ON THE FIRST HOCHSCHILD COHOMOLOGY OF FINITE DIMENSIONAL
QUIVER ALGEBRAS UNDER GLUING IDEMPOTENTS

YUMING LIU, LLEONARD RUBIO Y DEGRASSI, AND CAN WEN

ABsTracT. We compare the Lie algebra structures of the first Hochschild cohomology groups of
a quiver algebra A and a radical embedding B obtained by gluing two idempotents of A. Under
a mild assumption, we show that the first Hochschild cohomology groups of A and B are either
isomorphic as Lie algebras or they differ by a one-dimensional Lie ideal. In particular, in the case
of stable equivalences obtained by gluing a source and a sink vertex, we prove that either the
first Hochschild cohomology groups of A and B are isomorphic or HH' (B) is a central extension
of HH'(A) by a one-dimensional ideal. As a consequence, we obtain a new invariant under
stable equivalences induced by gluing a source and a sink. We also compare the dimensions of
HH'(A) and HH'(B), as well as the centers of A and B, when gluing two arbitrary idempotents.

1. INTRODUCTION

Let k be a field. Let A, B be two finite dimensional k-algebras and let rad(A), rad(B) be the
Jacobson radicals of A and B, respectively. Let ¢ : B — A be a radical embedding, that is, an
algebra monomorphism such that ¢(rad(B)) = rad(A). Radical embeddings frequently arise in the
study of finite dimensional algebras and their representation theory, for example, in determining
the finiteness of the finitistic dimension of algebras |7, 20]. If A is basic and k is algebraically
closed, then by Xi’s observation in [20, §3] we can assume that B is a subalgebra of A obtained
by repeatedly gluing two idempotents of A. Therefore, the gluing of idempotents plays a pivotal
role in the study of radical embeddings.

The gluing of idempotents is also essential in the study of stable equivalences. More precisely,
Martinez-Villa proves in [16] that the gluing of a source and a sink induces an equivalence
modA —— modB between the stable module categories modulo projective modules, see also [11].
Conversely, let ¢ : B — A be a radical embedding obtained by gluing two primitive idempotents.
If A and B are stably equivalent and if the Auslander—Reiten conjecture holds, then B is obtained
from A by gluing a source and a sink [11, Proposition 4.11]. For this reason, we are particularly
interested in this type of gluings.

It is well known that Hochschild cohomology is not functorial, that is, an algebra homomorphism
¢ : B — A, does not give rise to a map from HH*(A4) to HH*(B) or from HH*(B) to HH*(A).
This makes Hochschild cohomology difficult to compute since it is not possible in general to
reduce the study of Hochschild cohomology to smaller, and potentially easier, algebras. However,
there are specific cases for which the functorial properties of Hochschild cohomology have been
shown. For example, in the context of fully faithful embeddings of differential graded categories
[10]. These arise, for example, for derived equivalences [10] or stable equivalences of Morita type
[12] [2]. In particular, these results imply that the (restricted) Lie algebra structure of the first
Hochschild cohomology HH'(A) of an algebra A is an invariant under derived equivalences, and
for self-injective algebras, under stable equivalences of Morita type.

In contrast to the situation for stable equivalences of Morita type, stable equivalences obtained by
gluing idempotents are induced by bimodules that are only projective on one side [11]. Therefore,
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no specific invariants are known for these types of stable equivalences beyond those established for
general stable equivalences, such as representation dimension [9] and representation type [13]. For
this reason, a natural question to ask is if HHl(A) is an invariant under stable equivalences induced
by gluing a source and a sink. If this is not the case, then one could ask if HHl(A) still has some
functoriality properties, that is, if it is possible to define a (restricted) Lie algebra homomorphism
between HH'(A) and HH'(B). More generally, similar questions could be asked in the case of
gluing of two arbitrary idempotents.

The main aim of this work is to address these questions. Let A and B be two finite dimensional
quiver algebras such that B is obtained from A by gluing two arbitrary idempotents. By [17,
15], we can compute HH'(A) as the quotient Ker(dY)/Im(6%), where §4 is the differential of
a cochain complex Cpqrq which can be described by the generalized parallel paths method. A
similar computation applies to B, therefore we can use the complex Cp.rq to compare the Lie
algebra structures of HH'(A) with HH'(B). To make this comparison, we also define, for a fixed
gluing of two idempotents, two subspaces Vs, C Im(0%) and V;,, C Ker(d}), see Definition 3.5
and Definition 3.12 for further details. When gluing a source and a sink, or equivalently, in the
case of a stable equivalence, we have that V;,, = V;,. This condition plays a pivotal role in our
main theorems.

Theorem A (Theorem 3.21). Let A be a quiver algebra and let B be a radical embedding obtained
by gluing two idempotents of A. Let char(k) be zero or big enough and assume Vsp, = V.

(1) If we glue from two different blocks of A, then HH'(A) ~ HH'(B) as (restricted) Lie
algebras.

(2) If we glue from the same block of A, then HH'(A) ~ HH'(B) /T as (restricted) Lie algebras,
where T is a one-dimensional (restricted) Lie ideal of HH'(B).

As a consequence we obtain:

Theorem B (Corollary 3.22). Let A be a quiver algebra and let B be a radical embedding obtained
by gluing two idempotents of A. Let char(k) be zero or big enough and assume Vspp, = Vs, Then

HH'(A)/rad(HH'(A)) ~ HH(B) /rad(HH'(B)).

In particular, for quiver algebras, we obtain a new invariant under stable equivalences induced by
gluing a source and a sink. Theorem 3.19 addresses also the case Vyp, # Vsp. In this setting, we
show that Z is not a Lie ideal and we give an exact commutative diagram which relates HH'(A)
and HH'(B). More general conditions for the validity of the above theorem can be found in
Assumption 1. In the particular case of stable equivalences induced by idempotent gluing, we
obtain the following result:

Theorem C (Theorem 3.25, Corollary 4.6). Let A = kQa/Is be a quiver algebra and let B =
kQp/Ip be a radical embedding obtained by gluing a source vertex and a sink vertez from the same
block of A. Then the one-dimensional Lie ideal I lies in the center of HH'(B) and HH'(B) is a
central extension of HH*(A) by T. In addition, if char(k) = 0 and if A is a monomial algebra,
then there is a Lie algebra isomorphism

HH'(B) ~ HH'(A) @ Z.

Let ca,cp be the number of blocks of A, B, respectively. We also compare the dimensions of
HH'(A) and HH'(B) when gluing of two arbitrary idempotents:

Theorem D (Theorem 3.17). Let A = kQa/Ia be a quiver algebra and let B = kQp/Ip be a
radical embedding obtained by gluing two idempotents of A. If char(k) is zero or big enough, then
we have

dimy HH'(A) = dimy, HH*(B) — 1 — dimy Vi, + dim Vi + ca — c.
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In [5, Theorem 1] the authors give a formula to compute the dimension of HH*(A) for a monomial
algebra A which allows to give another interpretation for the dimension of Vj,, for monomial
algebras, see Remark 3.18 for further details. Furthermore, in Section 4.3 we give an interpretation
of Sanchez-Flores’ description of the first Hochschild cohomology for radical square zero algebras
in terms of gluing operations.

Finally, we study the relation between a radical embedding ¢ : B — A and the centers Z(A), Z(B)
of A and B, respectively.

Theorem E (Proposition 5.4, Proposition 5.7). Let A be an indecomposable quiver k-algebra and
let B be a radical embedding of A obtained by gluing two idempotents of A. Then there is an
algebra monomorphism:

o Z(A) — Z(B), if we glue from the same block of A.
e 7Z(B) — Z(A), if we glue from different blocks of A.

We also provide an explicit combinatorial formula to calculate the difference of the dimensions
between Z(A) and Z(B).

Rather interestingly, the authors of this paper have obtained similar results for monomial algebras
in the case of gluing arrows [14].

Outline. In Section 2, we introduce some notation that will be used throughout the paper and
provide background on various topics. In Section 3 we prove Theorem A, Theorem B, Theorem D
and first part of Theorem C. In Section 4.1 we prove the second part of Theorem C. In Section 4.2
we apply our main results to radical square zero algebras. In Section 4.3 we give an interpretation
on Sanchez-Flores’ description of the first Hochschild cohomology for radical square zero algebras
[18] by inverse gluing operations. In Section 5 we prove Theorem E. In Section 6 we provide
various examples to illustrate our definitions and results.

2. PRELIMINARIES

2.1. Bound quivers.

All algebras considered are finite dimensional algebras which are isomorphic to kQ/I, where k
is a field of arbitrary characteristic, @ is a finite quiver and I is an admissible ideal in the path
algebra kQ. Any homomorphism between two algebras sends the identity element to the identity
element. For all n € N, let @, be the set of paths of length n of () and let >, be the set of
paths of length greater than or equal to n. Note that Qg is the set of vertices and @ is the set of
arrows of Q. The number of vertices and arrows of @ is denoted by |Qo| and |Q1]|, respectively.
We denote by s(v) the source vertex of an (oriented) path v of @ and by ¢(v) its terminal vertex.
The path algebra k@ is the k-linear span of the set of paths of @, where the multiplication of
B € Q; and a € Q; is provided by the concatenation Sa € Q;4; if t(a) = s(f) and 0 otherwise.
We denote by I(p) the length of a path p. A path p of length [ > 1 is an oriented cycle (or an
oriented I-cycle) if s(p) = t(p). An oriented 1-cycle is called a loop. Two paths €,y of @ are called
parallel if s(e) = s(y) and t(e) = t(v), denoted by €¢//v. If € and ~ are not parallel, we denote by
e #~. If X|Y are sets of paths of @, we denote by X //Y the set of parallel paths consisting of the
couples €//y with e € X and v € Y, and denote by k(X //Y) the k-vector space with basis X //Y.
An element in kQ is called uniform if it is a linear combination of parallel paths.

We fix a finite dimensional k-algebra A = kQ 4/I4, where I 4 is an admissible ideal in £Q 4. Denote
the vertices of Q4 by e1, -+ ,e,. A vertex e; is isolated if it does not exist any arrow « such that
s(a) = e; or t(a) = e;. A source vertex e; of Q4 is a vertex such that there is no arrow « with
t(o) = e;. A sink vertex e; of Q4 is a vertex such that there is no arrow a with s(a) = e;. By
abuse of notation, we denote by ey, - e, the corresponding primitive orthogonal idempotents in
the algebra A. For a path p in @ 4, we use the same notation to denote its image p = p+ [ 4 in
A . If A=Ay x--- x Ay is a decomposition of A into a product of indecomposable algebras, then
A;’s are called blocks of A. Note that such a decomposition of A is unique and if s = 1, then A
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is an indecomposable algebra. We denote by ¢4 the number of blocks of A which is also equal to
number of connected components of the Gabriel quiver 4 of A.

2.2. Groébner basis theory for quiver algebras.

Let A = kQ/I be a quiver algebra such that the ideal I is contained in kQ>2. We briefly recall
the Grobner basis (or Grobner-Shirshov basis) theory for the ideal I. Recall that < is a well-order
on the k-basis Q> of the path algebra kQ if < is a total order on the k-basis @)>o and every
nonempty subset of the k-basis @>¢ has a minimal element. First, we fix an admissible well-order
=< on the k-basis Q>¢ of the path algebra k@), that is, a well-order on @>¢ which is compatible
with multiplication. More precisely,

Definition 2.1. ([6, Section 2.2.]) Let kQ be a path algebra with k-basis Q@>¢. We call a well-order
< on Q>o admissible if the following three conditions are satisfied for p,q,r, s € Q@>0:

o if p < g, then pr < gr for both pr # 0 and gr # 0;
e if p < ¢, then sp < sq for both sp # 0 and sq # 0;
e if p=gr, then p > g and p = r.

For each path algebra, the left length-lexicographic order provides an admissible well-order (cf.
[15, Example 2.1]). Unless otherwise specified, we will always use the left length-lexicographic
orders in the present paper. Let r = Zpngo,/\pEk App be a k-linear combination of paths and
Supp(r) = {path pin = | A, # 0}. The tip of r, denoted by Tip(r), is the maximal monomial
appearing with nonzero coefficient in r. In other words, Tip(r) = p if p € Supp(r) and p < p for
all p € Supp(r). Moreover, we write CTip(r) as the coefficient of the tip of r. For a subset X of

kQ, we denote by Tip(X) = {Tip(r) | r € X,r # 0} and put NonTip(X) := @>¢ \ Tip(X).
Let A =kQ/I be a quiver algebra. By [6] there is a k-vector space decomposition
kQ = I @ Span,(NonTip(])).

So B := NonTip(I) (modulo I) gives a “monomial” k-basis of the quiver algebra A = kQ/I. Let
b1,b2 € kQ. Then we say that by divides by, and we denote by |bs, if there are elements ¢, d € kQ
such that by = ¢bid. If by does not divide bo we write by t bo. We can give now the definition of a
Grobner basis:

Definition 2.2. ([6, Definition 2.4]) Using the above notation, we say that a subset G of uniform
elements in [ is a Grébner basis for the ideal I with respect to the order < if

(Tip(9)) = (Tip(1)),
that is, Tip(G) and Tip(I) generate the same ideal in kQ.
Note that in this case I = (G). We will see in the next theorem that there is a criterion in [6],

called the Termination Theorem, to judge whether a set of generators of an ideal I in kQ is a
Grobner basis. Such criterion is based on the overlap relations.

Definition 2.3. ([6, Definition 2.7]) Let k() be a path algebra, < an admissible order on Q>
and f,g € kQ. Suppose b, c € Q>0, such that

e Tip(f)e = bTip(g),
e Tip(f) 1 b and Tip(g) { c.

Then the overlap relation of f and g by b, ¢ is
o(f.g,b.¢) = (CTip(f))~" - fe— (CTip(g))~" - by.

It is clear that Tip(o(f,g,b,¢)) < Tip(f)c = bTip(g). We can describe now the Termination
Theorem.
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Theorem 2.4. ([6, Theorem 2.3]) Let kQ be a path algebra, < an admissible order on Q>o and
G a set of uniform elements of kQ. Suppose for every overlap relation, we have

0(91,92,p, q) :>g Oa

that is, o(g1,92,p,q) can be divided by Tip(G), with g1,92 € G and p,q € Q>o. Then G is a
Grébner basis of the ideal (G) generated by G.

For the definition of divisibility of o(g1, g2, p,¢q) by Tip(G), see §2.3.2 and Definition 2.6 in [6]. In
general, a Grobner basis for an ideal I in kQ is not unique. However, we can get a unique one,
called the reduced Grobner basis, if we still require some additional conditions.

Definition 2.5. (|6, Definition 2.5 and Proposition 2.6]) A Grébner basis G for the ideal I is
reduced if the following three conditions are satisfied:

e G is tip-reduced: Tip(g) t Tip(h), for any g # h € G;
e G is monic: CTip(g) =1, for any g € G;

e g — Tip(g) € Span,(NonTip([)), for any g € G.

It is easy to see, under a given admissible order, that I has a unique reduced Grébner basis G, and
in this case Tip(G) is a minimal generator set of (Tip([)). We always assume that G is a reduced
Grobner basis of I in the sequel.

We also recall the following lemma, which will be useful in Section 3.

Lemma 2.6. ([15, Lemma 3.10]) Let A = kQ/I be a finite dimensional quiver algebra with G a
reduced Grébner basis for I. If o is a loop in Q, then o™ € Tip(G) and a™~! € NonTip(G) for
some integer m > 2.

2.3. Hochschild cohomology of quiver algebras.
Let A = kQa/I4 be a finite dimensional quiver algebra, where I4 is an admissible ideal in kQ 4.
The Hochschild cohomology

HH*(A) := Ext.(A, A)

of the k-algebra A can be computed using different projective resolutions of A over its enveloping
algebra A® := A ®;, A°?. The zero-th Hochschild cohomology group HH’(A) is identified with
the center Z(A) of the algebra A. In particular, Z(A) is a commutative subalgebra of A. The
first Hochschild cohomology HH'(A) is the quotient of the space of derivations Der(A) by the
space of inner derivations Inn(A). It is well-known that Der(A) is a Lie algebra under the Lie
bracket [f,g] = fog—go f, where f,g € Der(A). In addition, Inn(A) is a Lie ideal of Der(A),
therefore HHl(A) has a Lie algebra structure. If the field k& has positive characteristic p, then
HH! (A) is a restricted Lie algebra, that is, it is a Lie algebra endowed with a map called p-power
map that satisfies some compatibility properties with respect to the Lie algebra structure. For
further background on restricted Lie algebras see for example [8, Chapter 2]. The p-power map
of a derivation f is defined by composing f with itself p-times. The inner derivations form a
restricted Lie ideal of space of derivations, therefore HH'(A) is a restricted Lie algebra.

In order to compute the first Hochschild cohomology group, one can use the following truncated
projective resolution P, (which is minimal on the degrees 0 and 1) of the A-bimodule A given
by Bardzell in [1, Proposition 2.1] (see also Chouhy and Solotar [5]. For a proof using the algebraic
Morse theory, see [15, Lemma 3.6].):

A®p k(Tip(G)) @5 A —2 A@p kQ) 95 A —25 A@pkQoop A —s A —— 0,
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where E ~ k(@) is the separable subalgebra of A and the A-bimodule morphisms are given by
wla®p e; @ b) =ae;b,
do(a®g a®r b) =aa Qg s(a) ®p b — a Qp t(a) ®g ab and

n

di(a ®g Tip(g) ®p b) = Z cg(p)Zaozn'uai_,_l Qp o; Qp i1 -+ a1b
p=ay a1 €Supp(g) i=1

for all a,b € A,e; € Qo,,tn, - ,a1 € Q1 and g € G (with the convention a1 = t(ay,) and

ag = s(a1)). Applying the contravariant functor Hom4e(—, A) to Pp,in we obtain the following

cochain complex Cpip, (cf. [19, Section 2| in the monomial case):

0 —— Homp. (kQo, A) % Homp. (kQ1, A) —“ Homp. (k(Tip(G)), A),

where the differentials are given by

(do” (@) = af(s(@)) = f(t(@))a,
(di"h)(Tip(g)) = Z ¢(p) Zo‘n craiprh(ag)aiog o,

p=atn -1 €Supp(g) i=1
where f € Hompge (kQo, A), @, ap, -+ a1 € Q1, h € Hompge (kQ1, A) and g € G. In particular, we
have HH'(A) ~ Ker(d;*)/Im(dy*) as k-vector spaces. Similar to [19, Proposition 2.8, Corollary
2.9], we have that Ker(d;") is isomorphic, as a Lie algebra, to the space F*¢-derivations of A and
Im(dp™) is a Lie ideal of Ker(d;*) isomorphic to the space of the inner E°-derivations of A.

By carrying out the identification k(X //Y) ~ Homge(kX,kY) in [19, Lemma 2.3, where X and
Y are two finite subsets of paths of 4, we can rewrite the above cochain complex which gives a
more practical way of computing HH'.

Proposition 2.7. (|15, Proposition 3.7]) Let A = kQa/I4 be a quiver algebra. Let G be a reduced
Grobner basis of 14, and denote by B the k-basis of A given by NonTip(I) (modulo I). By the
above mentioned identifications, the cochain complex C,;p is naturally isomorphic to the following
complex

Coara: 0 —— k(Qof/B) —" K(Q/JB) —— K(Tip(G)//B) —— -+
where the differentials are given by
8% : k(Qo//B) — k(Q1//B)
ey Y. affay— > affva,
a€Qie,avEB aceQq,yaEB
' : k(Q1//B) — k(Tip(G)//B)
a/ly= Y. e(p)Tip(r)/p?",

reG,peSupp(r)

where r = ZpESupp(T) cr(p)p with c.(p) € k and where p/' denotes the sum of all paths in B
obtained by replacing each appearance of the arrow a in p by the path . In particular, we have
HH’(A) ~ Ker(6°) and HH'(A) ~ Ker(6')/Im(6°) as k-vector spaces.

The isomorphism HH*(A) ~ Ker(¢6')/Im(6°) in Proposition 2.7 is induced by the following map:
send each f in Hompge(kQ1,kB) to the element Y A, (a//v) in k(Q1//B), where f(a) =
a/ eQ:1//B

>~ Aa,v7Y. Moreover, the inverse of the above isomorphism is induced by sending an element a//y
~YEB

in k(Q1//B) to f in Hompge (kQ1, kB) with f(a) =~ and f(b) =0for a #b € Q.

The method of computing HH' using parallel paths was first given by Strametz for monomial
algebras in [19]. In [17, Section 2.2] and in [15, Section 3.2], this was generalized to arbitrary
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quiver algebras and called the generalized parallel paths method in [15]. Moreover, Theorem 3.8 in
[15] shows that the second isomorphism in Proposition 2.7 is an isomorphism as Lie algebras.

Theorem 2.8. The bracket

[/, bjf) = bjj" — ajjy"
for all a//y,b//n € Q1//B induces a Lie algebra structure on Ker(5')/Im(6°) such that HH'(A) and
Ker(6')/Im(8°) are isomorphic as Lie algebras.

For quiver algebras, it is easy to describe the p-power map using the chain map from C,,;, to
Cpara and its inverse chain map. For example, for p = 3, the p-power map of a//~y is (affyyeh,
We note that several of results in this paper, such as Proposition 3.10 and Corollary 3.23, can be
readily extended from the context of ‘Lie’” algebras to ‘restricted Lie’ algebras.

Remark 2.9. The center Z(A) of A is naturally isomorphic to Ker(6°). For an explicit map
between Ker(4°) and Z(A), see the proof of Proposition 5.4.

2.4. Gluing of two idempotents and radical embedding subalgebra.

Let A = kQa/I4 be a finite dimensional quiver algebra, where I is an admissible ideal in kQ 4.
Since each radical embedding reduces to a gluing of two idempotents, from now on we are going
to consider B to be a radical embedding which is obtained by gluing only two idempotents of A.
More precisely, let eq, ..., e, be a complete set of primitive orthogonal idempotents in A. Let B
be a subalgebra of A obtained by gluing two idempotents e; and e, of A. In other words, B is
identified as a subalgebra of A generated by fi := e; + en, fo := €2, , fu_1 = e,_1 and all
arrows in @ 4. Note that dimy B = dimy A — 1. Note also that the choice of idempotents to glue
is arbitrary; however, we prefer to fix the notation such that f; := e; + e,. We denote by Z,,eq
the set of all newly formed paths of length 2 of the form - — f; — -.

Lemma 2.10. Let A =kQa/Ia be a finite dimensional quiver algebra and let B be a subalgebra
of A obtained by gluing two idempotents e; and e, of A. Then B ~ kQp/Ip, where Qp is the
quiver obtained from Qs by identifying the vertices e1 and ey, and Ig is an admissible ideal of
kQp generated by the elements in 14 U Zye- In particular, Qp is the Gabriel quiver of B.

Proof. Let B’ be the algebra of the form kQp/Ip. Then there is an algebra monomorphism from
B’ to A by sending f1 to e; + e, fi to e; for 2 < i < n — 1 and each arrow in Qp to the same
arrow in Q4. It is clear that this map factors through the inclusion B < A, which gives rise to
another algebra monomorphism from B’ to B. Moreover, since B’ has dimension dimy A — 1, it
must be isomorphic to B. O

Note that there is an obvious bijection between the arrows of A and the arrows of B. For each arrow
a in Q 4, we denote the corresponding arrow in Qg by o’. We define the quiver morphism

v:Qa—Qp
as follows: let p(e;) = fifor 2 <i <n-—1,let p(e1) = p(e,) = f1, and let () = /. By extending
the map ¢ : Q4 — Qp, we define ¢, : (Qa)n — (@B)n. More precisely, let p = a,,...a; be a
path in (Q4)n. Then ¢, (p) =p' =a, ...a].

The following proposition shows how a Grobner basis behaves under gluing of two idempo-
tents.

Proposition 2.11. Let A = kQa/I4 be a finite dimensional quiver algebra and let B be a subal-
gebra of A obtained by gluing two idempotents e; and e, of A. Let G4 be a reduced Gribner basis
of L4 under some left length-lexicographic order on (Qa)>o. Consider a left length-lezicographic
order on (QgB)>o defined as follows: order the vertices f; (1 <i <mn—1) arbitrarily and let o/ < '
ifa <8 fora,B € (Qa)r- Identify Ga in Qa with (Ga) in Qp, and similarly for Tip(Ga). Then

G =0G4U Zyew
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is a reduced Grobner basis of Ip under the above left length-lexicographic order on (Qg)>o. In
particular,

Tip(Gg) = Tip(Ga) U Zpew-

Proof. First we show that Gg := Gao U Z,¢, is a Grobner basis of Ig. Since G4 is a reduced
Grobner basis, for each g € Gg, we have that CTip(g) = 1. By Theorem 2.4 and Lemma 2.10, it
suffices to show that

o(91,92,P,9) = 919 — Pg2 =g, 0
for g1,92 € Gp and p,q € (QB)>o- The proof is divided into four cases.

Case 1: Let g1, g2 € Zpew. Suppose g1 = aha) and go = byb} with af, b, € (Qp); for i = 1,2. Then

(2

Tip(g1)q = pTip(gz) is equivalent to gi1g = pga. It follows that o(g1, g2,p,q) = 919 — pg2 = 0.
Case 2: Let g1 € Ga and g3 € Zypeyw- Then the condition Tip(g1)g = pTip(g2) implies that

o(g1,92,p,9) = 919 — pgo
= (91 — Tip(g1))q — p(g2 — Tip(g2))
= (91 — Tip(g1))q

= (Z \iDi)qs

where p; € NonTip(l4) and \; € k. The last two equalities follow from the facts that go € Zyeq
whence go = Tip(g2) and g1 — Tip(g1) € Span;,(NonTip(I4)). We claim that ¢ € (@p)1, that is,
the length I(q) of ¢ equals 1. Indeed, if I(¢) = 0, then Tip(g1) = pge should have a preimage in
Q 4, which is absurd since go € Z,,cq,. Therefore, we have I(¢) > 1. Moreover, I(g) < 2, otherwise
pg2 = Tip(g1)q and I(g2) = 2 yield that Tip(g1) | p, a contradiction.

Assume that go = aba) with af,a} € (Qp)1 and t(a1) # s(az). As a consequence, we have ¢ = a
and Tip(g1) = pa) since pga = Tip(g1)g. It follows that all summands of g; are starting from
s(az), so does for Tip(g1). Therefore each p;a} has a subpath in Z,.,, and we have o(g1, g2, p,q) =
(i Aipi)a = (32 Aipi)ay = z,.., 0.

Case 3: Let g1 € Zpew and go € G4. The proof is similar to that of Case 2.

Case 4: Let g1,92 € Ga. If l(p) = 0, then Tip(g1)q = Tip(g2) which yields Tip(g1) | Tip(g2)-
Since G4 is reduced, we have g1 = g2 and I(q) = 0. Consequently, o(g1,92,p,9) = 0. If i(p) > 0
such that p has a subpath in Z,,.,, then the conditions Tip(g;)gq = pTip(g2) and Tip(g1) 1 p imply
that p is a proper subpath of Tip(g;). Hence Tip(g1) has a subpath in Z,..,, a contradiction.
Similarly, if I(¢) = 0 or {(¢) > 0 such that ¢ has a subpath in Z,,.,,, it will lead to a contradiction.
So we may assume that I(p) > 0, I(¢) > 0 and both p and ¢ do not contain a subpath in Z,.,,.
Then, under our assumption on the admissible order on (Qp)>o, the overlap relation o(g1, g2, p, q)
in kQp becomes an overlap relation in kQ 4. Since o(¢1, g2, p,q9) =g, 0, then o(g1, 92, p,q9) =g 0.

This proves that Gp is a Grébner basis of Ig. Finally, it is obvious that the Grébner basis Gg is
reduced. O

3. FIrRsT HOCHSCHILD COHOMOLOGY

In this section we assume that A is a finite dimensional algebra isomorphic to kQ4/I4, where k
is a field, @4 is a finite quiver (with vertices ey, - ,e,) and I4 is an admissible ideal in the path
algebra kQ4. We exclude the case in which e; or e, is an isolated vertex. Let B = kQpg/Ip be
a radical embedding obtained by gluing two idempotents e; and e, of A. We denote the vertices
of @p by f1, -+, fn_1, where f; is obtained by gluing e; and e,. For the rest of this section, we
always assume that A and B are as in Proposition 2.11 so that I4 has a reduced Grébner basis
Ga and Ip has a reduced Grobner basis Gg = Ga U Z,, under some appropriate left length-
lexicographic orders. Moreover, A has a ‘monomial’ k-basis B4 given by NonTip(I4) (modulo I,4)
and B has a ‘monomial’ k-basis Bp given by NonTip(/g) (modulo Ig).
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We briefly outline the main results of this section. Firstly, we will compare Im(6%) and Im(§%).
Then we will study the Lie algebra structures of Ker(d) and Ker(d}). Lastly, we will compare
the dimensions and the Lie structures of HH'(A) and HH'(B).

We will use the cochain complex Cpara from the previous section in order to understand the
behaviour of the first Hochschild cohomology under idempotent gluings. We start by considering
how idempotent gluings behave with respect to parallelism of arrows and paths. Recall from
Section 2 that the quiver morphism ¢ : Q4 — @Qp sends a vertex e; to f; for 2 < i <n —1 and
e1,e, to fi. In addition, ¢ sends an arrow « in Q4 to an arrow o’ in Qp.

Lemma 3.1. Let B be a radical embedding obtained by gluing two idempotents e; and e, of A.
Let o, 8 € (Qa)1- If /B, then o'//B'.

Proof. The proof follows from the definition of gluing of two idempotents. O

Lemma 3.2. Let B be a radical embedding obtained by gluing a source and a sink of A. Let
a,B € (Qa)1. Then of/B if and only if o/ //5.

Proof. The sufficiency is obvious by Lemma 3.1, it suffices to show the necessity. If o’//f’, then to
show a// we need to use the assumption that we are gluing a source, say e;, and a sink, say e,.
We show that if « # 8, then o # 8'. If a # 3, then either s(«) # s(8) or t(«) # t(8). Assume
s(a) = e; # ej = s(B), where i # j. We consider three cases:

a)If2<i<n-—1,1<j<nandi=#j, then

@) =it s ={ §

for2<jij<n-1
forj=1o0rn

9

which means o/ # §'.

b) If i = 1,1 < j < n and i # j, then s(a/) = f3 ands(B’):{ I3 for2sjsn-—1 . We

i forj=n
have s(8") = f1 = s(a/) only when j = n, that is, if s(5) = e,,. But this is not possible since e,, is
a sink. Hence s(a) # s(8’), which means o/ /# '

¢) We can deduce the same for i =n, 1 < j <n and i # j.

Similar arguments apply if we assume t(«) # t(5). O

We now partially extend the above results to parallel paths.

Proposition 3.3. Let A =kQa/Ia be a quiver algebra and let B = kQp/Ip be a radical embed-
ding obtained by gluing two idempotents of A. Then the following hold:

(1) The map v : Qa — Qp induces a surjective map, also denoted by ¢ : B4 — Bpg, such that
¢~ (') = {p} for p' # f1 and o™ (f1) = {e1,en}, where we denote ¢(p) by p' for p € Ba.
(2) Let p,q € Ba. If p//q in Qa, then p'//q" in Qp.
(3) The map ¢ : Ba — Bp induces k-linear maps
wo : k((Qa)o//Ba) = k((@B)o//BB),

e1:k((Qa)1//Ba) — k(QB)1//Bs),
@2 : k(Tip(Ga)//Ba) — k(Tip(Gp)//Bp).

Proof. We identify B4 with NonTip(Z4) (modulo I4) and observe that NonTip(I4) := (Q4)>0 \
Tip(I4) consists of monomial elements. The same holds for Bp.

The quiver morphism ¢ : Q@4 — @Qp induces a k-linear map kQ4 — kQp between path algebras
by sending a path p = ay,---a1 (a; € (Qa)y for 1 < i < m)in Q4 to a path p' :=al,---a} in
Q@ p. Clearly, the condition p € By is equivalent to p ¢ (Tip(I4)) = (Tip(Ga)) C kQa. We deduce
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that p’ ¢ (Tip(Ip)) = (Tip(Gp)) = (Tip(Ia) U Zpew) C kQp since the elements in the set Z,eq
are the newly formed relations in Ig. Therefore p’ € Bg. The statement (1) follows from the fact
that dimy B = dim; A — 1, and the statements (2) and (3) follow from Lemma 3.1. O

We have the following non-commutative diagram:

5%

00— k(Qa)of/Ba) — K((Qa)1)/Ba) —2s k(Tip(Ga)//Ba)

JfPo J{w lw (*)

U2

0 —— k(Qs)o//Bs) —2 k(Q)1)/Bs) — 2 K(Tip(G)//Bs) -

Note that the top and the bottom complexes are truncations of the complexes Cpqrq of A and of
B, respectively. Although both squares in the diagram () are not commutative in general, there
are close connections between the coboundary elements (resp. the cocycle elements) of the top
complex and the coboundaries (respectively the cocycles) of the bottom complex in the diagram

(%)-

In order to compare Im(69) and Im(6%) we need some definitions and a lemma. With Proposition
2.7 in mind, we introduce the following notation:

Notation 1. We denote by d,) to be the map ¢ restricted to the subspace k((Q4)o//(Qa)o)-
We denote by Im(d(,, ) the k-vector space generated by the image of 6% on e;//e;, where ¢;
(1 <4 < n) are idempotents corresponding to vertices of Q4. We denote by Ker(§?A)0) the kernel
of the map 5?14)0' Similarly, we denote by Im(é?A)>l) the k-vector space generated by the image
of 6% on e;//p (1 < i <n), where p € Ba and p # e;. We use the same notation for Im(8¢p)_ )

Lemma 3.4. Let A =kQa/I4 be a quiver algebra. Then
dimklm((S?A)O) =nNa — Ca,

where na = |(Qa)o| is the number of vertices of Q4 and cy is the number of connected components

of Qa.

Proof. 1t is enough to assume that A is indecomposable. Indeed, if it holds for each block A; of
A, then

dimy,(Im(604,)) = D (1(Qa,)ol = 1) = [(Qa)o| — ca-
A;
Hence assume A is indecomposable. Note that:

dimy (k((Q4)0//(@a)0) = [(Qa)o| = dimy (Im(50,, ) + dimy. (Ker(8%,, ).

Consequently, it is enough to show that dimg (Ker(égJ a),)) = 1. It is straightforward to check that
oA eiffe; is in Ker(é?A)O). Therefore Ker(é?A)O) has dimension at least one. We will prove by
contradiction that the dimension of Ker(d7,) ) is exactly 1.

Assume the dimension of Ker(é?A)o) is greater than 1. Then we can assume without loss of
generality that there exists TG {1,...,m4} such that )7, Aiei//e; is an element of Ker(5?A)0),
where ); are non-zero scalars. Indeed, if there exists an element Y. \;e;//e; in Ker((SEJ A)o)’ then
by taking a linear combination with Y !'* e;//e; we can always find such T. Consider the full
subquiver @) having the vertices indexed by T'. Since @ 4 is connected and since T ; {1,...,n4},
then 69 (3", o1 Ai€i//e;) has one summand of the form ¢//c where ¢ is an arrow such that s(c) € Q,
and t(c) ¢ Q) (or s(c) ¢ Qy and t(c) € Q). Since ¢//c cannot be written as a linear combination of
other elements of k((Q4)1//Ba) and since \; are non-zero, then ;. Aje;//e; is not in Ker(é?A)o).
The statement follows.
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Let p be a path between e; and e, in B4. Then p’ is an oriented cycle at f1 in Qp. If p is a path
from ey to e,, then we have

Sy (fufp') = >, a'/fa'p’ — > o'
s(a)=en,a€(Qa)1,apEBA t(b)=e1,b€(Qa)1,pbEBA
Note that we have omitted some zero terms in the above sum, for example, if d € (Q4)1 is an

arrow starting at ej, then d’'//d’p’ appears as a term in the above sum, however, it is zero since
d'p’ lies in Ig. If p is a path from e,, to e, then we have

p(fufp') = > a'/fa’p’ — > v'//p'v.
s(a)=e1,a€(Qa)1,apEBA t(b)=en,b€(Qa)1,pbEBA
As in the previous case, we have omitted some zero terms in the above sum. Moreover, in both

cases, 6% (f1//p') is zero if and only if ap,pa € I4 for all a € (Q4)1. This observation leads to the
following definition:

Definition 3.5. Let A = kQ 4 /14 be a quiver algebra and let B = kQp/Ip be aradical embedding
obtained by gluing two idempotents e; and e, of A. Let p be a path between e; and e, in By4.
We call p a special path between e; and e, in Q4 if §%(f1//p’) # 0, or equivalently, if there exists
some a € (Qa)1 such that ap ¢ I or pa & I4.

We denote by Sp7' the set of special paths between e; and e, in Q4, and by V;, the k-subspace
of Im(6%) generated by the elements 6% (f1//p’) for p € Sp}. Furthermore, we denote by sp7 the
dimension of V.

Lemma 3.6. Let p be a special path between ey and e, in B4 and let q be a path in Bo\SpT. Then
the set of the summands of 6%(f1//p") and the set of the summands of 8%(fi//q') (1 <i<mn—1)
are disjoint.

Proof. Without loss of generality, we assume that p is a special path from e; to e,. Then

Sy (fi/fp') = > o [’y — > B 'e,

s(a)=en,a€(Qa)1,0pEBA t(B)=e1,8€(Qa)1,pBEBA
Sy (filld) = > dfldq — > v'//q'v".
s(a’)=fi,a’€(QpB)1,a'q' €EBB t(b)=fi,b'€(QB)1,9'b'EBEB

Note that o/ //a/p" # d'[la’q, otherwise, o/ = a’ € (Qp)1 and o'p’ = a’q’ € Bp which imply that
a=a¢€ (Qa) and ap = ag € Ba by the bijection between (B4)>1 and (Bp)>1. Moreover, the
equality ap = aq € B4 implies that p//q. Hence ¢ is also a path in B4 from e; to e, and aq ¢ I4
for an arrow a. This means that ¢ € SpY, a contradiction. In addition, we have o'//a/p" # V' //q'V,
otherwise a = b € (Q4)1 and ap = gb € B4 which implies e; = s(p) = s(ap) = s(qa) = s(a) = e,
a contradiction. We can similarly show that 8'//p’'58’" # o' //a’q’ and B'//p'B" # V' [/¢'V . O
Remark 3.7. (1) The dimension of V), is less than or equal to the number of special paths,
that is, sp? < |Sp}|. This follows from the fact that the summands of 6%(f1//p’) and of
8%(f1//q') may cancel each other out for p,q € Sp}, p # g (cf. Example 6.6).

(2) If e; and e, belong to different blocks of A or A is a radical square zero algebra, then
spy = 0.

(3) In general, the number sp} could be arbitrarily large, see Example 6.5.

We can now compare the dimensions of Im(6%) and Im(5%):

Proposition 3.8. Let A =kQa/I4 be a quiver algebra and let B = kQp/Ip be a radical embed-
ding obtained by gluing two idempotents ey and e, of A. Then

dimyIm(0%) = dimgIm(6%) + 1+ cp — ca — spf.
In particular, if we glue ey and e, from the same block of A, then

dimIm(6%) = dimIm(6%) + 1 — sp¥;
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if we glue e; and e, from different blocks of A, then

dimgIm(6%) = dimyIm(6%).

Proof. As usual, the vertices of Q4 are ey, -+ ,e, and the vertices of Qp are f1,--- , fn_1, where
f1 is obtained by gluing e; and e,,. We begin with describing the basis elements in Im(59) and in
Im(6%).
Let e;//p € k((Qa)o//Ba). We consider two cases, depending on whether p = e; or p # e;.
(al) If p=-¢; (1 <i < n), then we have

8% (esffei) = > affa — > b//b.

s(a)=ei,a€(Qa)1 t(b)=ei,b€(Qa)1

By Lemma 3.4, the subspace Im(d7,) ) of Imd7 generated by the elements of the form &% (e;//e;)

has dimension n4 — cqa.

(a2) If p # e;, then p is an oriented cycle at e; and
Sales/fp) = >, affap — > b//pb.
s(a)=ei,a€(Qa)1,apEBa t(b)=ei,b€(Qa)1,pbEBA
It is clear that
Im(6%) = Im(é?A)D) D Im(é?A)zl).
Similarly, we let f;//q € E((Qp)o//Bp) and consider four cases.

(b1) f g=f; (1 <i<n—1), then we have
Sp(fillf:) = > a'ffa’ — > v
s(a’)=fi,a’€(Qp) t(b)=fi,b'€(QB)1
By Lemma 3.4, the subspace Im(d() ) of Im(0%) generated by the elements of the form 0% (f;//f:)

has dimension ng — ¢pg.

(be) If ¢ is an oriented cycle at f; and ¢ # 1, then by Proposition 3.3 we have ¢ = p’ for some
oriented cycle p € By at e; (2 <i <n —1). Therefore

sy (fillp) = > d ffa'p’ — > V'Y = 1(8% (es//p))-

s(a’)=fi,a’€(@p) t(b)=fi,b'€(QB)1

(bs) If ¢ is an oriented cycle at f; such that ¢ = p’, for some oriented cycle p € B4 at ej, then

S%(fufp) = > dld'p — > V'Y = o1(8%(e1//p))-
s(a’)=f1,0'€(QB)1,a'p'€EBB t(b)=f1,0'€(QB)1,p'b'EBB
If ¢ is an oriented cycle at fi such that ¢ = p’, for some oriented cycle p € B4 at e,, then
S(fu/p) = > d fla'p’ — > V//p't = 1(8% (en//p))-
s(a’)=f1,a’€(Qp)1,a'p'€BB t(b')=f1,b'€(QB)1,p'b’'EBE

(by) If g is an oriented cycle at f; with ¢ = p’ for some path p between e; and e, in By, then
we assume that p is a special path since otherwise §%(f1//p’) is zero. Note that g is of the form

f Sl i) f1 and might be a loop at fi. If p is a path from e; to e,, then we have

8L p) = 3 o oy - 3 V.
s(a)=en,a€(Qa)1,apEBa t(b)=e1,b€(Qa)1,pbEBA
If p is a path from e, to e;, then we have
Sp(f/p) = > aflap’ — > o' //p't’.
s(a)=e1,a€(Qa)1,apEBA t(b)=e€n,beE(QAa)1,PbEBA

In both cases, 0% (f1//p") is nonzero since p is a special path.
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In addition, we have

Im(0%) = Im(é?B)O) & Im(é?B)zl).
We claim that

Im<6?B)21) = @I(Im(é?A)zl)) D Vep-
It suffices to show that the set of the summands of 6%(f1//p') and the set of the summands
of 901(1m(5?A)>1)) are disjoint for p € Sp}. Since an element in <p1(1m(6?A)>1)) is of the form
©1(8%(ei // q)) = 0% (fi /| ¢'), where ¢ is an oriented cycle at e; (1 < i < n) (here we identify f,, with
f1), the statement follows from Lemma 3.6. Note also that the map ¢ : Im(§?A)Zl) — Im(é?B)Zl)
is clearly injective. Therefore we have

(1) dimkIm((S?A)Zl) = dimkIm(é?B)zl) —spy.
By (a1) and (b1) and since ng = np + 1, we get
(2) dimIm(6¢,y,) = dimpIm(60py,) + 1+ cp — ca.
Then we have
dimyIm(69) = dimklm(5?A)Zl) + dimklm((;?A)o)
(3) = dimklm(égB)Zl) —spy + dimkIm(é?B)O) +14+cp—ca
= dimgIm(0%) + 1 + ¢ — ca — spY,

where the second equality follows from Equations (1) and (2). In particular, if we glue e; and e,
from the same block of A, then we have cg = c4. If e; and e, are from two different blocks of A,
then ¢g = c4 — 1 and spy = 0. O

We obtain a corollary that will be useful for stable equivalences induced by idempotent glu-
ings.

Corollary 3.9. Let A =kQa/Ia be a quiver algebra and let B = kQp/Ip be a radical embedding
obtained by gluing two idempotents e, and e, of A. Assume one of the following two conditions
holds:

(i) ey is a source and e, is a sink;
(i1) A is a radical square zero algebra.

Then we have
dimyIm(0%) = dimgIm(6%) +1+cp — ca.
In particular, if we glue ey and e, from the same block of A, then
dimzIm(6%) = dimpIm(6%) + 1;
if ey and e, are from two different blocks of A, then we have

dimgIm(6%) = dimy,Im(6%).

Proof. Tt is clear that under the condition (i) or (ii) there are no special paths between e; and
en. Therefore sp} = 0. If we glue e; and e, from the same block of A, then cg = c4;if e; and e,
are from two different blocks of A, then cg = ¢4 — 1. Thus, the result follows from Proposition
3.8. O

We will often use the following assumption on the characteristic of the field k:

Assumption 1. Let A = kQ/I4 be a quiver algebra and let B = kQp/Ip be a radical embedding
obtained by gluing two idempotents e; and e, of A. For each loop « at ey or at e, with ™ €
Tip(Ga), we have that char(k) t m.

Clearly, Assumption 1 holds if the characteristic of the field k is zero or big enough. We now
proceed to compare the Lie structures of Ker(6}) and Ker(d}):
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Proposition 3.10. Let A = kQa/Is be a quiver algebra and let B = kQp/Ip be a radical
embedding obtained by gluing two idempotents e1 and e,, of A. If char(k) satisfies Assumption 1,
then there exists an injective (restricted) Lie algebra homomorphism Ker(6Y) — Ker(dL) induced

from o1 : k((Qa)1//Ba) = k((QB)1//BB), which we still denote by v1.

Proof. First we notice that T4 = (G4) and Ig = (Gg), and by Proposition 2.11 we can write
G = GA U Zpew, where Z,e, = {b'c |V, € (Qp)1,t(c) = f1 = s(b'),bc ¢ B,}. Having the
diagram (x) in mind, let a//p € k((Qa)1//Ba) and let ¢1(a//p) = &'//p’ be the corresponding
element in k((Qp)1//Bp). On the one hand, we have

ea(h(affp) =2 D cr(q) - Tip(r)//q¥P) = 3 er(q) - Tip(r) JJg "'

r€G.a,q€Supp(r) r€G4,q€Supp(r)
On the other hand, we have

UACHCYINERIACY)
=X eld) Tl g

r’'€Gp,q' €Supp(r’)

= > el Tin@) fd I Y

r€Ga,qeSupp(r) ' E€Znew

We consider four cases.

(c1) If o is a loop at ¢;, for 2 < i < n —1, and p = e; or p is an oriented cycle at e;, then
Doz v [’/ = 0. Indeed, o’ does not appear in any ' € Z,c,,. Therefore po(dY(a//p)) =
35 (1 (e//p))-

(c2) If v is a loop at e; (respectively e,) and p = e; (resp. p = e,). In case p = ey, since A
is finite dimensional, by Lemma 2.6 there exists an element r in G4 such that Tip(r) = o™ for
some integer m > 2. Hence, 6} (a//e1) contains the summand mTip(r)//a™ 1 = ma™//a™ 1,
which cannot be cancelled in Im(6Y) unless char(k) | m. That is, if char(k) { m, then a//e; cannot
appear as a summand of an element of Ker(6}). Note that o’ appears in some r’ € Z,.,, and
therefore 65 (1 (affe1)) = d5(///f1) contains a summand 7/ //r'*//1 | which cannot be cancelled
in Im(d}%). Therefore, ¢1(a//e1) cannot appear as a summand of an element of Ker(d%). A similar
result holds if « is a loop at e, and if p = e,,.

(c3) If v is a loop at ey (resp. e,) and p is an oriented cycle at e; (resp. e,,), then once we replace
o in any ' € Zyew by p', 7' becomes a path in Qp that still contains some relation in Z,c..

Hence Y,,c,  r//r'™/%" = 0. Therefore oa(5% (a//p)) = 65 (1 (c//p)).

(c4) If o is a an arrow which is not a loop such that o' appears in some r’ € Z,., and if
p € By is a path parallel to «, then, by the same argument as in (c3), the element obtained
from " by replacing o’ by p’ is not in Bg. Hence . /'’ = 0 and consequently
02(04 (/) = 0 (1 (cv//p))-

The above discussion shows that, if char(k) satisfies Assumption 1, then there is a k-linear map
o1 : Ker(6}) — Ker(dh) induced from o1 : k((Qa)1//Ba) — k((Qp)1//Bp). It is also clear that
¢1 @ Ker(6Yy) — Ker(d}) is injective and preserves the Lie bracket, since ¢ : k((Qa)1//Ba) —
k((Qp)1//Bp) preserves parallel paths. O

'€ new

Remark 3.11. Since the characteristic condition is only needed in (c2), we do not need Assump-
tion 1 in Proposition 3.10 under one of the following conditions:

(1) There is no loop both at e; and at e,,. In particular if e; (resp. e,,) is a source vertex and e,
(resp. e1) is a sink vertex.

(2) A (hence also B) is a radical square zero algebra, excluding the case when we glue e; and e,
from different blocks of A such that one of the two blocks is isomorphic to k[z]/(z?). Indeed, if A
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is a radical square zero algebra, then Assumption 1 is equivalent to require char(k) # 2. Therefore,
if we exclude the case of gluing two blocks such that one of them is isomorphic to k[z]/(x?), then
a loop « will appear in a relation a8 (where § is an arrow different from «) or in a relation ya
(where 7 is an arrow different from «). Consequently, a//e; ¢ Ker(d}) and o1 (a//er) ¢ Ker(d5).

In order to describe the elements in Ker(d) which are in the complement of the subspace
¢1(Ker(8Y)), we introduce the following definition.

Definition 3.12. Let A = kQa/I4 be a quiver algebra and let B = kQp/Ip be a radical
embedding obtained by gluing two idempotents e; and e, of A. Let a be an arrow and p be a
path in B4. We call (o, p) is a special pair with respect to the gluing of e; and e, if the following
two conditions are satisfied:

(1) a # pin Qa;
(2) o///p" in @p.
We denote by Spp? the set of all special pairs with respect to the gluing of e¢; and e, and

by S/p:f)/? the k-subspace of k((Qp5)1//Bg) generated by the elements o’ //p’, where («,p) € Spp?.

Furthermore, we denote by V;,,, the intersection of Spp} and Ker(d%), and by kspp} the dimension
of the k-subspace Vi, of Ker(d}).

Observe that V;,, is a subspace of V;p, and therefore we always have kspp] > sp}’. Note that every
nonzero element of Vi, is a linear combination of parallel paths corresponding to special pairs
(cf. Example 6.9). Moreover, conditions (1) and (2) imply that « is starting from e;, or ending at
e1, or starting from e,, or ending at e,. Note also that the notion of special pairs leads to various
possible configurations of the pairs (a,p) € (Qa)1//Ba, see Example 6.8.

Remark 3.13. Although in the radical square zero case there are no special paths in @) 4, there
may exist special pairs when we glue e; and e, whether from the same block (see Examples 6.2
and 6.7) or from two different blocks of A. Moreover, if we glue from two different blocks and
exclude the case that there are loops both at e; and at e,, then V,, = 0. Indeed, when we glue
e; and e, from different blocks of A we have

Spprll = {(a767l)? (Oé,ﬂ), (ﬂael)v (Bva) | « (resp, B) is a IOOp at €1 (resp, Bn)}
Since e; and e, are not isolated vertices, and B is also a radical square zero algebra, we have

neither o’ //f; nor 3//f1 lies in Ker(6}). Therefore, if we exclude the case that there are loops
both at e; and at e, then Vy,, = (¢///3’,5'//a’ | a (resp. B) is a loop at e (resp. ey,)) is zero.

Proposition 3.14. Let A = kQa/Ia be a quiver algebra and let B = kQp/Ip be a radical
embedding obtained by gluing two idempotents e1 and e, of A. If char(k) satisfies Assumption 1,
then we have a decomposition

Ker(dp) = ¢1(Ker(d4)) @ Vipp,
as k-vector spaces and therefore

dimgKer(65) = dimpKer(54) + kspp!.

Proof. By Proposition 3.10, we only need to describe the elements 6 in Ker(6) which are in
the complement of the subspace ¢;(Ker(dY)), under Assumption 1. According to the proof of
Proposition 3.10, we may assume that 6 is a linear combination of elements of the form «'//p’ such
that (o, p) is a special pair with respect to the gluing of e; and e,,. Clearly in this case 6 € V.
Therefore, we have the following decomposition: Ker(d%) = o1 (Ker(6})) @ Vipp- O

Exceptional case 1. Let char(k) = 2, by gluing we obtain a block of B of the form k[x]/(z?), in
other words, A has one block which has a Gabriel quiver of type As and we perform the gluing in
this block.
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Corollary 3.15. Let A = kQ /14 be a quiver algebra and let B = kQp/Ip be a radical embedding
obtained by gluing a source vertez e; and a sink vertex e,, of A. Then we have Ker(&}) ~ Ker(d})
as Lie algebras, except in the Fxceptional case 1.

Proof. By Lemma 3.2, the only possible special pair with respect to the gluing of e; and e,, has
the form (o, e1) or (o, ey,) such that o is an arrow from e; to e,. Therefore Spp? is generated by
the elements of the form «'//f1. Suppose now that o///f; € Ker(d%). Then we consider two cases.

If Q4 contains a connected component e; — e,, so that B has a block isomorphic to k[z]/(z?),
then §L(a///f1) = 2r'//a/ = 0 (where 7’ = o/a’) implies that char(k) = 2. If Q4 is not the above
case, then either there is an arrow 8’ # o/ starting from f; or there is an arrow 7’ # o’ ending
at f1 in Qp. Therefore 05 (a///f1) will contain a summand '’/ or a summand «’+’//~’, which
clearly cannot be cancelled in Im(8%), so o///f1 ¢ Ker(dL). It follows that o'//f1 € Ker(d}) if and
only if B has a block isomorphic k[z]/(z?) and char(k) = 2. Summarising the above discussion,
we get kspp] = 0 when gluing a source and a sink and excluding the Exceptional case 1. The
statement follows from Proposition 3.14, Proposition 3.10 and Remark 3.11 (1). O

Remark 3.16. For the Exceptional case 1, since the rest of the blocks of A do not change,
this reduces to the case when A has only one block which has a Gabriel quiver of type As. In
this case char(k) = 2 and B ~ k[z]/(2?), A = kQ4 where Q4 is given by the quiver 1 %5 2.
By a direct computation, we have the following: Im(69) = Kerd) is 1-dimensional with k-basis
{a//a}, Im(8%) = 0 and Ker(d}) is 2-dimensional with k-basis {a///f1,a’//a’}. Note that Spp; =
{(a,e1), (@, e2)} and Vi, = (o///f1). Therefore, dimjKer(d}) = dimyKer(5y )+ kspp?.

We can finally compare the dimensions of HH'(A) and of HH'(B).

Theorem 3.17. Let A = kQa/I4 be a quiver algebra and let B = kQp/Ip be a radical embedding
obtained by gluing two idempotents e1 and e, of A. If char(k) satisfies Assumption 1, then we
have

dimy, HH'(A) = dim HH'(B) — 1 — kspp} + sp} 4 ¢4 — cp.
In particular, if we glue e1 and e, from the same block of A, then
dimy, HH*(A) = dimy HH'(B) — 1 — kspp} + sp};
if e1 and e, are from two different blocks of A, then HH'(A) is a Lie subalgebra of HH*(B) and
dimy, HH*(A) = dim;, HH'(B) — kspp}.

Proof. Since HH' ~ Ker(6')/Im(6°), the statement follows from Propositions 3.8 and 3.14. O

Remark 3.18. In [5, Theorem 1] the authors give a formula to compute the dimension of HH*(A)
for a monomial algebra A using an exact sequence in [4, Page 98]. They introduce the following
notions: an element a//p in (Q4)1//B is admissible if a//p € Ker(d}). An element a//p in (Q4)1//B
is glued if p is a vertex or a is the first or the last arrow of p. The image of §' restricted to the
subspace spanned by glued elements is denoted Im(R,). An element a//p is called effective if it is
neither glued nor admissible. We denote by ((Q4)1//Ba). the set of effective elements. Then:

dim HH'(4) = [(Qa)1//Bal — [((Qa)1//Ba)e| — dim(Im(Ry)) — (I(Qa)o//Bal — dim(Z(A))).

This gives another interpretation for the dimension of Vj,, for monomial algebras, that is, kspp] =
K4 — Kp, where K4 := |(Qa)1//Bal — ((Qa)1//Ba)e| — dim(Im(R,)) and so does for B.

Notation 2. We set
Y = 1 (Im(6%)) @ Vi C Ker(d),

where V;,, is the subspace of Im(d(OB)>1) generated by the elements 6% (f1//p’) for p € Sp}.

We have the following strengthened form of Theorem 3.17.
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Theorem 3.19. Under the conditions of Theorem 8.17, we have the following exact commutative
diagram:

0 0 0
0 Vsp ‘s Vspp — Coker(p) —— 0
. } q
0 Y —2%— Ker(dg) Ker)(,‘s}s) 0 ()
‘P1|1m(50A> 1 «pT

0 —— Im(69%) —2— Ker(6}) —— HH'(A) —— 0,

| | |

0 0 0

where 70, ' are canonical projections, L4 and vp are canonical injections, ¢ is an injective map

induced from @1 and T is a surjective map induced from 7', Y := 1 (Im(6%)) @ Vs, is a subspace
of Ker(0%). In addition,

o Y is equal to Im(6%) in the case that eq and e, are from different blocks of A.

o Y contains Im(6%) as a codimension 1 subspace in case that e; and e,, are from the same
block of A.

Proof. By Proposition 3.10, there exists an injective Lie algebra homomorphism ¢; : Ker(d}) —
Ker(d%), which is induced from the canonical map o1 : k((Qa)1//Ba) — k((Q5)1//Bs). Moreover,
by Proposition 3.14, we have the decomposition Ker(d}) = ¢1(Ker(d)) & Vipp.

Therefore by Proposition 3.8 and by the fact that 6%(f1//f1) = ¢1(6%(e1//e1)) + ¢1(8% (en//en)),
we have that ¢; : Ker(d}) < Ker(d}) restricts to an injective map

1lims) * Im(63) = Im (804, ) © Im(8(y),,) — X @ Im(5(p)_ ) C Ker(dp),

where X is the subspace of Ker(6%) generated by the elements o1 (8% (e1//e1)), ©1(6%(en//en)) and
0p(fi/lfi) 2<i<n—1).

Note that X & Im(0)_ ) =Y. In addition, the dimension of X is equal to dimzIm(d(,, ). It
follows from Lemma 3.4 that if e; and e,, are from two different blocks of A, then X = Im(é?B)o).
By the same reasoning, if e; and e, are from the same block of A, then Im(é?B)O) C X has
codimension 1 in X. Therefore Im(0%)=Im(0(p) )SIm(d(p)_ ) is equal to Y if e; and e, are from

two different blocks of A, and Im(4%) has codimension 1 in Y if e; and e,, are from the same block

of A.

If p is a special path from e; to e,, then each summand a'//a’p’ (or V' //p'V') of §%(f1//p’"), where
a is an arrow starting from e,, such that ap € B4 (or where b is an arrow ending at e; such that
pb € Ba), is induced from a special pair (a,ap) (or (b,pb)). In the case that p is a special path
from e, to e1, we have the similar conclusion. Therefore the canonical injective map Y < Ker(d})
restricts to an injective map Vi, — V.

Hence we obtain the exact commutative diagram (xx). O

Lemma 3.20. The space Y is a Lie ideal of Ker(6}) if and only if [p1(Im(6%)), Vspp] C Y.
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Proof. By the definition of Y we have that

[V, Ker(6)] = [p1(Im(63)), Ker(05)] + [Vap, Ker(d5)]
= [p1(Im(8%)), o1 (Ker(54))] + [o1(Im(03)), Vipp] + [Vip, Ker(9p)]
e1([Im(6% ), Ker(54)]) + [01(Im(5%)). Vipp] + [Vip, Ker (0]
e1(Im(6%)) + [p1 (Im(02)), Vipp] + [Im(6), Ker(63)]
€ ¢ (Im((SA)) [p1(Im(d4)), SPP]+Im(6B)
CY + [p1(Im(63)), Vipp] + Y,

where the second equality follows from Proposition 3.14, the third equality follows from the fact
that ¢, is a Lie algebra homomorphism, and the last three equalities follow from the definition of
Y and the fact that Im(8°) is the Lie ideal of Ker(&1). O

N

0
A
0
A

Theorem 3.21. Let A = kQa/14 be a quiver algebra and let B = kQp/Ip be a radical embedding
obtained by gluing two idempotents e; and e, of A. Assume char(k) satisfies Assumption 1. If
Vspp = Vsp, then

o Y is a Lie ideal of Ker(6}) and

e there is a Lie algebra epimorphism from HH'(B) to Ker(dh)/Y ~ HH'(A) with kernel
T = Y/Im(8%), where T is zero if ey and e, are from two different blocks of A and
dimiZ = 1 if ey and e, are from the same block of A.

Proof. For the first part, note that if e; and e; are from two different blocks then by Theorem
3.19 we have Y = Im(6%). Hence Y is a Lie ideal of Ker(dy). If e; and ey are from the same
block, then the statement follows from Lemma 3.20. The second part of the proof follows from
Theorem 3.19. O

Corollary 3.22. Let A = kQ /14 be a quiver algebra and let B = kQp /I be a radical embedding
obtained by gluing two idempotents e1 and e, of A. Assume char(k) satisfies Assumption 1. If
Vepp = Vep, then

HH'(A)/rad(HH'(A)) ~ HH'(B) /rad(HH' (B)).

Proof. Since by Theorem 3.21 the ideal 7 is at most one-dimensional, then Z is solvable. Since the
radical contains every solvable ideal, then Z C rad(HH'(B)). Hence by quotienting by the radical
we obtain the desired isomorphism. O

Corollary 3.23. Let A = kQ /14 be a quiver algebra and let B = kQp/Ip be a radical embedding
obtained by gluing a source vertex e; and a sink vertex e, of A. Then we have

dimy, HH' (A) = dimy HH (B) + ¢4 — ¢p — 1,

except in the Exceptional case 1. In particular, if we glue e; and e, from two different blocks of
A, then there is a (restricted) Lie algebra isomorphism

HH'(A) ~ HH'(B);
if ey and e, are from the same block of A, then
HH'(A) ~ HH'(B)/T
as (restricted) Lie algebras, where T is a one-dimensional (restricted) Lie ideal of HH'(B).
Proof. First we notice that by Remark 3.11 (1), we do not need Assumption 1. By Corollary 3.15,

we have Vi, = 0 since we glue a source and a sink. The statement follows from Theorem 3.17
and Theorem 3.21. g
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Note that the one-dimensional ideal Z := Y/Im(6%) of HH'(B) in Theorem 3.21 is generated by

©01(6%(e1/fer)) = 01 ac(@a)rer U= X peer(@a), B//B)- In case we glue a source e; and a sink
en, the ideal 7 is generated by > ,c(g,),e, @//@

Lemma 3.24. Let A =kQa/I4 be a quiver algebra and let B = kQp/Ip be a radical embedding
obtained by gluing a source verter e; and a sink vertex e, of A. Then I is an ideal in the center
of HH'(B).

Proof. An element in HH'(B) is a linear combination of elements 3'//p’, where £ is an arrow in
@p and p’ is a path in Bg. We show that [}, c(o,),., @/’ B'//p'] = 0 for every B8'//p’. First
observe that p’ contains an arrow o, where s(a) = ey, if and only if p’ = p), - - - pha’ and p} # o
fori=2,...,n.

If s(8') # fi1, then s(p’) # f1, B # o, where s(a) = e1, and p’ does not contain any arrow o'
where a € (Q 4)1€1. Therefore [Zae(QA)lel o Jlo!, B'f/p'] = 0. If s(B') = fu, then 8 = o; for some
o, where s(a;) = e1. In addition, p’ = pj, - - - pya; for some o}, where s(a;) = e1, and p} # o' for
i=2,...,n where a € (Qa)ie1. Hence [3,c(g.),e, @/, 8'/I1') = aj/fp’ — aj/lp’ = 0. O

Recall that an exact sequence of Lie algebra homomorphisms 0 — a — h — g — 0 is called
a central extension of g by a if [a,h] = 0, where we identify a with the corresponding Lie ideal of

b.

Theorem 3.25. Let A =kQa/I4 be a quiver algebra and let B = kQp/Ip be a radical embedding
obtained by gluing a source vertexr e; and a sink vertex e, of A from the same block of A. Then
HH'(B) is a central extension of HH*(A) by T.

Proof. By Theorem 3.21 we have a short exact sequence of Lie algebras:
0 — 7 — HH'(B) — HH'(A4) — 0.

By Lemma 3.24 this extension is central. O

4. MONOMIAL ALGEBRAS

Recall that a finite dimensional k-algebra A is called monomial if it is a quotient kQ/I of a path
algebra, where the two-sided ideal I of k() is generated by a set Z of paths of length > 2. We
assume that Z is minimal, that is, no proper subpath of a path in Z is again in Z. Clearly Z is
a reduced Grobner basis of I under any left length-lexicographic order on ()>¢. Let B = Bx be
the set of paths of @ which do not contain any element of Z as a subpath. It is clear that the
(classes modulo I of) elements of B form a basis of A. We shall denote by B,, the subset @, N B
of B formed by the paths of length n.

For the quiver @, the parallelism is an equivalence relation on the set of arrows Q1; for « € Q1, [a]
denotes the equivalence class of a. We denote Q7 the set of equivalence classes of parallel arrows.
The quiver which has Qg as vertices and @Q; as set of arrows, will be denoted by Q. We denote
by x(Q) the first Betti number of Q which is equal to |Q1| — |Qo| + cg, where cg is the number
of connected components of Q.

4.1. A direct sum decomposition of HH'. In this subsection, we will show that our Theorem
3.25 can be strengthened to Corollary 4.6 for monomial algebras. More precisely, we will show
that when we glue a source and a sink in a monomial algebra A, the central extension is actually
a trivial extension, that is, we have a direct sum of Lie algebras.

According to [19, Section 4], the Lie algebra HH'(A) of a monomial algebra A = kQ/(Z) has a
natural grading. Indeed, if a//y € Q1//B, and b//e € Q1//Bn, then the Lie bracket defined in
Theorem 2.8 shows that [a//7,b//e] € k(Q1//Bn+m—1). Thus, we have a grading on the Lie algebra
k(Q1//B) = ®ienk(Q1//B;) by considering that the elements of k(Q1//B;) have degree ¢ — 1 for
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all i € N. Tt is clear that the Lie subalgebra Ker(§') of k(Q1//B) preserves this grading and that
Im(6°) is a graded ideal, which induces a grading on the Lie algebra HH'(A) ~ Ker(6')/Im(5°).
More precisely, if we set

L1 :=k(Q1//Qo) NKer(s"),
Lo := (k(Q1//Q1) NKer(6"))/(6°(e/fe) | e € Qo) and
Li = (k(Qu1//Bi1) N Ker(6))/(0%(e//p) | e/lp € Q1//Bs)
for all i > 1, then HH'(A) = @,-_, L; and [L;, L;] C Ly for all 4,5 > —1, where L_5 = 0.

Remark 4.1. Note that if the characteristic of the field &k is equal to 0, then L_; = 0 by
Proposition 4.2 in [19]. It follows that €p,-, L; is a solvable Lie ideal of HH'(A) = D> Li since
HH!(A) is finite dimensional. It is also obvious that Lo is a Lie subalgebra of HH!(A).

In order to ensure each L([Ja] (in the Lie algebra decomposition (f) of Ly below) to be a Lie ideal,
we need to use the following variation of [19, Proposition 4.7]).

Lemma 4.2. The basis By, of Lo is given by the union of the following sets:
(2) all the elements a//b € Lo such that a # b;

(ii) for every class of parallel arrows [o] = {a1, a9, ,an} € Q1, all the elements o;//o; —
anf/om € Lo such that i < n;

(iii) for each (oriented or undirected) cycle in Q, choose one class of parallel arrows [o] =
{aq, g, ,an} in this cycle and take o, //cv,. Note that there are x(Q) linearly indepen-
dent elements in (ii1).

For each class of parallel arrows [a] € Q7 we denote by Léa] the Lie ideal of Ly generated by

the elements of the form «;//a; and «;//c;; — o //avs, in Br,, where [a] = {a1, 00, -+ ,a,} and
1 <4,7 < n. Obviously the Lie algebra L is the direct sum of these Lie algebras:

Lo = @[a]eQL([)a]7 (t)
where this decomposition depends on the basis B, and L([f‘] may be equal to zero for some

[o]-

Remark 4.3. Let A be a monomial algebra and let B be a radical embedding obtained by gluing
two idempotents in A. Then B is also a monomial algebra, hence both HH'(A) and HH'(B)
have a canonical grading. Note that the one-dimensional ideal Z := Y/Im(6%) of HH'(B) in

Theorem 3.21 is generated by ¢1(0%(e1//e1)) = 1 (a1e(@a)rer Lol = 2ofajeer(@a), Lia))s Where
I[a] = Z:il ai//ai for [Oé] = {alv Qg, .- 5am}~

We can rewrite the generator ¢; (89 (e1//e1)) of Z after introducing the following definition.

Definition 4.4. Let Q% and Q% be two sub-quivers of Q4 such that the arrows of Q¢ satisfy
one of the following two conditions:

(1) t(e) = en;

(#4) «alies in a path or an undirected path in the quiver @ 4, which is starting at e; and ending
at e, and passes through e; just once.

The arrows of Q% are the arrows of Q4 which are not in Q5. We also define the corresponding
sub-quivers Q% and Q% via the map ¢ in Section 2.

Denote by A = (Q%)1e1 the subset of (Qa)1e1 consisting of the equivalence classes of parallel
arrows [a] starting from e; in Q.

For a concrete example for A, see Example 6.11.
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Lemma 4.5. Let A = kQa/I4 be a monomial algebra and let B = kQp/Ip be a radical embedding
obtained by gluing a source verter e; and a sink vertex e, of A. If ey and e, are from the same
block of A, then the one-dimensional Lie ideal T in Corollary 3.23 is generated by SDI(Z[a]eA Tia))

(modulo an element in Im(56%)).

Proof. Since e; is a source vertex, then Remark 4.3 yields that

e (erfer) =1 D> Ta)=ei( >, Tu)+eil Y, T

[a]e(Qa)1er [e]e(@%)re [a]e(Q%)1e1
oD Ta)+ei( Y Tia):
[a]eA [@]e(@%)1e

Note that Q% and Q% can be obtained from @ by splitting in e; since Definition 4.4 shows that
Q¢4 and Q9 are disjoint and they only share the vertex e; when Q9 is not empty. By combing
this with the fact that e; is a source vertex, we deduce that 6% (>"1, e;//e;) = 0 if and only if

) (ZeieQ; i//ei) = 0 and 49 (Zeier e //el) = 0, whence
ol Y Ta=-el S Befed)= S S € Tmn(sy).

[a]e(Q%)1e ei€(Q%)o,ei#er Fi€(Q%)o, fi#f1

Now we can give the main result in this subsection.

Corollary 4.6. Let A = kQa/Ia be a monomial algebra and let B = kQp/Ip be a radical
embedding obtained by gluing a source vertex e; and a sink vertex e, of A. If e; and e, are from
the same block of A and char(k) =0, then

HH'(B) ~HH'(A) & Z ~HH'(A) @ k

as Lie algebras.

Proof. We claim that it is enough to show that we have a decomposition as vector spaces Ly =
T ® G, where G is a Lie subalgebra of Ly. Indeed, if this is the case, by the grading on HH'(B)
we have a decomposition as vector spaces:

HH'(B)=Lyo@PLi=Ted)e@PL=IaGaPL)=IaL
i>1 i>1 i>1
Note that L is a Lie subalgebra of HH'(B) since G is a Lie subalgebra and @D, Li is a Lie

ideal of HH'(B). In addition, by Theorem 3.25 the ideal Z is in the center of HH'(B), hence
L is a Lie ideal of HH'(B). Therefore we have a direct sum decomposition as Lie algebras:
HH'(B) =T @ L. Since HH'(A) ~ HH'(B)/T as Lie algebras, then L ~ HH'(A) as Lie algebras.
Therefore, HH'(B) = Z @ HH'(A) as Lie algebras.

We show that Z is a direct summand of Ly as vector spaces. From now on, we fix the ‘minimal’
generator Sﬁl(Z[a]eA a)) of the Lie ideal 7 which is given by Lemma 4.5. We sketch the proof in
the case that A only contalns two equivalence classes of parallel arrows (cf. Definition 4.4), namely

A= {[a]a [ﬁ]}a where [04 = {ala"' 7am} and [ﬂ] = {617"' vﬁt}' Then 7 = <<p1(I[oz] +I[/3])> =
(S0 aifla + 5oy BiIB)). Since Lg = (alfjaj,afjjai | 1 <1< m1 < i#j < maiffa; €
Ker(sY)) and L7 = (3! WB5 BB |1 <1 <t,1<i#j<t BB €Ker(dy)), it is easy to see

that 7 is a summand of @[a]eALB o _ L[a] &) Lm] hence it is a summand of Ly. In fact, we have
vector space decompositions:

Ly = (3" dlfjal) @ (affaly apflag — abyfJady, | 1 S U< m—1,1 < i # j < m,afla; € Ker(6}))

= (o1 (T))) & 1,
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LY = (3" BB @ (BB BIIB — BBl | 1 <1<t — 1,1 <i#j <t BiffB; € Kex(d}))
=1

= (p1(13)) © Ja.
As a consequence, there are vector space decompositions

Ly o L = ({p1(Tia)) @ (01(Z)) @ J1 & Jo = (T @ (91 (Za)))) & J1 & o
=0 (o1(Zj) @1 ® J2) =T D J.
It follows from the definition of the Lie bracket in Theorem 2.8 that J is a subalgebra of Ly. It
follows that Ly = ®[a]e(QB)1L([)a] = I & G as vector spaces, where G := J & B,c(5,),\a Lga].
Note that G is a Lie subalgebra since J is a Lie subalgebra and since we have the direct sum
decomposition (). O

4.2. Radical square zero algebras.

We now apply our main results in Section 3 to a subclass of monomial algebras: radical square
zero algebras. An application of these results can be found in Subsection 4.3. Throughout this
subsection, we let A = kQa/I4 be a radical square zero algebra and let B = kQp/Ip be a radical
embedding obtained by gluing two idempotents e; and e, of A.

Corollary 4.7. Let A be a radical square zero algebra and let B be a radical embedding obtained
by gluing two idempotents ey and e, of A. If char(k) # 2, then we have
dimy HH'(A) = dim, HH'(B) — 1 — kspp} — ¢ + ca.
In particular, if we glue e1 and e, from the same block of A, then
dimy HH'(A) = dimj, HH'(B) — 1 — kspp];
if we glue e; and e, from two different blocks of A, then
dimy, HH'(A) = dim; HH'(B) — kspp
and HH'(A) ~ HH'(B) as Lie algebras if we exclude the case that there are loops both at ey and
en-

Proof. For radical square zero algebras, there are no special paths and Assumption 1 is equivalent
to the condition that char(k) # 2. The dimension formulas follow immediately from Theorem 3.17
and Theorem 3.19. Moreover, if we glue e; and e, from two different blocks of A and exclude the
case that there are loops at e; and at e, simultaneously, then V,,, = 0 by Remark 3.13. Since
Vsp is a subspace of Vi, then V,, = 0 and by Theorem 3.21 we have HHl(A) ~ HHI(B) as Lie
algebras. O

Moreover, it is easy to see that if one of the following conditions holds, then the results in Corollary
4.7 still hold in the case char(k) = 2 by Remark 3.11 (2):

(i) glue e; and e, from the same block of A;

(7i) glue e; € Ay and e, € Ay from the different blocks of A such that both A; and A, are
not isomorphic to k[z]/(x?).

Remark 4.8. Let A and B as above and let A; and As be two different blocks of A. Suppose
e1 € Ay and e, € A.

(1) If there are loops at e; or at e, then in general HH'(A) is not isomorphic to HH'(B) and
the difference between the dimensions of HH'(A) and HH'(B) can be arbitrarily large,
see Example 6.10.

(2) If char(k) = 2 and exactly one of Ay, Ay is isomorphic to k[z]/(z?), then
dimy HH'(A) = dim; HH'(B) + 1.
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Corollary 4.9. Let A be a radical square zero algebra and let B be a radical embedding obtained
by gluing two idempotents eq and e,, from the same block of A. If Vip, = 0 and char(k) =0, then
we have a Lie algebra isomorphism

HH'(B) ~ HH'(A) @ k.

Proof. We use the notation in Theorem 3.19. Since V,,, = 0, we have a Lie algebra epimor-
phism from HH'(B) to Ker(6})/Y ~ HH'(A) with one-dimensional kernel I := Y/Tm(0%), where
Ker(65) = ¢1(Ker(dY)) and Y is a Lie ideal of Ker(d}). Also note that this epimorphism and
equality do not depend on the Assumption 1 since we glue e; and e, from the same block, cf.
Remark 3.11 (2). Since V;,, = 0, then dimj HH'(A) = dim, HH'(B) — 1. Note that by gluing
e; and e, from the same block we have x(Qp) = x(Q4) + 1. By Theorem 2.9 in [18] (see also
Theorem 4.12) there is an injective Lie algebra homomorphism:

HH'(A) =~ @aesslia (k) ® kX = @oes8lq(k) @ kX9 @ k ~ HH'(B).
Therefore it gives rise to the following Lie algebra isomorphisms:
HH'(B) ~ HH'(A) @ I ~ HH'(A) @ k.
O

Remark 4.10. Let A and B as above, and suppose that e; and e, are in the same block of A.
If we exclude the Exceptional case 1, then it is straightforward to check that V;,, = 0 under each
of the following conditions:

(i) e1 is a source and e, is a sink;
(#i) Both e; and e, are sinks such that
{s(a) [ t(a) = e, r € (Qa)1} N{s(B) [ 1(B) = en, B € (Qa)1}
(#i¢) Both ey and e, are sources such that
{t(@) [ s() = e, 0 € (Qa)1} N{E(B) | 5(B) = en, B € (Qa)r} = 0.

Remark 4.11. Let A be a radical square zero algebra having Gabriel quiver ). By direct
computations, we can determine the Lie algebra structure of HH'(A) in the following well-known
cases, which are recalled here for completeness:

0;

(1) HH'(A) ~ gl,,(k) if Q is the quiver with one vertex and n loops , except in the case n = 1 and
char(k) = 2 (for this exceptional case, see Remark 3.16); The isomorphism sends «;//a; to Ej;,
where F;; is the matrix that has 1 in position (4, j) and 0 elsewhere. Note that if the characteristic
of the field k& does not divide n, then gl,,(k) ~ sl, (k) ® k as Lie algebras.

(2) HH'(A) ~ pgl,, (k) if Q is the n-Kronecker quiver, with the convention that 1-Kronecker quiver
is the Dynkin quiver As, where pgl, (k) is the quotient of gl,(k) by its center k - Id. Let e be
the source vertex of the n-Kronecker quiver. Then the above isomorphism can be obtained by
observing that Ker(dY) ~ gl,, (k) via the isomorphism in (1). In addition, this isomorphism sends
the unique generator >, _, a;//a; of Im(89) to Id. If the characteristic of the field k£ does not
divide n, then pgl, (k) ~ sl,, (k).

4.3. Sanchez-Flores’ decomposition via inverse gluing.

In this section, we provide an interpretation of Sanchez-Flores’ description of the Lie algebra
structure of the first Hochschild cohomology for radical square zero algebras [18] using inverse
gluing operations.

Given a quiver ), denote by S a complete set of representatives of the non-trivial classes on the
set of arrows @)1, that is, equivalence classes having at least two arrows, and for « € S, || denotes
the number of arrows in the equivalence class [a] of a. Séanchez-Flores’ description of the first
Hochschild cohomology for radical square zero algebras can be stated as follows.
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Theorem 4.12. ([18, Theorem 2.9]) Let k be a field of characteristic zero and let A be an
indecomposable radical square zero algebra having Gabriel quiver Q. Then we have an isomrphisms
of Lie algebras: .

HH' (A) =~ @acsslia (k) & kXD

Note that intuitively we can say that x(Q) counts the number of holes in Q. From this point of
view we could give an interpretation of the above result by inverse gluing operations. To be more
intuitive we will demonstrate our method by an example that includes all possible cases. Note
also that the characteristic zero condition in the above result is necessary since the proof uses the
Lie algebra decomposition gl (k) ~ sl|4(k) © k when char(k) = 0.

Example 4.13. Let k be a field of characteristic zero and let A be a radical square zero algebra
having Gabriel quiver Q4. Note that in this case x(Q4) =4 and S = {[ou], [01]}-

2
o CQ 1 . & 72
1 je 'Y} oh og

J/El &3

o <P
Qa: 6[3;7 A oc <— of

Hﬁ/

Step 1 (separate and reduce loops): We separate the loops at the vertex j of Q4 to get @p.
The algebra B has two blocks, say By and Bs.

Ui . & oh 12

Jj1e L1} og
o ol @
Qp: ig:i a o ec < — of a1C ®js
HV
By By

The inverse operation is given by gluing two vertices (one of which has no loops) from two different
blocks, that is, we glue j; € @p, and js € @p,. By Corollary 4.7, this operation does not change
the dimension and the Lie structure of HH'(A), that is,

HH'(A) ~ HH'(B) ~ HH'(B,) @ HH!(B,).
By Remark 4.11 (1) we obtain HH'(Bs) ~ gly(k) ~ sly @ k, where the summand & contributes 1
to the value of x(Q4). After this step, we have reduced @4 to the no loop quiver Qp, .

Step 2 (reduce oriented I-cycles (I > 2)): We reduce the oriented cycle p := v2y1 in Qp,.
Choose the vertex b in p and split it into a source vertex b; and a sink vertex bo:

j1e M, e L oh og
lﬁl 531\
651
<~ P2 — 52 e 3 .f

e l”/

The inverse operation is given by gluing b; and by from the same block. By Remark 4.10 (i), by
reducing p from Qp, we get one summand isomorphic to k (cf. Corollary 4.9), which contributes

1 to the value of x(Qp) = x(QA). S
HHl(Bl) ~HHY(C) Dk
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and we have reduced @)p, to the no oriented cycle quiver Q¢.

Step 3 (reduce undirected [-cycles (I > 3)): We first deal with the undirected 3-cycle ¢; :=
B3 — 2 — B1 in Q¢. We can split by into two sinks, say b3 and by, and denote the corresponding
quiver and algebra by Qp and D, respectively.

n . &4 72

jre o oh og
3 531\
035} ao:g;:odToeTof
71
"
bl. b30 .b4

The inverse operation is given by gluing b3 and by from the same block. By Corollary 4.9 and
Remark 4.10, by reducing ¢; from Q)¢ we get a summand isomorphic to k, which again contributes
1 to the value of x(Q4). Therefore

HH'(C) ~ HH'(D) @ k.

We then reduce another undirected cycle ¢o := &4 — &35 — &2 — & Choose the vertex ¢ in ¢ and

split ¢ into a sink vertex 4; and a source vertex is to get @ g, denote the corresponding algebra by
E.

jo U oiy ine &4 oh 12 og
&1 EL{
<~ p1—
QE aokﬂ270d<£—20@<n—30f
P

The inverse operation is given by gluing i1 and i from two different blocks. By Corollary 4.7, this
operation does not change the dimension and the Lie structure of HHI(D), that is,

HH'(D) ~ HH*(E).
Note that the above reduction produces a new undirected cycle ¢5 := & — & — & — & in Q.

However, we can reduce ¢} in Qg by splitting i5 into two sources, say i3 and i4 (the corresponding
quiver is Q).

i1 ize 140 LSNP AL IR oy
08 e
. . <~ BrL—=
Qr: je aoE&iodToeTof
"
bl. b30 .b4

The inverse operation is given by gluing two sources from the same block. Again by Corollary 4.9
and Remark 4.10, we get that

HH'(E) ~ HH'(F) @ k,
where the summand k also contributes 1 to the value of x(Q4). We have reduced to a quiver Qr
that has neither oriented cycles nor undirected cycles.

Step 4 (Split into several m-Kronecker quivers): Since Qp contains no cycles (whether
oriented or undirected), we can split Qg into several quivers. Note that each of these quivers is a
m-~Kronecker quiver for some m > 1.
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iq® — ohg
&4

i1e iz® < od; ohy — 2 eg
1
T’?l
, B
Qg : Je ae <;ﬁ2 ods hie —— ee;
ae L) od3 fo i — e
T'Yl lvz Lﬁs
bie ob3 oby dye LI oc

The inverse of the above operations are given by repeatedly applying three types of operations:
gluing a source and a sink from different blocks, gluing two sources from different blocks, gluing
two sinks from different blocks. By Corollary 4.7, these operations do not change the dimension
and the Lie structure of HH'(F). Therefore,

HH'(F) ~ HH'(G).
By Remark 4.11 (2) the HH' of a m-Kronecker algebra is sl,, (k), consequently HH'(G) ~ sly (k).
We conclude that HH'(B;) ~ HH(G) @ k%, therefore
HH'(A) ~ HH'(B;) @ HH'(By) ~ sly(k)* & k™.

5. CENTER

In this section, we study the behaviour of the centers of finite dimensional quiver algebras under
gluing idempotents. Throughout this section we will denote by Z(A) the center of an algebra
A.

Definition 5.1. Let A = kQ 4/ 4 be a quiver algebra and let B = kQp/Ip be aradical embedding
obtained by gluing two idempotents e; and e, of A. Let p be a path between e; and e, in Bj.
We call p a non-special path between e; and e, in Q4 if 6%(f1//p') = 0, or equivalently, if ap € 14
and pb € 14 for arbitrary a,b € (Qa)1.

We denote by NSp7 the set of non-special paths between e; and e, in Q4, and by V4, the k-
subspace of k((Qp)o//Br) generated by the elements f;//p’ for p € NSp7. Furthermore, we denote
by nsp} the dimension of V.

As the name suggests, the notion of non-special path is exactly the opposite notion of special
path. It is clear that there are no non-special paths between e; and e, when we glue these two
idempotents from different blocks. By Lemma 3.6 the dimension of V;,, equals the number of
non-special paths between e; and e, that is, nsp} = [NSp7|.

Notation 3. Similarly to Notation 1 and Definition 3.5, we denote by
D 5?A)21 the map &Y restricted to the subspace k((Qa)o//(Ba)>1);

Ker(é?A)Zl) the kernel of the map 5?A)21;

épv? the k-subspace of k((Qg)o//Br) generated by the elements f;//p’ for p € SpT;

the map 6% restricted to EE)?;

0|55

Ker (3|57 ) the kernel of the map g

Since Vg, = Im(5%|§@) and dimy, §pv? = |Sp|, we have dimy, Ker(5%|§ﬁ) = |SpT| — sp7.
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Lemma 5.2. Let A = kQa/Ia be a quiver algebra and let B = kQp/Ip be a radical embedding
obtained by gluing two idempotents ey and e, of A. Then there is a decomposition as k-vector
spaces

Ker(é?B)Zl) = ch(Ker((S?A)Zl)) ® Vosp ® Ker(6%|§5?).
In particular, if we glue ey and e, from the same block, then

dikaer(cS?B)Zl) = dikaer((SEJA)Zl) + nspy + [SpY| — spY;

if we glue ex and e,, from different blocks, then dikaer(é(OB)>l) = dikaer((S?A)>l).

Proof. Recall from Proposition 3.3 that there is a k-linear map o : k((Qa)o//Ba) — k((QB)o//BB)-
A direct computation shows that 6% (¢o(ei//p)) = ¢1(6%(ei//p)) for 1 <i <mnand p € Ba\{e1,en}-

It follows that ¢( induces an injective k-linear map from Ker(é?A)>1) to Ker(6?3)>l).

Let € Ker(d0p,_,) be in the complement of the subspace ¢o(Ker(d(y,_ )). Then we assume
that @ is a linear combination of the elements of the form f;//p’ such that p is a path between
e1 and e,. If p is a non-special path, then fi1//p’ € Vs C Ker(6?3)>l). Otherwise, p € Spf.
Note that there may exist another special path ¢ # p such that the summands of 6%(f1//p’) and
the summands of 6%(f1//¢') can be cancelled by each other. Consequently, § can be a linear
combination of the elements in V5, and in Ker(JOB|§p~?). Therefore, the formula Ker(5?3)>l) =

ch(Ker((S?A)zl )) @ Visp & Ker (0% ‘SAP?) follows. O

Remark 5.3. Note that in the monomial case, Lemma 5.2 can be simplified since the space
Ker(6%|§ﬁ) vanishes. This is because in this case Lemma 3.6 holds for any path ¢ € B with
q # p. Moreover, by the same reason, we have sp} = |Sp7|, that is, the dimension of Vj, is equal
to the number of special paths. In addition, the number of special pairs is greater than or equal

to the number of special paths. Note that in general these statements are not true (cf. Example
6.6).

First, we deal with the case that the algebra A is indecomposable.

Proposition 5.4. Let A be an indecomposable finite dimensional quiver k-algebra and let B be
a radical embedding of A obtained by gluing two idempotents e; and e, of A. Then there is an
algebra monomorphism Z(A) — Z(B). Moreover,

dimy Z(B) = dimy Z(A) + nsp} + |SpT| — spT.

Proof. We adopt the notation in Proposition 3.3 and identify the centers Z(A), Z(B) as Ker(59),
Ker(8%) respectively. Also notice that Ker(69) = Ker(é?A)O) & Ker((5?A)>l) as k-vector spaces and

a similar decomposition applies for Ker(5%).

By Lemma 5.2 we have that ¢y induces an injective &-linear map from Ker(d(,,_ ) to Ker(60p)_ ),

and dimyKer(d(p)_ ) = dimKer(5¢,,_ ) +nspf +[Spy| —sp}. By using the fact that Ker(d(,, ) =

(P1<i<n €i//€i) and Ker(é?B)o) = (XC1<i<n_1 fiflfi); cf. proof of Lemma 3.4, we deduce that
dikaer(é?B)o) = dikaer(égA)O). Hence the second statement follows. Moreover, there is an
injective k-linear map ¢ : Ker(69%) — Ker(6%). Note that we can identify Ker(69) with Z(A)
by Yei//p — > p and Y., e;//e; — 1a, so does for Ker(6%) and Z(B). Then, by the fact
that p'q’ = (pq)’ for p,q € (Ba\{e1, - ,en}), ©o gives an algebra monomorphism, and the first
statement follows. O

Corollary 5.5. Let A be an indecomposable finite dimensional quiver k-algebra and let B be a
radical embedding of A obtained by gluing a source vertex e; and a sink vertex e,. Then g :
Ker(6%) < Ker(6%) is an isomorphism if and only if there is no path from ey to e,,.



28 Y. LIU, L. RUBIO Y DEGRASSI, AND C. WEN

Proof. Note that in this case, Sp = (} and p is a non-special path between e; and e, if and only
if p is a path from e; to e,. Thus the result follows from Proposition 5.4. (]

Corollary 5.6. Let A be a radical square zero indecomposable finite dimensional algebra and
let B be a radical embedding of A obtained by gluing two idempotents e; and e, of A. Then
wo : Ker(6%) < Ker(0%) is isomorphism if and only if there are no arrows between ey and e, in

Qa.

Proof. For radical square zero algebras, the set NSp] consists of all arrows between e; and e, in
Q4 and there is no special path between e; and e, in Q4. O

Note that Cibils has shown in [3] that the dimension of the center of an indecomposable radical
square zero algebra is given by |Q1//Qo| + 1. Indeed, by the proof of Proposition 5.4, we know
that the basis of the center of an indecomposable radical square zero algebra is provided by the
set of loops together with the unit element of the algebra.

Next we deal with the case that the algebra A is not indecomposable. Without loss of generality
we assume that A has two blocks, say A; and As, and assume that B is an algebra obtained from
A by gluing e; € A; and e,, € As.

Proposition 5.7. Let A be a finite dimensional quiver algebra with two blocks Ay and As. Let
B be a radical embedding of A obtained by gluing idempotents e; € Ay and e, € As. Then
the radical embedding B — A restricts to a radical embedding Z(B) — Z(A). In particular,

Proof. Let B4 = {e1, -+ ,en,p1, -+ ,pu | the length of each p; is > 1} denotes a k-basis of the
quiver algebra A (cf. Section 2). Then the subalgebra B of A has a k-basis Bp = {e1 +
€ny €2, y€n_1,P1," " ,Pu}. We identify the centers Z(A), Z(B) with Ker(59), Ker(6%) respec-
tively. Let Z(A) = Z(A)o®Z(A)>1 be the decomposition corresponding to Ker(0y) = Ker(d(,, )@
Ker(§?A)>1) as k-vector spaces, so does for Z(B).

By Lemma 5.2, we obtain that Ker(d?B)Zl) o~ Ker(5?A)>l), hence

Z(A)>1 = (Zp | pis acyclein By) = Z(B)>1.

Note that Z(A)o = (la,,1a,), where 14, denotes the unit element in A; for j = 1,2, and
Z(B)o = (1p =14, + 14,). Therefore, there is an embedding from Z(B) to Z(A) which sends 15
to 14, + 14, and each element in Z(B)>1 to the corresponding element in Z(A)>1.

It is clear that this embedding from Z(B) to Z(A) is an injection of algebras and preserves the
radical, hence, by gluing e; € A; and e, € A;, we get a radical embedding from Z(B) to Z(A).
In particular, we have dim;Z(A) = dim; Z(B) + 1. O

6. EXAMPLES

We give some examples concerning the main results in this paper. The first one shows that our
gluing technique is useful for computing the HH' of non-monomial algebras.

Example 6.1. Let the algebra B be obtained from A by gluing source e; and sink ey:

’

y
~ s
Qa: ej0 —— ec3 Qp: fie ofs

—

ai Jfl O/l Tﬁ’ K
1 T) ocy foe

Where Z4 = {Ba — 017}, Znew = {08,780 ,v'n'} and Zp = Z4 U Zpery,. We fix the order

on (Qa)1 by n = v > B = «, then Tip(Z4) = {nvy}. It follows that G4 = {9y — Ba} and

G = GaUZpew- A direct computation based on Theorem 2.7 shows that 6 (a//a) = ny//(ny) ¥/ —
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/[ (Be) ™ = —ny/|Bac = 4(B//B), 54 (v//v) = mv//ny = 84(n//n). Similarly we can compute 6%,
6% and &%. Note that in this case Vs, = Vi, = 0. Observe that Sa = 7y in Ba, we obtain that
Im(8%) = (B//B — affee, nffn — V)7, affe+//7) = Ker(6}) = Ker(dp),
m(6p) = (B8 — o' Jla’ ;o' [/ =~ [])-

Therefore,

HH'(A) ~ Ker(6})/Im(6%) = 0,

HH'(B) ~ Ker(63)/Im(8%) ~ (/o ++//)) ~ HH'(A) & k.

It is clear that Sa = 1y is a non-special path between e; and e4 in @ 4, hence

4

3
Z(A) = Ker(69) = (Y eiffer) = Z(B) = Kex(8p) =~ (Y fil/fi, fr/)B'a’).

i=1 i=1

The second example shows a particular instance of Corollary 4.7 in which B is not obtained from
A by gluing a source and a sink:

Example 6.2. Assume char(k) # 2. The algebra B is obtained from A by gluing e; and es:

Qa: e10 2 eey; —2 ee3 QB : foe . of
o
Where Z4, = Zg = (. Note that A is hereditary, and the underlying graph of Q4 is a tree,
therefore HH'(A) = 0. We have that V,, = 0 and V,,, has a k-basis given by {o/ /o, ab//a;}. By
Corollary 4.7 the dimension of HH'(B) is 3. Indeed, a direct computation shows HH' (B) 2 sly (k)
having a k-basis given by {«} /o], o /oy, aby//aly }.

The next two examples show that the characteristic condition in Proposition 3.10 is necessary.

Example 6.3. Assume that char(k) = 2, and that B is obtained from A by gluing e; and es:

’

B
Qa: Qi.eg QB;QICQDW,

Where Zy = {r1 = o —8,r2 = Bav, 87}, Znew = {r3 = &/B';14 = 7'/, (v/)?,(8')*} and
Zp = ZaA U Zpew. We fix the order on (Qa)1 by v < 8 < . Then G4 = Z4 and G = Zp.
A direct computation shows that 0 (a//e1) = 202 //a + raf/By = 202 //a = 0 since char(k) = 2.
However, 05 (a///f1) = 2(a/)?//a’ +74//B' +7 /)7 # 0, which means that although a//e; € Ker(6},),
e1(affer) = o’/ f1 ¢ Ker(6L). Hence ;1 does not induce an injective k-linear map from Ker(d})
to Ker(d}).

Example 6.4. Let A be given by two blocks A; and Ay such that A; is isomorphic to k[z]/(x?)
and A, is isomorphic to k[y]/(y?). Let B be obtained by gluing the units of A; and As. Then
Ker(6y) = HH'(B) ~ gly(k) and has k-basis given by {z//z, =//y, y//x, v//y}. However, there
are two cases for A.

(1) If char(k) # 2, then Ker(6}) = HH'(A) ~ k @ k has k-basis given by x//z and y//y, and there
is an injective Lie algebra homomorphism Ker(dY,) < Ker(d%).

(2) If char(k) = 2, then Ker(6}) = HH'(A) has k-basis given by {z//z, x//e1, y/ly, y//ea}. Clearly
in this case we cannot get an injective Lie algebra homomorphism from Ker(6}) to Ker(d%).

In the following example, we compute explicitly the special paths and the k-space Vi, (resp.
the special pairs and the k-space Vj,,) appeared in Definition 3.5 and Proposition 3.8 (resp. in
Definition 3.12 and Proposition 3.14).
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Example 6.5. Let B be obtained from A by gluing e; and ey:

f3e ,
/ al
b
e b O
Qa: ex0 —2 s eci0 :  eq0 — ege Qp: foe —2— of) Da;
~

Qp

Where Z4 =0, Zp = Znew = {aja; | 1 <i,j <n}. Since aya ¢ Ia for 1 <i <n, ; is a special
path from ey to e4 for 1 < i < n, we have Sp‘l1 ={a; |1 <i<n}and
Vap = (05 (f1//e}) | 1 < i< n)
=/ —dfjala |1 <i<n).
Hence spf = n = dimgVs,. Since oj/ala’ b /b, o)/ f1, a # cia,b § bag,a; # e, a; } eq, we
know that (a,;a), (b, ba;), (a4, e1), (a;, e,) are special pairs with respect to the gluing of e; and
eq for 1 <i <mn, and Spp} = {(a, aa), (b, bay), (as,e1), (i en) | 1 < i <n}. As a result we get
<Spp411> = <a///a2a/7 b///bla;’ a;//fl | I<i< n>7
Vipp = <Sppzll> n Ker(é}g)
= (d'[faa b )bl | 1 <i < n).
Hence kspp] = dimy, Vs, = 2n. A direct computation shows that Tm(39 ), Tm(6%) are 3-dimensional
and (n 4 2)-dimensional, respectively, since

Im(6%) = (a//a, bjb, Z aiffe),

m(6%) = (a'JJa’ b JJo' V)b o, — a/ Jjola | 1 <i < n).

Therefore,

dimgIm(69) = dimpIm(6%) + 1 — sp5.
In addition,

Ker(63) = (a//a,b//b, aiffe; | 1 < i, j < n)
is (n? + 2)-dimensional and
Ker(0p) = (a'/fa’,b'/J¥', ooy V' [ o, o fJaa’ | 1 < i, j < n)

is (n? 4 2n + 2)-dimensional. Hence

dim;Ker(0%) = dimKer(6Y) + kspp].
One can verify that HH'(A) is isomorphic to pgl,, (k) and HH'(B) contains a subalgebra isomorphic
to gl, (k). Note also that by the notations in the proof of Theorem 3.19, in this example the
subspace Y of Ker(6%) is equal to Im(6%) & (>° ol//al) and Y is not a Lie ideal of Ker(d%).

i=1

The following example shows that in non-monomial case, the dimension of V, is not equal to
the number of special paths and the number of special pairs may be smaller than the number of
special paths in general.

Example 6.6. The algebra B is obtained from A by gluing e; and ey:

by
ec3 —— ecy Qp: f2oL>of1 — by~ efs
bo —

’
c
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Where Z4 = {cbia—cbaa}, Zpew = {01, 05¢' Y and Zg = Z AU Z,ye,. We fix the order on (Q 4)1 by
¢ < by < by < a. Then it is clear that G4 = Z4 and G = Zp. Moreover, we have Sp‘l1 = {cby, cho}
and Spp? = {(a,cbia) = (a,cbaa)}, 8% (fiflCy) = —a'lcbya’ and &Y fi/fcby) = —a' by
Note that ¢'bja’ = c/bha’ in B, we get Vs, = (a///c'ba’) = Vipp and f1//c'by — f1//'by € Ker(6%).
Therefore, Ker(0%](sp1y) = (f1//c'by — f1//c'by) is non-empty, spi = dimy, Vyp = 1 < |Spi| = 2 and
the number of special pairs |[Spp]| = 1 is less than the number of special paths |Sp]| = 2.

By Corollary 3.15, if B is a radical embedding obtained by gluing a source vertex e; and a sink
vertex e, of A (in case char(k) = 2, we assume that B has no block isomorphic to k[z]/(z?)), then
Ker(6}) ~ Ker(d). However, the converse of Corollary 3.15 is not true in general as the following
example shows.

Example 6.7. Let B be obtained from A by gluing e; and ey:

fze ,
’ al
b
e b NN
Qa: e0 —“cje0 1 cge <—— cge Qp: fre —— eof; D%
~_"

[e29)

Where Z4 = {a;a | 1 < i < n}, Znew = {a;b’,a;a; | 1 < 4,7 <n}and Zp = Z4 U Zpew-
Note that although Spp] = {(as,e1), (as,eq) | 1 < i < n}, we have Vi, = (Spp]) N Ker(dy) =
(al//f1) N Ker(6k) = 0. By Proposition 3.14 we have dimgKer(65) = dimiKer(d}). In fact, a
direct computation shows that both
Ker(d4) = (a//a,b//b, cif/a; | 1 < i,j < n)

and

Ker(0p) = (a'/fa’,b'jV', aij/aj | 1 < 0,5 < n)
are (n? + 2)-dimensional. Hence although we do not glue a source and a sink, we have Ker(dL) ~
Ker(6}).
The following example shows various types of special pairs.

Example 6.8. In this example we always assume that B is obtained from A by gluing e; and e,,
and that « is an arrow in 4 and p is a path in B4. It can be proved that the special pairs («,p)
rise exclusively from the following seven cases and their dual cases:

[e% «@
(i) : ais a loop at ey or e, assume that e; . (The case that e,e is dual.)
Case 1: p=a,---a; is an oriented cycle at e,, or p = e,, such as:
o o
) Jon s
€L —— o o <— eo¢,

Case 2: p=a,---aj is a path between e; and e,, such as:

e

)

ail QAn
cl1e — @ s e — e,

(#4) : o is an arrow between e and e,,, assume that ¢;8 —>— e¢,. (The case that e,8 —>— ec;
is dual.)

Case 3: p=a,---ay is an oriented cycle at ey or e, or p = ey or e,, such as:
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ol S

e10 —2 ee,
Case 4: p=a, --- a7 is a path from e, to e, such as:

e1e —— ee,
an\~~~/al ’

(i4i) : Exactly one of the vertex of « is e; or e,, assume that e;@ —~— e. (The other cases are
dual.)

Case 5: p = a, ---a; is a path from e, to t(a), such as:

el.é.%.....%.en
ra\ % ’

Case 6: p = apy, where p; = a,, - -+ a7 is a path from e, to ej, such as:

610L> ®---0 <—— @¢,
\ / :
Ay ai

Case 7: p = poapy, where p1 = a,, ---aq is a path from e, to e; and ps = b, --- by is a cycle at

t(a), such as:

cro —%— o o<7oen.

After giving relations in specific examples, we can show that the special pair («,p) in each of the
above cases can appear. Indeed, the following example covers all the above 7 cases:

’

« CK

Qa: dCego%\g}éoeg szo - ole

C
/
a

Where Z 4 consists of all paths in @4 of length 3 except dya, Zp = Z4 U Zyew where Z,e, =
{d'o, o o' B, (82,43, (a')?,c'a’}. We list all special pairs («, p) for each case as follows:

Case 1: (a, Ba), (a, €3);
Case 2: (a,a), (o, B), (o, Ba), (o, ava);
B,a), (B,aB), (B, Ba), (B,e1), (B,e3) (a,q), (a,aB), (a, Ba), (a,e1), (a, e3);
B,a), (a,B);
7:0), (7, dc), (¢,va), (¢, dy);
7, 7a), (¢, cB);
,dva).

(a,a), (a,
Case 3: ( (
Case 4: (
Case 5: (
Case 6: (
(v

Case 7:
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By check one by one, we have Sppi’ is the set consisting of these 25 special pairs and (Sppi’) =
(o/JJp" | (a,p) € Spp}) and therefore
Vipp = <Sppi’> N Ker(dp)
— <a///ﬂ/al7a///ﬁla/’ a///ala/,ﬂ///a/ﬁ/, /BI///B/G//, al//alﬁ/7
a////B/a//’,y///d/c/7C///’_y/al,cl//d/,y/”_y///,y/a/7 C///C//B/7’Y///d/7/a/>.

Hence kspp‘? = 13. Note also that the special paths in this example are 8 and a, so sp; = 2.

It worth to mention that, although the k-space (Spp7) is generated by the elements of the form
o //p’ (where av is an arrow and p is a path), an element in Vj,, is usually a k-linear combination
of such elements.

Example 6.9. Let B be obtained from A by gluing e; and es:

ofy

’
a

b d % <
QA : ege e1® —— ege eze —1— eey Qp: foe —— of; 4><d’ ofs

Where Z4 =0 and Zp = Z,,ey = {a’V', /d'}. Tt follows from a direct calculation that

Im(8%) = (a/fa, bj/b, c//c, dj/d) = Ker(5y).

Hence HH'(A) = 0. Similarly we have

Im(0) = (a'//a’, V')V, d'jjd — ¢'j/c'djJa’d'c" = ' j|d V),

Ker(8h) = (@' fal, ¥, & 1, d ' flald'd — ¥ v,
hence HH' (B) =~ (¢//¢’). Using the notation in Theorem 3.21, we get the ideal Z =~ (1 (69 (e1//e1)))
= (/)¢ =V /) and HH'(A) ~ HH'(B)/Z. It is clear that Spp® = {(a, adc), (b, dcb)}, therefore
(Spp3) = (d'JJa'd'c ¥ J/d' V') and

Vipp = (Spp7) NKer(d5)
={(d/jd'dc =V //d V).

The following example shows that the difference between the dimensions of HH'(A4) and HH'(B)
can be arbitrarily large.

Example 6.10. Let A be given by two blocks A; and As such that A; and A, are radical square
zero local algebras having m-loops and n-loops respectively. If we exclude the case that m = 1
and n = 1 in char(k) = 2 (for this case, sce Example 6.4), then the dimension of HH'(A) is the
sum of the dimensions of HH'(A4;) ~ gl, (k) and HH'(A3) ~ gl (k), that is, m? + n?. Let B
be obtained by gluing the units of A; and Ay. Then HH'(B) ~ gl,,,, (k) and consequently has

dimension (m + n)?.

We use the following example to show a particular case of Corollary 4.6.

Example 6.11. Suppose char(k) = 0. Let B be obtained from A by gluing e¢; and ey:

€0
8 i
—
Qa4 : €3® < — €10 ——> ecy Qp: fg.TflOfa;% ofy

—
B
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Where Z4 = {Bai} and Z,e = {(V)%, by, i,y 8,0’y ;0’8 | i = 1,2}. From a straightfor-
ward computation we have

Im(6%) = (o /o + asffaa + /)7, BB + /v, /),
Im(8%) = (a4 //ay + ab/lay — B'))B' ;0 [,
Ker(6}) = (aa/far, onffax, asffoz, BB, /|7, v/ Berz, nj/m).

Since we glue a source and a sink, Corollary 3.15 shows that Ker(d%) ~ Ker(d}). As a consequence,
HH'(A) ~ (aa/far, ar/fax, azffas, v/ Bas),

HH'(B) = (ay//ay, oy ffal, abffag,y' 17+ /|5 a).
Using the notation in Theorem 3.21, we get the ideal Z = (¢1(69(e1//e1))) = (o} //aly + aby/fady +
v )y +n'//n') and HH'(A) ~ HH'(B)/Z. In this case L” = 0. Then G is generated by +///3 .

Note that in this case A in Definition 4.4 is equal to {[a], [Y]}, where [a] = {1, @2} and [y] = {v}.
We can rewrite the generator of T as 1 (Zja)+Zy)) = o /o) +ab /a4 /)7 since 1) j/n" € Tm(6%).

Also L = (abjay, ol fjat, ablab), IV = (' //7), hence
Lo = L @ LD = (abfjat, o flas, byl @ (v 1)

= (ahffal, oy ffay, ayffah) @ (o oy + ayffedly + ' f1y) = LE T @ T
as Lie algebras. Since Ly = (v///8'ab),

HH'(B)=Lo® L1 = (L e D)oLy = (I @ L) @ T ~ HEY(A) & T ~ HH'(A) & k

as Lie algebras.
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