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Abstract: By giving some equivalent definitions of fractional Brauer configuration algebras of type S in some

special cases, we construct a fractional Brauer configuration algebra from any monomial algebra. We show

that this algebra is isomorphic to the trivial extension of the given monomial algebra. Moreover, we show

that there exists a one-to-one correspondence between the isomorphism classes of monomial algebras and the

equivalence classes of pairs consisting of a symmetric fractional Brauer configuration algebra of type S with

trivial degree function and a given admissible cut over it.

1 Introduction

In the representation theory of algebras, monomial algebras form an important class of finite
dimensional quiver algebras. They are nicely graded and often used to test some theories or conjectures.
For example, it is known how to construct explicitly the minimal two-sided projective resolution of a
given monomial algebra ([1]) and the finitistic dimension conjecture is true for monomial algebras ([6]).
On the other hand, monomial algebras contain algebras of different global dimensions and different
representation types, so they form a rich class of algebras from the representation theory point of view.

Symmetric algebras are another important class of finite dimensional algebras. Examples of sym-
metric algebras are given by groups algebras of finite groups and the trivial extensions of finite dimen-
sional algebras. Trivial extension is a very common construction in representation theory and there are
results linking trivial extension algebras with tilting theory ([12]). Until recently, a characterisation of
trivial extension algebras in terms of quivers with relations is obtained in [5, Theorem 1.1].

In [16, Theorem 1.2], Schroll shows that trivial extensions of gentle algebras, which are some special
monomial algebras, are Brauer graph algebras, a class of symmetric special biserial algebras. More-
over, she shows that there is a one-to-one correspondence between gentle algebras and Brauer graph
algebras with multiplicity one associated with an admissible cut ([16, Theorem 1.3]). These results are
generalized by Green and Schroll in [8]. They show that trivial extensions of almost gentle algebras,
which are special monomial algebras containing gentle algebras, are Brauer configuration algebras, a
class of symmetric special multiserial algebras containing Brauer graph algebras, and moreover, there
is a one-to-one correspondence between almost gentle algebras and Brauer configuration algebras with
multiplicity one associated with an admissible cut ([8, Theorem 5.5]).

Very recently, Li and Liu give a further generalization of Brauer configuration algebras in [10]. These
algebras are defined by fractional Brauer configurations (abbr. f-BCs) and called fractional Brauer
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configuration algebras (abbr. f-BCAs), which may not be symmetric, may not be multiserial, even
may not be finite-dimensional. However, if we assume that our f-BC is of type S, finite, and symmetric
(see Section 2.2 for the meaning of these notions), then the corresponding f-BCA is symmetric and
finite dimensional. We call such f-BCA a symmetric Brauer configuration algebra of type S (abbr.
symmetric fs-BCA).

In this paper, we generalize the results in [16] and [8]. We construct a fractional Brauer configuration
of type S (abbr. fs-BC) from any monomial algebra to get a corresponding fs-BCA. We show that this
algebra is isomorphic to the trivial extension of the given monomial algebra. Moreover, we show that
there exists a one-to-one correspondence between the set of isomorphism classes of monomial algebras
and equivalence classes of pairs consisting of a symmetric fractional Brauer configuration algebra of
type S with trivial degree function and a given admissible cut over it.

Outline. In Section 2, we recall the definitions and basic properties on f-BCA and fs-BCA.
Moreover, we give some equivalent conditions about the defining relations of f-BCA in Lemma 2.3 and
give an equivalent definition of fs-BCA in Lemma 2.10 when its corresponding fs-BC is symmetric.
In Section 3, for each monomial algebra A we construct an fs-BC EA in Proposition 3.1. In section 4,
we prove that the fs-BCA of EA is isomorphic to the trivial extension of the given monomial algebra
A (Theorem 4.4). In section 5, we define admissible cuts of symmetric fs-BCAs and show that there
exists a one-to-one correspondence between the set of isomorphism classes of monomial algebras and
the set of equivalence classes of pairs consisting of a symmetric fs-BCA with trivial degree function
and a given admissible cut over it (Corollary 5.6).

2 Basic knowledge about fs-BCAs

2.1 Fractional Brauer configuration algebras

We recall some definitions of fractional Brauer configuration algebras in [10], which will play an
important role in our following discussions. Furthermore, we give some equivalent conditions of the
relations in fractional Brauer configuration algebras.

Definition 2.1. ([10, Definition 3.3]) A fractional Brauer configuration (abbr. f-BC) is a quadruple
E = (E,P, L, d), where E is a G-set with G = ⟨g⟩ ∼= (Z,+), an infinite cyclic group, P and L are two
partitions of E, and d : E → Z+ is a function, such that the following conditions hold.

(f1) L(e) ⊆ P (e) and P (e) is a finite set for each e ∈ E.

(f2) If L(e1) = L(e2), then P (g(e1)) = P (g(e2)).

(f3) If e1, e2 belong to same ⟨g⟩-orbit, then d(e1) = d(e2).

(f4) P (e1) = P (e2) if and only if P (gd(e1)(e1)) = P (gd(e2)(e2)).

(f5) L(e1) = L(e2) if and only if L(gd(e1)(e1)) = L(gd(e2)(e2)).

(f6) L(gd(e)−1(e)) · · ·L(g(e))L(e) is not a proper subsequence of L(gd(h)−1(h)) · · ·L(g(h))L(h).

For convenience, we recall the following notations in [10, Remark 3.4]. The elements in E are called
angles. The ⟨g⟩-orbits of E are called vertices. The partitions P and L are called vertices partition
and arrows partition, respectively. Moreover, the classes P (e) of the partition P are called polygons.
The arrows partition L is said to be trivial if L(e) = e for each e ∈ E.

The function d : E → Z+ is called degree function. Condition (f3) means that the degree function
can be defined on vertices. Let v be a vertex such that v is a finite set, define the fractional-degree (abbr.
f-degree) df (v) of a vertex v to be the rational number d(v)/|v|. The degree function (respectively, the
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fractional-degree) is called trivial if each d(e) = |ve| (respectively, df (ve) = 1) where ve is the ⟨g⟩-orbit
of each angle e.

Denote by σ the map E → E, e 7→ gd(e)(e), which is called the Nakayama automorphism of E.
Moreover, we call an f-BC E symmetric if its Nakayama automorphism is identity. This equals to say
that E has integral fractional-degree on each vertex.

Recall some basic notations about quiver algebras. Let k be a field and let A be a finite-dimensional
k-algebra. Unless explicitly stated otherwise, all modules considered are finitely generated left modules.
Furthermore, let A = kQ/I be a quiver algebra, that means, k is a field, Q is a finite quiver and I
is an ideal in kQ. (Note that in the present paper all the involved ideals I are lied in between the
ideal kQ≥1 generated by the arrows in Q and some power of kQ≥1.) We denote by s(p) the source
vertex of a path p and by t(p) its terminus vertex. We will write paths from right to left, for example,
p = αnαn−1 · · ·α1 is a path with starting arrow α1 and ending arrow αn. The length of a path p
will be denoted by l(p). Two paths ε, γ of Q are called parallel if s(ε) = s(γ) and t(ε) = t(γ). For
convenience, p, q ∈ Q, we denote p | q if p is a subpath of q. By abuse of notation we sometimes view
an element in kQ as an element in kQ/I if no confusion can arise.

We will understand the concepts in Definition 2.1 easier through the quivers associated with the
fractional Brauer configurations.

Definition 2.2. ([10, Definition 4.1]) For an f-BC E = (E,P, L, d), the quiver QE = (Q0, Q1) asso-
ciated with E defined as follow: Q0 = {P (e) | e ∈ E} and

Q1 = {L(e) | e ∈ E, s(L(e)) = P (e) and t(L(e)) = P (g(e))}.

Therefore, the sequence L(gd(e)−1(e)) · · ·L(g(e))L(e) we considered in condition (f6) in Definition
2.1 is actually a path in the quiver QE . We call the path of the form L(gd(e)−1(e)) · · ·L(g(e))L(e) the
special path starting from e ∈ E.

Moreover, we can define the ideal IE generated by the following three types of relations in [10,
Definition 4.4]:

(R1) L(gd(e)−1−k(e)) · · ·L(g(e))L(e) − L(gd(h)−1−k(h)) · · ·L(g(h))L(h), if P (e) = P (h), k ≥ 0 and
L(gd(e)−i(e)) = L(gd(h)−i(h)) for 1 ≤ i ≤ k.

(R2) L(en) · · ·L(e2)L(e1), if P (g(ei)) = P (ei+1) for each 1 ≤ i ≤ n− 1 and
⋂n

i=1 g
n−i(L(ei)) = ∅.

(R3) L(gn−1(e)) · · ·L(g(e))L(e) for n > d(e).

Call these three types of relations of IE to be of type 1, type 2 and type 3 respectively. Moreover,
the quiver algebra A = kQE/IE is called the fractional Brauer configuration algebra (abbr. f-BCA)
associated with f-BC E.

In fact, the above relations are illustrated by using the concepts in the definition of fractional
Brauer configurations. To make it easier to understand, let us restate the meaning of these relations
in the language of the path algebra kQE . Consider the relations in kQE which are given by following
forms.

(R1’) L(gd(e)−1−k(e)) · · ·L(g(e))L(e)− L(gd(h)−1−k(h)) · · ·L(g(h))L(h) with P (e) = P (h) and k ≥ 0,
if there exists a nonzero path p in QE , such that

pL(gd(e)−1−k(e)) · · ·L(g(e))L(e) and pL(gd(h)−1−k(h)) · · ·L(g(h))L(h)

are special paths starting from P (e).

(R2’) The nonzero path L(en) · · ·L(e2)L(e1) which is not a subpath of the special path of an angle
e1 ∈ E, and each proper subpath of it is a subpath of some special path in kQE .
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By Definition 2.1, it is easy to see that the sequences in the f-BC E fitting the condition (R1) is
equivalent to the paths in QE fitting the condition (R1’). Moreover, we give the following lemma to
show two descriptions of the relations in the ideal in kQE are equivalent.

Lemma 2.3. The ideal generated by (R2’) in kQE is equal to the ideal generated by (R2) and (R3).

Proof. On the one hand, we prove each relation in (R2) and (R3) can be generated by (R2’) in kQE .
For all L(gn−1(e)) · · ·L(g(e))L(e) which is a relation in (R3) with n > d(e), it is obviously not a
subpath of the special path L(gd(e)−1(e)) · · ·L(g(e))L(e) of e, thus we can find some relation in (R2’)
that divides it exactly. If there exists a relation L(en) · · ·L(e2)L(e1) is a subpath of some special
path in kQE , without loss of generality, we can assume it is in the form of L(gn−1(e)) · · ·L(g(e))L(e).
However, that means en ∈

⋂n
i=1 g

n−i(L(ei)) ̸= ∅, contradict with the condition in (R2).
On the other hand, we prove each relation in (R2’) can be generated by (R2) and (R3) in kQE .

For each relation L(en) · · ·L(e2)L(e1) in (R2’), If it does not contain L(gd(e1)−1(e1)) · · ·L(g(e1))L(e1)
as a proper subpath, consider the largest positive integer m such that L(em) ̸= L(gm(e1)), then by
Definition 2.1, in f-BC E, we have L(em) ∩ L(gm(e1)) = ∅ since L is a partition of E. Therefore,
L(em) · · ·L(e2)L(e1) is a nonzero relation in (R2) which is a subpath of L(en) · · ·L(e2)L(e1).

If L(en) · · ·L(e2)L(e1) contains L(gd(e1)−1(e1)) · · ·L(g(e1))L(e1) as a proper subpath, then there
are two cases to consider about the arrow L(ed(e1)) in QE .

� If L(ed(e1)) = L(gd(e)(e)), then it contains L(gd(e)(e))L(gd(e1)−1(e1)) · · ·L(g(e1))L(e1) which is a
relation in (R3) as a subpath in QE .

� If L(ed(e1)) ̸= L(gd(e)(e)), then by Definition 2.1, in f-BC E, we have L(ed(e1)) ∩ L(gd(e)(e)) = ∅
since L is a partition of E. Therefore, L(ed(e1)) · · ·L(e2)L(e1) is a nonzero relation in (R2) which
is a subpath of L(en) · · ·L(e2)L(e1).

To sum up, the ideal generated by (R2’) in kQE is equal to the ideal generated by (R2) and (R3).

Recall some example in [10], and classify their relations according to the new conditions above.

Example 2.4. ([10, Example 3.6]) Let E = {1, 1′, 2, 2′, 3, 3′, 4, 4′}. Define the group action on E
by g(1) = 2, g(2) = 3, g(3) = 1, g(1′) = 2′, g(2′) = 4′, g(4′) = 1′, g(3′) = 3′, g(4) = 4. Define
P (1) = {1, 1′}, P (2) = {2, 2′}, P (3) = {3, 3′}, P (4) = {4, 4′}, L(1) = P (1) and L(e) = {e} for
e ̸= 1, 1′. The degree function d of E is trivial. Then QE is the following quiver

1

4 3

2

L(1)L(4)

L(4′)

L(3)

L(3′)

L(2′)

L(2)

and for example, the special path of 1 ∈ E is given by

L(g2(1))L(g(1))L(1) = L(3)L(2)L(1),

and the special path of 1′ ∈ E is given by

L(g2(1′))L(g(1′))L(1′) = L(4′)L(2′)L(1).

Moreover, the special paths of 4 and 3′ are given by L(4) and L(3′), respectively.
The ideal IE is generated by
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(R1’) L(3′)− L(2)L(1)L(3), L(4)− L(2′)L(1)L(4′), L(3)L(2)− L(4′)L(2′).

(R2’) L(2)L(1)L(4′), L(2′)L(1)L(3), L(3)L(3′), L(2)L(3′), L(4′)L(4), L(4)L(2′).

Example 2.5. ([10, Example 3.8]) Let E = {1, 1′, 1′′, 2, 2′, 3, 4, 4′, 4′′, 5, 5′, 6}. Define the group action
on E by g(1) = 2, g(2) = 4, g(4) = 5, g(5) = 1, g(1′) = 2′, g(2′) = 4′, g(4′) = 6, g(6) = 1′,
g(1′′) = 3, g(3) = 4′′, g(4′′) = 5′, g(5′) = 1′′. Define P (1) = {1, 1′, 1′′}, P (2) = {2, 2′}, P (3) = {3},
P (4) = {4, 4′, 4′′}, P (5) = {5, 5′}, P (6) = {6}, L(1) = {1, 1′}, L(2) = {2, 2′}, L(4) = {4, 4′′},
L(5) = {5, 5′} and L(e) = {e} for other e ∈ E. The degree function d of E is trivial. Then QE is the
following quiver

3

1 2

5 4

6

L(3)
L(1)

L(1′′)

L(2)L(5)

L(4)

L(4′)

L(6)

and for example, the special path of 1 ∈ E is given by

L(g3(1))L(g2(1))L(g(1))L(1) = L(5)L(4)L(2)L(1),

the special path of 1′ ∈ E is given by

L(g3(1′))L(g2(1′))L(g(1′))L(1′) = L(6)L(4′)L(2)L(1),

and the special path of 1′′ ∈ E is given by

L(g3(1′′))L(g2(1′′))L(g(1′′))L(1′′) = L(5)L(4)L(3)L(1′′).

The ideal IE is generated by

(R1’) L(5)L(4)− L(6)L(4′), L(2)L(1)− L(3)L(1′′).

(R2’) L(1′′)L(6), L(4′)L(3).

2.2 Fractional Brauer configuration algebras of type S

In this section, we recall a special class of f-BCAs, which are called the fractional Brauer configu-
ration algebras of type S in [10]. We recall some basic definitions at first.

Definition 2.6. ([10, Definition 3.10]) Let E be an f-BC, call a sequence p = (gn−1(e), · · · , g(e), e)
with e ∈ E and 0 ≤ n ≤ d(e) a standard sequence of E. In particular, we define p = ()e when n = 0
which is called a trivial sequence in E.

A standard sequence of the form p = (gd(e)−1(e), · · · , g(e), e) with e ∈ E is called a full sequence of
E. Actually, there is a bijective map between the full sequences p = (gd(e)−1(e), · · · , g(e), e) of E and
the special paths L(gd(e)−1(e)) · · ·L(g(e))L(e) in kQE.
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For a standard sequence p = (gn−1(e), · · · , g(e), e), we can define two associated standard sequences

∧p =


(gd(e)−1(e), · · · , gn+1(e), gn(e)) , if 0 < n < d(e);
()gd(e)(e) , if n = d(e);

(gd(e)−1(e), · · · , g(e), e) , if n = 0 and p = ()e,

and

p∧ =

 (g−1(e), g−2(e), · · · , gn−d(e)(e)) , if 0 < n < d(e);
()e , if n = d(e);
(g−1(e), · · · , g−d(e)(e)) , if n = 0 and p = ()e.

Note that for a standard sequence p of E, ∧pp and pp∧ are full sequences of E.
For a standard sequence p = (gn−1(e), · · · , g(e), e), define a formal sequence

L(p) =

{
L(gn−1(e)) · · ·L(g(e))L(e), · · · , gn−d(e)(e)) , if 0 < n ≤ d(e);
eP (e) , p = ()e.

where eP (e) is the trivial path at vertex P (e) in kQE . Actually, it is a subpath of the special path of
e ∈ E. Moreover, for a set X of standard sequences, define L(X ) = {L(P ) | p ∈ X}. By the definition
of f-BCA, for any standard sequence p in f-BC E, the formal sequence L(p) corresponds to a nonzero
path in the associated algebra A = kQE/IE . By abuse of notation we sometimes view a standard
sequence p in E as a path in kQE if no confusion can arise.

Definition 2.7. ([10, Definition 3.11]) Let E be an f-BC, p and q be two standard sequences of E,
define p ≡ q if L(p) = L(q). In the case we say p and q are identical.

Actually, for standard sequences p, q, ∧p ≡∧ q if and only if p∧ ≡ q∧. For a set X of standard
sequences, denote [X ] = {standard sequence q | q is identical to some p ∈ X}, denote ∧X = {∧p | p ∈
X} (resp. X∧ = {p∧ | p ∈ X}).

Definition 2.8. ([10, Definition 3.13]) An f-BC E is said to be of type S (or E is an fs-BC for short)
if it satisfies additionally the following condition.

(f7) For standard sequences p ≡ q, we have [[∧p] ∧] = [[∧q] ∧].

The algebra A = kQE/IE is called the fractional Brauer configuration algebra of type S (abbr. fs-BCA)
associated with an fs-BC E.

Remark 2.9. For a standard sequence p, we have [∧ [p∧]] = [∧ [(∧p)∧∧]] = [∧([∧p] ∧∧)] = [[∧p] ∧]
whenever (f7) holds or not.

Since the definition of fs-BC is given by the notations of some f-BC E, we also transform it to a
concept corresponding to the paths in kQE .

From now on, let the f-BC E be symmetric, which means the Nakayama automorphism of E is
identity. In this case, we have that all special paths in QE are cycles and ∧p = p∧ for all standard
sequence p in E. Given a new condition as following.

(sf7) For two nonzero relations p− q, p′ − q′ of type 1 in IE , if pp
′, qp′ and pq′ are some special paths

in QE at the same time, then so is qq′.

Lemma 2.10. The condition (f7) implies (sf7). Moreover, if the f-BC E is symmetric, then the
condition (sf7) also implies (f7).
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Proof. On the one hand, we prove (f7) implies (sf7). If (sf7) does not hold, then there exist two
nonzero relations p− q, p′ − q′ of type 1 in IE , pp

′, qp′ and pq′ are different special paths in QE at the
same time, but qq′ is not. Therefore, denote l(p′) = n, we can find different angles e, h ∈ E, such that

p′ = L(gn−1(e)) · · ·L(g(e))L(e) = L(gn−1(h)) · · ·L(g(h))L(h).

with p = L(gd(e)−1(e)) · · ·L(gn(e)) and q = L(gd(h)−1(h)) · · ·L(gn(h)).
Denote the standard sequences corresponding to p′ by p1 = (gn−1(e), · · · , e) and p2 = (gn−1(h), · · · , h),

thus p1 ≡ p2. Since pq′ is a special path in E but qq′ is not, we have q′ ∈ L([[∧p1]
∧]) but

q′ /∈ L([[∧p2]
∧]). Therefore, (f7) is also not true at the same time.

On the other hand, we prove (sf7) implies (f7) when E is symmetric. If not, there exist standard
sequences p ≡ q and p ̸= q, such that [[∧p] ∧] ̸= [[∧q] ∧], which also means L([∧p] ∧) ̸= L([∧q] ∧).

To be more specific, we may assume that there exist a path p0 in QE , such that L(∧p)p0 is a special
path in QE , but L(

∧q)p0 is not. In this case, we have L(∧p) ̸= L(∧q). Actually, by the definition of
standard sequences and L(p) = L(q), we have L(∧p)L(p) and L(∧q)L(p) are special paths in QE . Since
E is symmetric, all special paths are cycles in QE . Therefore, L(p)L(

∧p) and L(p)L(∧q) are different
special paths in QE at the same vertex, that means L(∧p)−L(∧q) is a relation of type 1. In the same
reason, we have L(p) − p0 is also a relation of type 1. However, L(∧p) − L(∧q) and L(p) − p0 do not
fit the condition (sf7), a contradiction!

It is easier to check that the f-BC in Example 2.4 is an fs-BC but the f-BC in Example 2.5 is not
by using the lemma above than using the definition of fs-BC .

Proposition 2.11. ([10, Proposition 5.2, Proposition 5.4]) If E is a fs-BC with a finite angle set, then
the corresponding fs-BCA A = kQE/IE is a finite-dimensional Frobenius algebra with the Nakayama
automorphism of A induced by the inverse of the Nakayama automorphism of the fs-BC E.

Therefore, if the fs-BC with a finite angle set is symmetric, then A = kQE/IE is symmetric, that is,
A ∼= Homk(A, k) as A-A-bimodules (More details on equivalent definitions of symmetric algebras can
be found, for example, in [13, Theorem 3.1]). These algebras are called symmetric fractional Brauer
configuration algebras of type S (abbr. symmetric fs-BCA).

3 The fs-BC associated to a monomial algebra

In this section, we construct an fs-BC from a given monomial algebra. Actually, it is a generaliza-
tion of the graph of a gentle algebra in [16, Section 3.1].

Let A = kQ/I be a finite-dimensional monomial algebra, that means, k is a field, Q is a finite quiver
and I is an ideal in kQ which is generated by paths. Moreover, consider the set M = {p1, · · · , pm} of
maximal paths in A (for all p ∈ M and α ∈ Q1, αp = 0 = pα in A).

Define a quadruple EA = (E,P, L, d) of the monomial algebra A = kQ/I as follows.

� E =
⋃

p∈M{(ei, p) | p = (e1 → e2 → · · · → en)};

� P ((ei, p)) = {(e′i, p′) ∈ E | ei = e′i ∈ Q0};

� L((ei, p)) = {(e′i, p′) | the arrow starting at ei in p is same as the arrow starting at e′i in p
′};

� d((ei, p)) = l(p) + 1;

� if p = (e1 → e2 → · · · → en), then g((ei, p)) = (ei+1, p), i = 1, · · · , n− 1 and g((en, p)) = (e1, p).
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We need to state that we treat (ei, p) and (ej , p) with i ̸= j as distinct angles in EA, even if ei = ej
in Q0. It is obviously to find that EA has trivial degree function, P,L are partitions of E and each
⟨g⟩-orbit corresponds to a unique maximal path in A. Actually, by the definition above, for all p ∈ M,
L((t(p), p)) = {(t(p), p)}.
Proposition 3.1. EA is a symmetric fs-BC.

Proof. We check the conditions in Definition 2.1 step by step.
(f1). Since A is finite-dimensional and M is contained in a k-basis of A, by the definition of EA,

the angle set E is finite. Moreover, each P ((ei, p)) ⊆ E is finite. By the definition of the partitions P
and L in EA, for all (e′i, p

′) ∈ L((ei, p)), there exists an common subarrow α ∈ Q1 of p and p′, such
that s(α) = ei = e′i, thus (e

′
i, p

′) ∈ P ((ei, p)), that means L((ei, p)) ⊆ P ((ei, p)) for all (ei, p) ∈ E.
(f2). If L((ei, p)) = L((e′i, p

′)), then there exists an arrow α in Q with α | p and α | p′, such that
s(α) = ei = e′i ∈ Q0. Denote the terminus vertex of α in p and p′ by ej and e′j , respectively. Then
ej = e′j ∈ Q0. Therefore,

P (g(ei, p)) = P ((ej , p)) = P ((e′j , p
′)) = P (g(e′i, p

′)).

(f3). For all (ei, p) ∈ E, each ⟨g⟩-orbit of (ei, p) is defined by the maximal path p ∈ M. Therefore,
by the definition of degree function, we have d((ei, p)) = d(gk(ei, p)), k ∈ Z.

(f4) and (f5). For all e ∈ E which is an angle of EA, we have gd(e)(e) = e. Therefore, the
conditions (f4) and (f5) are automatically established.

(f6). If L(gd(e)−1(e)) · · ·L(g(e))L(e) is a proper subsequence of L(gd(h)−1(h)) · · ·L(g(h))L(h) for
some e, h ∈ E, without loss of generality, we can assume that there exist a positive integer n < d(h),
such that

L(gd(e)−1(e)) · · ·L(g(e))L(e) = L(gn−1(h)) · · ·L(g(h))L(h).
To be more specific, let e = (ei, p) and h = (ej , q). By the definition of the partition L of EA, there
exist a non-trivial path p′ in Q, such that q = p′p. However, that means p is a proper subpath of q,
contradict to p ∈ M which is a maximal path in A.

To sum up, by Definition 2.1, we have EA is a f-BC . Moreover, since for all e ∈ E which is an
angle of EA, we have gd(e)(e) = e. Therefore, the Nakayama automorphism σ of EA is identity. That
means, f-BC EA is symmetric.

By using Lemma 2.10, we show that the f-BC EA fits the condition (sf7). If not, consider the
quiver QEA

associated with EA, there exist pi := L(gni−1(hi)) · · ·L(g(hi))L(hi) with i = 1, 2, 3, 4, and
two nonzero path q1, q2 in QEA

such that q1p1, q1p2, q2p3, q2p4 are special paths in QEA
. In other

words, p1 − p2, p3 − p4 are relations of type 2 in EA. Moreover, p1p3, p2p3, p1p4 are special paths in
EA, but p2p4 is not.

However, if p1 ̸= p2 and q1p1, q1p2 are special paths in QE , we have the corresponding elements
in M is given by M1, M2. Since L((t(M1),M1)) is trivial, its corresponding arrow in QEA

can only
appear in exactly one special path (under cyclic permutation of cycles in QEA

) in QEA
. Therefore,

L((t(M1),M1)) | p1. Moreover, if p3 ̸= p4 and p1p3, p1p4 are special paths in QE , without loss of
generality, we have p4 ̸= q1. Therefore, the arrow L((t(M1),M1)) appears in distinct special paths
q1p1 and p1p4 in QEA

. However, L((t(M1),M1)) is a trivial angle set, which can only be involved in
exactly one ⟨g⟩-orbit, a contradiction!

In conclusion, EA fits (sf7). By Lemma 2.10, EA fits (f7) since EA is symmetric. Therefore, EA is
a symmetric fs-BC .

Let A = kQ/I be a finite-dimensional monomial algebra and EA = (E,P, L,m) be the fs-BC associ-
ated with A. Denote the fs-BCA of EA by AE . Since the angle set E is finite, AE is finite-dimensional.
By Proposition 2.11 and the discussion that follows it, AE is a finite-dimensional symmetric algebra.
We call AE the symmetric fs-BCA associated with the monomial algebra A.
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4 Trivial extensions of monomial algebras

Let A = kQ/I be a finite-dimensional k-algebra and let D(A) = Homk(A, k) be its k-linear dual.
Recall the trivial extension T (A) = A ⋊ D(A) is an algebra defined as the vector space A ⊕ D(A)
and with multiplication given by (a, f)(b, g) = (ab, ag + bf), for any a, b ∈ A and f, g ∈ D(A). Note
that D(A) is an A-A-bimodule via the following. If a, b ∈ A and f ∈ D(A), then afb : A → k by
(afb)(x) = f(bxa). It is well-known that the trivial extension algebra T (A) is a symmetric algebra,
see for example in [15, Proposition 6.5]. It is proven in [3, Proposition 2.2] that the vertices of quiver
QT (A) of T (A) correspond to the vertices of quiver Q of A and that the number of arrows from a vertex
i to a vertex j in T (A) is equal to the number of arrows from i to j in Q plus the dimension of the
k-vector space ei(socAeA)ej .

Let Q be the set of finite directed paths and suppose that I is generate by paths, that means, A
is a monomial algebra. Consider B = {p ∈ Q | p /∈ I}. The set π(B) with the canonical surjection
π : kQ → A forms a k-basis of A. We abuse the notation and view B as a k-basis of A. Then by [3,
Proposition 2.2], the set M of maximal paths of A is a subset of B and forms a k-basis of socAe(A).
Therefore, denote the arrow set of the quiver QT (A) of T (A) by (QT (A))1 and the arrow set of the
quiver Q of the monomial algebra A = kQ/I by Q1, then we have

|(QT (A))1| = |Q1|+ |M|.

Lemma 4.1. Let A = kQ/I be a finite-dimensional monomial algebra. Denote the fs-BCA associated
with A by AE = kQE/IE and the trivial extension of A by T (A) = kQT (A)/IT (A). Then the quiver
QE is isomorphic to QT (A).

Proof. Denote the fs-BC associated with A by EA = (E,P, L,m). Since the vertices of QE are
corresponding to the partition P of E and for all (ei, p) ∈ E, the angles in P ((ei, p)) have a common
first coordinate in Q0, the vertices in QE are corresponding to the vertices in Q. Thus the vertices in
QE are corresponding to the vertices in QT (A).

Now consider the arrows in QE from a vertex i to a vertex j in QE . Denote the trivial path
corresponding to i and j by ei and ej in Q. For each arrow α in ejQei, it can be extended to a maximal
path p (may not unique) in A. Moreover, by definition of the fs-BC EA, g(ei, p) = (ej , p). Therefore,
by definition of the quiver of f-BC , there is an arrow in QE corresponding to α. If we choose a different
maximal path p′ containing α, then by definition of the fs-BC EA, L((ei, p)) = L((ei, p

′)). Thus this
correspondence is a bijection between the arrows in QT (A) corresponding to an arrow α ∈ ejQei
in Q and the arrows L((ei, p)) in QE with p a maximal path in A containing α. Moreover, for all
maximal path p ∈ M from j to i (Note that p ∈ ei(socAeA)ej), we have that L((ei, p)) is trivial and
g(ei, p) = (ej , p). Therefore, there exist a unique arrow αp := L((ei, p)) in QE from i to j corresponding
to the maximal path p.

In conclusion, the quiver QE is isomorphic to QT (A).

Recall some basic properties in T (A). The dual basis B∨ = {p∨ | p ∈ B} is a k-basis of D(A)
where, if p ∈ B, p∨ ∈ D(A) is the element in D(A) defined by p∨(q) = δp,q for q ∈ B.

Lemma 4.2. ([8, Lemma 4.1]) Let A be a finite dimensional monomial algebra with k-basis B as above.
Then, for p, q, r ∈ B, the following holds in T (A).

(1) (p, 0)(0, r∨) =

{
(0, s∨) , if there is some s ∈ B with sp = r
0 , otherwise.

(2) (0, r∨)(q, 0) =

{
(0, s∨) , if there is some s ∈ B with qs = r
0 , otherwise.
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(3) (0, p∨)(q, 0)(0, r∨) = 0.

(4) If prq ∈ B, then (q, 0)(0, (prq)∨)(p, 0) = (0, r∨).

Proposition 4.3. ([8, Proposition 4.2]) Let A be a finite-dimensional monomial algebra. Then T (A)
is generated by {(α, 0) | α ∈ Q1} ∪ {(0,m∨) | m ∈ M}.

We now prove the main result of this section.

Theorem 4.4. Let A = kQ/I be a finite-dimensional monomial algebra, AE the symmetric fs-BCA
of EA, and T (A) the trivial extension of A by D(A). Then AE is isomorphic to T (A).

Proof. By Lemma 4.1, we can divide arrows in QE into two parts. Denote the arrow in QE corre-
sponding to some arrow α in Q by α, and the arrow in QE corresponding to some arrow induced by
some m ∈ M by αm.

We first prove dimk AE = 2dimk A. Actually, by definition of the fs-BC EA and the quiver
associated with EA, we can regard the monomial algebra A = kQ/I as a subalgebra of AE . Therefore,
we can embedding the k-basis B of A to nonzero paths in AE without involving arrows induced by
maximal paths in A. To be more specific, it is an injection i1 : A → AE of k-vector space given by
p 7→ p for all nonzero path p ∈ B in A.

Recall each nonzero path in AE is induced by a standard sequence in EA. Thus, we can define the
second map i2 : A→ AE of k-vector space which is given by p 7→ ∧p. By [10, Lemma 4.18], this is also
an injection. Moreover, all nonzero paths in Imi2 have a subpath which is an arrow that induced by
maximal paths in A. Therefore, Imi1 ∩ Imi2 = ∅. Moreover, we prove Spank(Imi1 ∪ Imi2) = AE . It is
obviously to find that Spank(Imi1 ∪ Imi2) ⊆ AE . For all non zero path q in A, if q does not contain a
subarrow induced by some maximal path in A, then q ∈ Imi1. If there exist an arrow induced by some
maximal path in A that is a subpath of q, then by definition of fs-BCA AE ,

∧q ∈ Imi1. Therefore,
q = ∧∧q ∈ Imi2. To sum up, we have dimk AE = 2dimk A = dimk T (A).

We construct a surjection ψ : kQE → T (A) of k-algebras which is given by α ∈ Q1 7→ (α, 0),
αm 7→ (0,m∨) with m ∈ M. It is straightforward to see that it is a surjection by Proposition 4.3. Now
we prove it can induce a surjection from AE to T (A), which means for all relations ρ ∈ IE , ψ(ρ) = 0.

By discussion in Section 2.1, IE can be generated by relations fitting the condition (R1’) or the
condition (R2’).

Let ρ = αn · · ·α1 is a relation fitting the condition (R2’). There are two cases to consider as follows.
Case 1. If ρ does not contain arrows induced by maximal paths in A, then by definition of EA, it

is actually a relation in the ideal I in A. Then ψ(ρ) = (ρ, 0) = 0 in T (A).
Case 2. If ρ contains an arrow αi induced by a maximal path m ∈ M in A, then we can write

m = βn · · ·β1. If ρ have some subarrow which is not in {β1, · · · , βn}, by Lemma 4.2, ψ(ρ) = 0. If
all arrows in ρ is in {β1, · · · , βn}, then without loss of generality, we can assume ρ = βn · · ·β1αiβn or
ρ = αiβn · · ·β1αi. Thus

ψ(βn · · ·β1αiβn) = (βn · · ·β1, 0)(0, (βn · · ·β1)∨)(βn, 0) = (0, e∨t(βn)
)(βn, 0) = 0;

ψ(αiβn · · ·β1αi) = (0, (βn · · ·β1)∨)(βn · · ·β1, 0)(0, (βn · · ·β1)∨) = (0, e∨t(βn)
)(0, (βn · · ·β1)∨) = 0.

Let ρ = αn · · ·α1−βm · · ·β1 is a relation fitting the condition (R1’). Then there exist a nonzero path
p in AE , such that pαn · · ·α1 and pβm · · ·β1 are special paths in AE . By the proof in Proposition 3.1,
there are arrows αi and βj induced by maximal paths m1 and m2 in A which are subarrows of αn · · ·α1

and βm · · ·β1 respectively. Moreover, m1 = αi−1 · · ·α1pαn · · ·αi+1 and m2 = βj−1 · · ·β1pβm · · ·βj+1.
Therefore,

ψ(ρ) = (0, p∨)− (0, p∨) = 0.

In conclusion, the surjection ψ induces a surjection of k-algebras from AE to T (A). Moreover, since
dimk AE = dimk T (A), AE is isomorphic to T (A).
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Actually, Theorem 4.4 is a generalization of [16, Theorem 1.2] and [8, Theorem 4.3]. In these two
papers the authors proved that the trivial extensions of gentle algebras are Brauer graph algebras and
the trivial extensions of almost gentle algebras are Brauer configuration algebras. In particular, gentle
algebras and almost gentle algebras are monomial algebras and Brauer graph algebras and Brauer
configuration algebras are symmetric fractional Brauer configuration algebras of type S.

We give some examples of the trivial extensions of monomial algebras. These monomial algebras
are far from being gentle or almost gentle, since the defining relations are not quadratic.

Example 4.5. Consider A = kQ/I, where Q is given by the following quiver

2 3

1 5

4

α1

α2

α3

β1 β2

and I = ⟨α3α2α1⟩.
Then we have M = {p1 := α2α1, p2 := α3α2, p3 := β2β1}. Moreover, consider the fs-BC EA of A:

E = {(e1, p1), (e2, p1), (e3, p1), (e2, p2), (e3, p2), (e5, p2), (e1, p3), (e4, p3), (e5, p3)};

P ((e1, p1)) = {(e1, p1), (e1, p3)};

P ((e2, p1)) = {(e2, p1), (e2, p2)};

P ((e3, p1)) = {(e3, p1), (e3, p2)};

P ((e4, p3)) = {(e4, p3)};

P ((e5, p2)) = {(e5, p2), (e5, p3)};

L((e2, p1)) = {(e2, p1), (e2, p2)},

and L(e) = {e}, otherwise. The degree function in EA is equal to 3 for all angles in E. Thus the
quiver correspond to EA is given by:

2 3

1 5

4

α1

α2

α3

β1 β2

(β2β1)
∨

(α3α2)
∨(α2α1)

∨

It is easy to check that dimk AE = 2dimk A = 26 and T (A) ∼= AE.

Example 4.6. Consider A = k[x]/⟨x3⟩. The unique maximal path in A is given by x2. Let x2 =
(e1 → e2 → e3) with e1 = e2 = e3 = 1 in A. Therefore, consider the fs-BC EA of A:

E = {(e1, x2), (e2, x2), (e3, x2)};

P ((e1, x
2)) = E;

L((e1, x
2)) = {(e1, x2), (e2, x2)};

11



L((e3, x
2)) = {(e3, x2)}.

The degree function in EA is equal to 3 for all angles in E. Thus the quiver correspond to EA is given
by:

•(x2)∨=:y x

Actually, AE
∼= k[x, y]/⟨x3, y2⟩. It is easy to check that dimk AE = 2dimk A = 6 and T (A) ∼= AE.

It is proven in [11, 14, 17] that A is gentle if and only if T (A) is special biserial. That also means
T (A) is a Brauer graph algebra in this case by [16, Theorem 1.1]. In [8, Question 4.5], Green and
Schroll left a question about whether an algebra A is almost gentle if T (A) is a Brauer configuration
algebra, which is still unsolved.

However, in our case we have an example to show that T (A) is symmetric fs-BCA does not imply
that A is a monomial algebra.

Example 4.7. Consider A = kQA/IA and B = QB/IB with QA and QB are given by the following
quivers:

1 1

QA : 2 3 QB : 2 3

4 4

α1 β1 α1 β1

α2 β2
α2 β2

γ

and IA = ⟨α2α1 − β2β1⟩, IB = ⟨α2α1 − β2β1, β1γα2, α1γβ2, γα2α1γ⟩. By [3, Theorem 3.9], B is the
trivial extension of A.

Let E = {1, 1′, 2, 3, 4, 4′}. Define the group action on E by g(1) = 2, g(2) = 4, g(4) = 1, g(1′) = 3,
g(3) = 4′, g(4′) = 1′. Define P (1) = {1, 1′}, P (2) = {2}, P (3) = {3}, P (4) = {4, 4′}, L(4) = {4, 4′′}
and L(e) = {e} for other e ∈ E. The degree function m of E is trivial. Therefore, E is an fs-BC and
the fs-BCA associated with E is isomorphic to B.

It is shown in [10, Corollary 7.15] that the class of finite dimensional representation-finite fs-BCAs
is closed under derived equivalence. Our result in this section provides a potential way to test whether
the same is true or not for representation-infinite fs-BCAs.

Example 4.8.

• •

Q : • • • QT (A) : • • •

• •

α1 γ1
ϵ1 α1 γ1

ϵ1

α2
γ2 ϵ2 α2

γ2 ϵ2

β2β1

Consider the canonical algebra A of type (2, 2, 2) with the quiver given by Q. To be more specific,
A = kQ/⟨α2α1+γ2γ1+ϵ2ϵ1⟩. Then the quiver of the trivial extension of A can be given by QT (A) which
has a specific description in [5, Example 2.5]. Actually, by using [5, Theorem 1.1], T (A) = kQT (A)/I
with I generated by following relations:

� α2α1 + γ2γ1 + ϵ2ϵ1;

� β2γ2, γ1β2, β1ϵ2, ϵ1β1, γ1β1α2, α1β1γ2, ϵ1β2γ2, α1β2ϵ2;

� γ1β1γ2γ1, γ2γ1β1γ2, β1γ2γ1β1, ϵ1β2ϵ2ϵ1, ϵ2ϵ1β2ϵ2, β2ϵ2ϵ1β2;
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� α1βiα2α1, α2α1βiα2, βiα2α1βi, with i = 1, 2;

� β1γ2γ1−β2ϵ2ϵ1, γ2γ1β1− ϵ2ϵ1β2, β1γ2γ1+β2α2α1, γ2γ1β1+α2α1β2, β1α2−β2α2, α1β1−α1β2.

It is well-known that A is derived equivalent to the path algebra B of type D̃4, see for example in [9,
Theorem 3.5]. Then T (A) and T (B) are also derived equivalent ([12, Theorem 3.1]). By Theorem 4.4,
T (B) is a symmetric fs-BCA. It would be interesting to know whether the above T (A) is isomorphic
to some fs-BCA or not, this seems not easy to judge because there is a relation α2α1+γ2γ1+ ϵ2ϵ1 and
many anti-commutative relations in the generating set of I.

5 Admissible cut on symmetric fs-BCA

One way of constructing new algebras by deleting arrows in quivers is to use the notion of admissible
cuts of finite dimensional algebras, which has been studied for example in [2, 4, 8, 16]. The aim of this
section is to generalize the main result in [8] from BCAs to symmetric fs-BCAs.

Let Λ = kQΛ/IΛ be a symmetric fs-BCA with trivial degree function. We assume that the
associated angle set E is finite, this is equal to say that the algebra Λ is finite dimensional. All special
paths (the paths corresponding to L(gd(e)−1(e)) · · ·L(g(e))L(e) in fs-BC E) which is actually some
cycles in QΛ since its associated fs-BC is symmetric. We call them special cycles in this case. Denote
the set of all special cycles under cyclic permutation by S. Let {C1, · · · , Ct} be a set of representatives
of equivalence classes under cyclic permutation of all special cycles.

Definition 5.1. (Compare to [4, Definition 3.2] and [8, Definition 5.1]) A cutting set D of QΛ is
a subset of arrows in QΛ consisting of exactly one arrow in each special cycle corresponding to an
equivalence class representative Ci for i = 1, · · · , t. We call kQΛ/⟨IΛ ∪D⟩ the cut algebra associated
with D where ⟨IΛ ∪ D⟩ is the ideal generated by IΛ ∪ D. Moreover, we call a cutting set D is an
admissible cut if |D| = t.

Actually, this definition is a generalized version of the admissible cut in [16, Section 4] and [7,
Definition 5.1]. To be more specific, since different special cycles of a given Brauer graph algebra
(resp. Brauer configuration algebra) do not have common arrows in general, thus in these cases,
|D| = t is always true. However, if there exists a non-trivial L-partition in the fs-BC , different special
cycles in Λ may have some common arrow. Therefore, we need to assume |D| = t if we want to ensure
the cut algebra of Λ to be monomial.

Proposition 5.2. Let Λ = kQΛ/IΛ be symmetric fs-BCA with trivial degree function and let D be an
admissible cut of QΛ. Set Q to be the quiver given by Q0 = (QΛ)0 and Q1 = (QΛ)1\D. Then the cut
algebra kQΛ/⟨IΛ ∪D⟩ associated with D is isomorphic to kQ/⟨IΛ ∩ kQ⟩. Moreover, kQ/⟨IΛ ∩ kQ⟩ is
a monomial algebra.

Proof. The inclusion of quivers Q ⊂ QΛ induces a k-algebra homomorphism f : kQ→ kQΛ/⟨IΛ ∪D⟩,
and f is surjective since each path p′ in a nonzero element which is a linear combination of paths in
kQΛ/⟨IΛ ∪D⟩ can not contain an arrow in D. Therefore, we can find the corresponding path p in Q,
such that f(p) = p′. By the first isomorphism theorem, we have kQΛ/⟨IΛ ∪D⟩ ∼= kQ/⟨IΛ ∩ kQ⟩.

Moreover, kQ/⟨IΛ ∩ kQ⟩ is monomial since all the relations of type 1 in IΛ do not intersect with
kQ.

The next result shows that if one starts with a monomial algebra and takes the appropriate admis-
sible cut in the trivial extension of the monomial algebra, then the monomial algebra is isomorphic to
the cut algebra.
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Theorem 5.3. Let A = kQ/I be a monomial algebra with set of maximal paths M and let T (A) =
kQT (A)/IT (A) be the trivial extension of A by D(A) where the set of new arrows of QT (A) is given by
D = {αm | m ∈ M}. Then D is an admissible cut of QT (A) and the cut algebra associated with D is
isomorphic to A.

Proof. By Theorem 4.4, we can regard T (A) as an fs-BCA with S = {C1, · · · , C|t}. Moreover, each
special cycle in T (A) corresponding to a unique maximal path in A. It follows from the construction of
T (A) that there exists exactly one arrow from D in any special cycle corresponding to an equivalence
class representative Ci for i = 1, · · · , t. Hence D is an admissible cut of T (A). Moreover, by the proof
in Theorem 4.4, the cut algebra associated with D is isomorphic to T (A).

The next result shows that if one starts with a symmetric fs-BCA with trivial degree function
and an admissible cut D, then the cut algebra associated with D, trivially extended by its dual, is
isomorphic to the original symmetric fs-BCA .

Theorem 5.4. Let Λ = kQΛ/IΛ be a symmetric fs-BCA with trivial degree function. Let D be an
admissible cut of QΛ. Denote by A = kQ/I the cut algebra associated with D. Then T (A) is isomorphic
to Λ.

Proof. By the definition of fs-BCA , it is easy to see that I is generated by paths. Actually, the special
cycles in QΛ are of the form C = pαq for α ∈ D. Since C is a special cycle, qpα and αqp are also
special cycles. Thus qp /∈ IΛ and hence qp /∈ IΛ ∩ kQ. Since Λ is an fs-BCA , if there exist an arrow
β and an arrow γ in QΛ, such that βqp and qpγ is not zero in Λ, then γ = β = α. That means for all
arrow β′ in Q, β′qp = qpβ′ = 0 in A. Therefore, qp is a maximal path in A. By the definition of the
fs-BC associated with A and Theorem 4.4, we have T (A) ∼= Λ.

Remark 5.5. If we do not request the cutting set D to be admissible, then the cut algebra may not be
a monomial algebra. For example, in Example 4.7, if we choose the cutting set D as {γ} in QB, then
the cut algebra of B associated with D is isomorphic to A.

Consider the set of pairs (Λ, D) such that Λ = kQΛ/IΛ is a symmetric fs-BCA with trivial degree
function and D is an admissible cut of QΛ. We say that (Λ, D) and (Λ′, D′) are equivalent if there
exists a k-algebra isomorphism from Λ to Λ′ sending D to D′. Denote by Y the equivalent classes.
It is obviously to see that all corresponding cut algebras in a same equivalent class are isomorphic.
Combining previous two theorems, we get the following main result of this section.

Corollary 5.6. There is a bijection ϕ : A → Y from the set A of isomorphism classes of monomial
algebras to the set of equivalence classes of pairs consisting of a symmetric fs-BCA and an admissible
cut as defined above. The isomorphism is given, for A ∈ A, by ϕ(A) = (T (A), D) where D =
{αm | m is a maximal path in A}. Moreover, for (Λ, D), we have ϕ−1((Λ, D)) = A where A is the
isomorphism class of the cut algebra associated with the admissible cut D.
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