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Abstract. We compare the Lie algebra structures of the �rst Hochschild cohomology groups of
a quiver algebra A and a radical embedding B obtained by gluing two idempotents of A. Under
a mild assumption, we show that the �rst Hochschild cohomology groups of A and B are either
isomorphic as Lie algebras or they di�er by a one-dimensional Lie ideal. In particular, in the case
of stable equivalences obtained by gluing a source and a sink vertex, we prove that either the
�rst Hochschild cohomology groups of A and B are isomorphic or HH1(B) is a central extension
of HH1(A) by a one-dimensional ideal. As a consequence, we obtain a new invariant under
stable equivalences induced by gluing a source and a sink. We also compare the dimensions of
HH1(A) and HH1(B), as well as the centers of A and B, when gluing two arbitrary idempotents.

1. Introduction

Let k be a �eld. Let A,B be two �nite dimensional k-algebras and let rad(A), rad(B) be the
Jacobson radicals of A and B, respectively. Let ϕ : B → A be a radical embedding, that is, an
algebra monomorphism such that ϕ(rad(B)) = rad(A). Radical embeddings frequently arise in the
study of �nite dimensional algebras and their representation theory, for example, in determining
the �niteness of the �nitistic dimension of algebras [7, 20]. If A is basic and k is algebraically
closed, then by Xi's observation in [20, �3] we can assume that B is a subalgebra of A obtained
by repeatedly gluing two idempotents of A. Therefore, the gluing of idempotents plays a pivotal
role in the study of radical embeddings.

The gluing of idempotents is also essential in the study of stable equivalences. More precisely,
Martinez-Villa proves in [16] that the gluing of a source and a sink induces an equivalence

modA
∼−→ modB between the stable module categories modulo projective modules, see also [11].

Conversely, let ϕ : B → A be a radical embedding obtained by gluing two primitive idempotents.
If A and B are stably equivalent and if the Auslander�Reiten conjecture holds, then B is obtained
from A by gluing a source and a sink [11, Proposition 4.11]. For this reason, we are particularly
interested in this type of gluings.

It is well known that Hochschild cohomology is not functorial, that is, an algebra homomorphism
ϕ : B → A, does not give rise to a map from HH∗(A) to HH∗(B) or from HH∗(B) to HH∗(A).
This makes Hochschild cohomology di�cult to compute since it is not possible in general to
reduce the study of Hochschild cohomology to smaller, and potentially easier, algebras. However,
there are speci�c cases for which the functorial properties of Hochschild cohomology have been
shown. For example, in the context of fully faithful embeddings of di�erential graded categories
[10]. These arise, for example, for derived equivalences [10] or stable equivalences of Morita type
[12] [2]. In particular, these results imply that the (restricted) Lie algebra structure of the �rst
Hochschild cohomology HH1(A) of an algebra A is an invariant under derived equivalences, and
for self-injective algebras, under stable equivalences of Morita type.

In contrast to the situation for stable equivalences of Morita type, stable equivalences obtained by
gluing idempotents are induced by bimodules that are only projective on one side [11]. Therefore,
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no speci�c invariants are known for these types of stable equivalences beyond those established for
general stable equivalences, such as representation dimension [9] and representation type [13]. For
this reason, a natural question to ask is if HH1(A) is an invariant under stable equivalences induced

by gluing a source and a sink. If this is not the case, then one could ask if HH1(A) still has some
functoriality properties, that is, if it is possible to de�ne a (restricted) Lie algebra homomorphism
between HH1(A) and HH1(B). More generally, similar questions could be asked in the case of
gluing of two arbitrary idempotents.

The main aim of this work is to address these questions. Let A and B be two �nite dimensional
quiver algebras such that B is obtained from A by gluing two arbitrary idempotents. By [17,
15], we can compute HH1(A) as the quotient Ker(δ1A)/Im(δ0A), where δA is the di�erential of
a cochain complex Cpara which can be described by the generalized parallel paths method. A
similar computation applies to B, therefore we can use the complex Cpara to compare the Lie

algebra structures of HH1(A) with HH1(B). To make this comparison, we also de�ne, for a �xed
gluing of two idempotents, two subspaces Vsp ⊆ Im(δ0B) and Vspp ⊆ Ker(δ1B), see De�nition 3.5
and De�nition 3.12 for further details. When gluing a source and a sink, or equivalently, in the
case of a stable equivalence, we have that Vspp = Vsp. This condition plays a pivotal role in our
main theorems.

Theorem A (Theorem 3.21). Let A be a quiver algebra and let B be a radical embedding obtained
by gluing two idempotents of A. Let char(k) be zero or big enough and assume Vspp = Vsp.

(1) If we glue from two di�erent blocks of A, then HH1(A) ≃ HH1(B) as (restricted) Lie
algebras.

(2) If we glue from the same block of A, then HH1(A) ≃ HH1(B)/I as (restricted) Lie algebras,

where I is a one-dimensional (restricted) Lie ideal of HH1(B).

As a consequence we obtain:

Theorem B (Corollary 3.22). Let A be a quiver algebra and let B be a radical embedding obtained
by gluing two idempotents of A. Let char(k) be zero or big enough and assume Vspp = Vsp. Then

HH1(A)/rad(HH1(A)) ≃ HH1(B)/rad(HH1(B)).

In particular, for quiver algebras, we obtain a new invariant under stable equivalences induced by
gluing a source and a sink. Theorem 3.19 addresses also the case Vspp ̸= Vsp. In this setting, we

show that I is not a Lie ideal and we give an exact commutative diagram which relates HH1(A)
and HH1(B). More general conditions for the validity of the above theorem can be found in
Assumption 1. In the particular case of stable equivalences induced by idempotent gluing, we
obtain the following result:

Theorem C (Theorem 3.25, Corollary 4.6). Let A = kQA/IA be a quiver algebra and let B =
kQB/IB be a radical embedding obtained by gluing a source vertex and a sink vertex from the same

block of A. Then the one-dimensional Lie ideal I lies in the center of HH1(B) and HH1(B) is a

central extension of HH1(A) by I. In addition, if char(k) = 0 and if A is a monomial algebra,
then there is a Lie algebra isomorphism

HH1(B) ≃ HH1(A)⊕ I.

Let cA, cB be the number of blocks of A,B, respectively. We also compare the dimensions of
HH1(A) and HH1(B) when gluing of two arbitrary idempotents:

Theorem D (Theorem 3.17). Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a
radical embedding obtained by gluing two idempotents of A. If char(k) is zero or big enough, then
we have

dimk HH1(A) = dimk HH1(B)− 1− dimkVspp + dimkVsp + cA − cB .
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In [5, Theorem 1] the authors give a formula to compute the dimension of HH1(A) for a monomial
algebra A which allows to give another interpretation for the dimension of Vspp for monomial
algebras, see Remark 3.18 for further details. Furthermore, in Section 4.3 we give an interpretation
of Sánchez-Flores' description of the �rst Hochschild cohomology for radical square zero algebras
in terms of gluing operations.

Finally, we study the relation between a radical embedding ϕ : B → A and the centers Z(A), Z(B)
of A and B, respectively.

Theorem E (Proposition 5.4, Proposition 5.7). Let A be an indecomposable quiver k-algebra and
let B be a radical embedding of A obtained by gluing two idempotents of A. Then there is an
algebra monomorphism:

• Z(A) ↪→ Z(B), if we glue from the same block of A.

• Z(B) ↪→ Z(A), if we glue from di�erent blocks of A.

We also provide an explicit combinatorial formula to calculate the di�erence of the dimensions
between Z(A) and Z(B).

Rather interestingly, the authors of this paper have obtained similar results for monomial algebras
in the case of gluing arrows [14].

Outline. In Section 2, we introduce some notation that will be used throughout the paper and
provide background on various topics. In Section 3 we prove Theorem A, Theorem B, Theorem D
and �rst part of Theorem C. In Section 4.1 we prove the second part of Theorem C. In Section 4.2
we apply our main results to radical square zero algebras. In Section 4.3 we give an interpretation
on Sánchez-Flores' description of the �rst Hochschild cohomology for radical square zero algebras
[18] by inverse gluing operations. In Section 5 we prove Theorem E. In Section 6 we provide
various examples to illustrate our de�nitions and results.

2. Preliminaries

2.1. Bound quivers.
All algebras considered are �nite dimensional algebras which are isomorphic to kQ/I, where k
is a �eld of arbitrary characteristic, Q is a �nite quiver and I is an admissible ideal in the path
algebra kQ. Any homomorphism between two algebras sends the identity element to the identity
element. For all n ∈ N, let Qn be the set of paths of length n of Q and let Q≥n be the set of
paths of length greater than or equal to n. Note that Q0 is the set of vertices and Q1 is the set of
arrows of Q. The number of vertices and arrows of Q is denoted by |Q0| and |Q1|, respectively.
We denote by s(γ) the source vertex of an (oriented) path γ of Q and by t(γ) its terminal vertex.
The path algebra kQ is the k-linear span of the set of paths of Q, where the multiplication of
β ∈ Qi and α ∈ Qj is provided by the concatenation βα ∈ Qi+j if t(α) = s(β) and 0 otherwise.
We denote by l(p) the length of a path p. A path p of length l ≥ 1 is an oriented cycle (or an
oriented l-cycle) if s(p) = t(p). An oriented 1-cycle is called a loop. Two paths ϵ, γ of Q are called
parallel if s(ϵ) = s(γ) and t(ϵ) = t(γ), denoted by ϵ // γ. If ϵ and γ are not parallel, we denote by
ϵ ∖// γ. If X,Y are sets of paths of Q, we denote by X // Y the set of parallel paths consisting of the
couples ϵ // γ with ϵ ∈ X and γ ∈ Y , and denote by k(X // Y ) the k-vector space with basis X // Y .
An element in kQ is called uniform if it is a linear combination of parallel paths.

We �x a �nite dimensional k-algebra A = kQA/IA, where IA is an admissible ideal in kQA. Denote
the vertices of QA by e1, · · · , en. A vertex ei is isolated if it does not exist any arrow α such that
s(α) = ei or t(α) = ei. A source vertex ei of QA is a vertex such that there is no arrow α with
t(α) = ei. A sink vertex ej of QA is a vertex such that there is no arrow α with s(α) = ej . By
abuse of notation, we denote by e1, · · · , en the corresponding primitive orthogonal idempotents in
the algebra A. For a path p in QA, we use the same notation to denote its image p = p + IA in
A. If A = A1 × · · · ×As is a decomposition of A into a product of indecomposable algebras, then
Ai's are called blocks of A. Note that such a decomposition of A is unique and if s = 1, then A
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is an indecomposable algebra. We denote by cA the number of blocks of A which is also equal to
number of connected components of the Gabriel quiver QA of A.

2.2. Gröbner basis theory for quiver algebras.
Let A = kQ/I be a quiver algebra such that the ideal I is contained in kQ≥2. We brie�y recall
the Gröbner basis (or Gröbner-Shirshov basis) theory for the ideal I. Recall that ≺ is a well-order
on the k-basis Q≥0 of the path algebra kQ if ≺ is a total order on the k-basis Q≥0 and every
nonempty subset of the k-basis Q≥0 has a minimal element. First, we �x an admissible well-order
≺ on the k-basis Q≥0 of the path algebra kQ, that is, a well-order on Q≥0 which is compatible
with multiplication. More precisely,

De�nition 2.1. ([6, Section 2.2.]) Let kQ be a path algebra with k-basisQ≥0. We call a well-order
≺ on Q≥0 admissible if the following three conditions are satis�ed for p, q, r, s ∈ Q≥0:

• if p ≺ q, then pr ≺ qr for both pr ̸= 0 and qr ̸= 0;

• if p ≺ q, then sp ≺ sq for both sp ̸= 0 and sq ̸= 0;

• if p = qr, then p ⪰ q and p ⪰ r.

For each path algebra, the left length-lexicographic order provides an admissible well-order (cf.
[15, Example 2.1]). Unless otherwise speci�ed, we will always use the left length-lexicographic
orders in the present paper. Let r =

∑
p∈Q≥0,λp∈k λpp be a k-linear combination of paths and

Supp(r) = {path p in r | λp ̸= 0}. The tip of r, denoted by Tip(r), is the maximal monomial
appearing with nonzero coe�cient in r. In other words, Tip(r) = p if p ∈ Supp(r) and p̃ ⪯ p for
all p̃ ∈ Supp(r). Moreover, we write CTip(r) as the coe�cient of the tip of r. For a subset X of
kQ, we denote by Tip(X) = {Tip(r) | r ∈ X, r ̸= 0} and put NonTip(X) := Q≥0 \Tip(X).

Let A = kQ/I be a quiver algebra. By [6] there is a k-vector space decomposition

kQ = I ⊕ Spank(NonTip(I)).

So B := NonTip(I) (modulo I) gives a �monomial� k-basis of the quiver algebra A = kQ/I. Let
b1, b2 ∈ kQ. Then we say that b1 divides b2, and we denote b1|b2, if there are elements c, d ∈ kQ
such that b2 = cb1d. If b1 does not divide b2 we write b1 ∤ b2. We can give now the de�nition of a
Gröbner basis:

De�nition 2.2. ([6, De�nition 2.4]) Using the above notation, we say that a subset G of uniform
elements in I is a Gröbner basis for the ideal I with respect to the order ≺ if

⟨Tip(G)⟩ = ⟨Tip(I)⟩,

that is, Tip(G) and Tip(I) generate the same ideal in kQ.

Note that in this case I = ⟨G⟩. We will see in the next theorem that there is a criterion in [6],
called the Termination Theorem, to judge whether a set of generators of an ideal I in kQ is a
Gröbner basis. Such criterion is based on the overlap relations.

De�nition 2.3. ([6, De�nition 2.7]) Let kQ be a path algebra, ≺ an admissible order on Q≥0

and f, g ∈ kQ. Suppose b, c ∈ Q≥0, such that

• Tip(f)c = bTip(g),

• Tip(f) ∤ b and Tip(g) ∤ c.

Then the overlap relation of f and g by b, c is

o(f, g, b, c) = (CTip(f))−1 · fc− (CTip(g))−1 · bg.

It is clear that Tip(o(f, g, b, c)) ≺ Tip(f)c = bTip(g). We can describe now the Termination
Theorem.
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Theorem 2.4. ([6, Theorem 2.3]) Let kQ be a path algebra, ≺ an admissible order on Q≥0 and
G a set of uniform elements of kQ. Suppose for every overlap relation, we have

o(g1, g2, p, q) ⇒G 0,

that is, o(g1, g2, p, q) can be divided by Tip(G), with g1, g2 ∈ G and p, q ∈ Q≥0. Then G is a
Gröbner basis of the ideal ⟨G⟩ generated by G.

For the de�nition of divisibility of o(g1, g2, p, q) by Tip(G), see �2.3.2 and De�nition 2.6 in [6]. In
general, a Gröbner basis for an ideal I in kQ is not unique. However, we can get a unique one,
called the reduced Gröbner basis, if we still require some additional conditions.

De�nition 2.5. ([6, De�nition 2.5 and Proposition 2.6]) A Gröbner basis G for the ideal I is
reduced if the following three conditions are satis�ed:

• G is tip-reduced: Tip(g) ∤ Tip(h), for any g ̸= h ∈ G;

• G is monic: CTip(g) = 1, for any g ∈ G;

• g − Tip(g) ∈ Spank(NonTip(I)), for any g ∈ G.

It is easy to see, under a given admissible order, that I has a unique reduced Gröbner basis G, and
in this case Tip(G) is a minimal generator set of ⟨Tip(I)⟩. We always assume that G is a reduced
Gröbner basis of I in the sequel.

We also recall the following lemma, which will be useful in Section 3.

Lemma 2.6. ([15, Lemma 3.10]) Let A = kQ/I be a �nite dimensional quiver algebra with G a
reduced Gröbner basis for I. If α is a loop in Q, then αm ∈ Tip(G) and αm−1 ∈ NonTip(G) for
some integer m ≥ 2.

2.3. Hochschild cohomology of quiver algebras.
Let A = kQA/IA be a �nite dimensional quiver algebra, where IA is an admissible ideal in kQA.
The Hochschild cohomology

HH∗(A) := Ext∗Ae(A,A)

of the k-algebra A can be computed using di�erent projective resolutions of A over its enveloping
algebra Ae := A ⊗k Aop. The zero-th Hochschild cohomology group HH0(A) is identi�ed with
the center Z(A) of the algebra A. In particular, Z(A) is a commutative subalgebra of A. The
�rst Hochschild cohomology HH1(A) is the quotient of the space of derivations Der(A) by the
space of inner derivations Inn(A). It is well-known that Der(A) is a Lie algebra under the Lie
bracket [f, g] = f ◦ g − g ◦ f , where f, g ∈ Der(A). In addition, Inn(A) is a Lie ideal of Der(A),
therefore HH1(A) has a Lie algebra structure. If the �eld k has positive characteristic p, then
HH1(A) is a restricted Lie algebra, that is, it is a Lie algebra endowed with a map called p-power
map that satis�es some compatibility properties with respect to the Lie algebra structure. For
further background on restricted Lie algebras see for example [8, Chapter 2]. The p-power map
of a derivation f is de�ned by composing f with itself p-times. The inner derivations form a
restricted Lie ideal of space of derivations, therefore HH1(A) is a restricted Lie algebra.

In order to compute the �rst Hochschild cohomology group, one can use the following truncated
projective resolution Pmin (which is minimal on the degrees 0 and 1) of the A-bimodule A given
by Bardzell in [1, Proposition 2.1] (see also Chouhy and Solotar [5]. For a proof using the algebraic
Morse theory, see [15, Lemma 3.6].):

A⊗E k(Tip(G))⊗E A A⊗E kQ1 ⊗E A A⊗E kQ0 ⊗E A A 0,
d1 d0 µ
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where E ≃ kQ0 is the separable subalgebra ofA and theA-bimodule morphisms are given by

µ(a⊗E ei ⊗E b) =aeib,

d0(a⊗E α⊗E b) =aα⊗E s(α)⊗E b− a⊗E t(α)⊗E αb and

d1(a⊗E Tip(g)⊗E b) =
∑

p=αn···α1∈Supp(g)

cg(p)

n∑
i=1

aαn · · ·αi+1 ⊗E αi ⊗E αi−1 · · ·α1b

for all a, b ∈ A, ei ∈ Q0, α, αn, · · · , α1 ∈ Q1 and g ∈ G (with the convention αn+1 = t(αn) and
α0 = s(α1)). Applying the contravariant functor HomAe(−, A) to Pmin we obtain the following
cochain complex Cmin (cf. [19, Section 2] in the monomial case):

0 HomEe(kQ0, A) HomEe(kQ1, A) HomEe(k(Tip(G)), A),d0
∗ d1

∗

where the di�erentials are given by

(d0
∗f)(α) = αf(s(α))− f(t(α))α,

(d1
∗h)(Tip(g)) =

∑
p=αn···α1∈Supp(g)

cg(p)

n∑
i=1

αn · · ·αi+1h(αi)αi−1 · · ·α1,

where f ∈ HomEe(kQ0, A), α, αn, · · · , α1 ∈ Q1, h ∈ HomEe(kQ1, A) and g ∈ G. In particular, we
have HH1(A) ≃ Ker(d1

∗)/Im(d0
∗) as k-vector spaces. Similar to [19, Proposition 2.8, Corollary

2.9], we have that Ker(d1
∗) is isomorphic, as a Lie algebra, to the space Ee-derivations of A and

Im(d0
∗) is a Lie ideal of Ker(d1

∗) isomorphic to the space of the inner Ee-derivations of A.

By carrying out the identi�cation k(X // Y ) ≃ HomEe(kX, kY ) in [19, Lemma 2.3], where X and
Y are two �nite subsets of paths of QA, we can rewrite the above cochain complex which gives a
more practical way of computing HH1.

Proposition 2.7. ([15, Proposition 3.7]) Let A = kQA/IA be a quiver algebra. Let G be a reduced
Gröbner basis of IA, and denote by B the k-basis of A given by NonTip(I) (modulo I). By the
above mentioned identi�cations, the cochain complex Cmin is naturally isomorphic to the following
complex

Cpara : 0 k(Q0 // B) k(Q1 // B) k(Tip(G) // B) · · · ,δ0 δ1 δ2

where the di�erentials are given by

δ0 : k(Q0 // B) → k(Q1 // B)

e // γ 7→
∑

a∈Q1e,aγ∈B
a // aγ −

∑
a∈eQ1,γa∈B

a // γa,

δ1 : k(Q1 // B) → k(Tip(G) // B)

a // γ 7→
∑

r∈G,p∈Supp(r)

cr(p)Tip(r) // p
a // γ ,

where r =
∑

p∈Supp(r) cr(p)p with cr(p) ∈ k and where pa // γ denotes the sum of all paths in B
obtained by replacing each appearance of the arrow a in p by the path γ. In particular, we have
HH0(A) ≃ Ker(δ0) and HH1(A) ≃ Ker(δ1)/Im(δ0) as k-vector spaces.

The isomorphism HH1(A) ≃ Ker(δ1)/Im(δ0) in Proposition 2.7 is induced by the following map:
send each f in HomEe(kQ1, kB) to the element

∑
a // γ∈Q1 // B

λa,γ(a // γ) in k(Q1 // B), where f(a) =∑
γ∈B

λa,γγ. Moreover, the inverse of the above isomorphism is induced by sending an element a // γ

in k(Q1 // B) to f in HomEe(kQ1, kB) with f(a) = γ and f(b) = 0 for a ̸= b ∈ Q1.

The method of computing HH1 using parallel paths was �rst given by Strametz for monomial
algebras in [19]. In [17, Section 2.2] and in [15, Section 3.2], this was generalized to arbitrary
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quiver algebras and called the generalized parallel paths method in [15]. Moreover, Theorem 3.8 in
[15] shows that the second isomorphism in Proposition 2.7 is an isomorphism as Lie algebras.

Theorem 2.8. The bracket

[a // γ, b // η] = b // ηa // γ − a // γb // η

for all a // γ, b // η ∈ Q1 // B induces a Lie algebra structure on Ker(δ1)/Im(δ0) such that HH1(A) and
Ker(δ1)/Im(δ0) are isomorphic as Lie algebras.

For quiver algebras, it is easy to describe the p-power map using the chain map from Cmin to
Cpara and its inverse chain map. For example, for p = 3, the p-power map of a // γ is (a // γa // γ)a // γ .
We note that several of results in this paper, such as Proposition 3.10 and Corollary 3.23, can be
readily extended from the context of `Lie' algebras to `restricted Lie' algebras.

Remark 2.9. The center Z(A) of A is naturally isomorphic to Ker(δ0). For an explicit map
between Ker(δ0) and Z(A), see the proof of Proposition 5.4.

2.4. Gluing of two idempotents and radical embedding subalgebra.
Let A = kQA/IA be a �nite dimensional quiver algebra, where IA is an admissible ideal in kQA.
Since each radical embedding reduces to a gluing of two idempotents, from now on we are going
to consider B to be a radical embedding which is obtained by gluing only two idempotents of A.
More precisely, let e1, . . . , en be a complete set of primitive orthogonal idempotents in A. Let B
be a subalgebra of A obtained by gluing two idempotents e1 and en of A. In other words, B is
identi�ed as a subalgebra of A generated by f1 := e1 + en, f2 := e2, · · · , fn−1 := en−1 and all
arrows in QA. Note that dimk B = dimk A− 1. Note also that the choice of idempotents to glue
is arbitrary; however, we prefer to �x the notation such that f1 := e1 + en. We denote by Znew

the set of all newly formed paths of length 2 of the form · → f1 → ·.

Lemma 2.10. Let A = kQA/IA be a �nite dimensional quiver algebra and let B be a subalgebra
of A obtained by gluing two idempotents e1 and en of A. Then B ≃ kQB/IB, where QB is the
quiver obtained from QA by identifying the vertices e1 and en, and IB is an admissible ideal of
kQB generated by the elements in IA ∪ Znew. In particular, QB is the Gabriel quiver of B.

Proof. Let B′ be the algebra of the form kQB/IB . Then there is an algebra monomorphism from
B′ to A by sending f1 to e1 + en, fi to ei for 2 ≤ i ≤ n − 1 and each arrow in QB to the same
arrow in QA. It is clear that this map factors through the inclusion B ↪→ A, which gives rise to
another algebra monomorphism from B′ to B. Moreover, since B′ has dimension dimk A − 1, it
must be isomorphic to B. □

Note that there is an obvious bijection between the arrows of A and the arrows of B. For each arrow
α in QA, we denote the corresponding arrow in QB by α′. We de�ne the quiver morphism

φ : QA → QB

as follows: let φ(ei) = fi for 2 ≤ i ≤ n−1, let φ(e1) = φ(en) = f1, and let φ(α) = α′. By extending
the map φ : QA → QB , we de�ne φn : (QA)n → (QB)n. More precisely, let p = an . . . a1 be a
path in (QA)n. Then φn(p) = p′ = a′n . . . a

′
1.

The following proposition shows how a Gröbner basis behaves under gluing of two idempo-
tents.

Proposition 2.11. Let A = kQA/IA be a �nite dimensional quiver algebra and let B be a subal-
gebra of A obtained by gluing two idempotents e1 and en of A. Let GA be a reduced Gröbner basis
of IA under some left length-lexicographic order on (QA)≥0. Consider a left length-lexicographic
order on (QB)≥0 de�ned as follows: order the vertices fi (1 ≤ i ≤ n−1) arbitrarily and let α′ ≺ β′

if α ≺ β for α, β ∈ (QA)1. Identify GA in QA with φ(GA) in QB, and similarly for Tip(GA). Then

GB := GA ∪ Znew
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is a reduced Gröbner basis of IB under the above left length-lexicographic order on (QB)≥0. In
particular,

Tip(GB) = Tip(GA) ∪ Znew.

Proof. First we show that GB := GA ∪ Znew is a Gröbner basis of IB . Since GA is a reduced
Gröbner basis, for each g ∈ GB , we have that CTip(g) = 1. By Theorem 2.4 and Lemma 2.10, it
su�ces to show that

o(g1, g2, p, q) = g1q − pg2 ⇒GB
0

for g1, g2 ∈ GB and p, q ∈ (QB)≥0. The proof is divided into four cases.

Case 1: Let g1, g2 ∈ Znew. Suppose g1 = a′2a
′
1 and g2 = b′2b

′
1 with a′i, b

′
i ∈ (QB)1 for i = 1, 2. Then

Tip(g1)q = pTip(g2) is equivalent to g1q = pg2. It follows that o(g1, g2, p, q) = g1q − pg2 = 0.

Case 2: Let g1 ∈ GA and g2 ∈ Znew. Then the condition Tip(g1)q = pTip(g2) implies that

o(g1, g2, p, q) = g1q − pg2

= (g1 − Tip(g1))q − p(g2 − Tip(g2))

= (g1 − Tip(g1))q

= (
∑
i

λipi)q,

where pi ∈ NonTip(IA) and λi ∈ k. The last two equalities follow from the facts that g2 ∈ Znew

whence g2 = Tip(g2) and g1 − Tip(g1) ∈ Spank(NonTip(IA)). We claim that q ∈ (QB)1, that is,
the length l(q) of q equals 1. Indeed, if l(q) = 0, then Tip(g1) = pg2 should have a preimage in
QA, which is absurd since g2 ∈ Znew. Therefore, we have l(q) ≥ 1. Moreover, l(q) < 2, otherwise
pg2 = Tip(g1)q and l(g2) = 2 yield that Tip(g1) | p, a contradiction.

Assume that g2 = a′2a
′
1 with a′1, a

′
2 ∈ (QB)1 and t(a1) ̸= s(a2). As a consequence, we have q = a′1

and Tip(g1) = pa′2 since pg2 = Tip(g1)q. It follows that all summands of g1 are starting from
s(a2), so does for Tip(g1). Therefore each pia

′
1 has a subpath in Znew and we have o(g1, g2, p, q) =

(
∑

i λipi)q = (
∑

i λipi)a
′
1 ⇒Znew 0.

Case 3: Let g1 ∈ Znew and g2 ∈ GA. The proof is similar to that of Case 2.

Case 4: Let g1, g2 ∈ GA. If l(p) = 0, then Tip(g1)q = Tip(g2) which yields Tip(g1) | Tip(g2).
Since GA is reduced, we have g1 = g2 and l(q) = 0. Consequently, o(g1, g2, p, q) = 0. If l(p) > 0
such that p has a subpath in Znew, then the conditions Tip(g1)q = pTip(g2) and Tip(g1) ∤ p imply
that p is a proper subpath of Tip(g1). Hence Tip(g1) has a subpath in Znew, a contradiction.
Similarly, if l(q) = 0 or l(q) > 0 such that q has a subpath in Znew, it will lead to a contradiction.
So we may assume that l(p) > 0, l(q) > 0 and both p and q do not contain a subpath in Znew.
Then, under our assumption on the admissible order on (QB)≥0, the overlap relation o(g1, g2, p, q)
in kQB becomes an overlap relation in kQA. Since o(g1, g2, p, q) ⇒GA

0, then o(g1, g2, p, q) ⇒GB
0.

This proves that GB is a Gröbner basis of IB . Finally, it is obvious that the Gröbner basis GB is
reduced. □

3. First Hochschild cohomology

In this section we assume that A is a �nite dimensional algebra isomorphic to kQA/IA, where k
is a �eld, QA is a �nite quiver (with vertices e1, · · · , en) and IA is an admissible ideal in the path
algebra kQA. We exclude the case in which e1 or en is an isolated vertex. Let B = kQB/IB be
a radical embedding obtained by gluing two idempotents e1 and en of A. We denote the vertices
of QB by f1, · · · , fn−1, where f1 is obtained by gluing e1 and en. For the rest of this section, we
always assume that A and B are as in Proposition 2.11 so that IA has a reduced Gröbner basis
GA and IB has a reduced Gröbner basis GB = GA ∪ Znew under some appropriate left length-
lexicographic orders. Moreover, A has a `monomial' k-basis BA given by NonTip(IA) (modulo IA)
and B has a `monomial' k-basis BB given by NonTip(IB) (modulo IB).
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We brie�y outline the main results of this section. Firstly, we will compare Im(δ0A) and Im(δ0B).
Then we will study the Lie algebra structures of Ker(δ1A) and Ker(δ1B). Lastly, we will compare

the dimensions and the Lie structures of HH1(A) and HH1(B).

We will use the cochain complex Cpara from the previous section in order to understand the
behaviour of the �rst Hochschild cohomology under idempotent gluings. We start by considering
how idempotent gluings behave with respect to parallelism of arrows and paths. Recall from
Section 2 that the quiver morphism φ : QA → QB sends a vertex ei to fi for 2 ≤ i ≤ n − 1 and
e1, en to f1. In addition, φ sends an arrow α in QA to an arrow α′ in QB .

Lemma 3.1. Let B be a radical embedding obtained by gluing two idempotents e1 and en of A.
Let α, β ∈ (QA)1. If α // β, then α′ // β′.

Proof. The proof follows from the de�nition of gluing of two idempotents. □

Lemma 3.2. Let B be a radical embedding obtained by gluing a source and a sink of A. Let
α, β ∈ (QA)1. Then α // β if and only if α′ // β′.

Proof. The su�ciency is obvious by Lemma 3.1, it su�ces to show the necessity. If α′ // β′, then to
show α // β we need to use the assumption that we are gluing a source, say e1, and a sink, say en.
We show that if α ∖// β, then α′ ∖// β′. If α ∖// β, then either s(α) ̸= s(β) or t(α) ̸= t(β). Assume
s(α) = ei ̸= ej = s(β), where i ̸= j. We consider three cases:

a) If 2 ≤ i ≤ n− 1, 1 ≤ j ≤ n and i ̸= j, then

s(α′) = fi ̸= s(β′) =

{
fj for 2 ≤ j ≤ n− 1
f1 for j = 1 or n

,

which means α′ ∖// β′.

b) If i = 1, 1 ≤ j ≤ n and i ̸= j, then s(α′) = f1 and s(β′) =

{
fj for 2 ≤ j ≤ n− 1
f1 for j = n

. We

have s(β′) = f1 = s(α′) only when j = n, that is, if s(β) = en. But this is not possible since en is
a sink. Hence s(α′) ̸= s(β′), which means α′ ∖// β′.

c) We can deduce the same for i = n, 1 ≤ j ≤ n and i ̸= j.

Similar arguments apply if we assume t(α) ̸= t(β). □

We now partially extend the above results to parallel paths.

Proposition 3.3. Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a radical embed-
ding obtained by gluing two idempotents of A. Then the following hold:

(1) The map φ : QA → QB induces a surjective map, also denoted by φ : BA → BB, such that
φ−1(p′) = {p} for p′ ̸= f1 and φ−1(f1) = {e1, en}, where we denote φ(p) by p′ for p ∈ BA.

(2) Let p, q ∈ BA. If p // q in QA, then p′ // q′ in QB.

(3) The map φ : BA → BB induces k-linear maps

φ0 : k((QA)0 // BA) → k((QB)0 // BB),

φ1 : k((QA)1 // BA) → k((QB)1 // BB),

φ2 : k(Tip(GA) // BA) → k(Tip(GB) // BB).

Proof. We identify BA with NonTip(IA) (modulo IA) and observe that NonTip(IA) := (QA)≥0 \
Tip(IA) consists of monomial elements. The same holds for BB .

The quiver morphism φ : QA → QB induces a k-linear map kQA → kQB between path algebras
by sending a path p = am · · · a1 (ai ∈ (QA)1 for 1 ≤ i ≤ m) in QA to a path p′ := a′m · · · a′1 in
QB . Clearly, the condition p ∈ BA is equivalent to p /∈ ⟨Tip(IA)⟩ = ⟨Tip(GA)⟩ ⊆ kQA. We deduce
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that p′ /∈ ⟨Tip(IB)⟩ = ⟨Tip(GB)⟩ = ⟨Tip(IA) ∪ Znew⟩ ⊆ kQB since the elements in the set Znew

are the newly formed relations in IB . Therefore p′ ∈ BB . The statement (1) follows from the fact
that dimkB = dimkA− 1, and the statements (2) and (3) follow from Lemma 3.1. □

We have the following non-commutative diagram:

0 k((QA)0 // BA) k((QA)1 // BA) k(Tip(GA) // BA)

0 k((QB)0 // BB) k((QB)1 // BB) k(Tip(GB) // BB) .

φ0

δ0A

φ1

δ1A

φ2

δ0B δ1B

(∗)

Note that the top and the bottom complexes are truncations of the complexes Cpara of A and of
B, respectively. Although both squares in the diagram (∗) are not commutative in general, there
are close connections between the coboundary elements (resp. the cocycle elements) of the top
complex and the coboundaries (respectively the cocycles) of the bottom complex in the diagram
(∗).

In order to compare Im(δ0A) and Im(δ0B) we need some de�nitions and a lemma. With Proposition
2.7 in mind, we introduce the following notation:

Notation 1. We denote by δ0(A)0
to be the map δ0A restricted to the subspace k((QA)0 // (QA)0).

We denote by Im(δ0(A)0
) the k-vector space generated by the image of δ0A on ei // ei, where ei

(1 ≤ i ≤ n) are idempotents corresponding to vertices of QA. We denote by Ker(δ0(A)0
) the kernel

of the map δ0(A)0
. Similarly, we denote by Im(δ0(A)≥1

) the k-vector space generated by the image

of δ0A on ei // p (1 ≤ i ≤ n), where p ∈ BA and p ̸= ei. We use the same notation for Im(δ0(B)≥1
).

Lemma 3.4. Let A = kQA/IA be a quiver algebra. Then

dimkIm(δ0(A)0
) = nA − cA,

where nA = |(QA)0| is the number of vertices of QA and cA is the number of connected components
of QA.

Proof. It is enough to assume that A is indecomposable. Indeed, if it holds for each block Ai of
A, then

dimk(Im(δ0(A)0
)) =

∑
Ai

(|(QAi)0| − 1) = |(QA)0| − cA.

Hence assume A is indecomposable. Note that:

dimk(k((QA)0 // (QA)0) = |(QA)0| = dimk(Im(δ0(A)0
)) + dimk(Ker(δ0(A)0

)).

Consequently, it is enough to show that dimk(Ker(δ0(A)0
)) = 1. It is straightforward to check that∑nA

i=1 ei // ei is in Ker(δ0(A)0
). Therefore Ker(δ0(A)0

) has dimension at least one. We will prove by

contradiction that the dimension of Ker(δ0(A)0
) is exactly 1.

Assume the dimension of Ker(δ0(A)0
) is greater than 1. Then we can assume without loss of

generality that there exists T ⫋ {1, . . . , nA} such that
∑

i∈T λiei // ei is an element of Ker(δ0(A)0
),

where λi are non-zero scalars. Indeed, if there exists an element
∑nA

i=1 λiei // ei in Ker(δ0(A)0
), then

by taking a linear combination with
∑nA

i=1 ei // ei we can always �nd such T . Consider the full

subquiver Q having the vertices indexed by T . Since QA is connected and since T ⫋ {1, . . . , nA},
then δ0A(

∑
i∈T λiei // ei) has one summand of the form c // c where c is an arrow such that s(c) ∈ Q0

and t(c) /∈ Q0 (or s(c) /∈ Q0 and t(c) ∈ Q0). Since c // c cannot be written as a linear combination of
other elements of k((QA)1 // BA) and since λi are non-zero, then

∑
i∈T λiei // ei is not in Ker(δ0(A)0

).

The statement follows. □
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Let p be a path between e1 and en in BA. Then p′ is an oriented cycle at f1 in QB . If p is a path
from e1 to en, then we have

δ0B(f1 // p
′) =

∑
s(a)=en,a∈(QA)1,ap∈BA

a′ // a′p′ −
∑

t(b)=e1,b∈(QA)1,pb∈BA

b′ // p′b′.

Note that we have omitted some zero terms in the above sum, for example, if d ∈ (QA)1 is an
arrow starting at e1, then d′ // d′p′ appears as a term in the above sum, however, it is zero since
d′p′ lies in IB . If p is a path from en to e1, then we have

δ0B(f1 // p
′) =

∑
s(a)=e1,a∈(QA)1,ap∈BA

a′ // a′p′ −
∑

t(b)=en,b∈(QA)1,pb∈BA

b′ // p′b′.

As in the previous case, we have omitted some zero terms in the above sum. Moreover, in both
cases, δ0B(f1 // p

′) is zero if and only if ap, pa ∈ IA for all a ∈ (QA)1. This observation leads to the
following de�nition:

De�nition 3.5. Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a radical embedding
obtained by gluing two idempotents e1 and en of A. Let p be a path between e1 and en in BA.
We call p a special path between e1 and en in QA if δ0B(f1 // p

′) ̸= 0, or equivalently, if there exists
some a ∈ (QA)1 such that ap /∈ IA or pa /∈ IA.

We denote by Spn1 the set of special paths between e1 and en in QA, and by Vsp the k-subspace
of Im(δ0B) generated by the elements δ0B(f1 // p

′) for p ∈ Spn1 . Furthermore, we denote by spn1 the
dimension of Vsp.

Lemma 3.6. Let p be a special path between e1 and en in BA and let q be a path in BA\Spn1 . Then
the set of the summands of δ0B(f1 // p

′) and the set of the summands of δ0B(fi // q
′) (1 ≤ i ≤ n − 1)

are disjoint.

Proof. Without loss of generality, we assume that p is a special path from e1 to en. Then

δ0B(f1 // p
′) =

∑
s(α)=en,α∈(QA)1,αp∈BA

α′ // α′p′ −
∑

t(β)=e1,β∈(QA)1,pβ∈BA

β′ // p′β′,

δ0B(fi // q
′) =

∑
s(a′)=fi,a′∈(QB)1,a′q′∈BB

a′ // a′q′ −
∑

t(b′)=fi,b′∈(QB)1,q′b′∈BB

b′ // q′b′.

Note that α′ // α′p′ ̸= a′ // a′q′, otherwise, α′ = a′ ∈ (QB)1 and α′p′ = a′q′ ∈ BB which imply that
α = a ∈ (QA)1 and αp = aq ∈ BA by the bijection between (BA)≥1 and (BB)≥1. Moreover, the
equality αp = aq ∈ BA implies that p // q. Hence q is also a path in BA from e1 to en and aq /∈ IA
for an arrow a. This means that q ∈ Spn1 , a contradiction. In addition, we have α′ // α′p′ ̸= b′ // q′b′,
otherwise α = b ∈ (QA)1 and αp = qb ∈ BA which implies e1 = s(p) = s(αp) = s(qα) = s(α) = en,
a contradiction. We can similarly show that β′ // p′β′ ̸= a′ // a′q′ and β′ // p′β′ ̸= b′ // q′b′. □

Remark 3.7. (1) The dimension of Vsp is less than or equal to the number of special paths,
that is, spn1 ≤ |Spn1 |. This follows from the fact that the summands of δ0B(f1 // p

′) and of
δ0B(f1 // q

′) may cancel each other out for p, q ∈ Spn1 , p ̸= q (cf. Example 6.6).

(2) If e1 and en belong to di�erent blocks of A or A is a radical square zero algebra, then
spn1 = 0.

(3) In general, the number spn1 could be arbitrarily large, see Example 6.5.

We can now compare the dimensions of Im(δ0A) and Im(δ0B):

Proposition 3.8. Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a radical embed-
ding obtained by gluing two idempotents e1 and en of A. Then

dimkIm(δ0A) = dimkIm(δ0B) + 1 + cB − cA − spn1 .

In particular, if we glue e1 and en from the same block of A, then

dimkIm(δ0A) = dimkIm(δ0B) + 1− spn1 ;
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if we glue e1 and en from di�erent blocks of A, then

dimkIm(δ0A) = dimkIm(δ0B).

Proof. As usual, the vertices of QA are e1, · · · , en and the vertices of QB are f1, · · · , fn−1, where
f1 is obtained by gluing e1 and en. We begin with describing the basis elements in Im(δ0A) and in
Im(δ0B).

Let ei // p ∈ k((QA)0 // BA). We consider two cases, depending on whether p = ei or p ̸= ei.

(a1) If p = ei (1 ≤ i ≤ n), then we have

δ0A(ei // ei) =
∑

s(a)=ei,a∈(QA)1

a // a−
∑

t(b)=ei,b∈(QA)1

b // b.

By Lemma 3.4, the subspace Im(δ0(A)0
) of Imδ0A generated by the elements of the form δ0A(ei // ei)

has dimension nA − cA.

(a2) If p ̸= ei, then p is an oriented cycle at ei and

δ0A(ei // p) =
∑

s(a)=ei,a∈(QA)1,ap∈BA

a // ap−
∑

t(b)=ei,b∈(QA)1,pb∈BA

b // pb.

It is clear that
Im(δ0A) = Im(δ0(A)0

) ⊕ Im(δ0(A)≥1
).

Similarly, we let fi // q ∈ k((QB)0 // BB) and consider four cases.

(b1) If q = fi (1 ≤ i ≤ n− 1), then we have

δ0B(fi // fi) =
∑

s(a′)=fi,a′∈(QB)1

a′ // a′ −
∑

t(b′)=fi,b′∈(QB)1

b′ // b′.

By Lemma 3.4, the subspace Im(δ0(B)0
) of Im(δ0B) generated by the elements of the form δ0B(fi // fi)

has dimension nB − cB .

(b2) If q is an oriented cycle at fi and i ̸= 1, then by Proposition 3.3 we have q = p′ for some
oriented cycle p ∈ BA at ei (2 ≤ i ≤ n− 1). Therefore

δ0B(fi // p
′) =

∑
s(a′)=fi,a′∈(QB)1

a′ // a′p′ −
∑

t(b′)=fi,b′∈(QB)1

b′ // p′b′ = φ1(δ
0
A(ei // p)).

(b3) If q is an oriented cycle at f1 such that q = p′, for some oriented cycle p ∈ BA at e1, then

δ0B(f1 // p
′) =

∑
s(a′)=f1,a′∈(QB)1,a′p′∈BB

a′ // a′p′ −
∑

t(b′)=f1,b′∈(QB)1,p′b′∈BB

b′ // p′b′ = φ1(δ
0
A(e1 // p)).

If q is an oriented cycle at f1 such that q = p′, for some oriented cycle p ∈ BA at en, then

δ0B(f1 // p
′) =

∑
s(a′)=f1,a′∈(QB)1,a′p′∈BB

a′ // a′p′ −
∑

t(b′)=f1,b′∈(QB)1,p′b′∈BB

b′ // p′b′ = φ1(δ
0
A(en // p)).

(b4) If q is an oriented cycle at f1 with q = p′ for some path p between e1 and en in BA, then
we assume that p is a special path since otherwise δ0B(f1 // p

′) is zero. Note that q is of the form

f1
a′

→ · · · b′→ f1 and might be a loop at f1. If p is a path from e1 to en, then we have

δ0B(f1 // p
′) =

∑
s(a)=en,a∈(QA)1,ap∈BA

a′ // a′p′ −
∑

t(b)=e1,b∈(QA)1,pb∈BA

b′ // p′b′.

If p is a path from en to e1, then we have

δ0B(f1 // p
′) =

∑
s(a)=e1,a∈(QA)1,ap∈BA

a′ // a′p′ −
∑

t(b)=en,b∈(QA)1,pb∈BA

b′ // p′b′.

In both cases, δ0B(f1 // p
′) is nonzero since p is a special path.
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In addition, we have
Im(δ0B) = Im(δ0(B)0

)⊕ Im(δ0(B)≥1
).

We claim that
Im(δ0(B)≥1

) = φ1(Im(δ0(A)≥1
))⊕ Vsp.

It su�ces to show that the set of the summands of δ0B(f1 // p
′) and the set of the summands

of φ1(Im(δ0(A)≥1
)) are disjoint for p ∈ Spn1 . Since an element in φ1(Im(δ0(A)≥1

)) is of the form

φ1(δ
0
A(ei // q)) = δ0B(fi // q′), where q is an oriented cycle at ei (1 ≤ i ≤ n) (here we identify fn with

f1), the statement follows from Lemma 3.6. Note also that the map φ1 : Im(δ0(A)≥1
) → Im(δ0(B)≥1

)

is clearly injective. Therefore we have

(1) dimkIm(δ0(A)≥1
) = dimkIm(δ0(B)≥1

)− spn1 .

By (a1) and (b1) and since nA = nB + 1, we get

(2) dimkIm(δ0(A)0
) = dimkIm(δ0(B)0

) + 1 + cB − cA.

Then we have

dimkIm(δ0A) = dimkIm(δ0(A)≥1
) + dimkIm(δ0(A)0

)

= dimkIm(δ0(B)≥1
)− spn1 + dimkIm(δ0(B)0

) + 1 + cB − cA

= dimkIm(δ0B) + 1 + cB − cA − spn1 ,

(3)

where the second equality follows from Equations (1) and (2). In particular, if we glue e1 and en
from the same block of A, then we have cB = cA. If e1 and en are from two di�erent blocks of A,
then cB = cA − 1 and spn1 = 0. □

We obtain a corollary that will be useful for stable equivalences induced by idempotent glu-
ings.

Corollary 3.9. Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a radical embedding
obtained by gluing two idempotents e1 and en of A. Assume one of the following two conditions
holds:

(i) e1 is a source and en is a sink;

(ii) A is a radical square zero algebra.

Then we have
dimkIm(δ0A) = dimkIm(δ0B) + 1 + cB − cA.

In particular, if we glue e1 and en from the same block of A, then

dimkIm(δ0A) = dimkIm(δ0B) + 1;

if e1 and en are from two di�erent blocks of A, then we have

dimkIm(δ0A) = dimkIm(δ0B).

Proof. It is clear that under the condition (i) or (ii) there are no special paths between e1 and
en. Therefore spn1 = 0. If we glue e1 and en from the same block of A, then cB = cA; if e1 and en
are from two di�erent blocks of A, then cB = cA − 1. Thus, the result follows from Proposition
3.8. □

We will often use the following assumption on the characteristic of the �eld k:

Assumption 1. Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a radical embedding
obtained by gluing two idempotents e1 and en of A. For each loop α at e1 or at en with αm ∈
Tip(GA), we have that char(k) ∤ m.

Clearly, Assumption 1 holds if the characteristic of the �eld k is zero or big enough. We now
proceed to compare the Lie structures of Ker(δ1A) and Ker(δ1B):
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Proposition 3.10. Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a radical
embedding obtained by gluing two idempotents e1 and en of A. If char(k) satis�es Assumption 1,
then there exists an injective (restricted) Lie algebra homomorphism Ker(δ1A) ↪→ Ker(δ1B) induced
from φ1 : k((QA)1 // BA) → k((QB)1 // BB), which we still denote by φ1.

Proof. First we notice that IA = ⟨GA⟩ and IB = ⟨GB⟩, and by Proposition 2.11 we can write
GB = GA ∪ Znew, where Znew = {b′c′ | b′, c′ ∈ (QB)1, t(c

′) = f1 = s(b′), bc /∈ BA}. Having the
diagram (∗) in mind, let α // p ∈ k((QA)1 // BA) and let φ1(α // p) = α′ // p′ be the corresponding
element in k((QB)1 // BB). On the one hand, we have

φ2(δ
1
A(α // p)) = φ2(

∑
r∈GA,q∈Supp(r)

cr(q) · Tip(r) // qα // p) =
∑

r∈GA,q∈Supp(r)

cr(q) · Tip(r)′ // q′α
′ // p′

;

On the other hand, we have

δ1B(φ1(α // p)) = δ1B(α
′ // p′)

=
∑

r′∈GB ,q′∈Supp(r′)

cr′(q
′) · Tip(r′) // q′α

′ // p′

=
∑

r∈GA,q∈Supp(r)

cr(q) · Tip(r)′ // q′α
′ // p′

+
∑

r′∈Znew

r′ // r′α
′ // p′

.

We consider four cases.

(c1) If α is a loop at ei, for 2 ≤ i ≤ n − 1, and p = ei or p is an oriented cycle at ei, then∑
r′∈Znew

r′ // r′α
′ // p′

= 0. Indeed, α′ does not appear in any r′ ∈ Znew. Therefore φ2(δ
1
A(α // p)) =

δ1B(φ1(α // p)).

(c2) If α is a loop at e1 (respectively en) and p = e1 (resp. p = en). In case p = e1, since A
is �nite dimensional, by Lemma 2.6 there exists an element r in GA such that Tip(r) = αm for
some integer m ≥ 2. Hence, δ1A(α // e1) contains the summand mTip(r) // αm−1 = mαm // αm−1,
which cannot be cancelled in Im(δ1A) unless char(k) | m. That is, if char(k) ∤ m, then α // e1 cannot
appear as a summand of an element of Ker(δ1A). Note that α′ appears in some r′ ∈ Znew and

therefore δ1B(φ1(α // e1)) = δ1B(α
′ // f1) contains a summand r′ // r′α

′ // f1 , which cannot be cancelled
in Im(δ1B). Therefore, φ1(α // e1) cannot appear as a summand of an element of Ker(δ1B). A similar
result holds if α is a loop at en and if p = en.

(c3) If α is a loop at e1 (resp. en) and p is an oriented cycle at e1 (resp. en), then once we replace
α′ in any r′ ∈ Znew by p′, r′ becomes a path in QB that still contains some relation in Znew.

Hence
∑

r′∈Znew
r′ // r′

α′ // p′
= 0. Therefore φ2(δ

1
A(α // p)) = δ1B(φ1(α // p)).

(c4) If α is a an arrow which is not a loop such that α′ appears in some r′ ∈ Znew and if
p ∈ BA is a path parallel to α, then, by the same argument as in (c3), the element obtained

from r′ by replacing α′ by p′ is not in BB . Hence
∑

r′∈Znew
r′ // r′

α′ // p′
= 0 and consequently

φ2(δ
1
A(α // p)) = δ1B(φ1(α // p)).

The above discussion shows that, if char(k) satis�es Assumption 1, then there is a k-linear map
φ1 : Ker(δ1A) −→ Ker(δ1B) induced from φ1 : k((QA)1 // BA) → k((QB)1 // BB). It is also clear that
φ1 : Ker(δ1A) −→ Ker(δ1B) is injective and preserves the Lie bracket, since φ1 : k((QA)1 // BA) →
k((QB)1 // BB) preserves parallel paths. □

Remark 3.11. Since the characteristic condition is only needed in (c2), we do not need Assump-
tion 1 in Proposition 3.10 under one of the following conditions:

(1) There is no loop both at e1 and at en. In particular if e1 (resp. en) is a source vertex and en
(resp. e1) is a sink vertex.

(2) A (hence also B) is a radical square zero algebra, excluding the case when we glue e1 and en
from di�erent blocks of A such that one of the two blocks is isomorphic to k[x]/(x2). Indeed, if A
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is a radical square zero algebra, then Assumption 1 is equivalent to require char(k) ̸= 2. Therefore,
if we exclude the case of gluing two blocks such that one of them is isomorphic to k[x]/(x2), then
a loop α will appear in a relation αβ (where β is an arrow di�erent from α) or in a relation γα
(where γ is an arrow di�erent from α). Consequently, α // e1 /∈ Ker(δ1A) and φ1(α // e1) /∈ Ker(δ1B).

In order to describe the elements in Ker(δ1B) which are in the complement of the subspace
φ1(Ker(δ1A)), we introduce the following de�nition.

De�nition 3.12. Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a radical
embedding obtained by gluing two idempotents e1 and en of A. Let α be an arrow and p be a
path in BA. We call (α, p) is a special pair with respect to the gluing of e1 and en if the following
two conditions are satis�ed:

(1) α ∖// p in QA;

(2) α′ // p′ in QB .

We denote by Sppn1 the set of all special pairs with respect to the gluing of e1 and en and

by S̃ppn1 the k-subspace of k((QB)1 // BB) generated by the elements α′ // p′, where (α, p) ∈ Sppn1 .

Furthermore, we denote by Vspp the intersection of S̃ppn1 and Ker(δ1B), and by ksppn1 the dimension
of the k-subspace Vspp of Ker(δ1B).

Observe that Vsp is a subspace of Vspp and therefore we always have ksppn1 ≥ spn1 . Note that every
nonzero element of Vspp is a linear combination of parallel paths corresponding to special pairs
(cf. Example 6.9). Moreover, conditions (1) and (2) imply that α is starting from e1, or ending at
e1, or starting from en, or ending at en. Note also that the notion of special pairs leads to various
possible con�gurations of the pairs (α, p) ∈ (QA)1 // BA, see Example 6.8.

Remark 3.13. Although in the radical square zero case there are no special paths in QA, there
may exist special pairs when we glue e1 and en whether from the same block (see Examples 6.2
and 6.7) or from two di�erent blocks of A. Moreover, if we glue from two di�erent blocks and
exclude the case that there are loops both at e1 and at en, then Vspp = 0. Indeed, when we glue
e1 and en from di�erent blocks of A we have

Sppn1 = {(α, en), (α, β), (β, e1), (β, α) | α (resp. β) is a loop at e1 (resp. en)}.

Since e1 and en are not isolated vertices, and B is also a radical square zero algebra, we have
neither α′ // f1 nor β′ // f1 lies in Ker(δ1B). Therefore, if we exclude the case that there are loops
both at e1 and at en, then Vspp = ⟨α′ // β′, β′ // α′ | α (resp. β) is a loop at e1 (resp. en)⟩ is zero.

Proposition 3.14. Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a radical
embedding obtained by gluing two idempotents e1 and en of A. If char(k) satis�es Assumption 1,
then we have a decomposition

Ker(δ1B) = φ1(Ker(δ1A))⊕ Vspp,

as k-vector spaces and therefore

dimkKer(δ1B) = dimkKer(δ1A) + ksppn1 .

Proof. By Proposition 3.10, we only need to describe the elements θ in Ker(δ1B) which are in
the complement of the subspace φ1(Ker(δ1A)), under Assumption 1. According to the proof of
Proposition 3.10, we may assume that θ is a linear combination of elements of the form α′ // p′ such
that (α, p) is a special pair with respect to the gluing of e1 and en. Clearly in this case θ ∈ Vspp.
Therefore, we have the following decomposition: Ker(δ1B) = φ1(Ker(δ1A))⊕ Vspp. □

Exceptional case 1. Let char(k) = 2, by gluing we obtain a block of B of the form k[x]/(x2), in
other words, A has one block which has a Gabriel quiver of type A2 and we perform the gluing in
this block.
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Corollary 3.15. Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a radical embedding
obtained by gluing a source vertex e1 and a sink vertex en of A. Then we have Ker(δ1A) ≃ Ker(δ1B)
as Lie algebras, except in the Exceptional case 1.

Proof. By Lemma 3.2, the only possible special pair with respect to the gluing of e1 and en has

the form (α, e1) or (α, en) such that α is an arrow from e1 to en. Therefore S̃ppn1 is generated by
the elements of the form α′ // f1. Suppose now that α′ // f1 ∈ Ker(δ1B). Then we consider two cases.

If QA contains a connected component e1
α−→ en so that B has a block isomorphic to k[x]/(x2),

then δ1B(α
′ // f1) = 2r′ // α′ = 0 (where r′ = α′α′) implies that char(k) = 2. If QA is not the above

case, then either there is an arrow β′ ̸= α′ starting from f1 or there is an arrow γ′ ̸= α′ ending
at f1 in QB . Therefore δ1B(α

′ // f1) will contain a summand β′α′ // β′ or a summand α′γ′ // γ′, which
clearly cannot be cancelled in Im(δ1B), so α′ // f1 /∈ Ker(δ1B). It follows that α

′ // f1 ∈ Ker(δ1B) if and
only if B has a block isomorphic k[x]/(x2) and char(k) = 2. Summarising the above discussion,
we get ksppn1 = 0 when gluing a source and a sink and excluding the Exceptional case 1. The
statement follows from Proposition 3.14, Proposition 3.10 and Remark 3.11 (1). □

Remark 3.16. For the Exceptional case 1, since the rest of the blocks of A do not change,
this reduces to the case when A has only one block which has a Gabriel quiver of type A2. In

this case char(k) = 2 and B ≃ k[x]/(x2), A = kQA where QA is given by the quiver 1
α−→ 2.

By a direct computation, we have the following: Im(δ0A) = Kerδ1A is 1-dimensional with k-basis

{α // α}, Im(δ0B) = 0 and Ker(δ1B) is 2-dimensional with k-basis {α′ // f1, α
′ // α′}. Note that Spp21 =

{(α, e1), (α, e2)} and Vspp = ⟨α′ // f1⟩. Therefore, dimkKer(δ1B) = dimkKer(δ1A)+ kspp21.

We can �nally compare the dimensions of HH1(A) and of HH1(B).

Theorem 3.17. Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a radical embedding
obtained by gluing two idempotents e1 and en of A. If char(k) satis�es Assumption 1, then we
have

dimk HH1(A) = dimk HH1(B)− 1− ksppn1 + spn1 + cA − cB .

In particular, if we glue e1 and en from the same block of A, then

dimk HH1(A) = dimk HH1(B)− 1− ksppn1 + spn1 ;

if e1 and en are from two di�erent blocks of A, then HH1(A) is a Lie subalgebra of HH1(B) and

dimk HH1(A) = dimk HH1(B)− ksppn1 .

Proof. Since HH1 ≃ Ker(δ1)/Im(δ0), the statement follows from Propositions 3.8 and 3.14. □

Remark 3.18. In [5, Theorem 1] the authors give a formula to compute the dimension of HH1(A)
for a monomial algebra A using an exact sequence in [4, Page 98]. They introduce the following
notions: an element a // p in (QA)1 // B is admissible if a // p ∈ Ker(δ1A). An element a // p in (QA)1 // B
is glued if p is a vertex or a is the �rst or the last arrow of p. The image of δ1 restricted to the
subspace spanned by glued elements is denoted Im(Rg). An element a // p is called e�ective if it is
neither glued nor admissible. We denote by ((QA)1 // BA)e the set of e�ective elements. Then:

dimHH1(A) = |(QA)1 // BA| − |((QA)1 // BA)e| − dim(Im(Rg))− (|(QA)0 // BA| − dim(Z(A))).

This gives another interpretation for the dimension of Vspp for monomial algebras, that is, ksppn1 =
KA −KB , where KA := |(QA)1 // BA| − |((QA)1 // BA)e| − dim(Im(Rg)) and so does for B.

Notation 2. We set

Y := φ1(Im(δ0A))⊕ Vsp ⊆ Ker(δ1B),

where Vsp is the subspace of Im(δ0(B)≥1
) generated by the elements δ0B(f1 // p

′) for p ∈ Spn1 .

We have the following strengthened form of Theorem 3.17.
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Theorem 3.19. Under the conditions of Theorem 3.17, we have the following exact commutative
diagram:

0 0 0

0 Vsp Vspp Coker(φ) 0

0 Y Ker(δ1B)
Ker(δ1B)

Y 0

0 Im(δ0A) Ker(δ1A) HH1(A) 0,

0 0 0

ι̃B

ιB

ιA

φ1|Im(δ0
A

)

π0 π1

φ1

π

φ

(∗∗)

where π0, π1 are canonical projections, ιA and ιB are canonical injections, φ is an injective map
induced from φ1 and π is a surjective map induced from π1, Y := φ1(Im(δ0A))⊕ Vsp is a subspace
of Ker(δ1B). In addition,

• Y is equal to Im(δ0B) in the case that e1 and en are from di�erent blocks of A.

• Y contains Im(δ0B) as a codimension 1 subspace in case that e1 and en are from the same
block of A.

Proof. By Proposition 3.10, there exists an injective Lie algebra homomorphism φ1 : Ker(δ1A) ↪→
Ker(δ1B), which is induced from the canonical map φ1 : k((QA)1 // BA) → k((QB)1 // BB). Moreover,
by Proposition 3.14, we have the decomposition Ker(δ1B) = φ1(Ker(δ1A))⊕ Vspp.

Therefore by Proposition 3.8 and by the fact that δ0B(f1 // f1) = φ1(δ
0
A(e1 // e1)) + φ1(δ

0
A(en // en)),

we have that φ1 : Ker(δ1A) ↪→ Ker(δ1B) restricts to an injective map

φ1|Im(δ0A) : Im(δ0A) = Im(δ0(A)0
)⊕ Im(δ0(A)≥1

) ↪→ X ⊕ Im(δ0(B)≥1
) ⊆ Ker(δ1B),

where X is the subspace of Ker(δ1B) generated by the elements φ1(δ
0
A(e1 // e1)), φ1(δ

0
A(en // en)) and

δ0B(fi // fi) (2 ≤ i ≤ n− 1).

Note that X ⊕ Im(δ0(B)≥1
) = Y . In addition, the dimension of X is equal to dimkIm(δ0(A)0

). It

follows from Lemma 3.4 that if e1 and en are from two di�erent blocks of A, then X = Im(δ0(B)0
).

By the same reasoning, if e1 and en are from the same block of A, then Im(δ0(B)0
) ⊆ X has

codimension 1 in X. Therefore Im(δ0B)=Im(δ0(B)0
)⊕Im(δ0(B)≥1

) is equal to Y if e1 and en are from

two di�erent blocks of A, and Im(δ0B) has codimension 1 in Y if e1 and en are from the same block
of A.

If p is a special path from e1 to en, then each summand a′ // a′p′ (or b′ // p′b′) of δ0B(f1 // p
′), where

a is an arrow starting from en such that ap ∈ BA (or where b is an arrow ending at e1 such that
pb ∈ BA), is induced from a special pair (a, ap) (or (b, pb)). In the case that p is a special path
from en to e1, we have the similar conclusion. Therefore the canonical injective map Y ↪→ Ker(δ1B)
restricts to an injective map Vsp ↪→ Vspp.

Hence we obtain the exact commutative diagram (∗∗). □

Lemma 3.20. The space Y is a Lie ideal of Ker(δ1B) if and only if [φ1(Im(δ0A)), Vspp] ⊆ Y .
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Proof. By the de�nition of Y we have that

[Y,Ker(δ1B)] = [φ1(Im(δ0A)),Ker(δ1B)] + [Vsp,Ker(δ1B)]

= [φ1(Im(δ0A)), φ1(Ker(δ1A))] + [φ1(Im(δ0A)), Vspp] + [Vsp,Ker(δ1B)]

= φ1([Im(δ0A),Ker(δ1A)]) + [φ1(Im(δ0A)), Vspp] + [Vsp,Ker(δ1B)]

⊆ φ1(Im(δ0A)) + [φ1(Im(δ0A)), Vspp] + [Im(δ0B),Ker(δ1B)]

⊆ φ1(Im(δ0A)) + [φ1(Im(δ0A)), Vspp] + Im(δ0B)

⊆ Y + [φ1(Im(δ0A)), Vspp] + Y,

where the second equality follows from Proposition 3.14, the third equality follows from the fact
that φ1 is a Lie algebra homomorphism, and the last three equalities follow from the de�nition of
Y and the fact that Im(δ0) is the Lie ideal of Ker(δ1). □

Theorem 3.21. Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a radical embedding
obtained by gluing two idempotents e1 and en of A. Assume char(k) satis�es Assumption 1. If
Vspp = Vsp, then

• Y is a Lie ideal of Ker(δ1B) and

• there is a Lie algebra epimorphism from HH1(B) to Ker(δ1B)/Y ≃ HH1(A) with kernel
I := Y/Im(δ0B), where I is zero if e1 and en are from two di�erent blocks of A and
dimkI = 1 if e1 and en are from the same block of A.

Proof. For the �rst part, note that if e1 and e2 are from two di�erent blocks then by Theorem
3.19 we have Y = Im(δ0B). Hence Y is a Lie ideal of Ker(δ1B). If e1 and e2 are from the same
block, then the statement follows from Lemma 3.20. The second part of the proof follows from
Theorem 3.19. □

Corollary 3.22. Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a radical embedding
obtained by gluing two idempotents e1 and en of A. Assume char(k) satis�es Assumption 1. If
Vspp = Vsp, then

HH1(A)/rad(HH1(A)) ≃ HH1(B)/rad(HH1(B)).

Proof. Since by Theorem 3.21 the ideal I is at most one-dimensional, then I is solvable. Since the
radical contains every solvable ideal, then I ⊆ rad(HH1(B)). Hence by quotienting by the radical
we obtain the desired isomorphism. □

Corollary 3.23. Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a radical embedding
obtained by gluing a source vertex e1 and a sink vertex en of A. Then we have

dimk HH1(A) = dimk HH1(B) + cA − cB − 1,

except in the Exceptional case 1. In particular, if we glue e1 and en from two di�erent blocks of
A, then there is a (restricted) Lie algebra isomorphism

HH1(A) ≃ HH1(B);

if e1 and en are from the same block of A, then

HH1(A) ≃ HH1(B)/I

as (restricted) Lie algebras, where I is a one-dimensional (restricted) Lie ideal of HH1(B).

Proof. First we notice that by Remark 3.11 (1), we do not need Assumption 1. By Corollary 3.15,
we have Vspp = 0 since we glue a source and a sink. The statement follows from Theorem 3.17
and Theorem 3.21. □
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Note that the one-dimensional ideal I := Y/Im(δ0B) of HH1(B) in Theorem 3.21 is generated by
φ1(δ

0
A(e1 // e1)) = φ1(

∑
α∈(QA)1e1

α // α−
∑

β∈e1(QA)1
β // β). In case we glue a source e1 and a sink

en, the ideal I is generated by
∑

α∈(QA)1e1
α′ // α′.

Lemma 3.24. Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a radical embedding
obtained by gluing a source vertex e1 and a sink vertex en of A. Then I is an ideal in the center
of HH1(B).

Proof. An element in HH1(B) is a linear combination of elements β′ // p′, where β′ is an arrow in
QB and p′ is a path in BB . We show that [

∑
α∈(QA)1e1

α′ // α′, β′ // p′] = 0 for every β′ // p′. First

observe that p′ contains an arrow α′, where s(α) = e1, if and only if p′ = p′n · · · p′2α′ and p′i ̸= α′

for i = 2, . . . , n.

If s(β′) ̸= f1, then s(p′) ̸= f1, β ̸= α′, where s(α) = e1, and p′ does not contain any arrow α′

where α ∈ (QA)1e1. Therefore [
∑

α∈(QA)1e1
α′ // α′, β′ // p′] = 0. If s(β′) = f1, then β′ = α′

j for some

α′
j , where s(αj) = e1. In addition, p′ = p′n · · · p′2α′

i for some α′
i, where s(αi) = e1, and p′i ̸= α′ for

i = 2, . . . , n where α ∈ (QA)1e1. Hence [
∑

α∈(QA)1e1
α′ // α′, β′ // p′] = αj // p

′ − αj // p
′ = 0. □

Recall that an exact sequence of Lie algebra homomorphisms 0 a h g 0 is called

a central extension of g by a if [a, h] = 0, where we identify a with the corresponding Lie ideal of
h.

Theorem 3.25. Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a radical embedding
obtained by gluing a source vertex e1 and a sink vertex en of A from the same block of A. Then
HH1(B) is a central extension of HH1(A) by I.

Proof. By Theorem 3.21 we have a short exact sequence of Lie algebras:

0 I HH1(B) HH1(A) 0.

By Lemma 3.24 this extension is central. □

4. Monomial algebras

Recall that a �nite dimensional k-algebra Λ is called monomial if it is a quotient kQ/I of a path
algebra, where the two-sided ideal I of kQ is generated by a set Z of paths of length ≥ 2. We
assume that Z is minimal, that is, no proper subpath of a path in Z is again in Z. Clearly Z is
a reduced Gröbner basis of I under any left length-lexicographic order on Q≥0. Let B = BΛ be
the set of paths of Q which do not contain any element of Z as a subpath. It is clear that the
(classes modulo I of) elements of B form a basis of Λ. We shall denote by Bn the subset Qn ∩ B
of B formed by the paths of length n.

For the quiver Q, the parallelism is an equivalence relation on the set of arrows Q1; for α ∈ Q1, [α]
denotes the equivalence class of α. We denote Q̄1 the set of equivalence classes of parallel arrows.
The quiver which has Q0 as vertices and Q̄1 as set of arrows, will be denoted by Q̄. We denote
by χ(Q̄) the �rst Betti number of Q̄ which is equal to |Q̄1| − |Q̄0| + cQ̄, where cQ̄ is the number

of connected components of Q̄.

4.1. A direct sum decomposition of HH1. In this subsection, we will show that our Theorem
3.25 can be strengthened to Corollary 4.6 for monomial algebras. More precisely, we will show
that when we glue a source and a sink in a monomial algebra A, the central extension is actually
a trivial extension, that is, we have a direct sum of Lie algebras.

According to [19, Section 4], the Lie algebra HH1(Λ) of a monomial algebra Λ = kQ/⟨Z⟩ has a
natural grading. Indeed, if a // γ ∈ Q1 // Bn and b // ϵ ∈ Q1 // Bm, then the Lie bracket de�ned in
Theorem 2.8 shows that [a // γ, b // ϵ] ∈ k(Q1 // Bn+m−1). Thus, we have a grading on the Lie algebra
k(Q1 // B) = ⊕i∈Nk(Q1 // Bi) by considering that the elements of k(Q1 // Bi) have degree i − 1 for
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all i ∈ N. It is clear that the Lie subalgebra Ker(δ1) of k(Q1 // B) preserves this grading and that
Im(δ0) is a graded ideal, which induces a grading on the Lie algebra HH1(Λ) ≃ Ker(δ1)/Im(δ0).
More precisely, if we set

L−1 := k(Q1 // Q0) ∩Ker(δ1),

L0 := (k(Q1 // Q1) ∩Ker(δ1))/⟨δ0(e // e) | e ∈ Q0⟩ and
Li := (k(Q1 // Bi+1) ∩Ker(δ1))/⟨δ0(e // p) | e // p ∈ Q1 // Bi⟩

for all i ≥ 1, then HH1(Λ) =
⊕

i≥−1 Li and [Li, Lj ] ⊆ Li+j for all i, j ≥ −1, where L−2 = 0.

Remark 4.1. Note that if the characteristic of the �eld k is equal to 0, then L−1 = 0 by
Proposition 4.2 in [19]. It follows that

⊕
i≥1 Li is a solvable Lie ideal of HH1(Λ) =

⊕
i≥0 Li since

HH1(Λ) is �nite dimensional. It is also obvious that L0 is a Lie subalgebra of HH1(Λ).

In order to ensure each L
[α]
0 (in the Lie algebra decomposition (†) of L0 below) to be a Lie ideal,

we need to use the following variation of [19, Proposition 4.7]).

Lemma 4.2. The basis BL0
of L0 is given by the union of the following sets:

(i) all the elements a // b ∈ L0 such that a ̸= b;

(ii) for every class of parallel arrows [α] = {α1, α2, · · · , αn} ∈ Q̄1, all the elements αi // αi −
αn // αn ∈ L0 such that i < n;

(iii) for each (oriented or undirected) cycle in Q̄, choose one class of parallel arrows [α] =
{α1, α2, · · · , αn} in this cycle and take αn // αn. Note that there are χ(Q̄) linearly indepen-
dent elements in (iii).

For each class of parallel arrows [α] ∈ Q̄1 we denote by L
[α]
0 the Lie ideal of L0 generated by

the elements of the form αi // αj and αi // αi − αn // αn in BL0 , where [α] = {α1, α2, · · · , αn} and
1 ≤ i, j ≤ n. Obviously the Lie algebra L0 is the direct sum of these Lie algebras:

L0 = ⊕[α]∈Q̄L
[α]
0 , (†)

where this decomposition depends on the basis BL0
and L

[α]
0 may be equal to zero for some

[α].

Remark 4.3. Let A be a monomial algebra and let B be a radical embedding obtained by gluing
two idempotents in A. Then B is also a monomial algebra, hence both HH1(A) and HH1(B)
have a canonical grading. Note that the one-dimensional ideal I := Y/Im(δ0B) of HH1(B) in
Theorem 3.21 is generated by φ1(δ

0
A(e1 // e1)) = φ1(

∑
[α]∈(Q̄A)1e1

I[α] −
∑

[α]∈e1(Q̄A)1
I[α]), where

I[α] :=
∑m

i=1 αi // αi for [α] = {α1, α2, · · · , αm}.

We can rewrite the generator φ1(δ
0
A(e1 // e1)) of I after introducing the following de�nition.

De�nition 4.4. Let Qc
A and Qd

A be two sub-quivers of QA such that the arrows of Qc
A satisfy

one of the following two conditions:

(i) t(α) = en;

(ii) α lies in a path or an undirected path in the quiver QA, which is starting at e1 and ending
at en and passes through e1 just once.

The arrows of Qd
A are the arrows of QA which are not in Qc

A. We also de�ne the corresponding
sub-quivers Qc

B and Qd
B via the map φ in Section 2.

Denote by ∆ := (Q̄c
A)1e1 the subset of (Q̄A)1e1 consisting of the equivalence classes of parallel

arrows [α] starting from e1 in Q̄c
A.

For a concrete example for ∆, see Example 6.11.
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Lemma 4.5. Let A = kQA/IA be a monomial algebra and let B = kQB/IB be a radical embedding
obtained by gluing a source vertex e1 and a sink vertex en of A. If e1 and en are from the same
block of A, then the one-dimensional Lie ideal I in Corollary 3.23 is generated by φ1(

∑
[α]∈∆ I[α])

(modulo an element in Im(δ0B)).

Proof. Since e1 is a source vertex, then Remark 4.3 yields that

φ1(δ
0
A(e1 // e1)) = φ1(

∑
[α]∈(Q̄A)1e1

I[α]) = φ1(
∑

[α]∈(Q̄c
A)1e1

I[α]) + φ1(
∑

[α]∈(Q̄d
A)1e1

I[α])

= φ1(
∑

[α]∈∆

I[α]) + φ1(
∑

[α]∈(Q̄d
A)1e1

I[α]).

Note that Qc
A and Qd

A can be obtained from QA by splitting in e1 since De�nition 4.4 shows that
Qc

A and Qd
A are disjoint and they only share the vertex e1 when Qd

A is not empty. By combing
this with the fact that e1 is a source vertex, we deduce that δ0A(

∑n
i=1 ei // ei) = 0 if and only if

δ0A(
∑

ei∈Qc
A
ei // ei) = 0 and δ0A(

∑
ei∈Qd

A
ei // ei) = 0, whence

φ1(
∑

[α]∈(Q̄d
A)1e1

I[α]) = −φ1(
∑

ei∈(Qd
A)0,ei ̸=e1

δ0A(ei // ei)) =
∑

fi∈(Qd
B)0,fi ̸=f1

δ0B(fi // fi) ∈ Im(δ0B).

□

Now we can give the main result in this subsection.

Corollary 4.6. Let A = kQA/IA be a monomial algebra and let B = kQB/IB be a radical
embedding obtained by gluing a source vertex e1 and a sink vertex en of A. If e1 and en are from
the same block of A and char(k) = 0, then

HH1(B) ≃ HH1(A)⊕ I ≃ HH1(A)⊕ k

as Lie algebras.

Proof. We claim that it is enough to show that we have a decomposition as vector spaces L0 =
I ⊕ G, where G is a Lie subalgebra of L0. Indeed, if this is the case, by the grading on HH1(B)
we have a decomposition as vector spaces:

HH1(B) = L0 ⊕
⊕
i≥1

Li = (I ⊕G)⊕
⊕
i≥1

Li = I ⊕ (G⊕
⊕
i≥1

Li) =: I ⊕ L.

Note that L is a Lie subalgebra of HH1(B) since G is a Lie subalgebra and
⊕

i≥1 Li is a Lie

ideal of HH1(B). In addition, by Theorem 3.25 the ideal I is in the center of HH1(B), hence
L is a Lie ideal of HH1(B). Therefore we have a direct sum decomposition as Lie algebras:
HH1(B) = I ⊕ L. Since HH1(A) ≃ HH1(B)/I as Lie algebras, then L ≃ HH1(A) as Lie algebras.
Therefore, HH1(B) = I ⊕HH1(A) as Lie algebras.

We show that I is a direct summand of L0 as vector spaces. From now on, we �x the `minimal'
generator φ1(

∑
[α]∈∆ I[α]) of the Lie ideal I which is given by Lemma 4.5. We sketch the proof in

the case that ∆ only contains two equivalence classes of parallel arrows (cf. De�nition 4.4), namely
∆ = {[α], [β]}, where [α] = {α1, · · · , αm} and [β] = {β1, · · · , βt}. Then I = ⟨φ1(I[α] + I[β])⟩ =
⟨
∑m

i=1 α
′
i // α

′
i +

∑t
j=1 β

′
j // β

′
j⟩. Since L

[α]
0 = ⟨α′

i // α
′
j , α

′
l // α

′
l | 1 ≤ l ≤ m, 1 ≤ i ̸= j ≤ m,αi // αj ∈

Ker(δ1A)⟩ and L
[β]
0 = ⟨β′

i // β
′
j , β

′
l // β

′
l | 1 ≤ l ≤ t, 1 ≤ i ̸= j ≤ t, βi // βj ∈ Ker(δ1A)⟩, it is easy to see

that I is a summand of ⊕[α]∈∆L
[α]
0 = L

[α]
0 ⊕ L

[β]
0 , hence it is a summand of L0. In fact, we have

vector space decompositions:

L
[α]
0 = ⟨

m∑
i=1

α′
i // α

′
i⟩ ⊕ ⟨α′

i // α
′
j , α

′
l // α

′
l − α′

m // α′
m | 1 ≤ l ≤ m− 1, 1 ≤ i ̸= j ≤ m,αi // αj ∈ Ker(δ1A)⟩

=: ⟨φ1(I[α])⟩ ⊕ J1,
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L
[β]
0 = ⟨

t∑
i=1

β′
i // β

′
i⟩ ⊕ ⟨β′

i // β
′
j , β

′
l // β

′
l − β′

t // β
′
t | 1 ≤ l ≤ t− 1, 1 ≤ i ̸= j ≤ t, βi // βj ∈ Ker(δ1A)⟩

=: ⟨φ1(I[β])⟩ ⊕ J2.

As a consequence, there are vector space decompositions

L
[α]
0 ⊕ L

[β]
0 = (⟨φ1(I[α])⟩ ⊕ ⟨φ1(I[β])⟩)⊕ J1 ⊕ J2 = (I ⊕ ⟨φ1(I[α])⟩)⊕ J1 ⊕ J2

= I ⊕ (⟨φ1(I[α])⟩ ⊕ J1 ⊕ J2) =: I ⊕ J.

It follows from the de�nition of the Lie bracket in Theorem 2.8 that J is a subalgebra of L0. It

follows that L0 = ⊕[α]∈(Q̄B)1L
[α]
0 = I ⊕ G as vector spaces, where G := J ⊕

⊕
α∈(Q̄B)1\∆ L

[α]
0 .

Note that G is a Lie subalgebra since J is a Lie subalgebra and since we have the direct sum
decomposition (†). □

4.2. Radical square zero algebras.

We now apply our main results in Section 3 to a subclass of monomial algebras: radical square
zero algebras. An application of these results can be found in Subsection 4.3. Throughout this
subsection, we let A = kQA/IA be a radical square zero algebra and let B = kQB/IB be a radical
embedding obtained by gluing two idempotents e1 and en of A.

Corollary 4.7. Let A be a radical square zero algebra and let B be a radical embedding obtained
by gluing two idempotents e1 and en of A. If char(k) ̸= 2, then we have

dimk HH1(A) = dimk HH1(B)− 1− ksppn1 − cB + cA.

In particular, if we glue e1 and en from the same block of A, then

dimk HH1(A) = dimk HH1(B)− 1− ksppn1 ;

if we glue e1 and en from two di�erent blocks of A, then

dimk HH1(A) = dimk HH1(B)− ksppn1

and HH1(A) ≃ HH1(B) as Lie algebras if we exclude the case that there are loops both at e1 and
en.

Proof. For radical square zero algebras, there are no special paths and Assumption 1 is equivalent
to the condition that char(k) ̸= 2. The dimension formulas follow immediately from Theorem 3.17
and Theorem 3.19. Moreover, if we glue e1 and en from two di�erent blocks of A and exclude the
case that there are loops at e1 and at en simultaneously, then Vspp = 0 by Remark 3.13. Since

Vsp is a subspace of Vspp, then Vsp = 0 and by Theorem 3.21 we have HH1(A) ≃ HH1(B) as Lie
algebras. □

Moreover, it is easy to see that if one of the following conditions holds, then the results in Corollary
4.7 still hold in the case char(k) = 2 by Remark 3.11 (2):

(i) glue e1 and en from the same block of A;

(ii) glue e1 ∈ A1 and en ∈ A2 from the di�erent blocks of A such that both A1 and A2 are
not isomorphic to k[x]/(x2).

Remark 4.8. Let A and B as above and let A1 and A2 be two di�erent blocks of A. Suppose
e1 ∈ A1 and en ∈ A2.

(1) If there are loops at e1 or at en, then in general HH1(A) is not isomorphic to HH1(B) and
the di�erence between the dimensions of HH1(A) and HH1(B) can be arbitrarily large,
see Example 6.10.

(2) If char(k) = 2 and exactly one of A1, A2 is isomorphic to k[x]/(x2), then

dimk HH
1(A) = dimk HH1(B) + 1.
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Corollary 4.9. Let A be a radical square zero algebra and let B be a radical embedding obtained
by gluing two idempotents e1 and en from the same block of A. If Vspp = 0 and char(k) = 0, then
we have a Lie algebra isomorphism

HH1(B) ≃ HH1(A)⊕ k.

Proof. We use the notation in Theorem 3.19. Since Vspp = 0, we have a Lie algebra epimor-

phism from HH1(B) to Ker(δ1B)/Y ≃ HH1(A) with one-dimensional kernel I := Y/Im(δ0B), where
Ker(δ1B) = φ1(Ker(δ1A)) and Y is a Lie ideal of Ker(δ1B). Also note that this epimorphism and
equality do not depend on the Assumption 1 since we glue e1 and en from the same block, cf.
Remark 3.11 (2). Since Vspp = 0, then dimk HH1(A) = dimk HH1(B) − 1. Note that by gluing
e1 and en from the same block we have χ(Q̄B) = χ(Q̄A) + 1. By Theorem 2.9 in [18] (see also
Theorem 4.12) there is an injective Lie algebra homomorphism:

HH1(A) ≃ ⊕α∈Ssl|α|(k)⊕ kχ(Q̄A) → ⊕α∈Ssl|α|(k)⊕ kχ(Q̄A) ⊕ k ≃ HH1(B).

Therefore it gives rise to the following Lie algebra isomorphisms:

HH1(B) ≃ HH1(A)⊕ I ≃ HH1(A)⊕ k.

□

Remark 4.10. Let A and B as above, and suppose that e1 and en are in the same block of A.
If we exclude the Exceptional case 1, then it is straightforward to check that Vspp = 0 under each
of the following conditions:

(i) e1 is a source and en is a sink;

(ii) Both e1 and en are sinks such that

{s(α) | t(α) = e1, α ∈ (QA)1} ∩ {s(β) | t(β) = en, β ∈ (QA)1} = ∅;

(iii) Both e1 and en are sources such that

{t(α) | s(α) = e1, α ∈ (QA)1} ∩ {t(β) | s(β) = en, β ∈ (QA)1} = ∅.

Remark 4.11. Let A be a radical square zero algebra having Gabriel quiver Q. By direct
computations, we can determine the Lie algebra structure of HH1(A) in the following well-known
cases, which are recalled here for completeness:

(1) HH1(A) ≃ gln(k) if Q is the quiver with one vertex and n loops , except in the case n = 1 and
char(k) = 2 (for this exceptional case, see Remark 3.16); The isomorphism sends αi // αj to Eji,
where Eij is the matrix that has 1 in position (i, j) and 0 elsewhere. Note that if the characteristic
of the �eld k does not divide n, then gln(k) ≃ sln(k)⊕ k as Lie algebras.

(2) HH1(A) ≃ pgln(k) if Q is the n-Kronecker quiver, with the convention that 1-Kronecker quiver
is the Dynkin quiver A2, where pgln(k) is the quotient of gln(k) by its center k · Id. Let e be
the source vertex of the n-Kronecker quiver. Then the above isomorphism can be obtained by
observing that Ker(δ1A) ≃ gln(k) via the isomorphism in (1). In addition, this isomorphism sends
the unique generator

∑
s(αi)=e αi // αi of Im(δ0A) to Id. If the characteristic of the �eld k does not

divide n, then pgln(k) ≃ sln(k).

4.3. Sánchez-Flores' decomposition via inverse gluing.

In this section, we provide an interpretation of Sánchez-Flores' description of the Lie algebra
structure of the �rst Hochschild cohomology for radical square zero algebras [18] using inverse
gluing operations.

Given a quiver Q, denote by S a complete set of representatives of the non-trivial classes on the
set of arrows Q1, that is, equivalence classes having at least two arrows, and for α ∈ S, |α| denotes
the number of arrows in the equivalence class [α] of α. Sánchez-Flores' description of the �rst
Hochschild cohomology for radical square zero algebras can be stated as follows.
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Theorem 4.12. ([18, Theorem 2.9]) Let k be a �eld of characteristic zero and let A be an
indecomposable radical square zero algebra having Gabriel quiver Q. Then we have an isomrphisms
of Lie algebras:

HH1(A) ≃ ⊕α∈Ssl|α|(k)⊕ kχ(Q̄).

Note that intuitively we can say that χ(Q̄) counts the number of holes in Q̄. From this point of
view we could give an interpretation of the above result by inverse gluing operations. To be more
intuitive we will demonstrate our method by an example that includes all possible cases. Note
also that the characteristic zero condition in the above result is necessary since the proof uses the
Lie algebra decomposition gl|α|(k) ≃ sl|α|(k)⊕ k when char(k) = 0.

Example 4.13. Let k be a �eld of characteristic zero and let A be a radical square zero algebra
having Gabriel quiver QA. Note that in this case χ(Q̄A) = 4 and S = {[α1], [β1]}.

j• •i •h •g

QA : a• •d •e •f

b•

α2

α1
η1 ξ4

ξ1

η2

γ2

β1

β2

β3

ξ3

ξ2 η3

γ1

Step 1 (separate and reduce loops): We separate the loops at the vertex j of QA to get QB .
The algebra B has two blocks, say B1 and B2.

j1• •i •h •g

QB : a• •d •e •f •j2

b• B1 B2

η1 ξ4

ξ1

η2

γ2

β1

β2

β3

ξ3

ξ2 η3
α1

α2

γ1

The inverse operation is given by gluing two vertices (one of which has no loops) from two di�erent
blocks, that is, we glue j1 ∈ QB1

and j2 ∈ QB2
. By Corollary 4.7, this operation does not change

the dimension and the Lie structure of HH1(A), that is,

HH1(A) ≃ HH1(B) ≃ HH1(B1)⊕HH1(B2).

By Remark 4.11 (1) we obtain HH1(B2) ≃ gl2(k) ≃ sl2 ⊕ k, where the summand k contributes 1
to the value of χ(Q̄A). After this step, we have reduced QA to the no loop quiver QB1

.

Step 2 (reduce oriented l-cycles (l ≥ 2)): We reduce the oriented cycle p := γ2γ1 in QB1
.

Choose the vertex b in p and split it into a source vertex b1 and a sink vertex b2:

j1• •i •h •g

QC : a• •d •e •f

b1• b2•

η1 ξ4

ξ1

η2

γ2

β1

β2

β3

ξ3

ξ2 η3
γ1

The inverse operation is given by gluing b1 and b2 from the same block. By Remark 4.10 (i), by
reducing p from QB1

we get one summand isomorphic to k (cf. Corollary 4.9), which contributes
1 to the value of χ(Q̄B) = χ(Q̄A). So

HH1(B1) ≃ HH1(C)⊕ k
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and we have reduced QB1
to the no oriented cycle quiver QC .

Step 3 (reduce undirected l-cycles (l ≥ 3)): We �rst deal with the undirected 3-cycle q1 :=
β3 − γ2 − β1 in QC . We can split b2 into two sinks, say b3 and b4, and denote the corresponding
quiver and algebra by QD and D, respectively.

j1• •i •h •g

QD : a• •d •e •f

b1• b3• •b4

η1 ξ4

ξ1

η2

γ2

β1

β2

β3

ξ3

ξ2 η3
γ1

The inverse operation is given by gluing b3 and b4 from the same block. By Corollary 4.9 and
Remark 4.10, by reducing q1 from QC we get a summand isomorphic to k, which again contributes
1 to the value of χ(Q̄A). Therefore

HH1(C) ≃ HH1(D)⊕ k.

We then reduce another undirected cycle q2 := ξ4 − ξ3 − ξ2 − ξ1. Choose the vertex i in q2 and
split i into a sink vertex i1 and a source vertex i2 to get QE , denote the corresponding algebra by
E.

j• •i1 i2• •h •g

QE : a• •d •e •f

b1• b3• •b4

η1 ξ4

ξ1

η2

γ2

β1

β2

β3

ξ3

ξ2 η3
γ1

The inverse operation is given by gluing i1 and i2 from two di�erent blocks. By Corollary 4.7, this
operation does not change the dimension and the Lie structure of HH1(D), that is,

HH1(D) ≃ HH1(E).

Note that the above reduction produces a new undirected cycle q′2 := ξ4 − ξ3 − ξ2 − ξ1 in QE .
However, we can reduce q′2 in QE by splitting i2 into two sources, say i3 and i4 (the corresponding
quiver is QF ).

i1• i3• i4• •h •g

QF : j• a• •d •e •f

b1• b3• •b4

ξ1

ξ4 η2

η1

γ2

β1

β2

β3

ξ3

ξ2 η3
γ1

The inverse operation is given by gluing two sources from the same block. Again by Corollary 4.9
and Remark 4.10, we get that

HH1(E) ≃ HH1(F )⊕ k,

where the summand k also contributes 1 to the value of χ(Q̄A). We have reduced to a quiver QF

that has neither oriented cycles nor undirected cycles.

Step 4 (Split into several m-Kronecker quivers): Since QF contains no cycles (whether
oriented or undirected), we can split QF into several quivers. Note that each of these quivers is a
m-Kronecker quiver for some m ≥ 1.
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i4• •h3

i1• i3• •d1 •h2 •g

QG : j• a• •d2 h1• •e3

a1• •a2 •d3 f• •e2

b1• •b3 •b4 d4• •e1

ξ4

ξ1

η2

η1

β1

β2
ξ3

γ2 β3

η3

γ1

ξ2

The inverse of the above operations are given by repeatedly applying three types of operations:
gluing a source and a sink from di�erent blocks, gluing two sources from di�erent blocks, gluing
two sinks from di�erent blocks. By Corollary 4.7, these operations do not change the dimension
and the Lie structure of HH1(F ). Therefore,

HH1(F ) ≃ HH1(G).

By Remark 4.11 (2) the HH1 of a m-Kronecker algebra is slm(k), consequently HH1(G) ≃ sl2(k).

We conclude that HH1(B1) ≃ HH1(G)⊕ k3, therefore

HH1(A) ≃ HH1(B1)⊕HH1(B2) ≃ sl2(k)
2 ⊕ k4.

5. Center

In this section, we study the behaviour of the centers of �nite dimensional quiver algebras under
gluing idempotents. Throughout this section we will denote by Z(A) the center of an algebra
A.

De�nition 5.1. Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a radical embedding
obtained by gluing two idempotents e1 and en of A. Let p be a path between e1 and en in BA.
We call p a non-special path between e1 and en in QA if δ0B(f1 // p

′) = 0, or equivalently, if ap ∈ IA
and pb ∈ IA for arbitrary a, b ∈ (QA)1.

We denote by NSpn1 the set of non-special paths between e1 and en in QA, and by Vnsp the k-
subspace of k((QB)0 // BB) generated by the elements f1 // p

′ for p ∈ NSpn1 . Furthermore, we denote
by nspn1 the dimension of Vnsp.

As the name suggests, the notion of non-special path is exactly the opposite notion of special
path. It is clear that there are no non-special paths between e1 and en when we glue these two
idempotents from di�erent blocks. By Lemma 3.6 the dimension of Vnsp equals the number of
non-special paths between e1 and en, that is, nsp

n
1 = |NSpn1 |.

Notation 3. Similarly to Notation 1 and De�nition 3.5, we denote by

• δ0(A)≥1
the map δ0A restricted to the subspace k((QA)0 // (BA)≥1);

• Ker(δ0(A)≥1
) the kernel of the map δ0(A)≥1

;

• S̃pn1 the k-subspace of k((QB)0 // BB) generated by the elements f1 // p
′ for p ∈ Spn1 ;

• δ0B |S̃pn
1
the map δ0B restricted to S̃pn1 ;

• Ker(δ0B |S̃pn
1
) the kernel of the map δ0B |S̃pn

1
.

Since Vsp = Im(δ0B |S̃pn
1
) and dimk S̃p

n
1 = |Spn1 |, we have dimk Ker(δ0B |S̃pn

1
) = |Spn1 | − spn1 .
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Lemma 5.2. Let A = kQA/IA be a quiver algebra and let B = kQB/IB be a radical embedding
obtained by gluing two idempotents e1 and en of A. Then there is a decomposition as k-vector
spaces

Ker(δ0(B)≥1
) = φ0(Ker(δ0(A)≥1

))⊕ Vnsp ⊕Ker(δ0B |S̃pn
1
).

In particular, if we glue e1 and en from the same block, then

dimkKer(δ0(B)≥1
) = dimkKer(δ0(A)≥1

) + nspn1 + |Spn1 | − spn1 ;

if we glue e1 and en from di�erent blocks, then dimkKer(δ0(B)≥1
) = dimkKer(δ0(A)≥1

).

Proof. Recall from Proposition 3.3 that there is a k-linear map φ0 : k((QA)0 // BA) → k((QB)0 // BB).
A direct computation shows that δ0B(φ0(ei // p)) = φ1(δ

0
A(ei // p)) for 1 ≤ i ≤ n and p ∈ BA\{e1, en}.

It follows that φ0 induces an injective k-linear map from Ker(δ0(A)≥1
) to Ker(δ0(B)≥1

).

Let θ ∈ Ker(δ0(B)≥1
) be in the complement of the subspace φ0(Ker(δ0(A)≥1

)). Then we assume

that θ is a linear combination of the elements of the form f1 // p
′ such that p is a path between

e1 and en. If p is a non-special path, then f1 // p
′ ∈ Vnsp ⊆ Ker(δ0(B)≥1

). Otherwise, p ∈ Spn1 .

Note that there may exist another special path q ̸= p such that the summands of δ0B(f1 // p
′) and

the summands of δ0B(f1 // q
′) can be cancelled by each other. Consequently, θ can be a linear

combination of the elements in Vnsp and in Ker(δ0B |S̃pn
1
). Therefore, the formula Ker(δ0(B)≥1

) =

φ0(Ker(δ0(A)≥1
))⊕ Vnsp ⊕Ker(δ0B |S̃pn

1
) follows. □

Remark 5.3. Note that in the monomial case, Lemma 5.2 can be simpli�ed since the space
Ker(δ0B |S̃pn

1
) vanishes. This is because in this case Lemma 3.6 holds for any path q ∈ BA with

q ̸= p. Moreover, by the same reason, we have spn1 = |Spn1 |, that is, the dimension of Vsp is equal
to the number of special paths. In addition, the number of special pairs is greater than or equal
to the number of special paths. Note that in general these statements are not true (cf. Example
6.6).

First, we deal with the case that the algebra A is indecomposable.

Proposition 5.4. Let A be an indecomposable �nite dimensional quiver k-algebra and let B be
a radical embedding of A obtained by gluing two idempotents e1 and en of A. Then there is an
algebra monomorphism Z(A) ↪→ Z(B). Moreover,

dimkZ(B) = dimkZ(A) + nspn1 + |Spn1 | − spn1 .

Proof. We adopt the notation in Proposition 3.3 and identify the centers Z(A), Z(B) as Ker(δ0A),
Ker(δ0B) respectively. Also notice that Ker(δ0A) = Ker(δ0(A)0

)⊕Ker(δ0(A)≥1
) as k-vector spaces and

a similar decomposition applies for Ker(δ0B).

By Lemma 5.2 we have that φ0 induces an injective k-linear map from Ker(δ0(A)≥1
) to Ker(δ0(B)≥1

),

and dimkKer(δ0(B)≥1
) = dimkKer(δ0(A)≥1

)+nspn1 + |Spn1 |−spn1 . By using the fact that Ker(δ0(A)0
) =

⟨
∑

1≤i≤n ei // ei⟩ and Ker(δ0(B)0
) = ⟨

∑
1≤i≤n−1 fi // fi⟩, cf. proof of Lemma 3.4, we deduce that

dimkKer(δ0(B)0
) = dimkKer(δ0(A)0

). Hence the second statement follows. Moreover, there is an

injective k-linear map φ0 : Ker(δ0A) → Ker(δ0B). Note that we can identify Ker(δ0A) with Z(A)
by

∑
ei // p 7→

∑
p and

∑n
i=1 ei // ei 7→ 1A, so does for Ker(δ0B) and Z(B). Then, by the fact

that p′q′ = (pq)′ for p, q ∈ (BA\{e1, · · · , en}), φ0 gives an algebra monomorphism, and the �rst
statement follows. □

Corollary 5.5. Let A be an indecomposable �nite dimensional quiver k-algebra and let B be a
radical embedding of A obtained by gluing a source vertex e1 and a sink vertex en. Then φ0 :
Ker(δ0A) ↪→ Ker(δ0B) is an isomorphism if and only if there is no path from e1 to en.



28 Y. LIU, L. RUBIO Y DEGRASSI, AND C. WEN

Proof. Note that in this case, Spn1 = ∅ and p is a non-special path between e1 and en if and only
if p is a path from e1 to en. Thus the result follows from Proposition 5.4. □

Corollary 5.6. Let A be a radical square zero indecomposable �nite dimensional algebra and
let B be a radical embedding of A obtained by gluing two idempotents e1 and en of A. Then
φ0 : Ker(δ0A) ↪→ Ker(δ0B) is isomorphism if and only if there are no arrows between e1 and en in
QA.

Proof. For radical square zero algebras, the set NSpn1 consists of all arrows between e1 and en in
QA and there is no special path between e1 and en in QA. □

Note that Cibils has shown in [3] that the dimension of the center of an indecomposable radical
square zero algebra is given by |Q1 // Q0| + 1. Indeed, by the proof of Proposition 5.4, we know
that the basis of the center of an indecomposable radical square zero algebra is provided by the
set of loops together with the unit element of the algebra.

Next we deal with the case that the algebra A is not indecomposable. Without loss of generality
we assume that A has two blocks, say A1 and A2, and assume that B is an algebra obtained from
A by gluing e1 ∈ A1 and en ∈ A2.

Proposition 5.7. Let A be a �nite dimensional quiver algebra with two blocks A1 and A2. Let
B be a radical embedding of A obtained by gluing idempotents e1 ∈ A1 and en ∈ A2. Then
the radical embedding B → A restricts to a radical embedding Z(B) → Z(A). In particular,
dimkZ(A) = dimkZ(B) + 1.

Proof. Let BA = {e1, · · · , en, p1, · · · , pu | the length of each pi is ≥ 1} denotes a k-basis of the
quiver algebra A (cf. Section 2). Then the subalgebra B of A has a k-basis BB = {e1 +
en, e2, · · · , en−1, p1, · · · , pu}. We identify the centers Z(A), Z(B) with Ker(δ0A),Ker(δ0B) respec-
tively. Let Z(A) = Z(A)0⊕Z(A)≥1 be the decomposition corresponding to Ker(δ0A) = Ker(δ0(A)0

)⊕
Ker(δ0(A)≥1

) as k-vector spaces, so does for Z(B).

By Lemma 5.2, we obtain that Ker(δ0(B)≥1
) ≃ Ker(δ0(A)≥1

), hence

Z(A)≥1 = ⟨
∑

p | p is a cycle in BA⟩ = Z(B)≥1.

Note that Z(A)0 = ⟨1A1 , 1A2⟩, where 1Aj denotes the unit element in Aj for j = 1, 2, and
Z(B)0 = ⟨1B = 1A1 +1A2⟩. Therefore, there is an embedding from Z(B) to Z(A) which sends 1B
to 1A1

+ 1A2
and each element in Z(B)≥1 to the corresponding element in Z(A)≥1.

It is clear that this embedding from Z(B) to Z(A) is an injection of algebras and preserves the
radical, hence, by gluing e1 ∈ A1 and en ∈ A2, we get a radical embedding from Z(B) to Z(A).
In particular, we have dimkZ(A) = dimkZ(B) + 1. □

6. Examples

We give some examples concerning the main results in this paper. The �rst one shows that our
gluing technique is useful for computing the HH1 of non-monomial algebras.

Example 6.1. Let the algebra B be obtained from A by gluing source e1 and sink e4:

QA : e1• •e3 QB : f1• •f3

e2• •e4 f2•

γ

α η α′

γ′

η′

β

β′

Where ZA = {βα − ηγ}, Znew = {α′β′, γ′β′, α′η′, γ′η′} and ZB = ZA ∪ Znew. We �x the order
on (QA)1 by η ≻ γ ≻ β ≻ α, then Tip(ZA) = {ηγ}. It follows that GA = {ηγ − βα} and
GB = GA∪Znew. A direct computation based on Theorem 2.7 shows that δ1A(α // α) = ηγ // (ηγ)α // α−
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ηγ // (βα)α // α = −ηγ // βα = δ1A(β // β), δ1A(γ // γ) = ηγ // ηγ = δ1A(η // η). Similarly we can compute δ0A,
δ0B and δ1B . Note that in this case Vsp = Vspp = 0. Observe that βα = ηγ in BA, we obtain that

Im(δ0A) ≃ ⟨β // β − α // α, η // η − γ // γ, α // α+ γ // γ⟩ ≃ Ker(δ1A) ≃ Ker(δ1B),

Im(δ0B) ≃ ⟨β′ // β′ − α′ // α′, η′ // η′ − γ′ // γ′⟩.
Therefore,

HH1(A) ≃ Ker(δ1A)/Im(δ0A) = 0,

HH1(B) ≃ Ker(δ1B)/Im(δ0B) ≃ ⟨α′ // α′ + γ′ // γ′⟩ ≃ HH1(A)⊕ k.

It is clear that βα = ηγ is a non-special path between e1 and e4 in QA, hence

Z(A) ≃ Ker(δ0A) ≃ ⟨
4∑

i=1

ei // ei⟩ ↪→ Z(B) ≃ Ker(δ0B) ≃ ⟨
3∑

i=1

fi // fi, f1 // β
′α′⟩.

The second example shows a particular instance of Corollary 4.7 in which B is not obtained from
A by gluing a source and a sink:

Example 6.2. Assume char(k) ̸= 2. The algebra B is obtained from A by gluing e1 and e3:

QA : e1• •e2 •e3 QB : f2• •f1
α1 α2

α′
1

α′
2

Where ZA = ZB = ∅. Note that A is hereditary, and the underlying graph of QA is a tree,
therefore HH1(A) = 0. We have that Vsp = 0 and Vspp has a k-basis given by {α′

1 // α
′
2, α

′
2 // α

′
1}. By

Corollary 4.7 the dimension of HH1(B) is 3. Indeed, a direct computation shows HH1(B) ∼= sl2(k)
having a k-basis given by {α′

1 // α
′
1, α

′
1 // α

′
2, α

′
2 // α

′
1}.

The next two examples show that the characteristic condition in Proposition 3.10 is necessary.

Example 6.3. Assume that char(k) = 2, and that B is obtained from A by gluing e1 and e2:

QA : e1• •e2 QB : f1•

α

β

γ
α′

β′

γ′

Where ZA = {r1 = α2 − γβ, r2 = βαγ, βγ}, Znew = {r3 = α′β′, r4 = γ′α′, (γ′)2, (β′)2} and
ZB = ZA ∪ Znew. We �x the order on (QA)1 by γ ≺ β ≺ α. Then GA = ZA and GB = ZB .
A direct computation shows that δ1A(α // e1) = 2α2 // α + r2 // βγ = 2α2 // α = 0 since char(k) = 2.
However, δ1B(α

′ // f1) = 2(α′)2 // α′+r′3 // β
′+r′4 // γ

′ ̸= 0, which means that although α // e1 ∈ Ker(δ1A),
φ1(α // e1) = α′ // f1 /∈ Ker(δ1B). Hence φ1 does not induce an injective k-linear map from Ker(δ1A)
to Ker(δ1B).

Example 6.4. Let A be given by two blocks A1 and A2 such that A1 is isomorphic to k[x]/(x2)
and A2 is isomorphic to k[y]/(y2). Let B be obtained by gluing the units of A1 and A2. Then
Ker(δ1B) = HH1(B) ≃ gl2(k) and has k-basis given by {x // x, x // y, y // x, y // y}. However, there
are two cases for A.

(1) If char(k) ̸= 2, then Ker(δ1A) = HH1(A) ≃ k ⊕ k has k-basis given by x // x and y // y, and there
is an injective Lie algebra homomorphism Ker(δ1A) ↪→ Ker(δ1B).

(2) If char(k) = 2, then Ker(δ1A) = HH1(A) has k-basis given by {x // x, x // e1, y // y, y // e2}. Clearly
in this case we cannot get an injective Lie algebra homomorphism from Ker(δ1A) to Ker(δ1B).

In the following example, we compute explicitly the special paths and the k-space Vsp (resp.
the special pairs and the k-space Vspp) appeared in De�nition 3.5 and Proposition 3.8 (resp. in
De�nition 3.12 and Proposition 3.14).
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Example 6.5. Let B be obtained from A by gluing e1 and e4:

f3•

QA : e2• e1• e4• e3• QB : f2• •f1

. . .
a

α1

αn

...
b a′

α′
1

α′
n

b′

Where ZA = ∅, ZB = Znew = {α′
iα

′
j | 1 ≤ i, j ≤ n}. Since αia /∈ IA for 1 ≤ i ≤ n, αi is a special

path from e1 to e4 for 1 ≤ i ≤ n, we have Sp41 = {αi | 1 ≤ i ≤ n} and

Vsp = ⟨δ0B(f1 // α′
i) | 1 ≤ i ≤ n⟩

= ⟨b′ // b′α′
i − a′ // α′

ia
′ | 1 ≤ i ≤ n⟩.

Hence sp41 = n = dimkVsp. Since a′ // α′
ia

′, b′ // b′α′
i, α

′
i // f1, a ∖// αia, b ∖// bαi, αi ∖// e1, αi ∖// e4, we

know that (a, αia), (b, bαi), (αi, e1), (αi, en) are special pairs with respect to the gluing of e1 and
e4 for 1 ≤ i ≤ n, and Spp41 = {(a, αia), (b, bαi), (αi, e1), (αi, en) | 1 ≤ i ≤ n}. As a result we get

⟨Spp41⟩ = ⟨a′ // α′
ia

′, b′ // b′α′
i, α

′
i // f1 | 1 ≤ i ≤ n⟩,

Vspp = ⟨Spp41⟩ ∩Ker(δ1B)

= ⟨a′ // α′
ia

′, b′ // b′α′
i | 1 ≤ i ≤ n⟩.

Hence kspp41 = dimkVspp = 2n. A direct computation shows that Im(δ0A), Im(δ0B) are 3-dimensional
and (n+ 2)-dimensional, respectively, since

Im(δ0A) = ⟨a // a, b // b,
n∑

i=1

αi // αi⟩,

Im(δ0B) = ⟨a′ // a′, b′ // b′, b′ // b′α′
i − a′ // α′

ia
′ | 1 ≤ i ≤ n⟩.

Therefore,

dimkIm(δ0A) = dimkIm(δ0B) + 1− sp41.

In addition,

Ker(δ1A) = ⟨a // a, b // b, αi // αj | 1 ≤ i, j ≤ n⟩
is (n2 + 2)-dimensional and

Ker(δ1B) = ⟨a′ // a′, b′ // b′, α′
i // α

′
j , b

′ // b′α′
i, a

′ // α′
ia

′ | 1 ≤ i, j ≤ n⟩

is (n2 + 2n+ 2)-dimensional. Hence

dimkKer(δ1B) = dimkKer(δ1A) + kspp41.

One can verify that HH1(A) is isomorphic to pgln(k) and HH1(B) contains a subalgebra isomorphic
to gln(k). Note also that by the notations in the proof of Theorem 3.19, in this example the

subspace Y of Ker(δ1B) is equal to Im(δ0B)⊕ ⟨
n∑

i=1

α′
i // α

′
i⟩ and Y is not a Lie ideal of Ker(δ1B).

The following example shows that in non-monomial case, the dimension of Vsp is not equal to
the number of special paths and the number of special pairs may be smaller than the number of
special paths in general.

Example 6.6. The algebra B is obtained from A by gluing e1 and e4:

QA : e2• •e1 •e3 •e4 QB : f2• •f1 •f3a
b1

b2

c a′

b′1

b′2

c′
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Where ZA = {cb1a−cb2a}, Znew = {b′1c′, b′2c′} and ZB = ZA∪Znew. We �x the order on (QA)1 by
c ≺ b2 ≺ b1 ≺ a. Then it is clear that GA = ZA and GB = ZB . Moreover, we have Sp41 = {cb1, cb2}
and Spp41 = {(a, cb1a) = (a, cb2a)}, δ0B(f1 // c

′b′1) = −a′ // c′b′1a
′ and δ0B(f1 // c

′b′2) = −a′ // c′b′2a
′.

Note that c′b′1a
′ = c′b′2a

′ in BB , we get Vsp = ⟨a′ // c′b′1a′⟩ = Vspp and f1 // c
′b′1 − f1 // c

′b′2 ∈ Ker(δ0B).

Therefore, Ker(δ0B |⟨Sp4
1⟩) = ⟨f1 // c′b′1 − f1 // c

′b′2⟩ is non-empty, sp41 = dimk Vsp = 1 < |Sp41| = 2 and

the number of special pairs |Spp41| = 1 is less than the number of special paths |Sp41| = 2.

By Corollary 3.15, if B is a radical embedding obtained by gluing a source vertex e1 and a sink
vertex en of A (in case char(k) = 2, we assume that B has no block isomorphic to k[x]/(x2)), then
Ker(δ1B) ≃ Ker(δ1A). However, the converse of Corollary 3.15 is not true in general as the following
example shows.

Example 6.7. Let B be obtained from A by gluing e1 and e4:

f3•

QA : e2• e1• e4• e3• QB : f2• •f1

b′ . . .
a

αn

α1

...
b a′

α′
n

α′
1

Where ZA = {αia | 1 ≤ i ≤ n}, Znew = {α′
ib

′, α′
iα

′
j | 1 ≤ i, j ≤ n} and ZB = ZA ∪ Znew.

Note that although Spp41 = {(αi, e1), (αi, e4) | 1 ≤ i ≤ n}, we have Vspp = ⟨Spp41⟩ ∩ Ker(δ1B) =
⟨α′

i // f1⟩ ∩ Ker(δ1B) = 0. By Proposition 3.14 we have dimkKer(δ1B) = dimkKer(δ1A). In fact, a
direct computation shows that both

Ker(δ1A) = ⟨a // a, b // b, αi // αj | 1 ≤ i, j ≤ n⟩

and

Ker(δ1B) = ⟨a′ // a′, b′ // b′, α′
i // α

′
j | 1 ≤ i, j ≤ n⟩

are (n2 + 2)-dimensional. Hence although we do not glue a source and a sink, we have Ker(δ1B) ≃
Ker(δ1A).

The following example shows various types of special pairs.

Example 6.8. In this example we always assume that B is obtained from A by gluing e1 and en,
and that α is an arrow in QA and p is a path in BA. It can be proved that the special pairs (α,p)
rise exclusively from the following seven cases and their dual cases:

(i) : α is a loop at e1 or en, assume that e1 • .

α

(The case that en•

α

is dual.)

Case 1: p = an · · · a1 is an oriented cycle at en or p = en, such as:

e1• • · · · • •en

· · ·
an

α a1

;

Case 2: p = an · · · a1 is a path between e1 and en, such as:

e1• • · · · • •en

α

a1 an ;

(ii) : α is an arrow between e1 and en, assume that e1• •en.α (The case that en• •e1α

is dual.)

Case 3: p = an · · · a1 is an oriented cycle at e1 or en or p = e1 or en, such as:
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e1• •en

· · ·
an

α

a1 ;

Case 4: p = an · · · a1 is a path from en to e1, such as:

e1• •enα

··· a1an
;

(iii) : Exactly one of the vertex of α is e1 or en, assume that e1• •.α (The other cases are

dual.)

Case 5: p = an · · · a1 is a path from en to t(α), such as:

e1• • • · · · • •en

· · ·

α

a1an
;

Case 6: p = αp1, where p1 = an · · · a1 is a path from en to e1, such as:

e1• • · · · • •en

· · ·

α

a1an

;

Case 7: p = p2αp1, where p1 = an · · · a1 is a path from en to e1 and p2 = bm · · · b1 is a cycle at
t(α), such as:

e1• • • •en

· · ·

α

an

···

···

b1 bm

a1

.

After giving relations in speci�c examples, we can show that the special pair (α, p) in each of the
above cases can appear. Indeed, the following example covers all the above 7 cases:

QA : e2• e1• •e3 QB : f2• •f1d
β

α

γ
a

c

d′

α′

β′

a′

γ′

c′

Where ZA consists of all paths in QA of length 3 except dγa, ZB = ZA ∪ Znew where Znew =
{a′α′, c′α′, α′β′, (β′)2, γ′β′, (a′)2, c′a′}. We list all special pairs (α, p) for each case as follows:

Case 1: (α, βa), (α, e3);

Case 2: (α, a), (α, β), (α, βα), (α, αa);

Case 3: (β, α), (β, aβ), (β, βa), (β, e1), (β, e3) (a, α), (a, aβ), (a, βa), (a, e1), (a, e3);

Case 4: (β, a), (a, β);

Case 5: (γ, c), (γ, dc), (c, γα), (c, dγ);

Case 6: (γ, γa), (c, cβ);

Case 7: (γ, dγa).
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By check one by one, we have Spp31 is the set consisting of these 25 special pairs and ⟨Spp31⟩ =
⟨α′ // p′ | (α, p) ∈ Spp31⟩ and therefore

Vspp = ⟨Spp31⟩ ∩Ker(δ1B)

= ⟨a′ // β′a′, α′ // β′α′, α′ // α′a′, β′ // a′β′, β′ // β′a′, a′ // a′β′,

a′ // β′a′, γ′ // d′c′, c′ // γ′α′, c′ // d′γ′, γ′ // γ′a′, c′ // c′β′, γ′ // d′γ′a′⟩.

Hence kspp31 = 13. Note also that the special paths in this example are β and a, so sp31 = 2.

It worth to mention that, although the k-space ⟨Sppn1 ⟩ is generated by the elements of the form
α′ // p′ (where α is an arrow and p is a path), an element in Vspp is usually a k-linear combination
of such elements.

Example 6.9. Let B be obtained from A by gluing e1 and e5:

•f4

QA : e2• e1• e3• e5• •e4 QB : f2• •f1 •f3b c d a b′

a′

c′

d′

Where ZA = ∅ and ZB = Znew = {a′b′, c′d′}. It follows from a direct calculation that

Im(δ0A) = ⟨a // a, b // b, c // c, d // d⟩ = Ker(δ1A).

Hence HH1(A) = 0. Similarly we have

Im(δ0B) = ⟨a′ // a′, b′ // b′, d′ // d′ − c′ // c′, a′ // a′d′c′ − b′ // d′c′b′⟩,

Ker(δ1B) = ⟨a′ // a′, b′ // b′, c′ // c′, d′ // d′, a′ // a′d′c′ − b′ // d′c′b′⟩,
henceHH1(B) ≃ ⟨c′ // c′⟩. Using the notation in Theorem 3.21, we get the ideal I ≃ ⟨φ1(δ

0
A(e1 // e1))⟩

= ⟨c′ // c′ − b′ // b′⟩ and HH1(A) ≃ HH1(B)/I. It is clear that Spp51 = {(a, adc), (b, dcb)}, therefore
⟨Spp51⟩ = ⟨a′ // a′d′c′, b′ // d′c′b′⟩ and

Vspp = ⟨Spp51⟩ ∩Ker(δ1B)

= ⟨a′ // a′d′c′ − b′ // d′c′b′⟩.

The following example shows that the di�erence between the dimensions of HH1(A) and HH1(B)
can be arbitrarily large.

Example 6.10. Let A be given by two blocks A1 and A2 such that A1 and A2 are radical square
zero local algebras having m-loops and n-loops respectively. If we exclude the case that m = 1
and n = 1 in char(k) = 2 (for this case, see Example 6.4), then the dimension of HH1(A) is the
sum of the dimensions of HH1(A1) ≃ glm(k) and HH1(A2) ≃ gln(k), that is, m2 + n2. Let B
be obtained by gluing the units of A1 and A2. Then HH1(B) ≃ glm+n(k) and consequently has
dimension (m+ n)2.

We use the following example to show a particular case of Corollary 4.6.

Example 6.11. Suppose char(k) = 0. Let B be obtained from A by gluing e1 and e4:

e2•

QA : e3• e1• •e4 QB : f3• f1• •f2

β

γ

α1 α2

η

γ′

α′
1

α′
2

η′

β′
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Where ZA = {βα1} and Znew = {(γ′)2, α′
iγ

′, α′
iβ

′, γ′β′, η′γ′, η′β′ | i = 1, 2}. From a straightfor-
ward computation we have

Im(δ0A) = ⟨α1 // α1 + α2 // α2 + γ // γ, β // β + γ // γ, η // η⟩,
Im(δ0B) = ⟨α′

1 // α
′
1 + α′

2 // α
′
2 − β′ // β′, η′ // η′⟩,

Ker(δ1A) = ⟨α2 // α1, α1 // α1, α2 // α2, β // β, γ // γ, γ // βα2, η // η⟩.
Since we glue a source and a sink, Corollary 3.15 shows that Ker(δ1B) ≃ Ker(δ1A). As a consequence,

HH1(A) ≃ ⟨α2 // α1, α1 // α1, α2 // α2, γ // βα2⟩,

HH1(B) ≃ ⟨α′
2 // α

′
1, α

′
1 // α

′
1, α

′
2 // α

′
2, γ

′ // γ′, γ′ // β′α′
2⟩.

Using the notation in Theorem 3.21, we get the ideal I = ⟨φ1(δ
0
A(e1 // e1))⟩ = ⟨α′

1 // α
′
1 + α′

2 // α
′
2 +

γ′ // γ′ + η′ // η′⟩ and HH1(A) ≃ HH1(B)/I. In this case L′′ = 0. Then G is generated by γ′ // β′α′
2.

Note that in this case ∆ in De�nition 4.4 is equal to {[α], [γ]}, where [α] = {α1, α2} and [γ] = {γ}.
We can rewrite the generator of I as φ1(I[α]+I[γ]) = α′

1 // α
′
1+α′

2 // α
′
2+γ′ // γ′ since η′ // η′ ∈ Im(δ0B).

Also L
[α′]
0 = ⟨α′

2 // α
′
1, α

′
1 // α

′
1, α

′
2 // α

′
2⟩, L

[γ′]
0 = ⟨γ′ // γ′⟩, hence

L0 = L
[α′]
0 ⊕ L

[γ′]
0 = ⟨α′

2 // α
′
1, α

′
1 // α

′
1, α

′
2 // α

′
2⟩ ⊕ ⟨γ′ // γ′⟩

= ⟨α′
2 // α

′
1, α

′
1 // α

′
1, α

′
2 // α

′
2⟩ ⊕ ⟨α′

1 // α
′
1 + α′

2 // α
′
2 + γ′ // γ′⟩ = L

[α′]
0 ⊕ I

as Lie algebras. Since L1 = ⟨γ′ // β′α′
2⟩,

HH1(B) = L0 ⊕ L1 = (L
[α′]
0 ⊕ I)⊕ L1 = (L

[α′]
0 ⊕ L1)⊕ I ≃ HH1(A)⊕ I ≃ HH1(A)⊕ k

as Lie algebras.
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