivalent, then dim(Tn(A)/K(A)) = dim(Tn(B)/K(B)).
This fact was proved by Bessenrodt, Holm and the third author ([2]).

Now one can give an alternative proof of Theorem 1.1 in case of positive characteristic.

Corollary 6.7. Let k be an algebraically closed field of characteristic p > 0. Suppose that there is
a stable equivalence of Morita type between two finite dimensional k-algebras A and B. Then the
following are equivalent.

(1) A and B have the same number of isomorphism classes of simple modules;
(2) dimHH0(A) = dimHH0(B).

Proof Since
⋃∞

n=0 Tn(A)/K(A) = (J(A)+K(A))/K(A), by Corollary 6.5, dim(J(A)+K(A)/K(A))
is invariant under a stable equivalence of Morita type. Since l(A) = dim(A/J(A) + K(A)) (see [17,
(5)]), we know that l(A) = dim(A/K(A))− dim(J(A) + K(A)/K(A)).

¤

Now we consider symmetric algebras. Let us first recall some notations. Let k be an algebraically
closed field of positive characteristic p > 0 and let A be a finite-dimensional symmetric k-algebra.
The n-th Külshammer ideal of A is defined as the orthogonal space (with respect to the symmetrizing
form on A)

T⊥n (A) = {x ∈ A | (x, y) = 0 for all y ∈ Tn(A)}.
We then have the following fundamental lemma.

Lemma 6.8 ([17], No.(36) and (37)). The subspaces T⊥n (A) form a descending chain of ideals of the
center Z(A)

Z(A) = K(A)⊥ = T⊥0 (A) ⊇ T⊥1 (A) ⊇ T⊥2 (A) ⊇ · · · .

Moreover, the intersection of Külshammer ideals is the Reynolds ideal:
∞⋂

i=0

T⊥n (A) = R(A) := Soc(A) ∩ Z(A).

We can now state a theorem of the third author saying that the Külshammer ideals are derived
invariants. This theorem motivates the work in this article.
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Theorem 6.9 ([42]). Let k be an algebraically closed field of characteristic p > 0. Let A and B
be symmetric k-algebras. If A and B are derived equivalent (that is, their derived module categories
Db(A) and Db(B) are equivalent as triangulated categories), then there exists an algebra isomorphism
ϕ : Z(A) → Z(B) such that ϕ(T⊥n (A)) = T⊥n (B) for any n ≥ 0.

We now define a stable version of Külshammer ideals. Recall that Z(A) ' HomAe(A,A) and the
projective center Zpr(A) is an ideal of Z(A). The stable center Zst(A) is defined to be Z(A)/Zpr(A).
Notice that by [9, Lemma 4.1 (iii)], Zpr(A) = H(A) ⊆ R(A) ⊆ T⊥n (A). We define

T⊥,st
n (A) := T⊥n (A)/Zpr(A) ⊆ Zst(A)

and Rst(A) := R(A)/Zpr(A) ⊆ Zst(A). We call T⊥,st
n (A) the n-th stable Külshammer ideal and

Rst(A) the stable Reynolds ideal, respectively. Since A is finite dimensional, when n is large,
T⊥,st

n (A) = Rst(A).

Proposition 6.10. Let k be an algebraically closed field of characteristic p > 0. Suppose that two
finite dimensional k-algebras A and B are stably equivalent of Morita type and that A is symmetric.
Then dimT⊥,st

n (A) = dimT⊥,st
n (B) for any n ≥ 0. In particular dimRst(A) = dimRst(B).

Proof Since K(A)⊥ = Z(A), we have a well-defined non-degenerate bilinear form

Z(A)/T⊥n (A)× Tn(A)/K(A) → k, (z̄, ā) 7→ (z, a).

It follows that we have a duality between Z(A)/T⊥n (A) and Tn(A)/K(A). In particular, their di-
mensions are the same. Note that

dim(Z(A)/T⊥n (A)) = dim(Z(A)/Zpr(A))− dim(T⊥n (A)/Zpr(A)) = dimZst(A)− dimT⊥,st
n (A).

Since dim(Tn(A)/K(A)) and Zst(A) are invariant under a stable equivalence of Morita type, so is
dimT⊥,st

n (A).
¤

Remark 6.11. Notice that for symmetric algebras, the dimension of the Reynolds ideal R(A) is just
the number of simple modules l(A). Since dimR(A) = dimRst(A)+dimH(A), the above proposition
gives another proof of Corollary 5.2 in positive characteristic.
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