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FRACTIONAL BRAUER CONFIGURATION ALGEBRAS IIl: FRACTIONAL
BRAUER GRAPH ALGEBRAS IN TYPE MS

NENGQUN LI AND YUMING LIU*

Abstract
In previous papers, we defined fractional Brauer graphs and studied their covering theory. In this paper,
we develop a covering theory for the Brauer G-sets and use it to generalize the representation type results
and the AR-components results on Brauer graph algebras to the scope of fractional Brauer graph algebras
in type MS.

1. INTRODUCTION

In [7], we introduced a class of locally bounded quiver algebras called fractional Brauer con-
figuration algebras (abbr. f-BCAs). It was shown that f-BCAs in type S (abbr. f-BCAs) are
locally bounded Frobenius algebras, and over an algebraically closed field, the representation-finite
fs-BCAs coincide with standard representation-finite basic self-injective algebras. In the present
paper we concentrate on a subclass of f;-BCAs, which are called fractional Brauer graph alge-
bras in type MS (abbr. f,,;-BGAs). As a natural generalization of Brauer graph algebras (abbr.
BGAs), fms-BGAs are self-injective special biserial and have tame representation type.

It is well-known that over an algebraically closed field, Brauer graph algebras coincide with
symmetric special biserial algebras and whose representation types are classified in terms of the
defining Brauer graphs (abbr. BGs) as follows (here we view a BG as a £-BC, see [7, Section 3]).

Theorem 1.1. (cf. [I] and [II]) Suppose that the field k is algebraically closed. Let E be a finite
connected Brauer graph and Ag be the corresponding BGA. Then

(1) Ag is representation-finite if and only if E is a Brauer tree (abbr. BT).
(2) Ag is 1-domestic if and only if one of the following holds
e The underlying graph of E is a tree, with two vertices f-degree 2 and others f-degree 1.
e F is f-degree trivial and the underlying graph of E has a unique cycle of odd length.
(3) Ag is 2-domestic if and only if E is f-degree trivial and the underlying graph of E has a
unique cycle of even length.
(4) Ag cannot be n-domestic for n > 3.

Moreover, recently Duffield determined explicitly in [2] the Auslander-Reiten components (abbr.
AR-components) of BGAs in terms of the defining BGs. Note that about thirty years before
Erdmann and Skowronski had obtained a general description in [4] on the representation types
and the AR-components of self-injective special biserial algebras. Since f,s-BGAs (which are
defined by fractional Brauer graphs in type MS, or shortly by f,,,s-BGs) are self-injective special
biserial algebras, it is natural to ask how to describe explicitly the representation types and AR-
components of f,,s-BGAs in terms of defining f,,s-BGs.

To achieve this, our original idea is to use a covering theory for f,,s-BGs developed in [§].
However, since a quotient of a f,,,s-BG by a group of automorphisms may not again be a fi,s-
BG, we need a variation of the notion f,,;~-BG. Therefore we define Brauer G-sets, which are
generalizations of f,,s-BGs, and they are closed under quotients. Then we study the covering
theory for Brauer G-sets, and compute the fundamental groups of a special class of Brauer G-sets,
namely the modified Brauer graphs (abbr. modified BGs).
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For a f,s-BG E, we first consider the modified BG E/(c), which is the quotient of E by
the group of automorphisms of E generated by the Nakayama automorphism o. Using E/(o) we
defined the reduced form R of F, which is a BG. We show that the f,,,s-BGA Ap is representation-
finite (resp. domestic) if and only if the BGA Apg, is representation-finite (resp. domestic).
Moreover, using the covering E — E/(o) of Brauer G-sets, we calculate the fundamental group
of ¥ when Apg is representation-finite or domestic.

Finally, for a f,,s-BG F with Ag representation-finite or domestic, we construct E via the
modified BG E/(o) using covering theory for Brauer G-sets, and determine the AR-components
of A E-

This paper is organized as follows. In Section 2 we introduce Brauer G-sets and study their
covering theory; we define lines and bands for a Brauer G-set, and discuss the relations between
the bands of a f,,,-BG and the bands of associated f,,s-BGA; we show that a f,,s-BGA Ag
is representation-finite (resp. domestic) if and only if the BGA Apg, of the reduced form Rp
of E is representation-finite (resp. domestic) (see Theorem 2.29). As a byproduct, we obtain
some unexpected example of weakly symmetric f,,s-BGA which is not a BGA (Example 2.31]).
In Section 3 we first calculate the fundamental groups of modified BGs using an analogy of Van
Kampen theorem, and then together with covering theory for Brauer G-sets we calculate the
fundamental groups of f,,s-BGs FE with Ap representation-finite or domestic. In Section 4 we
describe the Auslander-Reiten quivers (abbr. AR-quivers) of representation-finite f,,s-BGAs in
terms of defining f,,,s-BGs and show that these algebras coincide with basic representation-finite
self-injective algebras of class A,. In Section 5 we construction the defining f,,,s-BGs of domestic
fms~-BGAs and describe their stable AR-components.

DATA AVAILABILITY

The datasets generated during the current study are available from the corresponding author
on reasonable request.

2. BRAUER GG-SETS AND COVERING THEORY
Throughout this paper we assume that k is a field.

2.1. Review on fractional Brauer graph of type MS.

Definition 2.1. (cf. [7, Section 3]) Let G = (g) be an infinite cyclic group. A fractional Brauer
configuration of type MS (abbr. fpns-BC) is a quadruple E = (E,P,L,d), where E is a G-set,
P is a partition of E such that each class of P is a finite set, L is the partition of E given by
L(e) = {e} for anye € E, and d : E — Z4 is a function, such that

e if e1, ex belong to same (g)-orbit, then d(e1) = d(e2);

e P(ey) = P(ey) if and only if P(g¥e1) . e1) = P(g#e2) . ey).
Moreover, if each class of P contains exactly two elements, then E is called a fractional Brauer
graph of type MS (abbr. f,s-BG).

Follows from [7, Remark 3.4], the elements of E are called angles, the (g)-orbits of E are called
vertices, the subsets of E of the form P(e) are called polygons (if P(e) contains two elements, we
call P(e) an edge, and call an angle in P(e) a half-edge), and the function d : E — Z is called
the degree function. If v is a vertex of E which is a finite set, define the f-degree d¢(v) of v as
M; E is called f-degree trivial if d¢(v) = 1. The permutation o : E — F, e — g

c‘al‘led the Nakayama automorphism of E.
Definition 2.2. ([7, Definition 4.1 and Definition 4.4]) For a fn,s-BC E = (E,P,L,d), the
fractional Brauer configuration category in type MS (abbr. fns-BCC) associated with E is a k-
category Ap = kQg/Ig, where Qg is a quiver defined as follows: (Qg)o = {P(e) | e € E},
(Qe)1 = {L(e) | e € E} with s(L(e)) = P(e) and t(L(e)) = P(g-e), and Ig is the ideal of path
category kQp generated by the following relations:

-eon F is



o L(g¥)= . ¢).--L(g-e)L(e) — L(g*™~1 - h)--- L(g-h)L(R), where P(e) = P(h);

e Paths of the form L(ez)L(e1) with g - e # ea;

e Paths of the form L(g"~'-e)---L(g-e)L(e) for n > d(e).
Moreover, if E is a finite f,s-BC, then we define Agp = ®$,QG(QE)O Ap(z,y) (which is a finite
dimensional k-algebra) and call Ag a fractional Brauer configuration algebra in type MS (abbr.

Frs-BCA).

According to [7, Proposition 6.5], if E is a f,,s-BC, then Ag is a locally bounded special
multiserial Frobenius category, and if E is a f,,s-BG, then Ag is a locally bounded special bise-
rial Frobenius category. Thus f,,s-BCAs and f,,;-BGAs are generalization of BCAs and BGAs
respectively.

For the definitions of morphisms (coverings), walks and fundamental groups (groupoids) of
fms-BCs, we refer to [8, Section 2].

2.2. Brauer G-set and fundamental group. In this subsection, we define Brauer G-sets and
their fundamental groups.

Let E = (E,P,L,d) be a f,,s-BG. Since each edge P(e) of E contains 2 half-edges, we can
define an involution 7 on E such that P(e) = {e,7(e)} for every e € E. Therefore a f,,;-BG can
be considered as a triple E = (E, 7,d), where E is a G-set (G = (g) &£ Z), 7 is an involution on E
without fixed points, and d : E — Z_ is a function on F, such that

e if e1,e9 € F belong to the same G-orbit, then d(ey) = d(e2);
o g%(©) . 7(e) = 7(g¥®) . ¢) for every e € E.
Moreover, if E = (E, P, L,d) is a f;,s-BC such that each polygon of E contains at most 2 elements,
then we may regarded E as a quadruple (E,U,7,d), where U = {e € E | |P(e)| = 2} is a subset
of E, and 7 is an involution on U without fixed points such that P(e) = {e,7(e)} for every e € U.
The above discussion motivates us to introduce the following notion.

Definition 2.3. A Brauer G-set is a quadruple E = (E,U,T,d), where E is a G-set (G = (g) =
Z), U is a subset of E, T is an involution on U (T may have fized points), and d : E — Z4 is a
function on E, such that

(mf1) d(e1) = d(ez2) if e1, es belong to the same G-orbit;

(mf2) o(U)=U and to(e) = or(e) for every e € U, where o : E — E, e — g¥®)

- €.

The elements of E are called half-edges of E; an element e € U with 7(e) = e is called a double
half-edge of F; if e € U and e # 7(e), then the subset {e,7(e)} of E is called an edge; the function
d is called degree function; the permutation ¢ : E — E, e — ¢g¢) . ¢ on E is called Nakayama
automorphism of F. Similar to fractional Brauer configuration, we have the concepts of vertex
and f-degree for a Brauer G-set.

Example 2.4. Let E = {e,e'} be a G-set with g-e =¢', g-¢' =e. Let U = E, 7 = idy be an
involution on U, and d : E — Z be the function given by d(e) = d(e') = 2. Then (E,U,T,d) is a
Brauer G-set, which is given by the diagram

e e
4.7 .

Example 2.5. Let E = {e,€/,e1,e3} be a G-set with g-e =e1, g-ey =¢€', g-€/ = ez, g-ea =e. Let
U ={e, €, e}, T be the involution on U given by 7(e) =€, 7(¢/) =e, 7(e1) = €1, and d: E — Z
be the function given by d(e) = d(e') = d(e1) = d(e2) = 4. Then (E,U,7,d) is a Brauer G-set,

which is given by the diagram

€2
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Remark 2.6. According to the remarks before Definition[2.3, a fns-BG is identified with a Brauer
G-set E = (E,U,7,d) such that U = E and 7 has no fized points, and a fn,s-BC such that each
polygon of it contains at most two elements is identified with a Brauer G-set E = (E,U,T,d) such
that T has no fized points. We shall frequently using these identifications.

Definition 2.7. A Brauer G-set E = (E,U,1,d) of integral f-degree with U = E is said to be a
modified Brauer graph (abbr. modified BG).

Let E = (E,U,7,d) be a Brauer G-set. A walk of E is a sequence of the form

W = €ep—En—1 cr—€Ey—€1—¢€p,

where e; € E for 0 <i <n and ¢§; € {g9,g7',7} for 1 < j < n, such that e;_1,e; € U if §; = 7 and

g-ei—1, if 6; = g;
ei =149 ey, if & =971
7'(62‘_1), if 52 =T.

We may write w = (e,|0,, - - - d1]eg) or w = 0y, - - - 07 if there is no confusion. A Brauer G-set F is
said to be connected if every two half-edges e, es of it can be connected by a walk.

Remark 2.8. For a f,,s-BC E, we have already defined the walks and the special walks in E in
[8, Section 2]. Suppose that E is fn,s-BC such that each polygon of E contains at most 2 angles,
by Remark [2.6, we can also view E as a Brauer G-set. Then every walk of the Brauer G-set E
is a walk of the fns-BC E, and every special walk of the fmns-BC E is a walk of E as a Brauer
G-set. In particular, E is connected as a f-BC if and only if E is connected as a Brauer G-set.

Definition 2.9. Let E = (E,U,7,d) be a Brauer G-set. Define the homotopy relation =~ on the

set of walks of E as the equivalence relation generated by

(mh1) (elg~tgle) =~ (elgg~'le) = (e|m2|e) = (e|le) for every e € E.

(mh2) (g7 - 7(e)|r|g™® - e) (g% - g ]e) ~ (gD - 7(e)|g"T V| (e))(r(e)|7le) for every
ecU.

(mh3) If wy &~ we, then uw; ~ uwy and wiv &~ wyv whenever the compositions make sense.

For a walk w of a Brauer G-set E, define [w] := {walks v such that v ~ w}.

In [8) Subsection 2.4] we have already define the homotopy relation ~ on the set of walks of a
f-BC E. Note that if F is a f,,,s-BC E such that each polygon of E contains at most 2 angles,
then for walks w, we of E as a Brauer G-set, wy & wy implies wq ~ ws.

Similar to f-BC, we can define the fundamental group II,,,(E, e) (resp. fundamental groupoid
II,,(E, A)) of a Brauer G-set F at e € E (resp. on a subset A C E), using the homotopy relation

~
~.

Example 2.10. Let E = (E,U,7,d) be the Brauer G-set in Example[27]), and let A = {e,e'} = E.
Then 11,,,(E, A) is isomorphic to F /(c* = 1,,d* = 1,,bac = cba,abd = dab), where .F is the
fundamental groupoid of the quiver

)
c x y d
b .
Example 2.11. Let E = (E,U,7,d) be the Brauer G-set in Example [220 Then by Lemma [31]
and Lemma[2.3, (B, e) = F(v,y,2)/{vy = ya, a2 = za,2% = 1).

In [8 Subsection 2.2] we have already define the fundamental group (groupoid) of a {-BC E.
If Fis a fn,s-BC such that each polygon of E contains at most 2 angles, then by Remark we
can view it as a Brauer G-set, and we also have the notion of fundamental group (groupoid). The
following Lemma shows that these two fundamental groups are isomorphic.



Lemma 2.12. Let E = (E,U,7,d) be a Brauer G-set such that T has no fized points
(equivalently, E is a fps-BC such that each polygon of E contains at most 2 angles), and let A
be a subset of E. Denote by I1,,(E, A) and II(E, A) the fundamental groupoid of E on A as a
Brauer G-set and as a fps-BC respectively. Then I, (E, A) is isomorphic to II(E, A).

Proof. In the following, when we say a walk of E, we always view F as a Brauer G-set unless
otherwise stated. First we need to show the following fact: If wy,ws are two walks of £ with
wy ~ wa, then wy &~ we. It can be shown that for each walk w of F, there exists some special walk
v and some integer n such that w ~ (t(w)|g"* @) |t(v))v. For two walks wy, wsy of E with w; ~ ws,
let w; ~ (t(w )\g”ld(t(“’l |t(vi))v; (i = 1,2), where v; is a special walk of F and n; is an integer.
Then (t(wy)|g™ * @) |t(v1)) vy ~ (t (u)g)\g”ﬂl(t(“’2 |t(v2))ve2, and by [8| Proposition 2.49] we have
(v1,n1) = (va,n2). Then wy & ((wi)]g™ \t(vl))vl (t(ws)|gm> i \t(vz))vz X wa.

For each walk w of E as a f,,-BC, choose a walk w' of E such that w ~ w’ (by [8, Proposition
2.49] this can be done). For every a, b € A, define a map F : II(E, A)(a,b) — IL,(E, A)(a,b),
w — [w']. If wy, we are two walks of E (as a f,s-BC) with wy ~ wa, then w} ~ wh and w) ~ w.
So F is well defined. Same argument shows that F' does not depend on the choice of the walk w’
for each walk w of F as a f,,s~-BC.

For wy € II(E, A)(a,b) and wy € II(E, A)(b,c), since whw] is a walk of E such that wow; ~
whw), F(wawy) = [whw)] = F(w3)F(wr). Therefore F becomes a functor from II(E, A) to
I1,,(E,A). If F(wy) = F(wz), then w] ~ wj. Therefore wy ~ wy and Wy = Wy, so F is faithful.
For every morphism [w] € II,,(E, A)(a,b), since w and w’ are walks with w ~ w’, we have w ~ w'.
Therefore F(w) = [w'] = [w] and F is dense. Since F' induces identity map on objects, F' is an
isomorphism. O

2.3. Covering theory for Brauer G-sets. In this subsection, we define morphisms and cov-
erings between Brauer G-sets; we compare different coverings between Brauer G-sets using their
fundamental groups; we define special walks on Brauer G-sets and construct the universal cover
of Brauer G-sets.

Definition 2.13. Let £ = (E,U,7,d) and E' = (E',U’,7',d") be Brauer G-sets. A morphism
(resp. covering) f : E — E' of Brauer G-sets is a morphism of {(g)-sets satisfying the following
conditions (1), (2) and (3) (resp. (1'), (2) and (3)) below:

(1) For every e € U, we have f(e) € U';

(1') For everye € E, e € U if and only if f(e) € U';

(2) f(r(e)) =7'(f(e)) for every e € U;

(3) d'(f(e)) =d(e) for every e € E.

Remark 2.14. (1) Let E and E’ as above. If E and E' are f,,s-BCs such that each polygon
contain at most 2 angles (that is, 7 and 7' has no fived points), then for any map f : E —

E', f is a covering of Brauer G-sets if and only if f is a covering of f-BCs.
(2) A morphism f: E — E’ of Brauer G-sets maps each walk of E to a walk of E'. Moreover,
if f + E — E' is a covering of Brauer G-sets, then for every walk w' = (h'|6, ---d1|€’) of
E' and for every e € E (resp. h € E) which lies over € (resp. h'), there exists a unique

walk w of E which lies over w' whose source (resp. terminal) is e (resp. h).

For Brauer G-set we have following proposition, which is an analogy to {-BC case.

Proposition 2.15. Let f : E — E’ be a covering of Brauer G-sets, u, v be two walks of E with
s(u) = s(v) or t(u) = t(v). Then u=v if and only if f(u) =~ f(v).

Therefore each covering f : E — E’ of Brauer G-sets induces an injective map f : II,,(F,e) —
I1,,,(E’, f(e)) of associated fundamental groups for each e € E.

Remark 2.16. Proposition [2.11 suggests a general method to calculate the fundamental group of
given Brauer G-set. Let f : E — E' be a covering of Brauer G-sets and ¢’ € E'. Then f~'(¢)
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becomes a I, (E',€')-set: for any e € f~1(e’) and [w'] € L, (E',€), [w'] - e is defined as the
terminal of w, where w is the walk of E lying over w' with s(w) = e (Proposition ensures
that this group action is well-defined). Then for each e € f=1(¢'), the stabilizer subgroup of e in
I1,,(E', €) equals to the image of fi : 1, (E,e) — I, (E', €'), which is isomorphic to I1,,,(Ee).

By analogy with [8, Proposition 2.28], we have

Proposition 2.17. Let E, Eq, Ey be Brauer G-sets with Eq1 connected, and let fi1 : E1 — E and
fo i Ea — E be coverings of Brauer G-sets. For e; € E; (i = 1,2) with fi(e1) = fa(eq), there
exists a covering ¢ : E1 — FEy of Brauer G-sets such that fi = fa¢ and ¢(e1) = eq if and only if
frs( (Erye1)) C for (I (B2, €2)). Moreover, if such ¢ exists, then it is unique.

Let E = (E,U,7,d) be a Brauer G-set and II be a group of automorphism of E. Similar to the
case of -BC, we may define a quadruple E/II = (E/IL,U’,7’,d’) as follows: E/II is the G-set of
[I-orbit of E; U’ := {[e] € E/I1 | e € U} is a subset of E/II; 7/ is an involution of U’ given by
7'([e]) = [r(e)] for every [e] € U'; d' : E/II — Z4 is a function on E/II given by d'([e]) = d(e) (we
denote [e] the IT-orbit of e € E).

The following Lemma is an analogy of [8, Lemma 2.39] and Lemma [8, Lemma 2.40], and its
proof is straightforward. Note that here the condition that II acts admissibly on £ is not needed.

Lemma 2.18. E/Il = (E/IL,U’,7',d') is a Brauer G-set, and the natural projection p : E — E /I
is a covering of Brauer G-sets.

By analogy with [8, Subsection 2.4], we construct the universal cover of a Brauer G-set.
Let E = (E,U,7,d) be a Brauer G-set such that 7 has a fixed point. Define a Brauer G-set

E= (E, ﬁ,?, d) as follows: E=E UEy asa (g9)-set with Fy = Fy = E, and denote the element
e € E by e; if we consider it as an element of E;. Define U = Uy LI Uy as a subset of E, where U;
denotes the subset U of E; for i = 1,2, and for each e € U and i = 1, 2, define

Fe;) = {T(e)i7 if 7(e) # €

es_i, if 7(e) =e.

Define J(ei) = d(e). Note that 7 has no fixed points, that is, Eisa fms-BC such that each polygon
of it contains at most 2 angles.
Let ¢ : E — FE be the map which sends e; to e3_; for any e € F and i = 1, 2. It is straightforward

to show that ¢ is a morphism of Brauer G-sets. Since ¢? = id, ¢ is an automorphism of E.
Moreover, E/{(¢) = E as Brauer G-sets. By Lemma 218 we have

Lemma 2.19. The map 7 : E— E, e; — e is a covering of Brauer G-sets.

Let F = (E,U,1,d) be a Brauer G-set, a walk w of E is called special if it is of the form

(9" - exlg™er)(erlTlg™ " - ex—1) (g - er—1lg"Hler—1)(en—1|T|g* 2 - ep—a) - -

(e2l7lg™ - e1)(g" - erlg™ ler)(er|Tlg™ - €0) (9" - eolg™|eo),
where 0 < i < d(ep), 0 < i < d(eg), and 0 < 4; < d(e;) for all 1 <[ <k — 1. Note that if 7 has
no fixed points (that is, F is a f,,s-BC such that each polygon of it contains at most 2 angles),
then a special walk of E is just a special walk of F as a f,s-BC.

For a Brauer G-set E = (E,U,7,d) and for e € E, similar to the case of f,;,s-BC, we can
define a connected Brauer G-set B(g ¢y = (B(g,e), U, Te, de) such that 7, has no fixed points (that
is, B(g,e) 18 @ fis-BC such that each polygon of B(g ) contains at most two angles) as follows:
B(p,e) = {special walks of E starting at e}. The action of (g) on B(g) is given by

grtlrgie-1r ... rgiirgio  if w = glhrgth-1T ... TgltTgh with iy < d(t(w)) — 1;
cw = . o 7 7
g TgR-1T - Tg"Tg", if w=g*rg"*—17---Tg" 7¢" with iy = d(t(w)) — 1.
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The subset U, of B(gy is given by U, = {w € B | t(w) € U}, the involution 7, of U, is given by

(w) (7(t(w))|7|t(w))w, if w= gkTgh-17---TgltTg" with ip > 0;
T, =< e 7 7
c g1 TgTgh, if w = gkTg' T Tg"Tg" with i = 0,

and the degree function d, is given by d.(w) = d(t(w)). Note that B .y is f-degree trivial.

The Brauer G-set ZBg . can also be defined similarly as in [8, Subsection 2.4], whose involution
also has no fixed points. Note that when the involution 7 of E has no fixed points (that is, F
is a f;s-BC such that each polygon of E contains at most two angles), the f,,s-BC B(g.e) (resp.
ZB(g.¢)) defined as above is just the f,s-BC Bg ) (resp. ZBg,)) defined in [8, Subsection 2.4].

Proposition 2.20. There exists a covering of Brauer G-sets q : ZBg ¢y — E, (w,n) = o"(t(w)),
which is universal in the sense of [8, Corollary 2.30].

Proof. 1t is straightforward to show that ¢ is a covering of Brauer G-sets. By Proposition 2.17]
it suffices to show that I1,,(ZB(g)) = {1}. When the involution 7 of £ has no fixed points, it
follows from Lemma and [8, Proposition 2.47] that I1,,,(ZBg¢)) = {1}

When the involution 7 of E has a fixed point, let 7 : E — E be the covering of Brauer G-sets
in Lemma 219 Choose some z € E with m(x) = e. Since 7 is a covering of Brauer G-sets, 7
maps special walks of E starting at x bijectively onto special walks of E starting at e. Therefore
7 induces an isomorphism between B( B and B(g . Since E is a Brauer G-set whose involution

has no fixed points, we have Hm(ZB(va)) = {1}. Therefore I1,,(ZB(g)) = {1} O
In general B(f ) is a finite or infinite tree for any f,s-BG E, here is an example:

Example 2.21. Let E be the Brauer G-set in Evample[2.4. Then Bg . is an infinite tree with
trivial f-degree, which is given by the diagram

The following proposition is an analogy of [8, Proposition 2.49].

Proposition 2.22. Let £ = (E,U,7,d) be a Brauer G-set, w be a walk of E. Then there exists
a unique special walk v and a unique integer n such that w ~ (t(w)|g"* @) |t(v))v.

Proof. 1t is straightforward to show that each walk of F is homotopic to a special walk. The rest of
the proof is similar to that of Proposition [8, Proposition 2.49], using the covering ¢ : ZB(g ) — E,
(u,n) — o™(t(u)) of Brauer G-sets in Proposition 220, where e = s(w). O

2.4. Lines and bands. In this subsection, we define lines and bands on Brauer G-sets, and
compare the numbers of equivalence classes of bands via a covering between Brauer G-sets. More-
over, we define the reduced form Rp (which is a BG) of a finite connected f,,s-BG E, and show
that the fp,s-BGA Apg is representation-finite (resp. domestic) if and only if the BGA Apg, is
representation-finite (resp. domestic).

Let E = (E, P,L,d) be a finite f,,;-BG such that each edge of E contains a half-edge e with
d(e) > 1. According to [7, Section 6], Ap = kQ’;/I} with I}, admissible, where Qg is the sub-
quiver of Qg given by (Q%)o = (Qr)o and (Qz)1 = {L(e) | e € E with d(e) > 1}, and I}, is
generated by the following three types of relations:

(fR1") L(g#©)=1.e)... L(g-e)L(e)—L(¢*™~1.h)--- L(g-h)L(h), where e, h € E and d(e), d(h) > 1;
(fR2') L(e1)L(e2), where eq,e2 € E, d(e1),d(ez) > 1, and e; # g - eg;
(fR3) L(g¥®) -¢)---L(g-e)L(e), where e € E and d(e) > 1.
Therefore the string algebra Ag/soc(Ag) is given by the quiver Q% and the admissible ideal I7,
of kQ'y generated by the following two types of relations

(a) L(g#®)=1.¢)---L(g-e)L(e), where e € E and d(e) > 1;

(b) L(e1)L(e2), where e1,e9 € E, d(e),d(h) > 1, and e # g - €.
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We call b a band of Ag if b is a band of the string algebra Agp/soc(Ar) = kQ'y/I% (for the
definition of bands of a string algebra, see [3], I1.2]).

Definition 2.23. Let E = (E,U,1,d) be a Brauer G-set. A line of E is an infinite sequence
03 09 01 09 01 0o
l=-—es—=e1—ep—e_1—e_g— -,
where e; € E and §; € {g,g~', 7} for every i € Z, such that
(a) ei—1,e;, €U if 6; =7;
(b) eir1 = diy1(e;) for everyi € Z.

We will also write a line [ as a family {(e;,d;)}iez. For such a line [ and for any integer n,
denote [[n] the line {(e},d})}icz, where €, = e;1,, and 0, = d;+,,. We call [[n] the n-th translate of
I. We may consider a line [ = {(e;, ;) }icz as a walk in E of infinite length. Moreover, define [~*
as the line {(e,0/)}icz, where € = e_; and

g, if b1 =g7"
60 =qg " if hi = g;
T, if 51—1' =T.
Call the line ="' the inverse of /.

Definition 2.24. Let E = (E,U,1,d) be a Brauer G-set and l be a line of E such that l[n] =1
for some positive integer n. Then  is called a band of E if it is of the form (consider | as a walk
of infinite length)

e (eallg™ R (g™ halg T R (ha|T|gMt - er) (g - enlg™ fer)
(ex|Tlg™" - ho)(g™" - holg ™" |ho) (holT]g™ - €0) (g™ - e0lg™leq) - - -,
where 0 < k; < d(e;) and 0 < l; < d(h;) for all i € Z.

Definition 2.25. Let E = (E,U,7,d) be a Brauer G-set. Define an equivalence relation ~ on the
set of all bands of E: ~ is generated by
(a) U~ 1[i] for any integer i;

(b) I ~ 171
For every band [ of E, denote [I] the equivalence class of bands of E containing I.

Lemma 2.26. If E = (E, P, L,d) is a finite fy,s-BG such that each edge of E contains a half-edge
e with d(e) > 1, then there exists a bijection between the set of equivalence classes of bands of E
and the set of equivalence classes of bands of Ag.

Proof. For any band [ = {(e;, ;) }iez of E, let n be the smallest positive integer such that [ = [[n].
Then w = (e,|dn - -+ d1]eg) is a closed walk of E, which induces a closed walk ¢(l) of the quiver
Q'y- It can be shown that ¢(1) is a band of Ag. Moreover, if a band I’ of E is obtained from the
band [ of E by a translation (resp. by taking inverse), then the band ¢(I") of Ag is obtained form
the band ¢(l) of Ag by a rotation (resp. by taking inverse), so ¢ induces a map ¢ from the set of
equivalence classes of bands of F to the set of equivalence classes of bands of Ag.

If I1, 15 are two bands of E such that ¢(l1), ¢(l2) are equivalent, then there exists a sequence of
bands by = ¢(l1),b1, -+ ,bk_1,b = ¢(l2) of Ag such that for each 1 < i < k, b; is obtained from
b;—1 by a rotation or by taking inverse. Therefore there exists a band ] of E which is equivalent
to 1 such that ¢(I) = ¢(l2). It can be shown that I} = la. So lj,ly are equivalent and therefore
¢ is injective.

If b is a band of Ag, then up to equivalence we may assume that b is of the form

-1 —1 ~1 -1 —1 —1
Qop 1"t Qg o, A2r—Ingpy """ O2r =117 Qg1 " QY g, A3ng " A31Q9 1 * "~ Qg ), Ay ** - AL 1,
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where each «;; is an arrow of Q’;. Assume that a; 1 = L(e;) for each 1 <4 < 2r. Then b induces
a closed walk

w = (e1|7]ear)(e2r|g™ " 9" - €2,)(g"*" - €2, |T]g" ! - €2p1) (9" - e2r—1]9" T €2 1) -+
(e3|Tle2)(ealg™"2|g"? - e2)(g"? - ea|T|g"™ - e1) (g™ - e1]g™*|e1)

of E. Denote n = 222;1 n; + 2r, and let | = {(e;, ;) }iez be the band of E such that [[n] =1 and
(en|0n - -+ d1]leg) = w. Then b = ¢(1), which implies that ¢ is also surjective. O

For any Brauer G-set E such that the number of equivalence classes of bands of E is finite,
denote Ng the number of equivalence classes of bands of E.

Proposition 2.27. Let E = (E,U,7,d) be a Brauer G-set and let II be a finite group of auto-
morphisms of E of order n. Then the number of equivalence classes of bands of E is finite if
and only if the number of equivalence classes of bands of E/II is finite. In this case we have

Proof. Let E/T1 = (E/I,U’,7',d"). For every band | = {(e;,d;)}icz of E, denote [ the band
{([es], 0}) }Yiez of E/II, where [e;] is the IT-orbit of e; and

5 {5 if i = g or 6; = g

i = .
it d =71

for each i € Z. Since I-X =1 ' and 1[7] = 1[i] for any integer i, the map [ + [ defines a map f
from the set of equivalence classes of bands of E to the set of equivalence classes of bands of E/II.
For every band I’ = {(€},d.)}iez of E/II and for every ey € E with [eg] = €f, since the natural
projection E — E/II is a covering, there exists a unique band I = {(e;, d;)}icz of E such that
I =1'. Therefore f is surjective.

For every band I = {(el, 8!)}iez of E/II, choose a band | = {(e;,d;)}iez of E such that [ = 1'.
Suppose that f([b]) = [I'] for some band b of E. Then b ~ I. Since for every band v of E, the
operation v — U commutes with translation and taking inverse, we imply that there exists a band
c of E such that b ~ cand ¢ ='. Let ¢ = {(hi, &) }iez. Since [ho] = e, = [eo], there exists some
7 € II such that w(eg) = hg. Since 7(l) = {(7(e;), ;) }iez and ¢ = {(h;, €;) }iez are bands of E
which satisfy () = I’ = ¢ and 7(eg) = hg, we have 7(l) = ¢. Therefore [b] = [¢] = [7(])] and
Y ]) = {[w(D)] | p € T}. Then we have 1 < |f~([I'])] < n for every band I’ of E/II, and the
conclusion holds. O

Let E=(E,E,7,d) bea f,,-BGando: E — E, e — g¥©) . ¢ be the Nakayama automorphism
of E. Denote (o) the group of automorphisms of E generated by o. The following lemma is
straightforward.

Lemma 2.28. Let E and o be as above. If (o) is admissible, that is, each (c)-orbit of E meets
each edge of E in at most one half-edge, then E /(o) is a Brauer graph; if (o) is not admissible,
then E/{(o) is a modified BG which contains a double half-edge.

If (o) is admissible, then E/(o) is a Brauer graph, and we define the reduced form Rg of E to
be E/(o). If (o) is not admissible, then E/(o) is a modified BG which contains a double half-edge,

—

and E/(o) is defined, which is a Brauer graph (see the paragraph after Lemma 2.18]). In this case,

define the reduced form Rp of E to be E/{o). (For an example of this construction, see Example
23T below.) Note that if E is finite (resp. connected), then so does Rp.

Theorem 2.29. Suppose that the field k is algebraically closed. Let E = (E,E,T,d) be a fi-
nite connected fms-BG. Then Ag is representation-finite (resp. domestic) if and only if Ag,, is
representation-finite (resp. domestic).
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Proof. If E contains a half-edge {e,7(e)} with d(e) = d(7(e)) = 1, then it can be shown that
E={eg-e--,9"ter(e),g7(e) - ,g" 1-7(e)} for some positive integer n, where g"-e = e,
g -7(e) = 1(e), 7(¢° - e) = g* - 7(e) for 0 < i < n — 1, and the degree of each half-edge of E is
equal to 1. Moreover, Rg is a Brauer tree with trivial f-degree given by the diagram

- o .

Both Ap and Apg, are Nakayama algebras of Loewy length 2, so they are both representation-
finite. Therefore we may assume that each edge of F contains a half-edge e with d(e) > 1.

For a self-injective special biserial algebra A, it is well known that A is representation-finite if
and only if A has no bands. Moreover, according to [4, Theorem 2.1], A is domestic if and only if
the number of equivalence classes of bands of A is a positive integer.

Since E is finite, the group (o) of automorphisms of E is finite. If (o) is admissible, then
Rp = E/{o); if (o) is not admissible, then we have Ry = E/(o) and E/{(0c) = Rg/{¢), where
¢ is the automorphism of Rg = (E/{(c)) U (E/{c)) given by ¢(h;) = hs—; for every h € E /(o)
(see the paragraph before Lemma [2.19). By Proposition 2.27] the number of equivalence classes
of bands of E is finite (resp. zero) if and only if the number of equivalence classes of bands of Rg
is finite (resp. zero). Since each edge of E (resp. Rp) contains a half-edge whose degree is larger
than 1, by Lemma 2:26] we imply that the number of equivalence classes of bands of Ag is finite
(resp. zero) if and only if the number of equivalence classes of bands of Ag,, is finite (resp. zero).
Therefore Af is representation-finite (resp. domestic) if and only if Ag, is representation-finite
(resp. domestic). O

Remark 2.30. Theorem gives an effective way to determine the representation type of a
fms-BGA in terms of the reduced form of its defining f,s-BG.

Example 2.31. Let E be the fn,s-BG given by the diagram

9

where the f-degree of the unique vertex of E is % and the G-action is induced from the clockwise

order on the half-edges around this vertex. Then (o) is not admissible and E/{o) is a Brauer
G-set gwen in Example[2.4. Therefore Rg is a BG with trivial f-degree given by the diagram

@

According to Theorem [1L.1, Ag, is domestic, therefore A is also domestic. One of particularly
interests is that Ag,, is symmetric but Ag is weakly symmetric with nonidentity Nakayama auto-
morphism. Indeed, Ap = kQg/Ig, where Qg is the quiver

o1

&%)

1 a3 2
Qg

I

and I is generated by agoq, oo, oy, gy, o] — s, 30y — a1y. 1he structure of inde-
composable projective modules are as follows:
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The Nakayama automorphism of Ag is induced by e; — e; fori = 1,2, a; — o fori € L/AZ =
{1,2,3,4}. However, Ag, has the same quiver with the following structure of indecomposable
projective modules:

20}/1%2 104/2%1
AN

3. FUNDAMENTAL GROUPS OF FRACTIONAL BRAUER GRAPHS OF TYPE MS

In this section, we calculate the fundamental group of a finite connected f,,s-BG E with Ag
representation-finite or domestic. Our method is as follows: we first calculate the fundamental
groups of modified BGs, then we use the covering F — E /(o) of Brauer G-sets (here E/(0) is a
modified BG) to reduce the calculation of the fundamental group of E to the calculation of the
fundamental group of E /(o) by a method mentioned at the end of [§].

3.1. The fundamental groups of modified BGs.

In this subsection we calculate the fundamental groups of modified BGs using an analogy of
Van Kampen theorem for Brauer G-sets.

We denote F(x1,xz9, - ,x,) the free group on the set {z1,z2, -+ ,x,}. The following Lemma
should be compared with [8, Lemma 5.6].

Lemma 3.1. Let E = (E, E, 7,d) be the modified BG given by the diagram

where E contains n = a+b double half-edges ey, - - -, eq+p, and the f-degree of the unique vertex of
E ism. Then I, (E,e) =& F(x,y, 21, , 2n)/{™y = yz™, 2m2 = z2™(1 < i < n), 22 = 1(1 <
i <mn)).
Proof. Define a group homomorphism [’ : F(x,y,z1, - ,2,) — I,(E,e) as follows: f'(x) =
[(elg™*2[e)], f'(y) = [(e|Tg*]e)], and
: [(elg™'Tg'le)], if 1 <i<a
f (Zz) = —i—1_ i+l . .
[(elg Tg"e)], ifa+1<i<n.

By imitating the proof of [8, Lemma 5.6], it can be shown that for every closed special walk
w = (e|g’*Tg*17---Tg" Tg"|e) of E at e, [w] belongs to the image of f’ (by induction on the
number of times that 7 appears in w). Then according to Proposition 222 f’ is surjective.
Moreover, it is straightforward to show that the kernel of f’ contains the normal subgroup of

F(z,y,21, " ,2,) generated by the relations 2™y = ya™, 2™z = zaz™(1 <i < n),2? = 1(1 <
i < n). Therefore f’ induces a surjective group homomorphism f : F(z,y, 21, - ,2,)/{(a™y =
yr™ "z = zig™(1 < i <n), 22 =1(1 <i < n)) = ,(E,e).

We need to show that f is also injective. Note that each element of F(x,y, 21, -, z,)/{z™y =

yr™, a2 = za™(1 < i < n),z2 = 1(1 < i < n)) is of the form x“”&ff .--0% ) where | € Z,
ly,-- k€ Z—{0}, 0; € {x,y,21, -+ , 2z} for 1 <i <k, such that
(1) di_1 75 0; for 1 < i < n;

(2) if &; = x, then 0 < l; <m;
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(3) if §; = 2, for some 1 < r < n, then [; = 1.
If xlméff ‘e (5l11 € ker(f), according to Proposition[2:22] it is straightforward to show that k = [ = 0,
therefore xlm%’“ S =1, O

The following Lemma should be compared with [8, Lemma 5.8]. For the definition of the
fundamental groupoid of a quiver, we refer to [8 Section 3].

Lemma 3.2. Let E = (E, E,T,d) be the modified BG given by the diagram

where E contains a+b double half-edges e, -+, €q, €at+1, ***, €qarp, and the f-degree of the vertex
on the left (resp. right) is m (resp. n). Let A = {e,h} be a subset of E. Then the fundamental
groupoid 11,,,(E, A) is isomorphic to

F[({tz™ = u"t, a2 = zg™, 2P = 1,(1 <i<a),u"v; =vju"™,v

: 2 =1,1<j<0),

X

QO SO

U
where % is the fundamental groupoid of the quiver

Proof. Define a morphism of groupoids F’ : % — II,,(E,A) by setting F(p) = e, F(q) = h,
F(z) = [(elg®"Me)l, F(u) = [(Alg"" )], F(t) = [(Alrle)], F(z) = [(elg~'7g'le)] (1 < i < a),
F(vj) = [(hlg~71¢?|h)] (1 < j <b). We first need to show that F” is full. According to Proposition
[2.22] it suffices to show that for every special walk w with s(w), t(w) € A, [w] belongs to the image
of F'.

Let w = g'*7g'*~17 ... 7¢"7g" be a special walk of E with s(w),t(w) € A. We will show that
[w] belongs to the image of F’ by induction on k, that is, the number of times that 7 appears in
w. If k=0, then w = (e|g"*V]e) or w = (h|g*®+V|h), where r,s € Z, so [w] belongs to the
image of F’. Now suppose that k& > 0. We may assume that w contains no subwalks of the form
(h|T|e) or (e|T|h), otherwise w can be factored as a composition of special subwalks whose sources
and terminals belong to A with k smaller. Therefore we may assume that w is of the form

(elg™ ler) (erlTler) (cklg™ex—1) (chorT|cr—1) - - (calTle2) (calg™ er) (er|Tler) (er]g™]e),
where ¢1, - ,cx € {e1,-++ ,eq} and 0 < ig, i1, -+ ,ip < m(a+ 1). It is straightforward to show

that [w] belongs to the image of F.
Let y = t~lut and z,4; = t‘lvlt for 1 < i <b. Then Z(p,p) is a free group generated by

z y,zl,-  Zaqp. Let f': F(p,p) = Iu(E,e) be the group homomorphism induced by F’. Since
"is full, f’ is surjective. We have f( ) [(elg®Tte)], f(y) = [(e]Tgb“T\e)], and
Z [( !Tg ”“g 7le)], fa+1<i<a+b.
It is straightforward to show that the normal subgroup of
F(p,p) = F{x,y,21, - , Zqrp) generated by relations ™ = y", x™z; = zixm,ziz =1(1 <i<a+bd)

is contained in the kernel of f’, therefore f’ induces a surjective group homomorphism

f:ZFp,p)/a™=y" 2"z = 22", 22 =1(1<i<a+b)) = II,(E,e).

It can be shown directly that each element of % (p,p)/(z™ = y™, 2™z = za™, 22 = 1(1 < i <

Hiad)
a+ b)) is of the form xlm%’“ e 5111, where l € Z, l1,--- ,ly € Z — {0},
0; €{x,y, 21, , zqup} for 1 < i < k, such that
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1)(5,~_17é(5,~f0r1<i§n;

2) if §; = z, then 0 < [; < m;

3) if ; =y, then 0 < I; < n;

4) if 6; = 2, for some 1 <r < a—+b, then [; = 1.

If xlméff ‘e (5l11 € ker(f), according to Proposition[2.:22] it is straightforward to show that k = [ = 0,

(
(
(
(

therefore xlm5ff e 5111 = 1. Thus f is also injective.
Let 4 be the groupoid

F/(ta™ = ut,x™z = zix™, 22 = 1,(1 < i < a),u"v; = vju",vjz- =1,(1 <j <D)).

Then it is straightforward to show that F’ induces a morphism of groupoids F': 4 — I1,,,(FE, A).
Since 4(p,p) = F(p,p)/(x™ = y", 2™z = zx™, 22 = 1(1 < i < a+ b)), and since F induces a
group isomorphism f : 4 (p,p) — I,,(E,e), by [8, Lemma 5.7], F' is an isomorphism of groupoids.

O

The following Lemma is an analogy of [8, Lemma 5.3]. We omit the proof of it.

Lemma 3.3. Let E = (E,U,7,d) be a connected Brauer G-set. Let C be a subset of E — U such
that for each e € E, e € C if and only if g¢%®)(e) € C (We denote g™(h) the action of g" on h
for every h € E andn € Z). Let E' = E — C and assume that E' # (). Define a Brauer G-set
structure (E',U,7,d") on E' as follows: the action of G = (g) on E' is given by

_Jg(h), if g(h) € E;
gV (h), if g(h) & E', where N is the minimal positive integer such that g™ (h) € E';

the degree function d' is given by
d'(h) =d(h) — [{i |1 <i<d(h)—1 and g'(h) ¢ E'}|.
Then E' is a connected Brauer G-set, and the groupoids I1,,(E, E') and I1,,(E', E') are isomorphic.

Especially, if we choose C = E — U, then the fundamental groups of £’ and E are isomorphic.

Let E = (E,U,,d) be a Brauer G-set. A sub-Brauer G-set E' = (E',U’,7',d’) of FE is a Brauer
G-set such that E’ is a sub-G-set of E and the inclusion £’ — E is a morphism of Brauer G-sets.
That is, E' is a sub-G-set of E, U’ is a subset of E' N U such that o(U’) = U’ and 7(U’") = U’ (o
is the Nakayama automorphism of E), 7’ is the restriction of 7 on U’, and d’ is the restriction of
don E'.

For a set of sub-Brauer G-sets {E, = (Ea,Us,Ta,dq)} of E, define the union (resp. the
intersection) of them as Uy Ey = (UgEo, UaUq, 7/, d') (resp. NoEo = (NaEq, NaUq, 7, d")), where
7', (resp. 7") is the restriction of 7 to UaU, (resp. NaU,), and d’ (resp. d”) is the restriction of
d to UaEy (resp. NaEy).

Similar to [8, Proposition 5.2], we have the following analogy of Van Kampen theorem, and we
omit the proof of it. Note that in this proposition we do not require the family of sub-Brauer
G-sets {Eq }acr of E being admissible.

Proposition 3.4. Let E be a Brauer G-set, which is the union of a family of sub-Brauer G-sets
{Ea}aer which is closed under finite intersections. Let A be a subset of (\,c; Ea such that for
each o € I, A meets each connected component of E,. Then the groupoid 11,,(E, A) is the direct
limit of groupoids 1, (Ey, A).

Now we can calculate the fundamental group of a Brauer G-set with integral f-degree (e.g.

modified BGs).

Proposition 3.5. Let E = (E,U,7,d) be a finite connected Brauer G-set of integral f-degree
with n vertices vy, ---, vn, k edges, and | double half-edges. Let d; be the f-degree of v; for each
1<i<n, andletr =k —mn+1. Then the fundamental group of E is isomorphic to
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d d d d . d d 2
F<CL1,”’ 7an7b17"' 7bracl7'” 7cl>/<a11 == a’nn7allbi = biall (1 <1< r)7allcj = cjallac' =

1 (1<5<).
Proof. Note that if we take C = E — U, then the modified BG E' = (F’, F’, 7,d’) constructed in
Lemma [3.3] also has n vertices, k edges, | double half-edges, and the f-degree of each vertex of E’
is equal to the f-degree of the corresponding vertex of E. Moreover, according to Lemma [3.3] the
fundamental groups of E’ and E are isomorphic. Therefore we may assume that £ = U.

Let {e1,7(e1)}, -+ -, {er, T(er)} be all edges of E. For each 1 < i < k, define a sub-Brauer G-set
E; = (E;,U;,7,d;) of E as follows: E; = E as (g)-sets; the subset U; of E; is given by

U=E- |J A{eme)h
1<j<k,j#i

the involution 7; is the restriction of 7 on U;, and the degree function d; is equal to d. Let
E' = (E',U',7',d") be the intersection of all the E;’s. For each 1 < i < n, choose h; € v;, and
let A = {hy, - ,h,} be a subset of E. The family {E’, E1,--- , Ex} of sub-Brauer G-sets is
closed under finite intersections, and the union of them is E. Moreover, A meets each connected
component of E’ and each connected component of every FE;.

For each vertex v; of E, let [; be the number of double half-edges of E which belongs to v;.
For each 1 < i < k, if the two half-edges e;, 7(e;) belong to the same vertex v;, then we denote

0/

[
K
i ljo..z.JQVij1

it

°
2
%tth th')/'tl
denote .%;; the fundamental groupoid of quiver "% . By Lemma 3.l and Lemma
B3 II,,(E;, A) is isomorphic to the groupoid ¥; = |_|1§t§n7t;éj(9it/<a?f%tp = %-tpozftt, %th =1
d; d; d; d;
(L <p < W) U(Fi/(oy) B; = Bjoy] s ;] Vijp = YVijpQys » ’yftp =11 <p<I))). If the two half-
edges e;, 7(e;) belong to two different vertices vj,, vj, with ji < jo, we denote .%; the fundamental

%#; the fundamental groupoid of quiver , and for each 1 <t < n with [ # j,

Qijy Qigo

AN
xijl CCZ'J'Q
Vijllle \ ’YijQZjQQ Q

groupoid of quiver Vgl g2l , and for each 1 < ¢ < n with t # j1, jo,
Qg

°
2
%’tth th')/'ﬂ
denote .%;; the fundamental groupoid of quiver ' . By Lemma and Lemma

B3l 11,,,(E;, A) is isomorphic to the groupoid ¥; = |_|1§t§n’t¢j17j2(fit/<ozf;%tp = ’yitpa?tt, %%p =1
(1 <p <)) U(Fi/(Bioy)) = 2 Biy 0ij Viap = Vigap i s Vijap = 1 (¢ =1,2, 1 <p < 1))
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()
2
’YﬂjQ ]67'1
’ 7Tt is

straightforward to show IL,(E’, A) is isomorphic to ' = | |, 9;/ (oz;-lj Yip = yjpa?j , 7]2p =1
(1 < p < lj)). The direct system {II,,(E’, A) — IL,(E;, A)}1<i<k is isomorphic to the direct
system {p; : X' — E;}i<i<k, where p; is defined by p;(z;) = xij, pi(ey) = aij, pi(vjp) = vijp for
1<j<n 1<p<li;

Define a quiver Q as follows: Qo = {v1, - ,vn}, Q1 = {&, 8,7}, | 1 <j<n 1 <i<Kk,
1 < p < [;}; define s(a}) = t(a}) = s(vj,) = t(7),) =vjfor 1 < j <mand1 <p <l for
1 <i <k, if the two half-edges e;, 7(e;) belong to the same vertex v;, define s(8]) = t(8]) = vj; if
the two half-edges e;, 7(e;) belong to two different vertices v, , vj, with j; < jo, define s(5}) = vj,
and ¢(8]) = vj,. Let II(Q) be the fundamental groupoid of the quiver @, and let ¥ be the

groupoid THQ)/ (el )40 8, = Filal )b, (a)!, = (@), () =111 < < F,
1<j<n, 1<p<ly), where s(3]) = vy and £(5;) = vg(;)- It can be shown that ¥ is the direct
limit of the direct system {p; : ¥ — %;}1<i<x. By Proposition 3], the groupoid II,,(E, A) is

isomorphic to X. The rest of the proof is similar to that of [8, Proposition 5.9]. O

For each 1 < j < n, let ¢¥; be the fundamental groupoid of quiver

3.2. The fundamental groups of representation-finite and domestic f,,;-BGAs.
In this subsection, we assume that the field k is algebraically closed. For a Brauer G-set F, we
always denote o the Nakayama automorphism of E.

Lemma 3.6. Let E = (E,U,,d) be a connected Braver G-set and let Il = (o) < Aut(E). Then
the action of Il on E is free, that is, ¢(e) # e for each e € E and each ¢ # 1 in IL.

Proof. Suppose that 0™ (e) = e for some e € E and for some integer n. For any h € E, since E is
connected, we can choose a walk w of E from e to h. Let w = (h|5, - - - 0261 |e), where &; € {g, g1, 7}
for 1 <i¢ <r. Then o"(h) = 0" (5, - - d201(€)) = - - - 6201 (c™(€)) = d, - - - 0201 (€) = h. Therefore
o™ =1. ]

Lemma 3.7. Let E = (E,E,1,d) be a finite connected fn,s-BG such that (o) < Aut(E) is not
admissible, and let e be a half-edge of E such that T(e) € el?). Letr be the smallest positive integer
with the property that o”(e) = 7(e). We have

(1) The (o)-orbit €% of e contains 2r half-edges e,o(e),--- ,a* ~(e).

(2) The order of the Nakayama automorphism o of E is 2r.

(3) If N is the smallest positive integer with the property that g~ -e € ¢! and suppose that

gV - e =0oP(e) for some 0 < p < 2r—1, then (p,2r) = 1. Especially, p is odd.
(4) The f-degree of each vertex of E /(o) is odd.

Proof. Since o'(7(e)) = 7(c'(e)) for any integer i, 7 is also the smallest positive integer with the
property that o”(7(e)) = e. If there exists 0 < i < 2r such that o(e) = e, then 0 < i < r or
r<i<2r. If0<i<r, then 0" %(e) = 0" %(0%(e)) = 0" (e) = 7(e), which contradict with the
minimality of 7. If r < i < 2r, then ¢ "(7(e)) = 0" (0" (e)) = o'(e) = e, where 0 < i —7r < 7,
which also contradict with the minimality of r. Therefore 2r is the minimal positive integer with
the property that 02" (e) = e, so (1) holds, and (2) follows from Lemma

Note that N divides d(e). Otherwise, let d(e) = alN +b with a, b € Z and 0 < b < N. We have
ole) = g4e) e = g?N+b.e = g . 6% (e) and g’ -e = 0!~ %(e) € '), contradict with the minimality
of N. Let d(e) = aN for some integer a. Then o(e) = g%®) . e = ¢*N . ¢ = 0% (e). Since 2r is
the minimal positive integer with the property that 02" (e) = e, 2r divides 1 — ap and (p,2r) = 1,
which implies (3). Since 2r divides 1 — ap, a is also odd. Since N equals to the cardinal of the
vertex of E/(0) containing e{”), a equals to the f-degree of the vertex of E/(c) containing e!”).
For every half-edge h of FE, since (o) acts freely on F and since the order of o is 2r, h{?) contains
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2r elements. Using the same method we can show that the f-degree of the vertex of E /(o) which
contains h{?) is odd, which implies (4). O

3.2.1. The fundamental groups of representation-finite f,s-BGAs.

Theorem 3.8. Let E = (E,E,7,d) be a finite connected fns-BG. Then Apg is representation-
finite if and only if II(E) = Z.

Proof. By Theorem [2.29) Af is representation-finite if and only if Ag, is representation-finite.
Since Rpg is a Brauer graph, we have Ag, is representation-finite if and only if Rg is a Brauer
tree.

”=" Since Rp is a Brauer tree, by [8, Proposition 5.9] we have II(Rg) = Z.

If the group (o) of automorphisms of E is admissible, then Ry = E/(o) and there exists a
covering £ — Rp of f,,s-BGs. By [8, Theorem 2.19], II(F) is isomorphic to a subgroup of II(Rg).
Since F is finite, the order of the automorphism o of E is finite, and suppose that o(c) = r. For
any e € E, by [8, Proposition 2.49], (e|g#)"|e) # (e||e) in II(E), therefore II(E) # {1}. Since
II(E) is a subgroup of II(Rg), it follows that II(E) = Z.

If the group (o) of automorphisms of E is not admissible, then E/(c) contains a double half-
edge and Ry = %. Suppose that E/(c) has n vertices, k-edges, and [ double half-edges. Then
Rp has 2n vertices and 2k+1 edges. Since R is a Brauer tree, (2k+1)—2n+1 =0, and E/(0) is {-
degree trivial. Since E/(c) is connected, k > n—1. Therefore k = n—1and | = 1. By Proposition
m Hm(E/<U>) = F<CL1,--- 7amcl>/<a1 = ' = Qp, a1 = (141, C% = 1> = F<avc>/<ac = ca,
A=1)=2207/27.

Let e/?) be the unique double half-edge of E/(c). Since 7(e) € e!?), there exists a minimal
positive integer r such that 7(e) = o”(e). By Lemma B (1), e/ = {o%(e) | 0 < i < 2r — 1}.
By the proof of Proposition B3], the isomorphism f : Z & Z/2Z = IL,(E/(c),el?)) is given
by f(1,0) = [(![g%®)|el®))] and f(0,1) = [(e')|7|e!?))]. Similar to f-BC case, the covering
¢ : E — E/(o) of Brauer G-set induces a IL,,(E/(c), e\?) )-set structure on ¢~ '(e!?) = !}, and
the stabilizer subgroup of e in II,,(E/(c),el?) is isomorphic to IL,(F, e) by Remark 216}, which
is also isomorphic to II(E,e) by Lemma The action of Z @ Z/27 on e\?) via the group
isomorphism f is given by (a,0) - e = 0%(e) and (a,1) - e = 0%t"(e) for any a € Z. We have
(a,0) - e = e if and only if 2r|a, and (a,1) - e = e if and only if a = br with b odd. Therefore
II(E, e) is isomorphic to the subgroup of Z & Z/27Z generated by (r,1), which is isomorphic to Z.

7<” Suppose that Ap is not representation-finite, then Ar has a band. Since Ap is not a
Nakayama algebra, there exists some e € E with d(e) > 1. According to Lemma 2.26] F has a
band [, which corresponds to a closed walk w of E of the form

(ear|Tg ™" |ear_1)(e2n_1|7g"* |ear_2) - - (ea|Tg™2|e1)(e1|Tg™ |en),

where ey = e, and 0 < i; < d(ej_1) for 1 < j < 2k. Using w we obtain a special walk

w' = (0% (egr)|rg e 72 0" (eg, 1)) (0" (eap 1) |Tg ™ 0" (eap—2)) -+
(0(e2)|rg" V=2 e1) (1| g™ |eo)
of E. Let e = ey = egr. Since E is finite, the order of the automorphism o of F is finite.
Suppose that o” = idg, then the walk v = o*("=D(w’) ... o*(w')w’ is a closed special walk of
E at e. Moreover, v' is also a closed special walk of FE at e for any positive integer I. Let
u = (e|g"®) |e) be a closed walk of E at e. Then 7o = Tu. By [8, Proposition 2.49], the subgroup

of II(E,e) generated by @ and T is isomorphic to Z @ Z. Therefore II(E, e) is not isomorphic to
7Z, a contradiction. O

3.2.2. The fundamental groups of domestic f,s-BGAs.
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Lemma 3.9. Let G be a group and let N be the normal subgroup of G generated by X, where
X is a subset of G. Let H be a subgroup of G such that N C H, and I be a subset of G which
contains exactly one element from each right coset of H. Then N is the normal subgroup of H
generated by Y = {bab! | b€ I, a € X}.

Proof. Since N is the normal subgroup of G generated by X, it is the subgroup of G generated
by the set X' = {gag™' | g € G, a € X}. Since each element of X’ is conjugate to some element
of Y in H, N is the normal subgroup of H generated by Y. O

Definition 3.10. ([9, Chapter 6, Section 8]) Let F' be a free group on the set S. For any element
g # 1 of F, express g as a reduced word in the generators: g = xixs--- xR, where r; € S or
xi_l €S forl <i<k. Defineg = x129---78_1. A nonempty subset G of F is said to be a

Schreier system in F if ¢ € G for any g € G with g # 1.

Proposition 3.11. ([9, Chapter 6, Theorem 8.1]) Let F be a free group on the set S, F' be a
subgroup of F', and G be a Schreier system in F which contains exactly one element from each
right coset of F'. Then F' is a free group on the set {gs®(gs)™' | g€ G, s € S, gs®(gs)~! # 1},
where the map ® : F' — G assigns each element of F' the unique element of G in the same coset
of F'.

Lemma 3.12. Let E = (E,E,7,d) be a finite connected fp,s-BG and let B = E /(o). Suppose
that the modified BG B has k-edges, | double half-edges, and n vertices vy, ---, v, of f-degree di,
-+, dp respectively. Then Ag is domestic if and only if one of the following holds
D1l=2k—n+1=0,d; =1 for1<i<ny
(2)1=0,k—n+1=0, d; =2 for exactly two numbers i = iy, i1, and d; = 1 for i # ig, i1;
B)l=0,k—n+1=1,d;=1for1<i<n.
Proof. ”=" If the subgroup (o) of Aut(E) is not admissible, by Lemma 37l the f-degree of each
vertex of B is odd. Moreover, Rgp = B is a Brauer graph whose Euler character x(Rg) =
2(k —n+1)+1—1. By Theorem 229 Ag, is domestic. Since the f-degree of each vertex of B
is odd, the f-degree of each vertex of Rp is also odd. Then by Theorem [[.T] we imply that Rg is
a f-degree trivial BG with x(Rg) = 1. Therefore we have k —n+1 =0, ] = 2, and d; = 1 for
1 <i<n. Then (1) holds.
If the subgroup (o) of Aut(E) is admissible, then B = Rpg is a Brauer graph. By Theorem
2.29] AR, is domestic. According to Theorem [[1], either (2) or (3) holds.
7<" If (1) holds then Rp = B is a Brauer graph with trivial f-degree and the underlying graph
of Rg contains a unique cycle. According to Theorem [I.T]l and Theorem 2.29], A is domestic. If
(2) or (3) holds, then Rr = B, and by Theorem [[.T| Ag, is domestic. So by Theorem Apg is
also domestic. O

Proposition 3.13. Let E = (E, E,7,d) be a finite connected fp,s-BG such that Ag is domestic.
Then II(E) = F{a,b)/{a®> =b*) or II(E) 2 Z & Z.

Proof. Suppose that the modified BG B = E/(0) has k-edges, [ double half-edges, and n vertices
v1, +-+, vy of f-degree dy, ---, d,, respectively. Since Ap is domestic, one of the conditions (1),
(2), (3) in Lemma holds.

Suppose that condition (1) in Lemma holds, that is, l =2, k—n+1 =0 and d; = 1 for
1<i<n.Let B=(B,B,7,d), and let e/?) and h{?) be the two double half-edges of B. Since
E' is connected, so is B. By the proof of Proposition B.5], there is a group isomorphism

f:Fla,c1,c0)/{ac; = cra,aca = coa, C% = c% =1)= Hm(B,e<‘7>)

such that f(@) = [(e!7[g"9el)), f(e1) = (][], (@) = [(w')"" (h!7|7'|h{7))w), where

w' is a walk of B from e!” to k(). We may assume that w’ lifts to a walk w of E from e to h.
Let r be the minimal positive integer with the property that o”(e) = 7(e). Then by Lemma B.7]

(1) and (2), |e{?)] = 27 and the order of the Nakayama automorphism o of E is 2r. By Lemma 3.6,
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we also have |h{?)| = 2. Then by Lemma B (1), r is also the minimal positive integer with the
property that a"( ) = 7(h). The covering of Brauer G-sets ¢ : E — B induces a II,,,(B, e!?))-set
structure on ¢~ ( (@) = el and H(E, e) = I1,,(E, e) is isomorphic to the stabilizer subgroup
of e in II,,(B, (o ) by Remark [2 Using the group isomorphism f we may view e as a
F<a,cl,02>/<acl cia, acy = coa, c% = C% = 1)-set. Since

(@)W 3] - e = [(w!y LA -
= [(w") - 7(h) = [() 7] 0" (h) = o"([(wW) '] - h) = 0" (e),
we have & - e = 0" (e). Moreover, we have @-e = o(e) and ¢1 - e = 0" (e). For each 1 < i < 2r,
identify the element o*(e) of e!?) with the integer i, and let
p:Fla,c1,c2)/{ac; = cra,aco = CQCL,C% = c% =1) — Sy
be the group homomorphism given by the action of F(a, c1, c2)/(ac; = cia, acy = caa, ¢ = c3 = 1)
on €%, Then p(@) = (1 2---2r) and p(c1) = p(@) = (1 r+1)(2r+2)--- (r 2r).

Let p : F(a,c1,c9) — Sar be the group homomorphism induced by p, and let H = {z €
Fla,c1,c2) | p(x)(1) = 1} be a subgroup of F(a,cy,ce). Then II(E,e) is isomorphic to H/N,
where N is the normal subgroup of F'(a,ci,co) generated by relations ac; = cia, acy = caa,
2 =c3=1. Let G=1{l,a,a?--- ,a* '} be a subset of F{a,cy,c2). Then G is a Schreier system
in F(a,cy,ce) which contains exactly one element from each right coset of H. By Proposition
BIIl H is a free group on the set {z;,y;, 2 | 0 <1i < 2r — 1}, where

alcra™ ™ f0<i<r—1;
Y )diea Tt ifr<i<2r—1;

B alega™ 8 Hf0<i<r—1;
Y alega” 7t ifr <0< 2r —1;

and z = a Since N is the normal subgroup of F(a,ci,ce) generated by C%, C%, clacl_la_l,

caacy o=, by Lemma 30, N is the normal subgroup of H generated by the set {aic?a_i,
a‘cjac; a1 0 <i<2r—1,j=1,2}. A calculation shows that

j
dida— = TiTr i, %f 0< z <r—-1
TiXi_p, ifr<i<2r—1;

2r

gicdq—t = J Yibr+ if0<i<r—1;
YilYi—r, 7 <i<2r—1;

Tz, ifo<i<r—2orr<i<2r—2
a‘cracyta™ ™ = { gzt ifi=r—1;

ZEQT_lIIfalZ_l, if i =2r — 1;

Vil if0<i<r—2orr<i<2r—2;
aiczacgla—i—l — yT—lzyr_l, le —r— 17
Yor_1yy 2t if i =2r — 1.
Therefore
T(E,e) = H/N = Fzg, - @01, Y0s s Yor—1,2)/{x0 =+ = ap_q =2, = -

=y Yo = =Y =Y = =y, 2 =3y =Yy 0) = Fwo, yo)/ (xd = yg)
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Suppose that condition (2) in Lemma B2l holds, that is, l = 0, k—n+1 =0, d; = 2 for exactly
two numbers i = iy, i1, and d; = 1 for i # ig, i1. Suppose that e, h are two half-edges of E with
el e v, and hlo) e v;,. By the proof of [8, Proposition 5.9], there is a group isomorphism

f:Fla,b)/{a® = b?) 5 (B, )
such that

f(@) = (eg"% o)) and £(B) = (w) " (hi) g™ [h)u,
where w’ is a walk of B from e\ to h!?). We may assume that w’ lifts to a walk w of E from
e to h. Suppose that the (g)-orbit of e contains M half-edges, then v;, contains N = (M,d(e))
half-edges. Since d;, = 2, d(e) = 2N. Since 1 = (%,#) = (4£,2), & is odd. So 2N divides
M + N. We have

MAN d(e)(M+N)
o 2N (e):g N 'e:gM+N-e:gN~e.

Similarly, suppose that the (g)-orbit of h contains M’ half-edges, then v;, contains N' = (M’,d(h))

half-edges. Moreover, 2N’ divides M’ + N’ and ol (h) = ¢g"' - h. Since X (vesp. %,l) is the
minimal positive integer i (resp. j) such that o’(e) = e (resp. o’(h) = h), by Lemma [3.6]
M _ _ M
N =o(0) = {7

The covering of f,s-BGs ¢ : E — B induces a II(B, ¢{?))-set structure on ¢~ (el”) = e{@), and
II(E, e) is isomorphic to the stabilizer subgroup of e in II(B, e!°)). Denote o(c) = r, and identify
the element ¢'V - e of e!?) with the integer i for any 1 < i < r. Then e!?) = {1,2,--- ,r} becomes
a Fla,b)/{a® = b%)-set via the isomorphism f : F{a,b)/(a®> = b?) = II(B, e!)). Since

a- (g™ €)= (g2 [el) - (g ) =g 2 g e=gNgN e =gV e,

the action of @ on e/ = {1,2,--- ,r} corresponds to the permutation (12---r). Suppose that the
walk w of E from e to h is of the form w = (h|d - --01|e) with &; € {g,¢g7',7}. Let

g7t if 6 =g;
57ti=10g  ifsi=gY
T, ito; =7.

bh-e= (w/)—l(h<0>|gTh|h<0>)w/ e = 51—1 07 9@58 0y (e) = 51—1 5 NS, - - 81(e)

s

I+ N

M+N M+N

— g N 51—1...55—1(}1)20 2N (e):gN-e,

and since the action of F(a,b)/(a® = b?) on e!” commutes with the action of (o) on €', the
action of b on el?) = {1,2,--- ,r} also corresponds to the permutation (12---7).

The action of F(a,b)/(a®> = b?) on e = {1,2,--- ,r} defines a group homomorphism p :
F{a,b)/{a® = V%) — S,, and let p : F(a,b) — S, be the homomorphism induced by p. Let

H ={z € F(a,b) | p(z)(r) =1}

be a subgroup of F(a,b). Then II(E,e) is isomorphic to H/K, where K is the normal subgroup
of F{a,b) generated by a?b=2. Since G = {1,a,---,a" "'} is a Schreier system in F{(a,b) which
consists exactly one element from each right coset of H, by Proposition B.11] H is a free group on
the set {z; | 0 <14 <r}, where

atba” " if0<i<r—2;
ri=qa"h,  ifi=r—1

a’, ifi =r.
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By Lemma 3.9, K is the normal subgroup of H generated by {a’™2b 247" |0 <i <r—1}. A
calculation shows that

-1 -1 . . .
T, if0<i<r—3;
i+2p—2 —i _ -1 -1 es .
aTh e = we, w2, ifi=1r—2;
Trxy lxr_ll, ifi=r—1.
Sincerz%is odd, we have xoza:l_l:azgz =3 =T, 2anda:r—azr 2Lyr_1 = Tp_1X0 I

H/K. Therefore H/K = F(xo,xr_ﬁ/(a;o_lxr_l = x,_120). Let y = z,_1 and z = x,_129. Then
xy w1 = 2,_120 i equivalent to y? = 22, so H/K = F(y, 2)/{y? = 2%).

Suppose that condition (3) in Lemma holds, that is, ] =0, k—n+1=1and d; = 1 for
1 <i < n. By [8, Proposition 5.9], we have II(B) = Z & Z. Since II(E) is isomorphic to a nonzero
subgroup of II(B), either II(E) = Z or II(F) = Z & Z. Since Ag is not representation-finite, by
Theorem B.8, we have II(F) X Z & Z. O

Let E = (E,U,7,d) be a finite connected Brauer G-set, where the order of the Nakayama
automorphism o of F is r. Deﬁne a equivalence relation &~ on the set of walks of E as follows:
w &' v if and only if w ~ (e ]gkrd le)v for some integer k, where e is the terminal of v. Denote
[[w]] the equivalence class of ~' that contains w, and define a group I (F,e) = {[[w]] | w is a
closed walk at e}, which is called the reduced fundamental group of E at e. Since E is connected,
T/, (E, e)’s are isomorphic for different e € E. Therefore we may simply write I (E,e) as IT,, (E).

Using Proposition 2.22] it is straightforward to show that there is an exact sequence

075 (B, e) S I, (E,e) — 0,
where (1) = [(e|g")|e)] and 7([w]) = [[w]].

Lemma 3.14. A covering f : E — E’ of finite connected Brauer G-sets induces an injective
group homomorphism f,. : 1. (E e) — 11 (E', f(e)).

Proof. Define f, : 1) (E,e) — I (E', f(e)) as fo([[w]]) = [[f (w)]]. Assume that E = (E,U,1,d)
and E' = (E',U’,7',d’). Denote o (resp. ¢’) the Nakayama automorphism of F (resp. E’), and
suppose that the order of O' (resp. o') is r (resp. r'). If w, v are closed walks of E at e with
w ~' v, then w ~ (e|g"¥®)|e)v for some integer k. Therefore f(w) =~ (f(e)|g" e |f(e))f(v),
where d(e) = d'(f(e)). For any y € E’', since E’ is connected, there exists x € FE such that
f(z) =y. Then (/)" (y) = (¢")"(f(x)) = f(o"(z)) = f(x) = y. Since o’ acts admissibly on E’, we
have (¢/)" = 1. So the order of ¢’ divides r. Therefore f(w) ~' f(v) and f, is well defined. To
show that f, is injective, suppose that f,([[w]]) = 1, then f(w) ~ (f(e)|gF"' ¥ ()| f(e)) for some
integer k. By Proposition 215l w ~ (e|g" " ¥ (F(€)|e), where d(e) = d'(f(e)). Then o*"’(e) = e.
Since o acts admissibly on E, r divides k'r’. Therefore w ~' (e||e) and [[w]] = 1. O
Lemma 3.15. If E = (E,E,7,d) is a finite connected fns-BG, then 11, (E,e€) is isomorphic to
I, (E/(0), ).

Proof. Let f E — E/(o) be the natural projection. According to Lemmam [« 1 (E e) —
I, (E/(0),el?) is injective. For any [[w']] € I, (E/{o),el?), lift w’ to a walk w of E with source
e. Since the terminal of w belongs to ¢!}, we may assume that t(w ) =o"(e ) for some integer n.
Let v = (e|g~"¥®)|t(w))w be a closed walk of E at e. Then f(v) = (e!7|g~"4 ) |e{))w'!, where d(e)
is equal to the degree of e!”) in E/(s). Since the order of the Nakayama automorphism of E / (o)
is 1, we have /() & w'. Then f,([[o])) = [[f(@)]] = [[w/] and f. : T,y (E, ¢) — T (E/{o), ) is
also surjective. O

For a group II, denote II the abelianization of II.

Proposition 3.16. For a finite connected f,s-BG E = (E, E,T,d), the follow are equivalent:
(a) Ag is domestic;
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(b) II,(E) = Z or 1L, (E) = F(a,b)/{a® = b* = 1);

() T, (E) = Z or 1T, (E) = Z/2Z & Z,/2Z.
Proof. Suppose that the modified BG B = E/{0) has k-edges, | double half-edges, and n vertices
v, -+, vy of f-degree dq, ---, d, respectively. According to Lemma [3.12] Ag is domestic if and
only if B satisfies one of the conditions in Lemma We choose some e!?) € B.

”(a) = (b)” Suppose that B satisfies condition (1) in Lemma 312 that is, | =2, k—n+1 =0,
d; =1 for 1 < i < n. By the proof of Proposition [3.5] there exists an isomorphism
Fla,c1,c)/{ac) = cra,ac) = cra, 3 = c3 = 1) — IL,,, (B, )

d(e)

which maps @ to [(e!7|¢g%(¢)|e{?))]. By the exact sequence

0—Z 5 (B, el) SO0, (B,el)) =0

we see that II,(B,el?)) is isomorphic to F(ci,c2)/(c¢? = ¢3 = 1). By Lemma we have
I, (E,e) & Fley,c2)/{c} = c3 = 1). Using the same method, it can be shown that IT,, (E,e) =
Fla,b)/(a® = b?> = 1) if B satisfies condition (2) in Lemma B.12] and IT/,(F) = Z if B satisfies
condition (3) in Lemma [3.12]
7(b) = (¢)” By a straightforward calculation.
"(¢) = (a)” Let r = k —n + 1. By the proof of Proposition 3.5 there exists an isomorphism

f:F<a17"' 7an7b17"' 7b7‘7617"' 7Cl>/<acll1 :'“_adn allb _batlil(1<Z<r)

afle; = cjah ,c] =1(1<j <)) = I, (B,e)
such that f (a_‘lil) = [(e!7)|g¥®)|e®))]. By the exact sequence
0= Z 5 (B, el?) S0, (B,el)) =0
we see that I (B, e!??) is isomorphic to
Flay, o an,by,broer o sa)/{af = =apr =1, = 1(1 < j <1)).

Therefore the abelianization of II/, (B, e{??) is isomorphic to

Z"OLIALZ S - OL)d LS (Z/27) .
Since II/,(B) is isomorphic to I/, (E) by Lemma [3.15] we see that the group

77e2/d2e- - ©L)d7 o (Z/27)

is isomorphic to Z or Z/2Z & Z/2Z. Therefore there are only four possible cases:
(i)r=1,l=0andd; =---=d, =1;

(i) r=0,1=0, d; = 2 for exactly two numbers i = i, i1, and d; = 1 for i # i, i1;
(7i1) r =0, 1 =1, d; = 2 for exactly one number i = ig, and d; = 1 for i # ip;

(i

w)r=0,l=2anddy =---=d, =1.
According to Lemma B.7] case (iii) can not happen. Since case (i), (ii), (iv) correspond to
condition (3), (2), (1) in Lemma [BI2] respectively, Ap is domestic. O

Lemma 3.17. The center of the group F(a,b)/{a? = b%) is an infinite cyclic group generated by
72
a?.

Proof. Tt is straightforward to show that each element of F(a,b)/(a? = b?) of one of the following
type: (1) a®™(ab)™a, m € Z, n € N; (2) a®?™(ba)"b, m € Z, n € N; (3) a?>™(ab)”, m € Z, n € N;
(4) a®m(ba)™, m € Z, n € N. Let E be the Brauer graph

and let e be a half-edge of E. By the proof of [8, Lemma 5.8], there exists an isomorphism
f:Fla,b)/{(a® =b*) = TI(E,e)
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such that f(a) = (e|gle), f(b) = (e|rgr|e). For any m € Z and n € N, if a?™(ab)™a belong to the
center of F(a,b)/{a? = b?), then so does (ab)"a. Therefore

(el(rgrg)"*tle) = f(b(ab)"a) = f((ab)"ab) = (e|(gTgT)"!|e).
Since (e|(TgTg)"!|e) and (e|(grgT)"*!|e) are homotopic special walks of E, by [8, Proposition
2.49] they are equal, a contradiction. Therefore any element of F'(a,b)/(a? = b?) of type (1) does
not belong to the center of F(a,b)/(a? = b?). For elements of type (2) we also have the same
conclusion. For elements of type (3) or type (4), it can be shown that they belong to the center
of F(a,b)/(a® = b?) if and only if n = 0. Therefore center of F(a,b)/(a® = b?) is generated by a2.
Since f(a2) = (e|g2|e), by [8, Proposition 2.49], the order of a2 is infinite. O

Lemma 3.18. For any positive integers m, n > 2, the center of F{a,b)/{a™ = b" = 1) is trivial.
Proof. Let E be the Brauer graph
[n],

Suppose that e is the half-edge of F on the left of the diagram, by the proof of Lemma B.2] there
exists an isomorphism

f:F{a,by/{(a™ =0") — I,,(E,e)

such that f(@) = [(e|gle)], f(b) = [(e|rgT|e)]. Therefore f induces an isomorphism
f:Fla,b)/{a™ =b"=1) > IT, (E,e).

It is obvious that every element of F'(a,b)/{a™ = b™ = 1) is of the form a’kbikai-1bik-1 . .. gi1pi1qgio,

where 0 < dp, . < m, 0 < iy < mforl <l < k-1,and 0 < jy <nforl <[ < k.

We need show that such an expression is unique: Suppose that aixbikaik—1bik-1 ... qi1bi1gi0 and
aPrbdrqPr-1b2r-1 ... aP1h21aPo are two such expressions with

alkbikqlk—1pJk—1 . . . gi1hi1gio = gPrpdrqPr—1pdr—1 . .. qP1HqL PO

Then

[[w]] = f(aikbjkaikflbjk—l <aibiigio) = f(aPrbiraPr-1par-1 - - qP1hd1aPo) = [[v]],

where
w = (elg Tt gt trgh T giTglirg"e),
v = (e’ng'quT'Tgp’l‘fngqrfl7— .. gpngthng‘e)
are two special walks of E. Since w &' v, we have w =~ (e|g™"|e)v for some integer N. By
Proposition 2221 N = 0 and w = v. Therefore k = r, iy = p; for 0 < [ < k, and j; = ¢ for
1<I<k.
If = belongs to the center of the group F(a,b)/{a™ = b"™ = 1), write = as the standard form

alkbikgie-1bJ—1 . .. qi1hilgio as above. Since x commutes with @ and b, it can be shown that z
must equal to 1. O

Proposition 3.19. Let E = (E, E,7,d) be a finite connected fs-BG. IfTI(E) = F{a,b)/{a® = b%)
or I(E) 2 Z ® Z, then Ag is domestic.
Proof. 1f TI(E) = F(a,b)/{a*® = b*), by Lemma 12, I1,,(F) = F{(a,b)/(a®> = b*). Since there
exists an exact sequence

075 (B, e) I, (E,e) — 0,
where i(1) = [(e|g"¥®)|e)] belongs to the center of I, (E, ), by Lemma 317 we see that I/ (E)

Fla,b)/{(a® = b2, a®N = 1) for some positive integer N. Then the abelianization of II, (E)
is isomorphic to Z/27Z & 7Z/2NZ. Suppose that E/(o) has k-edges, | double half-edges, and n
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vertices vy, -+ -, v, of f-degree dy, ---, d,, respectively. By Lemma BI85l 1T/, (F) = 11, ,(E/{0)),
which is isomorphic to

F<a17"' 7an7b17... 7b7”7cla"' 7cl>/<ail1 — ... :aﬁ” :c% — ... :cl2 — 1>
by Proposition B.5], where » = k —n + 1. The abelianization of

F<a17"' 7an7b1’... 7b7’7cla"' 7cl>/<acll1 — ... :ag” :C% e :Cl2 = 1>

is 2" ® Z)d\Z & - ® Z)dnZ ® (Z/2Z)!, which is isomorphic to Z/27 @ Z/2NZ. Suppose that
N > 1, then there are two possible cases:

(1) r=101=0,d;, = 2N, d;, =2 for some 1 < ip,i; < n, and d; = 1 for i # g, i1;

(2) r=0,1=1,d;, =2N for some 1 <ig <n, and d; = 1 for i # 1.

If case (1) occurs, then

I, (E) 2 1L, (E/(0)) = Flay, a2)/{ai" = a3 = 1).

So by Lemma [B.I8] the center of IT), (E) is trivial. But we also have I1/,(E) = F{a,b)/{(a® = b?,
a* = 1), therefore the center of II’, (F) contains an element a2, which is not equal to the
identity element, a contradiction. If case (2) occurs, since E/(o) contains a double half-edge,
the automorphism group (o) of E is not admissible. By Lemma B.7] the f-degree of each vertex
of E/{(c) is odd, a contradiction. Therefore N = 1, and I1/,(E) = F{(a,b)/(a®> = b*> = 1). By
Proposition B.16] Ag is domestic.

IfI(E) 2 Z & Z, by Lemma 212 I1,,(E) is also isomorphic to Z & Z. By the exact sequence

0—7Z— I,,(E) = 1L,(E) =0,
we see that =7 or some positive integer /N. Suppose that o) has k-edges,
hat 11 (E 7Z®Z/NZ f itive i N. S hat F has k-ed l

double half-edges, and n vertices vy, - -+, v, of f-degree dy, -- -, d,, respectively. By Lemma [3.15]
I, (F) =2 11,,(E/{c)), which is isomorphic to

F<a17"' 7an7b17"' 7b7“7617"' 7Cl>/<a?[l1 = :agzn :C% = :Cl2 = 1>
by Proposition BB where r = k — n + 1. The abelianization of

F<a17"' 7anabl7”’ 7[)7,,7017... 7cl>/<ail1 — .. :ag" :c% = :cl2 — 1>

s Z"®L/AWZD - ®L)dyZ & (Z)27)', which is isomorphic to Z @ Z/NZ. We have four possible
cases:

(1)N:Lr:l,lzoadl:"':dn:l;
2) N=2,7r=1,1=0,d; =2 for some 1 <i<mn,and d; =1 for j #i.
(3)N:2,T:1,l:1,d1::dn:1’

(4) N>2,r=1,1=0,d; = N for some 1 <i <n,and d;j =1 for j # i.
Since IT/,,(E) is isomorphic to Z & Z/NZ, it is abelian. However, 11, (E) is also isomorphic to

F<CL1,“‘ 7an7b17"'7b7“7017"'7cl>/<a[111:”':agn:c%:”':c?:1>7

which is isomorphic to F{a,b)/{a? = 1), F(b,c)/(c? = 1), and F(a,b)/(a" = 1) for case (2), (3),
and (4), respectively. We see that I/ (F) is non-abelian in these cases, a contradiction. Therefore
only case (1) can occurs. In this case, IT/, (F) = Z, and by Proposition BI6, Ag is domestic. [

Theorem 3.20. For a finite connected fns-BG E, Ag is domestic if and only if TI(E) =
Fla,b)/{a® = V%) or I(E) 2 Z & 7.

Proof. By Proposition [3.13] and Proposition [3.191 O
4. REPRESENTATION-FINITE FRACTIONAL BRAUER GRAPH ALGEBRAS OF TYPE MS

In this section we assume that k is an algebraically closed field. We abbreviate indecomposable,
basic, representation-finite self-injective algebra over k (not isomorphic to the underlying field k)
by RFS algebra.
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4.1. Review on configurations of stable translation-quivers of tree class A,,.

Definition 4.1. ([10, Definition 2.3]) Let I be a stable translation quiver and let k(T') be the
mesh category of T'. A (combinatorial) configuration C is a set of vertices of T which satisfies the
following conditions:

(1) For any e, f € C, Homyry(e, f) = { 2 EZ i Q,

(2) For any e € Io, there exists some f € C such that Homyr)(e, f) # 0.

Let II be an admissible group of automorphisms of ZA,,, and let ¥ be a Il-stable configuration
of ZA,,. By [10, Theorem 5], there exists an RFS algebra A4 11 of class A, such that indA¢ r1 is
isomorphic to the mesh category of the translation quiver (ZA,,)« /I, where indA¢ 11 denotes the
category of a chosen set of representatives of non-isomorphic indecomposable finitely generated
Ag n-modules. Together with [I0, Theorem 4.1], we have

Proposition 4.2. ([I0]) The map € — Asn is a bijection between the isomorphism classes of
II-stable configurations of ZA, and the isomorphism classes of RFS algebras of class A, with
admissible group II.

Definition 4.3. ([10, Definition 2.6]) A Brauer relation of order n is an equivalence relation on
the set /1 = {emT” | m € Z} C C such that the convex hulls of distinct equivalence classes are
disjoint.

If B is a Brauer relation of order n, we denote 8z the permutation of {/1 assigning to each

point s its successor in the equivalence class of s endowed with the anti-clockwise orientation, see
[10, Section 2.6].

Proposition 4.4. ([I0, Proposition 2.6]) Let B be a Brauer relation of order n and denote by 63
2mm

the set of vertices (i,7) of ZAy, such that e, (i + j) = PBpr(en(i)), where e,(m) = e = '. The map
B — %5 is a bijection between the Brauer relations of order n and the configurations of ZA,,.

For any integer p, let A, = {(p,i) | 1 < i < n} C (ZA,)o be the “going up diagonal” and
Vp ={lp—144) | 1 <i < n} C (ZA,)o be the “going down diagonal” of ZA,. If € is a
configuration of ZA,,, define two permutations ay and By of Z (see [10, Section 3.4]) as follows:
ay(p) = n+ 2+ 1, where (z,y) is the unique point of € in V), and By (p) = p + i, where (p, 1)
is the unique point of ¢ in A,. It is straightforward to show that aw Sy (p) = p+n+ 1 for any
pE L.

Given any admissible group of automorphisms II of ZA,, and any Il-stable configuration € of
Z A, the RFS algebra A 11 of class A, can be described as follows (see [10, Section 6.2]): Let
a = ag and S = B¢ be the permutations of Z associated with ¢". Let ¢, be the unique point of ¢
on V,. Define an action of II on Z by setting ¢, = gc, for any g € Il and r € Z. Let Q) = Q% be
the quiver with Qp = Z and Q1 = {ap, By | T € Z}, where o : 7 — «(r) and G, : r — S(r). For
any g € II, it can be shown that either g = ag and g8 = B¢, or g = Bg and g8 = ag, depending
on whether g is a translation or a translation-reflection. Therefore g induces an isomorphism of
Q. Denote Q¢ 11 the residue quiver Q/II, and let oy, B, the residue classes of o, 8, modulo II.

Theorem 4.5. ([10, Theorem 6.2]) Ag 11 is isomorphic to the algebra defined by the quiver Q 1
and the relations Ba(r)m = EB(T)BT = 0 and Qpar—1(p) Q)0 = Bﬁbr—l(r) X 'BB(T,)BT,, where
r € Z and a,, b, are defined by o (r) =r +n = B (r).

Next we will give a Brauer relation of order n from a Brauer tree with n edges and trivial
f-degree. Let B = (B, P, L,d) be such a Brauer tree and fix e € B. Note that we can view B as
a Brauer G-set with 7 the involution on B. Then for each half-edge b of B, there exists a unique
integer 0 <4 < 2n — 1 such that b = (7g)’(e). Denote «; the arrow L((7g)""!(e)) in Qp, where
1 < i < 2n. Call the arrows ag;j—1 (1 < j < n) the B-arrows and the arrows ag; (1 < j < n) the
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a-arrows of Qp. Note that for each half-edge h of B, L(h) is a S-arrow if and only if L(7(h))
is an a-arrow, and L(h) is a S-arrow if and only if L(g - h) is a S-arrow. Moreover, call a path
of Qp a [-path (resp. a-path) if each arrow of this path is a S-arrow (resp. a-arrow). Define an
equivalence relation B on /1 = {ezmTﬂi | m e Z} C C as follows: e’w and e’n'i are equivalent if
and only if the vertices P((7g)*(e)) and P((1g)*(e)) of @p can be connected by a B-path (the
elements in {/1 are in one-to-one correspondence with the vertices of Qp, which is given by the
map Xy P((tg)*™(e))). Moreover, we denote 5 the permutation of {/1 assigning to each
point s its successor in the equivalence class of s endowed with the anti-clockwise orientation.

Proposition 4.6. B is a Brauer relation of order n. Moreover, for each eI ¢ Y1, suppose the

terminal of the B-arrow agyy1 of Qp is P((1g)%(e)), then ﬂlg(ez}%i) et
Proof. For e%T”,emT” € /1, suppose that 0 < k,1 < n. Let
oL i1 > ks
l4+n, <k,

2k - 2w 2rm

and define (e ‘e ‘) ={en ‘€ Y1 |k<r<l'}.

For any f-arrow agjyi of Qp, it can be shown that g(rg)%*(e) = (r¢)2*+!(e), where [ is the
number of vertices of B which can be connected to the vertex (79)?*(e){ of B via a path of B
that contains the edge P((1¢)?*T1(e)) (here we consider B as a graph). That is, [ is the number
of edges in the dotted circle in Figure 1 below.

(T9)***(e)
Figure 1
So the terminal of the S-arrow agpiq is P((19)**+9(e)), and we have 53(621%2‘) = 5L T

. . . r s - 2k

show that B is a Brauer relation of order n, it suffices to show that for any 2 ¢ (6272, e~ n '),
2(r+s)m . T 2(k+l)m . . .

e~ = ' also belongs to (e%l,e n '), where 1 < s < n is the integer such that g(7¢)* (e) =

(T)*+)(e).
. 2rm 2km ; 2(k+l)7-ri N
Since en ' € (e n ";e~ = '), we may assume that k < r < k+ [. So the half-edge (79)"(e)
of B belongs to the dotted circle in Figure 1 (Note that the set of half-edges in the dotted
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circle in Figure 1 is {(79)%**i(e) | 1 < i < 2I}). Since (79)* (e) # (rg)**+V(e), the half-
edge (79)2+9)(e) = g(1g)* (e) also belongs to the dotted circle in Figure 1. So (7¢)2+%)(e) €
{(rg)**i(e) | 1 < i < 2I}. Suppose (19)2"9)(e) = (7g9)**ti(e) for some 1 < i < 2I, then
2n|(2(r + s) — (2k + 1)), so we have i = 2j for some 1 < j <[ and 2T — K If j =1,
then g(79)% (e) = (19)? ) (e) = (19)** D (e) = g(rg)?**(e) (the last identity follows from Figure
1) and (79)% (e) = (rg)%*(e). Therefore (79)*"=%)(e) = e, and 2n|2(r — k), a contradiction. So

. 2(r+s)m . 2(k+j)w - 2km 2(k+D)w .
1<j<lande = '=e n ‘€(en‘e n ). O

4.2. AR-quivers of representation-finite f,,;-BGAs: the main statements.

Let E = (E,E,T,d) be a finite connected f,,s-BG with Nakayama automorphism o such that
A g is representation-finite and let Rg be the reduced form of E (see Section 4). According to the
proof of Theorem B.8 E/(c) is one of the following forms: (a) a Brauer tree; (b) a modified BG
of trivial f-degree with a unique double half-edge, which has p + 1 vertices and 2p 4+ 1 half-edges
(p > 0). For case (a), choose a half-edge h of E/(c) which belongs to the unique exceptional
vertex of E/(o); and for case (b), choose h to be the unique double half-edge of E/(c). Then
for case (a) we have II,,,(E/{0),h) = (x) = Z, where x = [(h|g'|h)] and [ is the cardinal of the
(g)-orbit of h, and for case (b) we have IL,,,(E/{0),h) = (x,y) = Z & Z/2Z, where x = [(h|g'|h)]
with [ the cardinal of the (g)-orbit of h and y = [(h|7|h)] (Here 7 denotes the involution of the
modified BG E/(0)).

For case (a), suppose that the f-degree of the exceptional vertex of E /(o) is m, and suppose
that B = B(g/(s),n) is a Brauer tree with trivial f-degree given in [8, Example 2.43]. Let n be
the number of edges of B. Then E/(c) has 7= edges. There exists a covering p : B — E/(0)
such that the image of the fundamental group of B in II(E/{(o),h) = II,,(E/(o),h) is (z™).
Choose a half-edge e of B with p(e) = h, then the pair (B,e) defines a Brauer relation of B
order n (cf. the remarks before Proposition [.6). Let ¥ = %5 be the configuration of ZA,
corresponding to B (see Proposition [£4]). Suppose the image of the fundamental group of E in
II(E/{o),h) 2 11,,(E/{c), h) via the homomorphism induced by the covering F — E/{(c) is (x"),
then we have

Theorem 4.7. For case (a), the configuration € of ZA, is 7w -stable and the AR-quiver I'y,, of
Ag is isomorphic to (ZAy)g /(T ), where T denotes the automorphism of ZA, induced from the
translation of the translation quiver ZA, and the positive integers n, m, r are defined as above.

—

For case (b), let B = R = E/(0) and e = h; € (E/{(0));. Then B is a Brauer tree with
trivial f-degree, which has n = 2p+ 1 edges. Let B be the Brauer relation given by the pair (B, e),
and ¥ = ¢ be the configuration of ZA,, corresponding to B. According to Theorem B.8] the
fundamental group of F is isomorphic to Z. Then the the image of the fundamental group of F in
II(E/{o),h) = 11,,(E/(o),h) = (x,y) = Z&7Z/2Z via the homomorphism induced by the covering
E — E/{o) is either generated by z" for some r € Z,, or generated by ="y for some r € Z,. We
have

Theorem 4.8. For case (b), configuration € defined above is symmetric (cf. [10, Section 3.2]).
If the image of the fundamental group of E in II(E/{c),h) = I1,,(E/{0),h) is generated by x" for
some 1 € Ly, then the AR-quiver I'x, of Ag is isomorphic to (ZA,)¢/(T™"). If the image of the
fundamental group of E in II(E/{o),h) = I1,,(E/{(0),h) is generated by x"y for some r € Z,,
then the AR-quiver I'y, of A is isomorphic to (ZAy,)¢/(T™ ¢), where ¢ is the automorphism of
(ZAy)¢ which induces an involution of ZA, (cf. [10, Proposition 3.2]).

Remark 4.9. In fact, it is not hard to show that the class of representation-finite fo,s-BGAs
coincides with the class of RFS algebras of class A,. On the one hand, let Ag be a representation-
finite frs-BGA. Since Ag is self-injective special biserial, for every vertex x of the stable AR-quiver
of Ag, there are at most two arrows starting at x. Therefore Ag cannot be an RFES algebras of
class D, or class E,. On the other hand, let A be a RFS algebra of class A,. According to



27

Riedtmann’s description of quivers with relations of RFS algebras of class Ay, (see Theorem [{.7]),
A is special biserial. Therefore, by the construction of its corresponding f-BC E = (E, P, L,d) (cf.
remarks before [7, Proposition 7.13]), each polygon P(e) of E contains at most two half-edges and
the partition L is trivial. Then E is a fps-BC such that each polygon of E contains at most two
half-edges. By adding a half-edge to every single half-edge of E, we obtain a fn,s-BG E' such that
the corresponding algebras of E and E' are isomorphic.

4.3. Proofs of the main statements.
Let B = (B, P, L,d) be a Brauer tree with trivial f-degree which has n edges and fix e € B, B
be the Brauer relation given by the pair (B,e), and ¥ = % be the configuration of ZA,, which

corresponds to B. Let @ = Q¢ be the quiver given by the configuration € (see the remarks
before Theorem [LE). Denote 7 the involution of B as a Brauer G-set. For each edge P(h) of B,
there exists a unique number i € {0,1,--- ,n — 1} such that P(h) = P((19)%(e)), and we define

F(P(R)) = i
Let 2 be a subset of B such that 2 meets each vertex of B in exactly one half-edge, and
such that for any h € 27, f(P(h)) < f(P(¢* - h)) for every integer k. Define a f,,s-BG ZB =
(ZB, P, L,d) as follows: ZB = {(h,k) | h € B,k € Z}, where the G-set structure of ZB is given
by
g-hk), ifg-h¢ Z;
g-(hky= QR RE LS
(9-hk+1),ifg-he 2,

P(h,k) = {(I,k) | W € P(h)}, L(h,k) = {(h,k)}, d(h, k) = d(h) for every (h,k) € ZB. It is easy
to show that ZB is the universal cover of B. B
Define f : (Qzp)o — Z as the function given by f(P(h,k)) = f(P(h))+nk for each edge P(h, k)
of ZB. Note that for each half-edge (h,k) of ZB, we have 1 < f(P(g - (h, k))) — f(P(h,k)) < n
For each half-edge (h,k) of ZB, call the arrow L(h,k) of Qzp a B-arrow (resp. an a-arrow) of
Qzp if L(h) is a S-arrow (resp. an a-arrow) of Qp (cf. the remarks before Proposition [4.0]).

Lemma 4.10. Let (h,k) € ZB with L(h,k) a B-arrow of Qzp. Then f(P((rg)%(h,k))) =
f(P(h,k)) +n+ 1, where T denotes the involution of ZB as a Brauer G-set.

Proof. Note that 1 < f(P(g-(h,k)))— f(P(h,k)) <nand 1 < f(P(grg(h, k)))— f(P(T (h,k)))
n. Since P(g - (h,k)) = P(rg(h,k)) and P(grg(h,k)) = P((rg)*(h,k)), 2 < f(P((r9)*(h,k)))
f(P(h,k)) < 2n. Since L(h, k) a B-arrow of Qzp, L(h) a f-arrow of @p. Then f(P ((r9)%(h))) —
f(P(h)) = 1 (mod n). Since f(P((rg)*(h,k))) — f(P(h.k)) = f(P((rg)*(h))) — f(P(h)) (mod n
we have f(P((r9)%(h,k))) — f(P(h,k)) =n +1. D

Lemma 4.11. There exists an isomorphism of quivers Qzp — @ which maps each vertex v of
Qzp to the vertex f(v) of Q.

Proof. For each integer r, there exists a unique half-edge (h,k) of ZB such that INJ(h, k) is a f-
arrow of Qzp and f(P(h,k)) = r. Define f(L(h,k)) = 8, and f(L(7(h),k)) = a,. We need to
show that f defines a quiver isomorphism Qzp — @
For each arrow « of Qzp, by the definition of f we have f(s(v)) = s
Q is a morphism of quivers, it suffices to show that f(t(y)) = t(f(7)).
Since 1 < f(P(g - (h,k))) — f(P(h,k)) < n for each half-edge (h, k) of ZB, we have

f(P(g-h)) = f(P(h)), if f(P(g-h)) > f(P(h));
f(P(g-h)) = f(P(h) +n, if f(P(g-h)) < f(P(R)).

For each arrow v = L(h, k) of Qzg, if f(L(h,k)) = B, then L(h) is a B-arrow of @p and
F(P(h)) +nk = f(P(h,k)) = r. f maps the terminal P(g - (h,k)) of L(h, k) to f(P(g- (h,k))).

O

(f(7)). To show f: Qzp —

1) FPlg- (k) — (PR = {



28 NENGQUN LI AND YUMING LIU*

By Equation (II) we have

F(P(g-(hk)) —r = {f(P(g’h)) — f(P(h)), if f(P(g-h)) > f(P(h));

f(P(g-h)) = f(P(h) +n, if f(P(g-h)) < f(P(h)).

. 2nf(P(g-h)) ,; 2nf(P(h)) ,;
Since L(h) is a S-arrow of Qp, e~ n» ' is the successor of e~ » ' in the Brauer relation %,

so f(P(g-h)) = f(P(h)) = B(f(P(h)) — f(P(h)) = B(r) —r (mod n). Since 1 < B(r) —r <mn,
B(r) —r = { (P(g-h)) = f(P(h)), if f(P(g-h)) > f(P(h));

f(P(g-h)) = f(P(h) +n, if f(P(g-h)) < f(P(h)).

So we have f(P P(g - (h, k))) = B(r), which is the terminal of 3, in é
If f(L(h,k)) = oy, then L(h, k) is a a-arrow of Qzp. Therefore L(r(h, k) and L(g~'7(h, k)) are
B-arrows of QZB According to LemmaL10] f( P(g-(h,k)))—f(P(g~ -(7(h),k))) = n+1. Suppose
that f(P(g~t - (r(h),k))) = t, then f(L(g~(r(h),k))) = B¢, and therefore r = f(P(h,k)) =
F(P(r(h),k)) = B(t), where the last identity follows from last paragraph. So f(P(g - (h,k)))
n+1+t=af(t) = a(r), which is the terminal of a, in Q.
By the arguments above, f: Qzp — @ is a morphism of quivers. Clearly f is an isomorphism.
g

Let A be the k-category k@ / I , where I is the ideal of k‘@ generated by the following relations:
(a’) /Ba(r)ar = Qg(r) Br = 0;
(0) agar—1(r) =+ Qa(ryr = Bgbr—1(y) -+ Ba(r)Br, Where r € Z and ay, b, are defined by a* (r) =
r+n = Bb(r).
If IT is an admissible automorphism group of ZA, which stabilize ¥, then each g € II induces
an automorphism of Q (see the remarks before Theorem [.5]), which also induces a k-linear auto-
morphism g of A. Denote II the group of automorphisms of A formed by g with g € II. It can
be shown that II acts freely on A. Let A = A/II be the quotient category (see [5, Section 3]) and
A=, yer MA@, y). By Theorem [L5], A is isomorphic to Ag 1.

Lemma 4.12. The quiver isomorphism Qzp — @ in Lemmal[4.11] induces an isomorphism Azp —
A of k-categories.

Proof By deﬁmtlon AZB = kQzp/Izp, where Izp is generated by the following relations:

(a’) L(rg(h, k)) L(h, k) _ _ _

(¥') L(g™™=1 - (h, k) - ( - (h,k))L(h, k) = L(g?TM) =1 (7(h), k)) - - L(g - (r(h), k) L(7(h), k).
Since for each (h, k) € ZB, L(h k) is an a-arrow (resp. a [3-arrow) of Qzp if and only if L(Tg(h k))
is a B-arrow (resp. an a-arrow) of Qzp, the quiver isomorphism Qzp — Q maps the relations of
type (a/) in Izp to the relations of type (a) in I. Since f(P(g?™ . (h,k))) = f(P(h,k +1)) =

f (JB(h, k)) + n, we see that the quiver isomorphism Qzp — Q maps the relations of type (V') in
Iz to the relations of type (b) in 1. O

Proof of Theorem @.7. Step 1: To show that the configuration € in Theorem[{.7 is 7 -stable.

Since the Brauer tree E/(o) has I+ edges, we have (Tg)zﬁn(h) = h. Then p((Tg)zﬁn(e)) =
(Tg)%n(p(e)) = (Tg)%n(h) = h = p(e). Since the fundamental group II(E/(0o),h) = Z of E/(0) is
abelian, the covering p : B — FE/(o) is regular. Therefore there exists an automorphism v of B
such that v(e) = (Tg)zﬁn(e). Since each half-edge b of B is of the form (7g)‘(e) for some integer
i, we have v(b) = (Tg)%n(b) for every b € B. For any i € Z, let j be the unique integer in [1,n]
such that g(7g)%(e) = (79)?*9)(e). Then (i,7) is the unique vertex of ZA, in A; N'%. Since
g(rg)* ") (e) = g(rg)* (v(e) = v(g(79)* (e)) = w((r9)* ) (e)) = (rg)* ™ m)(e), (i + 1. 5) €
¢, and € is Tm-stable.
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Step 2: To show that Ag is isomorphic to the k-category A/H where 11 is induced by the group
of automorphisms 11 of ZA,, generated by T

Since the image of the fundamental group of E in II(E/(c),h) = 11,,(E/{c), h) via the homo-
morphism induced by the covering E — E/{0) is (z"), where z = [(h|¢|h)] and [ is the cardinal
of the (g)-orbit of h, F is isomorphic to ZB/{u), where u is the automorphisms of ZB such that
w(e,0) = g'(e,0). Let u be the automorphism of Qzp induced by . Then Ag is isomorphic to
Azp/{u), where u denotes the automorphism of Azp induced by u. Let f : Qzp — Q be the
isomorphism of quivers in Lemma[ATIl To show that Ag is isomorphic to /~X/ ﬁ, it suffices to show
the diagram

QZBf—>é

Qzp ——Q
commutes, where v is the automorphism of Q given by v(i) =i+ 2 for any i € Qo and v(ag) =
@jqor, v(B;) = Bijur for any i € Z.

Let r = am+b With a,be N and 0 < b < m. Then ¢'"- (e, 0) = g'gl™e. (6,0) = ¢ (e,a). It can
be shown that f( (g-e)) =2 so f(~( (e,0))) = f(P(g"(e,a))) = an+2 =n(a+L2) ="
For each vertex P(z, k) of QZB Wlth L(z, k) a B-arrow of QZB, assume that f(P (m, k)) = i. Denote
o the Nakayama automorphism of ZB. Since L((0—(rg)2)i(e,0)) is a S-arrow of Qzp with
f(P((071(79)?)i(e,0))) = i by Lemma EI0, we have (07 (79)?)i(e,0) = (z,k). So u(P(x,k)) =
P(u(z,k)) = P(u((0e™'(r9)%)'(e,0))) = P((0™ (19)*)'n(e; 0)) = P((o7}(rg)*)'g "(6 0)) Since

(9" - (e,0)) is a S-arrow of Qzp, by Lemma 0L f(P((0~(r9)?)'g" (¢,0))) = f(P(g" - (¢,0))) +
| = 2 +4 = v(i). Therefore fu(P P(z,k)) = vf(P(z,k)). Similarly we have fu(L(z,k)) =

vf(L(z,k)) and fu(L(r(z,k))) = vf(L(r(z, k))), so the diagram above is commutative.
Let A = P, yex/ﬁ(ﬁ/ﬁ)(x,y). According to Theorem A5, A = Ag 11, where II is gener-

ated by the automorphism rm of ZA,. By Step 2, Ag is isomorphic to K/ﬁ, so I'p, =14 &
(ZAp)g [(Tm).

<

O

Proof of Theorem (4.8l Step 1: To show that the configuration € in Theorem[{.§ is symmetric.

We need to show that for any (4,5) € €, the vertex (i+j—p—1,n+1—j) of ZA, also belongs
to €.

Let ¢ be the automorphism of B = E//(Tﬂ which maps z; € (E/(0)); to x3—; € (E/{(0))3-—
for each z € E/(o) and i = 1,2. Denote 7 the involution of B as a Brauer G-set. Since
t(e) = 7(e) = (79)"(e) and since each half-edge b of B is of the form (7g)‘(e) for some integer
i, we have «(b) = (rg)"(b) for any b € B. Since (i,5) € €, we have g(1g)%(e) = (rg)%“*)(e).
Therefore

(r9)2FD " (e) = 1((19)* ) (e)) = u(g(r9)* (e)) = g - t((T9)* (¢)) = g(Tg)* " (e)

and
7_(7_9)2(2'-I—j)-|-n(e) _ (Tg)2i+n+1(e) _ (79)2(i+p+1)(e)‘
7(7g)" I (e) = g(7g)" I () = g(7g)* P (e),
(i+j+p)m . (¢ ).
ﬁg(e2 o Y= 62 e ¢ where g is the permutation of {/1 assigning to each point s its

successor in the equivalence class of s endowed with the anti-clockwise orientation (see the remarks
after Definition d4.3]). Since (i+p+1)—(i+j+p)=1—j=n+1—j (modn)and 1 <n+1—j <mn,
we have (i+j+p,n+1—j) € €. Since € is 7"-stable, (i+j—p—1,n+1—j) also belongs to %
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Step 2: To show that the automorphism v of ZB which maps (e,0) to (7(e),0) induces an
automorphism u of Qzp such that the diagram

QZBf—>@

)

Qzp —= Q
Figure 2
commutes, where f is the isomorphism of quivers in Lemma [{.11] and v is the automorphism of
@ induced by the automorphism ¢ of (ZAy)¢ in Theorem [[.§ (see the paragraph before Theorem
7).

For each 7 € Qo, let (i,7) be the unique vertex of ZA, which belongs to V, N'¢, and let
(z,k) € ZB such that f(P(x,k)) =i and L(z,k) is a S-arrow of Qzp. By the definition of f,
F(L(z,k)) = B;, so f(~( -(z,k))) = B(i) = r. Denote o the Nakayama automorphism of ZB. By
Lemmal.10, f(P((o~ 1(19)%)"(e,0))) = i. Since both L(z, k) and L((o=1(79)?) (e, 0)) are (-arrows
of Qzp and since f(P (:17 ) = f(P((c7Y(19)?)"(e,0))) = i, we have (x,k) = (O‘ (Tg) )i(e, 0).

0

Then g - (z,k) = g(o~ ' ( )2)(_ ) and $(g(z, k) = g(o~(79)2)b(e,0) = (o~ (r9)2)i (e, 0) =
o~ (g7)?*1(e,0). Therefore

u(P(g- (2,k)) = P((g- (2,k))) = P(o™"(97)* (e, 0))
= P(ro™(g7)**!(e,0) = P(o~"(r9)*rg7(e,0)).

Since 7¢7(e, 0) is a S-arrow of Qzp, by LemmalI0, f(P(o(rg)% g7 (e,0))) = f(P(rg7(e,0)))+
i. Since 7(e) = (19)"(e), Tg7(e) = (T9)"T'(e) = (19)>P*V(e). So

f(P(rg7(e,0))) = f(P(rg7(e))) =p+1 (mod n).

Since
F(P(7g7(e,0))) = f(P(rg7(e,0))) = f(P((e,0))) = f(P(g7(e,0))) — f(P(r(e,0))),
1 < f(P(rg7(e,0))) < n. Therefore f(P(rgr(e,0))) =p+ 1, and

fu(P(g - (x,k))) = f(P(c™ (r9)"'7g7(e,0))) = f(P(rg7(e,0))) +i=p+1+i.
Since ¢(i,7) =(i+j—p—1Ln+1—j),v(r)=(G+j—-p—1)+(n+1—j)=i+p+1. Then
fuf~'(r) =i+p+1=v(r), and the above diagram is commutative on vertices. Since u maps
each a-arrow (resp. [-arrow) of Qzp to a [-arrow (resp. an a-arrow) of Qzp and v maps each
a-arrow (resp. [-arrow) of @ to a f-arrow (resp. an a-arrow) of @, we see that the above diagram
is also commutative on arrows.

Step 3: To show that the AR-quiver T, of Ag is isomorphic to (ZAy)¢/{T"") if the image of
the fundamental group of E in II(E/{(o),h) = I1,,(E/(c),h) is generated by rx for some r € Z.

Since the image of the fundamental group of E in II(E/(o),h) = II,,(E/{c),h) is generated
by ra for some r € Z4, according to Proposition 217 E is isomorphic to ZB/(c") (here o
denotes the Nakayama automorphism of ZB). Therefore Ag is isomorphic to Azp/II, where IT
is a group of automorphisms of Azp generated by the automorphism of Azp which is induced by
the automorphism w of Qzp, where w is induced by the automorphism o” of ZB. Let t be the
automorphism of @) induced by the automorphism 7" of ZA,, which stabilize €. Then t(i) = i+nr
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and t(a;) = Qignr, t(Bi) = Bitnr for each i € Z. We have a commutative diagram

QZBf—>Q~2 ;

o
Quz ——Q
Figure 3

where f is the isomorphism of quivers in Lemma LTIl Therefore the quiver isomorphism f :
Qz — Q induces an isomorphism Azp/Il — A/H of k- categorles where II is generated by
the automorphism of A induced by the automorphism ¢ of Q. Let A = D, weh /H(A/H)(az Y).
According to Theorem 5 A = Ag (znry.  Therefore the AR-quiver I'y, of Ap = Azp JIT is
isomorphic to (ZAy)z/(T"").

Step 4: To show that if the image of the fundamental group of E in II(E/(c),h) = I1,,(E/{o),h)
is generated by x"y for some r € Z,., then the AR-quiver I'y,, of Ag is isomorphic to
(ZAy)g /(T @), where ¢ is the automorphism of (ZAy)¢ which induces an involution of ZA,,.

Let ¢ be the automorphism of ZB which maps (e, 0) to (7(e),0). Since the image of the funda-
mental group of E in II(E/(o),h) = 11,,(E/{(0), h) is generated by x"y, according to Proposition
217 E is isomorphic to ZB/(c") (here o denotes the Nakayama automorphism of ZB). So Ag
is isomorphic to Azp/II, where II is a group of automorphisms of Azp generated by the auto-
morphism of Azp which is induced by the automorphism wu of Qzp, where w (resp. u) is the
automorphism of Qzp induced by the automorphism o” (resp. 1) of ZB. Let ¢ (resp. v) be the
automorphism of @ induced by the automorphism 7" (resp. ¢) of (ZA,)¢. By Figure 2 and
Figure 3, we have a commutative diagram

QZBf—>é

wl e
Qus ——Q

So the gulver isomorphism f : Qzp — Q induces an isomorphism Azp /1T — A/ II of k- categories,
where II is generated by the automorphism of A induced by the automorphism tv of Q Let
A= @m7y€A/H(A/H)(x,y). According to Theorem [4.3] A = Ag (;nrg). Therefore the AR-quiver
I'p, of Ap = Azp /Il is isomorphic to (ZAy,)¢ /(T™" ¢). O

5. DOMESTIC FRACTIONAL BRAUER GRAPH ALGEBRAS OF TYPE MS

In this section we assume that k is an algebraically closed field. For a finite dimensional self-
injective k-algebra A, denote ,I'4 the stable AR-quiver of A.

5.1. Exceptional tubes of representation-infinite f,,;~-BGAs.

Let E = (E, P, L,d) be a finite connected f,,s-BG with Ap representation-infinite. According
o [7, Section 6], Ap = kQ'y /I with Iy, admissible, where Qg is the sub-quiver of Qg given by
(Q%)o = (Qr)o and (Qz)1 = {L(e) | e € E with d(e) > 1}, and I}, is generated by the following
three types of relations
(fR1") L(g¥®)=1.e).-. L(g-e)L(e)—L(¢*™M~1-h)--- L(g-h)L(h), where e, h € E and d(e), d(h) > 1;
(fR2') L(e1)L(e2), where e,h € E, d(e),d(h) > 1, and e # g - ey;
(fR3") L(g¥®) -¢)---L(g-e)L(e), where e € E and d(e) > 1.
We will consider a module of Ag as a representation of the quiver with relations (Q’;, I;). We call
an Ag-module M a string module if it can be seen as a string module over the quotient algebra
Ag/soc(Ag) (for the definition of string and string modules, see [3, II.2 and I1.3]).
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For every e € FE, denotes M, the uniserial Ag-module given by the direct string L(gd(e)_2 .
e)---L(g-e)L(e) (define M, as the simple Ag-module at P(e) if d(e) = 1). Since Ag representation-
infinite, it is not a Nakayama algebra. Then it is straightforward to show that for each edge
P(e) ={e, €'} of E, either d(e) > 1 or d(e’) > 1. Therefore M,, is not isomorphic to M., for every
€1 75 €9.

Recall that a connected component of ,I' 4, consisting of string modules of the form ZA./{(7™)
(n > 1) is called an exceptional tube. The following result should be compared with |2, Lemma
4.4] for BGAs.

Lemma 5.1. Let E = (E, P, L,d) be a finite connected fn,s-BG with A representation-infinite.
Then a string module M of Ag is at the mouth of an exceptional tube in the stable AR-quiver of
Ag if and only if M = M, for some e € E.

Proof. Note that for each edge P(e) = {e, e’} of E, either d(e) > 1 or d(e’) > 1. By [4, Theorem
2.1 and Theorem 2.2|, an indecomposable string module M of Ag is at the mouth of an exceptional
tube in the stable AR-quiver of Ag if and only if there exists precisely one irreducible morphism
N — M in ,[I'4, for some indecomposable Ag-module N.

"=" Let M be at the mouth of an exceptional tube in ,I'4,, which is given by a string w.
Since there is only one irreducible morphism N — M with N indecomposable non-projective, it
is straightforward to show that w is a direct (or an inverse) string. Suppose that w = L(g" ! -
e)---L(g-e)L(e) is a direct string, where 0 <r < d(e) — 1. If r =d(e) — 1, then M = M,. If r <
d(e) —1, let N be the string module given by the string w’ = L(h)~!--- L(g?™M=2. ) "1 L(¢" - e)w,
where ¢"t1 e and ¢%" 1. h are two half-edges of E which form an edge of E. Then w’ is obtained
from w by adding a co-hook, and there exists an irreducible morphism N — M. Since there do
not exists another irreducible morphism in ,I"4, with terminal M, the projective cover of M is
uniserial, and the string w is trivial. Let ¢’ be the half-edge of E such that e and ¢’ form an edge
of E. Since the projective cover of M is uniserial, d(e¢’) = 1, so we have M = M.

"< Let M = M, for some e € E, and let P(e) = {e,e’}. If the projective cover of M is
uniserial, then either d(e) = 1 or d(e’) = 1. In both case it is straightforward to show that there is
only one irreducible morphism N — M with N indecomposable non-projective. If the projective
cover of M is not uniserial, then there exists an AR-sequence 0 — M}, -+ N — M — 0, where N
is the string module given by the string

L(g")=2.¢) .. L(g - e)L(e)L(e) ' L(g®™~2 . h) .- L(g - h)L(h)

with ¢ - € and ¢g¥™~1. h two half-edges of E which form an edge of E. Then N — M is the only
irreducible morphism in J[I"4, with terminal M. O

Lemma 5.2. Let E = (E,P,L,d) be a finite connected fns-BG with Ag representation-infinite.
Denote T the involution of E as a Brauer G-set. Then for every e € B, DTr(Me) = My-1(gr)2(c),
where DTr denotes the AR-translation of Ag and o denotes the Nakayama automorphism of E.

Proof. 1f d(e),d(7(e)) > 1, then there are two arrows L(e), L(7(e)) of Q/; starting at P(e). There
exists an AR-sequence 0 — M,-1(4ry2(c) = N — M. — 0, where N is the string module given by
the string

L(g"72-e)--- L(g - e)L(e)L(r(e) " L(¢"™ 72 - ) --- L(g - h)L(h)
with h = o= 1(g7)2(e).

If d(e) = 1 and d(7(e)) > 1, then M, is the simple Ag-module at the vertex P(e) of Q. There
exists an AR-sequence 0 — M,-1(4ry2(c) = N — M. — 0, where N is the string module given by
the string

L(r(e) ' L(g"™ ™2 - h)--- L(g - h)L(h)
with b = o~ 1(g7)2(e).

If d(r(e)) = 1, then the projective cover P of M, is uniserial and M, = P/soc(P). So there
exists an AR-sequence 0 — rad(P) — P @ rad(P)/soc(P) — M. — 0, where rad(P) = Mj..
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Since d(7(e)) = 1, gr(e) = o7(e) = To(e), and 01 (g7)%(e) = o~ L(g7)(10)(e) = o Lgo(e) =g - e.
Then DTr(M.) = rad(P) = Mg—1(gr)2(e)- O

The following result should be compared with [2, Theorem 4.5] for BGAs.

Proposition 5.3. Let E = (E,P,L,d) be a finite connected fp,s-BG with A representation-
infinite. Denote T the involution of E as a Brauer G-set, o the Nakayama automorphism of E,
and 0= (g7)? : E — E, e — o~ 1(g7)%(e) the permutation on E. Then

(1) There is a bijection between the set of exceptional tubes in the stable AR-quiver JI' 4, of
Ag and the set of (0= (g7)?)-orbits of E.

(2) The rank of an exceptional tube of ;T 4, is equal to the length of the associated (o= (g7)?)-
orbit of E.

Proof. According to Lemma [5.1], there is a bijection between E and the set of string modules of
Apg at the mouth of an exceptional tube of ,I'4,,. Moreover, by Lemma [5.2] the action of the
AR-translation DTr on this set of modules corresponds to the permutation o ~*(g7)? on E. O

5.2. Construction of domestic f,,;~-BGAs.
Let F be a finite connected f,,s-BG with Ag domestic. By Theorem so does Ag,, where

{E/<0'>, if (o) is admissible;

—

E/{(o), otherwise.

Suppose that the modified BG E/(c) has k-edges, [ double half-edges, and n vertices vy, -+, vy,
of f-degree dy, - - -, d,, respectively. By Lemma [3.12] there are only three possible cases:
Hi=2,k—n+1=0,d;=1for 1 <i<m;
(2)1=0,k—n+1=0,d; =2 for exactly two numbers i = ig, i1, and d; = 1 for i # iy, i1;
B3)l=0k—n+1=1,d;=1for1<i<n.

Lemma 5.4. In case (1), E is determined by E/{c) and the order of the Nakayama automorphism
o of E up to isomorphism.

Proof. Suppose that E and E’ are two f,,s-BGs such that E/(c) = E'/(c) is a modified BG as
in case (1) and the Nakayama automorphisms of E and E’ have the same order. According to
Lemma [37] (2), the order of the Nakayama automorphisms of E is even, say 2r.

By Proposition 3.5 the fundamental group of E/(c) is isomorphic to

Fla,cy,c2)/{ac1 = cra,acy = CQCL,C% = C% =1),

and by the proof of Proposition[3.13] the image of the fundamental group of E'in F(a, ¢1,co)/{ac; =
cia, aca = cya, ¢ = c3 = 1) is the subgroup of F{a,c1,c2)/{ac; = cia, acy = cza, & = 2 = 1)
formed by elements x which satisfies p(x)(1) = 1, where p : F{a,cy,c2)/{(acy = cra, acy = caa,
c? = c3 = 1) — Sy, is the group homomorphism given by p(@) = (12---2r) and p(e1) = p(cz) = (1
r+1)(2r+2)---(r 2r). Since the same things also hold for E’, the image of the fundamental
groups of £ and E’ in F{a,c1,c2)/{acy = c1a, acz = cza, ¢ = c3 = 1) are equal. By Proposition
217, E and E’ are isomorphic. O

Now we construct the fn,s-BG E with E/(o) in case (1). Suppose that the order of the
Nakayama automorphism of E is 2r, where r is a positive integer. Let B = E/(o) = (B, B, 7,d)
and fix some b € B. Since the diagram obtained by deleting the two double half-edges of the
diagram of B is a tree, each element c of B can be expressed uniquely as the form (g7)’(b), where
0 < je < 2n— 1. For every vertex v of B, let b, be the half-edge in v with j;, smallest. Define a
fms-BG E, = (E,, E,,7,d) as follows: E, ={(c,j) | c€ B,j € {1,2,--- ,2r} = Z/2rZ}; for every
(c,j) € B, define

(e,§) = (9-¢,j), if g-c# b, for any vertex v of B;
gen = (9-¢c,j+1), if g-c = b, for some vertex v of B,
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(erj) = {(T(C),j), if ¢ is not a double half-edge of B;
(¢,j + 1), if ¢ is a double half-edge of B,
and d(c, j) = d(c).
Proposition 5.5. In case (1), E is isomorphic to E,.

Proof. Since B = E /(o) is f-degree trivial, d(c) = |G - ¢| for each ¢ € B. For every (c,j) € Er,
since d(c,7) = d(c), it can be shown that the Nakayama automorphism o of E, is given by
o(e,j) = (¢,j +1). So the covering E, — B, (c,j) — c induces an isomorphism E, /(o) = B.
Since the order of the Nakayama automorphism of E,. is 2r, by Lemma [5.4] E, is isomorphic to
E. O

Lemma 5.6. In case (2), E is determined by E/{c) and the order of the Nakayama automorphism
o of E up to isomorphism.

Proof. The proof is similar to that of Lemma [5.4l Suppose that E and E’ are two f,,,-BGs such
that E/(c) = E'/(0) is a fms-BG as in case (2) and the Nakayama automorphisms of E and
E’ have the same order. According to the proof of Proposition 3.I3] the order of the Nakayama
automorphisms of F is odd, say 2r — 1.

By [8, Proposition 5.9], the fundamental group of E/{c) is isomorphic to F(a,b)/(a* = b?), and
by the proof of Proposition B.I3] the image of the fundamental group of E in F(a,b)/(a® = b%)
is the subgroup of F({a,b)/(a®> = b?) formed by elements x which satisfies p(z)(1) = 1, where
p: Fla,b)/{a? = b?) — S._1 is the group homomorphism given by p(a@) = p(b) = (1 2---2r — 1).
Since the same things also hold for E’, the images of the fundamental groups of £ and E’ in
F(a,b)/(a® = b?) are equal. By [8, Proposition 2.32], E and E’ are isomorphic. O

Now we construct the f,,s-BG E with E/(o) in case (2). This construction is similar to that
in case (1). Suppose that the order of the Nakayama automorphism of F is 2r — 1, where r is a
positive integer. Let B = E/(0) = (B, B, 7,d) and fix some b € B. Since the diagram of B is a
tree, each element ¢ of B can be expressed uniquely as the form (g7)7¢(b), where 0 < j. < 2n — 3.
For every vertex v of B, let b, be the half-edge in v such that j,, is smallest. Define a f,,s-BG
E. = (E.,E., 1,d) as follows: E. ={(c,j) |c€ B,j€{1,2,--- ,2r—1} = Z/(2r — 1)Z}; for every
(¢,j) € E., define

(g-¢,7), if g-c # b, for any vertex v of B;
g-(c,j) =<K (g9-¢,j+1), if g- c= b, for some vertex v; of B with i # g, i1;
(9-¢c,j+r), if g-c = b,, for some vertex v; of B with i = iy or i = iy,

T(Cyj) = (T(C)7j)7 and d(C,j) = d(C)
Proposition 5.7. In case (2), E is isomorphic to E!.

Proof. For every (c,j) € E/, since

e = {0, e e

2|G - ¢, if c € v, or ¢ € vy,

we have (¢, j) = (¢, j+1). Therefore E/ /(o) = B. Since the order of the Nakayama automorphism
of E/ is 2r — 1, by Lemma [5.6] E. is isomorphic to E. O

Let B = E/{0) = (B, B,7,d) be the f,,s-BG in case (3). Then the diagram of B is a graph
with a unique cycle. Suppose the length of this cycle is m, and there are p edges outside this cycle
and ¢ edges inside this cycle. Then we have m 4+ p + ¢ = n. Denote g7 the permutation on B
mapping each ¢ € B to (g7)(c). It is straightforward to show that B has exactly two (g7)-orbits,
one of length m + 2p containing every half-edge outside the unique cycle of B, and the other of
length m + 2¢ containing every half-edge inside the unique cycle of B. We call a half-edge of B
outer (resp. inner) if it belongs to the first (resp. second) (g7)-orbit.
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Now we construct the f,,,s-BG E with E/(o) in case (3). Fix an outer half-edge b € B = E/(0)
belonging to the unique cycle of B. Then 7(b) is an inner half-edge of B. For every outer (resp.
inner) half-edge ¢ of B, there exists a unique integer 0 < j. < m+2p—1 (resp. 0 < j, < m+2¢—1)
such that ¢ = (g7)7(b) (resp. ¢ = (g7)%¢(7(b))). For every vertex v of B, define a half-edge b, € v
as follows: if v contains an outer half-edge, define b, as the outer half-edge in v with j;, smallest;
if v does not contain any outer half-edge, define b, as the inner half-edge in v with jl’)v smallest.

Suppose that the order of the Nakayama automorphism o of F is r. For every integer 1 <1 < r,
define a f,,,s-BG E,; = (E,, By, 7,d) as follows: E. = {(¢,7) |c€ B,j € {1,--- ,r} =7Z/rZ}; for
every (c,7) € Ey, define

(c,5) = (g-¢j), if g-c# b, for any vertex v of B;
gen= (9-c,j+1), if g- c = b, for some vertex v of B,

(1(¢),7), if c# b and ¢ # 7(b);
7(c,j) =< (7(c), 7 + 1), if c=1;
(r(c),j = 1), if c=7(b),
and d(c,j) = d(c).
Proposition 5.8. In case (3), E is isomorphic to some E.; with 1 <1 <r.

We need some preparations before we prove Proposition [5.8]

According to the proof of [8, Proposition 5.9], we have an isomorphism w : II(B,b) — Z®Z with
u((blg?®)|b)) = (1,0) and u((b|(g7)™+2P|b)) = (0,1). Let H be the image of the composition map
II(E,e) — II(B,b) > Z & Z, where e € E is a preimage of b in E (the subgroup H of Z & Z does
not depend on the choice of e). Let A = {(a,0) | a € Z}, B = {(0,a) | a € Z} be two subgroups
of Z @& Z. Since E is connected and since the order of the Nakayama automorphism o of F is r,
the closed walk (b|gF¥®)|b) of B at b lifts to a closed walk of E at e if and only if r | k. Therefore
H N A =rA. Moreover, since the covering E — B = E /(o) is r-sheeted, [Z& Z : H| =r.

Lemma 5.9. H is a free abelian subgroup of Z ® Z generated by (r,0) and (i,1), where i is some
integer with 0 < ¢ <71 —1.

Proof. We have (A+ H)/H = A/(ANH) 2 Z/rZ,and [A+ H : H=r. Since [Z®Z : H| =,
A+ H =Z®Z. Since (0,1) € A+ H, there exists some h € H such that (0,1) € A+ h. So
h = (i,1) for some i € Z. Let H' be the subgroup of H generated by (r,0) and (i,1). Since
Z®Z:H'=r, H = H. Then H is generated by (r,0) and (i, 1), and we may choose i to be an
integer such that 0 <7 <r — 1. O

Proof of Proposition 5.8l Since the f-degree of B is trivial, the Nakayama automorphism o
of E,. is given by o(c,j) = (¢,7 + 1). Then the covering p : E.; — B, (¢,j) +— ¢ induces an
isomorphism E,;/(c) = B. Let u : II(B,b) — Z @ Z be the isomorphism with u((b|g?®)|b)) =
(1,0) and wu((b|(gr)™*2r|b)) = (0,1). In order to calculate the image of the composition map
I(E,;, (b,1)) 25 TI(B,b) % Z & Z, we first consider the action of Z & Z on p~*(b) = {(b,j) | j €
{1,-+- ,r} =Z/rZ} via the isomorphism w : II(B,b) — Z @ Z.

We have (1,0) - (b,j) = g%®) - (b,5) = (b, 5) = (b,j + 1). Since the number of outer half-edges
of B of the form b, with v a vertex of B is m + p, we have (0,1) - (b,5) = (g7)™"?P(b,5) =
(b,7+1+m+p). Let K; be the image of the composition map II(E,;, (b, 1)) LN I(B,e) & Z@Z.
Then K;j={x € Z&Z | x-(b,1) = (b, 1)}, which is the subgroup of Z & Z generated by (r,0) and
(—=(l+m+p),1). According to Lemma [5.9] there exists some 1 <1 < r such that K; = H. By [8|
Proposition 2.32], E,; is isomorphic to E. O

We remark that the f,,s-BGs constructed in this subsection may not be pairwise non-isomorphic,
although every finite connected f,,s-BG E with Ap domestic is isomorphic to one of the f,,s-BG
constructed in this subsection.
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5.3. Stable AR-components of domestic f,,;~-BGAs.

In this subsection, we always denote 7 the involution and ¢ the Nakayama automorphism for a
Brauer G-set if there is no confusion.

Let E be a finite connected fp,s-BG such that E/(o) is a Brauer G-set in case (1), that is,
B = E/(o) is a f-degree trivial modified BG with n vertices, n — 1 edges and 2 double half-edges.
Denote o~ 1(g7)? the permutation on E mapping each e € E to o~ !(g7)%(e). Suppose that the
order of the Nakayama automorphism o of E is 2r.

Lemma 5.10. For every e € E, the length of the (o~ '(g7)?)-orbit of e is n.

Proof. According to Proposition 5.5 F is isomorphic to F, (the definition of E, is given be-
fore Proposition (.5]). For every (c,j) € E,, let N be the minimal positive integer such that
(0= (g7)*)N (¢, ) = (¢, 7). Note that the Nakayama automorphism o of B is identity. So n is the
minimal positive integer such that (0=!(g7)%)"(c) = c. Since there exists a covering of Brauer
G-sets p : B, — B which maps each (¢, j') € E, to ¢ € B, we have

(@1 gm)*)N () = (e Hgr)*) N (p(e. 5)) = p((0~ (gm)2) N (¢, 5)) = ple.j) =
Therefore n | N.

Since {(g7)(c), (g7)2(c), - ,(97)**(c)} = B, there are exactly n numbers i € {1,2,---,2n}
such that (g7)%(c) is of the form b, for some vertex v of B. Moreover, since B contains two
double half-edges and since {c, (g7)(c),--- ,(97)**"!(c)} = B, there are exactly two numbers
i € {0,1,---,2n — 1} such that (g7)%(c) is a double half-edge of B. So we have (g7)?"(c,j) =
((g7)2"(¢), j+n-+2r) = (e, j+n). Therefore (o= (g7)?)"(c, /) = " (g7)?"(c, ) = o "(c, j+ ) =
(¢,7) and N | n. Then we have N = n. O
Proposition 5.11. Let E be a finite connected f,s-BG such that E/(o) is a Brauer G-set in case
(1). Suppose that the order of the Nakayama automorphism of E is 2r. Then [I' 4, is a disjoint
union of 4r components of the form ZA/{(t™), 2r components of the form Zgn,n, and infinitely
many components of the form ZAs /{T).

Proof. Since E has 4nr half-edges, by Lemmal[5.10, E contains 4r (0~!(g7)?)-orbits, each of length
n. By Proposition 5.3 ,I'4, contains 47 exceptional tubes, where the rank of each tube is n. Now

the result follows from [4, Theorem 2.1]. O

Let E be a finite connected f,,s-BG such that E /(o) is a Brauer G-set in case (2), that is,
B = E/{(0) is a Brauer graph whose underlying diagram is a tree with n vertices vy, ---, v, of
f-degree dy, - - -, dj,, respectively, such that d; = 2 for exactly two numbers i = ig, i1 and d; = 1 for

i # g, i7. Denote 0~ 1(g7)? the permutation on £ mapping each e € E to o~ (g7)%(e). Suppose
that the order of the Nakayama automorphism o of F is 2r — 1.

Lemma 5.12. For every e € E, the length of the (o~ '(g7)?)-orbit of e is n — 1.

Proof. According to Proposition (.7 E is isomorphic to E! (the definition of E! is given be-
fore Proposition B.7). For every (c,j) € E., let N be the minimal positive integer such that
(0=Y(g7)®)N(c,7) = (c,5). Note that the Nakayama automorphism o of B is identity. So n — 1
is the minimal positive integer such that (o7!(g7)%)""1(¢) = c. Since there exists a covering of
Brauer G-sets p : E. — B which maps each (¢/,j') € E. to ¢ € B, we have

(@ g™ (e) = (0 Hg)) M (p(e, 1) = p((07 (g7)*) " (€, 1)) = ple,j) = ¢
Therefore (n — 1) | N.

Since {(g7)(c ) (g7)2%(c),- -+, (g7)* 2(c)} = B, for each vertex v of B, there is exactly one num-
beri e {1,2,--- ,2n—2} such that (97)*(c) = by. So we have (97)2"_2(6,]') = ((g7)*2(c), j+n—
242r) = (c,j —|—n 2+2r). Since (¢, j') = (¢,5' +1) for every (¢, ') € E., (671 (g7)?)" (e, j) =
o " (gr)2(c,j) = o (e, j+n—24+2r) = (c,j +2r —1) = (c,j) and N | (n —1). Then we
have N =n — 1. O
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Proposition 5.13. Let E be a finite connected fps-BG such that E/(o) is a Brauer G-set in
case (2) and suppose that the order of the Nakayama automorphism of E is2r —1. Then [I' 4, is
a disjoint union of 4r — 2 components of the form ZAs/{(T" 1), 2r — 1 components of the form
Zgn_l,n_l, and infinitely many components of the form ZAx/{(T).

Proof. Since F has (4r —2)(n—1) half-edges, by Lemma[5.12 E contains 4r —2 (o~ (g7)?)-orbits,
each of length n — 1. By Proposition 5.3] ,I'4, contains 47 — 2 exceptional tubes, where the rank
of each tube is n — 1. Now the result follows from [4], Theorem 2.1]. O

Let E be a finite connected f,,s-BG such that E /(o) is a Brauer G-set in case (3), that is,
B is a Brauer graph with trivial f-degree whose diagram contains a unique cycle. Suppose that
the length of this cycle is m, and suppose that there are p edges outside this cycle and ¢ edges
inside this cycle, where n = m + p + ¢. Fix an outer half-edge b of B which belongs to the unique
cycle of B, and suppose that the order of the Nakayama automorphism of F is r. According to
Proposition (.8, E is isomorphic to some E,; with 1 < [ < r, where the definition of E,;’s are
given before Proposition (.8

Denote 0~ !(g7)? the permutation on E mapping each e € E to o~ 1(g7)2(e).

Lemma 5.14. Under the assumptions above, when m is odd, E = E,. contains (r,m + 2l)

(071 (g7)?)-orbits of length ?7(«%122]3 and (r,m + 21) (c=1(g7)?)-orbits of length ?frzbfz%;, and when
r(m+2p)

m is even, E = E,; contains (2r,m + 21) (c=1(g7)?)-orbits of length Grmyany and (2r,m + 21)

(0=Y(gT)?)-orbits of length (ggm”ffgl)), where (a,b) denotes the greatest common divisor of a and b.

Proof. Denote f : E,; — B the covering of Brauer G-sets which maps each (¢, j) € E,; to ¢ € B.
Note that B is a disjoint union of two (g7)-orbits %97 and 7(b)%™) where the length of b%7 is
m + 2p and the length of 7(b) 97) is m + 2¢ (here g7 denotes the permutation on B mapping each
¢ € B to gr(c)).

When m is odd, since both m+2p and m +2q are odd, the (gr)-orbits b7 and ()97 of B are
also (0~1(g7)?)-orbits of B (note that the Nakayama automorphism o of B is identity). Since the
projection of each (o~1(g7)?)-orbit of E,; under f is a (¢~ (g7)?)-orbit of B, each (0~ (g7)?)-orbit
of E,; is of the form (b, ) (7)) or of the form (7(b), )" ' @"*) where j € {1,--- ,r} = Z/rZ.

Let N be the minimal positive integer such that (o=(g7)%)™ (b, ) = (b, 7). Since m + 2p is the
minimal positive integer such that (o=1(g7)2)™*?P(b) = b, we have

(@ )M () = (0 Hgn))N (£(b,5)) = F((0™ Hgm)H) N (0. 5)) = F(b,5) =b.
Therefore (m+2p) | N. Note that 697 = {b, g7(b), -, (g7)™ 2P~ (b)} contains m + p half-edges
of the form b,, and b € b'97), 7(b) ¢ bY97). Therefore

(g7)™ 2P (b, ) = ((gr)™ T (b),j +m+p+1) = (b,j +m+p+1),
and
(07 (gr)2)" 2 (b, j) = o~ T (gr)2ME2) (b, §) = (b, j4+2(mAp+1) — (m+2p)) = (b, j+m+20).

Since N’ = m is the minimal positive integer such that ((o=!(g7)2)™+2)N'(b,5) = (b, }),

N = (m+2p)N' = Zﬁ"&fg% Moreover, two half-edges (b, j1), (b,j2) of E,; belong to the same

(0=Y(gT)?)-orbit if and only if (r,m+21) divides j; — jo. Therefore there are (r,m+21) (o=1(g7)?)-

orbits of E,; of the form (b, §)® @™ each of length 6(,7;‘;221’3

Let M be the minimal positive integer such that (o=*(g7)2)M (7(b),j) = (7(b), ). Since m +2q
is the minimal positive integer such that (o=1(g7)%)™*24(7(b)) = 7(b), m + 2q divides M. Since
()97 = {7(b), gr(7(b)), - - -, (g7)" 241 (7(b))} contains ¢ half-edges of the form b,, and since
b¢ 7(b)97), 7(b) € 7(b)97), we have

(g7)"™*21(7(b), 5) = ((g7)" (7 (b)), + ¢ = 1) = (7(b), ] +q — 1)
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So

(07 (gr)?)™ 27 (b), j) = o "D ()P (7 (1), 5)
= (7(b),j +2(q — 1) — (m+2q)) = (7(b),j — (m + 21)).
Then M' = Gmgary is the minimal positive integer such that (o= (gr)2)mt2)M (7(b), §) =

(1(b),7), and M = (m + 2q)M' = ZT(,TE;%%; Moreover, two half-edges (7(b), 1), (7(b),j2) of E,
belong to the same (o~1(g7)2)-orbit if and only if (r,m 4 21) divides j; — jo. Therefore there are

(r,m + 21) (o1 (g7)?)-orbits of E,; of the form (7(b), ;) ' @"*) each of length Zr(%fﬁ%

When m is even, since both m + 2p and m + 2q are even, the (g7)-orbits b97™) of B splits into
two (o71(g7)2)-orbits b (97)*) and g7 (b){® (47)*) each of length % + p, and the (g7)-orbits
7(b)97) of B splits into two (o~ 1(g7)?)-orbits T(b)<071(97)2> and (g - b)<071(97)2>, each of length
% + ¢ (note that the Nakayama automorphism o of B is identity). Since the projection of each
(0=1(g7)?)-orbit of E,; under f is a (0~ 1(g7)?)-orbit of B, each (¢~!(g7)?)-orbit of E,; is equal to
one of the following (o~ (g7)2)-orbits of E,;: (b, ) @D (g7(b), ) @D (7(b), j)le " 7)),
(g-b,§) @) where j € {1,--- ,r} =Z/rZ.

Let N be the minimal positive integer such that (6! (g7)?)" (b,j) = (b,]). Since Z + p is the
minimal positive integer such that (o~!(g7)?)2 *P(b) = b, we have

(o~ (g2 0) = (0 (gm) Y (F(0.) = (o™ (97D (0.5)) = Fb.5) = b

Therefore (% + p) | N. Similar to the case m odd, we have (g7)" "2 (b,5) = (b,j + m +p+1).
Then

- 5 y —(Z m - . m
(07 (gr)*)EFP(0,5) = o= (gr) ™ (b, ) = (b +mAp 1 (5

Since N’ = m is the minimal positive integer such that ((o=*(g7)2) 2 )N (b, ) = (b, §),
2

*mﬁ=®d+%+0

r(m + 2p)
2 (2r,m +21)°
Moreover, two half-edges (b, j1), (b,j2) of E,; belong to the same (o~ (g7)?)-orbit if and only if
(r, 2 + 1) divides j; — jo. Therefore there are (r,2 + 1) (o~'(g7)?)-orbits of E,; of the form

(b, )% each of length (gg‘mr:fgl)) Similarly it can be shown that there are (r,% + 1)

(o7 1(g7)?)-orbits of By of the form (g7(b), 7)) cach of length (g(mﬁffgl))

N=E4+pN =

Let M be the minimal positive integer such that (o= (g7)%)™ (7(b), j) = (7(b), 7). Since Z+qis
the minimal positive integer such that (=1 (g7)2)2 (7 (b)) = 7(b), we have (% +q) | M. Similar
to the case m odd, we have (g7)™*24(7(b),5) = (7(b),7 + ¢ —1). Then

(07 g ) EH1(r(0), ) = o~ D (grym A (r(0), ) = (r(0), F+a—I— (5 +a) = (r(8), T~ (5 +1))

Since M’ = 77 is the minimal positive integer such that (o= Ygr)2) 2 TOM (7(b),§) =
2
(7(b),7), ot 20)
m r(m + 2q
M= (= M= —.
(5 +9 (2r,m + 21)

Moreover, two half-edges (7(b), 1), (7(b),j2) of E,; belong to the same (o~!(g7)?)-orbit if and
only if (r, 2 + 1) divides ji — jo. Therefore there are (r, %t +1) (c~'(g7)?)-orbits of E,; of the

form (7(b), ) "@7)*) each of length (ggm”jfgl)). Similarly it can be shown that there are (r, 3 +1)

(1 (g7)%)-orbits of E,; of the form (g-b,){" " (97)%) each of length (g(rmgfgl)) O

By Lemma [5.14] Proposition 5.3 and [4, Theorem 2.1], we have
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Proposition 5.15. Let E = E,; be a finite connected fns-BG such that E/{o) is a Brauer
G-set in case (3), where the length of the unique cycle of B = E/{o) is m and the number
of edges of B outside (resp. inside) this cycle is p (resp. q). If m is odd, then [T'a, is a
r(m+2p)
disjoint union of (r,m + 2l) components of the form ZAs /(T Grom20) ), (rym + 2l) components
r(m+2q) ~
of the form ZAs /(T m+20) | (r,m + 21) components of the form ZA r(m+2p) r(m+2q , and infinitely
(rym+21)° (r,m+21)
many components of the form ZAx /(T). If m is even, then [I'a, is a disjoint union of (2r,m+2l)
r(m+2p) r(m+2q)
components of the form ZAs /(T @rm+2)) (2r,m + 21) components of the form ZA /(T @m0},

(2r,m + 2l) components of the form ZA r(mi2p) r(mi2q) , and infinitely many components of the

@r;m+21)’ (2r,m+21)
form ZA/(T).
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