III

A GENERALIZATION OF DUGAS' CONSTRUCTION ON STABLE AUTO-EQUIVALENCES FOR SYMMETRIC ALGEBRAS

NENGQUN LI AND YUMING LIU*

Abstract

We give a unified generalization of Dugas' construction on stable auto-equivalences of Morita type from local symmetric algebras to arbitrary symmetric algebras. For group algebras $k P$ of p-groups in characteristic p, we recover all the stable auto-equivalences corresponding to endo-trivial modules over $k P$ except that P is generalized quaternion of order 2^{m}. Moreover, we give many examples of stable auto-equivalences of Morita type for non-local symmetric algebras.

1. Introduction

In [8], Dugas gave two methods to construct stable auto-equivalences (of Morita type) for (finite dimensional) local symmetric algebras. One of particular interests is that such stable autoequivalences are often not induced by auto-equivalences of the derived category.

The first construction is given as follows.
Let A be an elementary local symmetric k-algebra, let $x \in A$ be a nilpotent element. Set $R=k[x] \cong k[X] /\left(X^{m}\right)$ for some integer $m \geq 2$ and $T_{A}=k \otimes_{R} A \cong A / x A$. Suppose that ${ }_{R} A$ and A_{R} are free modules and that $\underline{\operatorname{End}}_{A}(T) \cong k[\psi] /\left(\psi^{2}\right)$, where ψ is an endomorphism of T induced by multiplying some $y \in A$. (As Dugas pointed out that the algebra End ${ }_{A}(T)$ has a periodic bimodule free resolution of period 2.) Let C_{μ} be the kernel of the multiplication map $\mu: A \otimes_{R} A \rightarrow A$. Then $-\otimes_{A} C_{\mu}: \underline{\bmod }-A \rightarrow \underline{\bmod }-A$ is a stable auto-equivalence of A.

Note that $\Omega_{A^{e}}^{-1}\left(C_{\mu}\right) \cong \operatorname{Cone}(\mu)$ in mod- A^{e} and Dugas called the stable auto-equivalence $-\otimes_{A}$ $\Omega_{A^{e}}^{-1}\left(C_{\mu}\right)$ as a spherical stable twist which is analogous to spherical twist constructed on the derived category by Seidel and Thomas. Under the more general condition End ${ }_{A}(T) \cong k[\psi] /\left(\psi^{n+1}\right)$ for some $n \geq 1$, Dugas gave a second construction using a double cone construction, and the induced stable auto-equivalence is called \mathbb{P}_{n}-stable twist since it is analogous to \mathbb{P}_{n}-twist on the derived category of coherent sheaves on a variety by Huybrechts and Thomas.

For group algebras of p-groups in characteristic p, Dugas recovered many of the stable autoequivalences corresponding to endo-trivial modules. He also obtained stable auto-equivalences for local algebras of dihedral and semi-dihedral type, which are not group algebras.

In this note, we give a unified generalization of Dugas' construction by greatly relaxing the conditions on both A and R and by adding a new subalgebra B of A. The main idea is as follows. For a symmetric k-algebra A, consider a triple (A, R, B), where R, B are subalgebras of A such that R is also symmetric and B (as a B - B-bimodule) has a periodic free resolution of period q. Then, under some commutativity assumptions between R, B and A, we may construct a complex of left-right projective A - A-bimodules. Using this complex, we can construct a left-right projective A - A-bimodule M_{q} using a multiple cone construction such that the functor $-\otimes_{A} M_{q}$ induces a stable auto-equivalence of A. The main results are Theorem 3.5 and Theorem 4.1.

Our construction generalizes Dugas' construction in three ways. Firstly, we dropped the condition that the algebra A is local. Secondly, we don't request the subalgebra R to be local or Nakayama. Thirdly, we use a subalgebra B of A to replace End ${ }_{A}(T)$ in Dugas' construction, which is more flexible. For a connection between B and $\underline{E n d}_{A}(T)$, we refer to Remark 3.2 below.

[^0]For group algebras $k P$ of p-groups in characteristic p, we recover all the stable auto-equivalences of $k P$ corresponding to endo-trivial modules except that P is generalized quaternion of order 2^{m}, see Proposition 5.1. Moreover, we can construct many examples of stable auto-equivalences of Morita type (which are not induced by derived equivalences in general) for non-local symmetric algebras, see Section 6.

Our discussion is also related to construct stable equivalences between different algebras. In particular, we will use a method in [11, which gives a way to construct new stable equivalence between non-Morita equivalent algebras from a given stable auto-equivalence.

This paper is organized as follows. In Section 2, we state some general results on triangulated functors, in particular we recall some results that are useful in establishing that a given triangulated functor is an equivalence. We give the constructions of stable auto-equivalences for (not necessarily local) symmetric algebras in Section 3 and Section 4. We show in Section 5 that our construction recovers all the stable auto-equivalences corresponding to endo-trivial modules over a finite p-group algebra $k P$ when P is not generalized quaternion of order 2^{m}. In Section 6 , we construct various examples of stable auto-equivalences for non-local symmetric algebras.

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

2. Preliminary

Throughout this section, let k be a field and let \mathscr{T} be a Hom-finite triangulated k-category with suspension [1]. A typical example of this kind of triangulated k-category is the stable category mod- A of finite-dimensional right A-modules, where A is a finite-dimensional self-injective k algebra. Note that the suspension in $\underline{\bmod -} A$ is given by the cosyzygy functor Ω_{A}^{-1} and $\underline{\bmod -} A$ has a Serre functor $\nu_{A} \Omega_{A}$, where ν_{A} is the Nakayama functor.

We have the following interesting result on triangulated functor.
Lemma 2.1. Let \mathscr{T}^{\prime} and $\mathscr{T}_{1}, \cdots, \mathscr{T}_{n}$ be indecomposable (Hom-finite) Krull-Schmidt triangulated k-categories and let $\mathscr{T}=\mathscr{T}_{1} \times \cdots \times \mathscr{T}_{n}$. Let $F: \mathscr{T}^{\prime} \rightarrow \mathscr{T}$ be a fully faithful triangulated functor, which maps some nonzero object X of \mathscr{T}^{\prime} to an object of \mathscr{T}_{1}. Then the image of F is in \mathscr{T}_{1}.

Proof. Since \mathscr{T}^{\prime} and \mathscr{T} are Krull-Schmidt and F is fully faithful, F sends each indecomposable object Y of \mathscr{T}^{\prime} to an indecomposable object $F Y$ of \mathscr{T}, therefore $F Y \in \mathscr{T}_{i}$ for some i. Let \mathscr{C}_{1} (resp. \mathscr{C}_{2}) be the full subcategory of \mathscr{T}^{\prime} which is formed by the objects Z such that $F Z \in \mathscr{T}_{1}$ (resp. $F Z \in \mathscr{T}_{2} \times \cdots \times \mathscr{T}_{n}$). For each object Z of \mathscr{T}^{\prime}, let Z_{i} be the direct sum of indecomposable summands of Z which belong to $\mathscr{C}_{i}, i=1,2$. Then $Z=Z_{1} \oplus Z_{2}$ with $Z_{i} \in \mathscr{C}_{i}$. For every pair of objects $A_{i} \in \mathscr{C}_{i}$ and for each $n \in \mathbb{Z}$, since $F A_{1} \in \mathscr{T}_{1}$ and $\left(F A_{2}\right)[n] \in \mathscr{T}_{2} \times \cdots \times \mathscr{T}_{n}$, $\mathscr{T}^{\prime}\left(A_{1}, A_{2}[n]\right) \cong \mathscr{T}\left(F A_{1},\left(F A_{2}\right)[n]\right)=0$. Since \mathscr{T}^{\prime} is indecomposable, either \mathscr{C}_{1} or \mathscr{C}_{2} is zero. Since $0 \neq X \in \mathscr{C}_{1}, \mathscr{C}_{2}$ must be zero. Therefore $\mathscr{C}_{1}=\mathscr{T}^{\prime}$.
Remark 2.2. We will use Lemma 2.1 in the following situation. Let A be a self-injective k-algebra with a decomposition $A=A_{1} \times \cdots \times A_{n}$ into indecomposable algebras. Suppose that M is a left-
 stable category. Suppose that X is a non-projective A_{1}-module such that $X \otimes_{A} M$ is a A_{i}-module for some i. Then $-\otimes_{A} M$ restricts to a fully faithful functor $\underline{\bmod -}-A_{1} \rightarrow \underline{\bmod }-A_{i}$.

Next we recall from [1, 8 some general results that are useful in establishing that a given triangulated functor is an equivalence.

Let \mathscr{T} be a triangulated category and let \mathscr{C} be a collection of objects in \mathscr{T}. For any $n \in \mathbb{Z}$, define $\mathscr{C}[n]:=\{X[n] \mid X \in \mathscr{C}\}$. Moreover, define $\mathscr{C}{ }^{\perp}:=\{Y \in \mathscr{T} \mid \mathscr{T}(X, Y)=0$ for any $X \in \mathscr{C}\}$ and ${ }^{\perp} \mathscr{C}:=\{Y \in \mathscr{T} \mid \mathscr{T}(Y, X)=0$ for any $X \in \mathscr{C}\}$.

Definition 2.3. ([8, Definition 2.1]) Let \mathscr{T} be a triangulated category. A collection \mathscr{C} of objects in \mathscr{T} is called a spanning class (resp. strong spanning class) if $\left(\bigcup_{n \in \mathbb{Z}} \mathscr{C}[n]\right)^{\perp}=0$ and ${ }^{\perp}\left(\bigcup_{n \in \mathbb{Z}} \mathscr{C}[n]\right)=0\left(\right.$ resp. $\mathscr{C}^{\perp}=0$ and $\left.{ }^{\perp} \mathscr{C}=0\right)$.

Remark 2.4. If \mathscr{T} is a triangulated category which has a Serre functor, then for any object X of $\mathscr{T}, \mathscr{C}=\{X\} \cup X^{\perp}$ is a strong spanning class of \mathscr{T}.

Proposition 2.5. ([1, Theorem 2.3] and [8, Proposition 2.2]) Let \mathscr{T} and \mathscr{T}^{\prime} be triangulated categories, and let $F: \mathscr{T} \rightarrow \mathscr{T}^{\prime}$ be a triangulated functor with a left and a right adjoint. Then F is fully faithful if and only if there exists a strong spanning class \mathscr{C} of \mathscr{T} such that F induces isomorphisms $\mathscr{T}(X, Y[n]) \rightarrow \mathscr{T}^{\prime}(F X, F(Y[n]))$ for any $X, Y \in \mathscr{C}$ and for any $n=0,1$.
Proposition 2.6. ([1, Theorem 3.3]) Let \mathscr{T} and \mathscr{T}^{\prime} be triangulated categories with \mathscr{T} nonzero, \mathscr{T}^{\prime} indecomposable, and let $F: \mathscr{T} \rightarrow \mathscr{T}^{\prime}$ be a fully faithful triangulated functor. Then F is an equivalence of categories if and only if F has a left adjoint G and a right adjoint H such that $H(Y) \cong 0$ implies $G(Y) \cong 0$ for any $Y \in \mathscr{T}^{\prime}$.

Combining Propositions 2.5 and 2.6 we have the following consequence for symmetric algebras (see the definition of a symmetric algebra in Section 3):
Corollary 2.7. Let Λ, Γ be symmetric k-algebras such that Λ is not semisimple and Γ is indecomposable, and let M be a left-right projective Λ - Γ-bimodule. Denote F the stable functor induced by the functor $-\otimes_{\Lambda} M: \bmod -\Lambda \rightarrow \bmod -\Gamma$. If there exists a strong spanning class \mathscr{C} of mod $-\Lambda$ such that for any $X, Y \in \mathscr{C}$ and for any $n=0$, 1 , the homomorphism $F: \underline{\operatorname{Hom}}_{\Lambda}(X, Y[n]) \rightarrow \underline{\operatorname{Hom}}_{\Gamma}(F X, F(Y[n]))$ is an isomorphism, then F is an equivalence.
Proof. Since Λ, Γ are symmetric, by [8, Lemma 3.2], the functor $-\otimes_{\Gamma} D M: \bmod -\Gamma \rightarrow \bmod -\Lambda$ is both the left and the right adjoint of $-\otimes_{\Lambda} M: \bmod -\Lambda \rightarrow \bmod -\Gamma$. Therefore the stable functor $G: \underline{\bmod }-\Gamma \rightarrow \underline{\bmod }-\Lambda$ induced by $-\otimes_{\Gamma} D M$ is both the left and the right adjoint of F. By Proposition 2.5, F is fully faithful. Since Λ is not semisimple and Γ is indecomposable, $\underline{\bmod -\Lambda}$ is nonzero and mod- Γ is indecomposable as a triangulated category. Then it follows from Proposition 2.6 that F is an equivalence.

3. A construction of stable auto-EQuivalences for symmetric algebras

In the following, unless otherwise stated, all algebras considered will be finite dimensional unitary k-algebras over a field k, and all their modules will be finite dimensional right modules. By a subalgebra B of an algebra A, we mean that B is a subalgebra of A with the same identity element.

We denote by A^{e} the enveloping algebra of A, which by definition is $A^{o p} \otimes_{k} A$. We let $D=$ $\operatorname{Hom}_{k}(-, k)$ be the duality with respect to the ground field k. Recall that an algebra A is symmetric if $A \cong D(A)$ as right A^{e}-modules (or equivalently, as A - A-bimodules). It is well-known that symmetric algebras are self-injective algebras with identity Nakayama functors.

In this section, we make the following
Assumption 1: Let k be a field, A be a symmetric k-algebra, R be a non-semisimple symmetric k-subalgebra of A such that A_{R} is projective. Let B be another k-subalgebra of A, such that the following conditions hold:
(a) $b r=r b$ for each $b \in B$ and $r \in R$;
(b) $B \otimes_{k}(R / r a d R) \xrightarrow{\phi}(R / r a d R) \otimes_{R} A, b \otimes \overline{1} \mapsto \overline{1} \otimes b$ is an isomorphism in mod- R;
(c) B has a periodic free B^{e}-resolution, that is, there exists an exact sequence

$$
\begin{equation*}
0 \rightarrow B \xrightarrow{\delta_{q}}\left(B \otimes_{k} B\right)^{m_{q-1}} \xrightarrow{\delta_{q-1}} \cdots \rightarrow\left(B \otimes_{k} B\right)^{m_{1}} \xrightarrow{\delta_{1}}\left(B \otimes_{k} B\right)^{m_{0}} \xrightarrow{\delta_{0}} B \rightarrow 0 \tag{1}
\end{equation*}
$$

of B^{e}-modules.
From now on, we fix (A, R, B) as a triple of algebras satisfying Assumption 1.

Remark 3.1. (i) Let $T_{A}:=(R / r a d R) \otimes_{R} A_{A} \cong A /(r a d R) A$. Since R is not semisimple, $R / r a d R$ is non-projective. Since $B \otimes_{k}(R / r a d R) \cong T_{R}$ in mod- R, T_{R} is non-projective. Since A_{R} is projective, T_{A} is also non-projective. Moreover, it shows that A is not semisimple.
(ii) In most examples of this paper, R is a subalgebra of A with the property that ${ }_{R} A_{R} \cong{ }_{R} R_{R}^{n} \oplus$ $(R \otimes R)^{l}$ for some positive integers n and l.
(iii) The condition (c) implies that B is a self-injective algebra by [9, Theorem 1.4].

Remark 3.2. Since $B \otimes_{k}(R / r a d R) \xrightarrow{\phi}(R / r a d R) \otimes_{R} A \cong A /(\operatorname{radR}) A, b \otimes \overline{1} \mapsto \bar{b}$ is an isomorphism in mod- R, we have isomorphisms

$$
\begin{align*}
& B \otimes_{k} \underline{\operatorname{End}}_{R}(R / r a d R) \cong \underline{\operatorname{Hom}}_{R}(R / r a d R \tag{2}\\
&\left.B \otimes_{k}(R / r a d R)\right) \cong \\
& \quad \underline{\operatorname{Hom}}_{R}(R / r a d R, A /(\operatorname{rad} R) A) \cong \underline{\operatorname{End}}_{A}(A /(\operatorname{radR}) A)
\end{align*}
$$

where the last isomorphism is induced from the adjoint isomorphism given by the adjoint pair (F, G), where $F($ resp. $G)$ is the stable functor $\underline{\bmod -R} \rightarrow \underline{\bmod -A}$ (resp. $\underline{\bmod -A \rightarrow \underline{\bmod }-R) ~}$ induced from the induction functor $-\otimes_{R} A$ (resp. restriction functor $-\otimes_{A} A_{R}$). Moreover, it can be shown that the composition of these isomorphisms is a k-algebra isomorphism from $B \otimes_{k} \underline{\operatorname{End}}_{R}(R / r a d R)$ to $\operatorname{End}_{A}(A /(\operatorname{rad} R) A)$. Especially, if R is an elementary local symmetric k-algebra, then our subalgebra B is isomorphic to $\underline{\operatorname{End}}_{A}(T)=\underline{\operatorname{End}}_{A}(A /(\operatorname{rad} R) A)$, which give the connection between our construction and Dugas' construction.
Remark 3.3. Since A is symmetric, ${ }_{A} A$ is isomorphic to $D\left(A_{A}\right)$ as A-modules, and ${ }_{R} A$ is isomorphic to $D\left(A_{R}\right)$ as R-modules. Since A_{R} is projective and R is self-injective, A_{R} is injective and therefore ${ }_{R} A \cong D\left(A_{R}\right)$ is projective.

Let $\operatorname{lrp}(A)$ be the category of left-right projective A - A-bimodules, and let $\underline{\operatorname{lrp}(A) \text { be the stable }}$ category of $\operatorname{lrp}(A)$ obtained by factoring out the morphisms that factor through a projective A^{e} module. Since A^{e} is self-injective (even symmetric), $\operatorname{lrp}(A)$ becomes a triangulated category. Let sum- B^{e} be the full subcategory of mod- B^{e} consists of finite direct sum of copies of $B \otimes_{k} B$. For each B^{e}-module homomorphism $f: B \otimes_{k} B \rightarrow B \otimes_{k} B, 1 \otimes 1 \mapsto \sum b_{i} \otimes b_{i}^{\prime}$, applies the functor $\underset{\sim}{A} \otimes_{B}-\otimes_{B} A$, we have an A^{e}-homomorphism $\tilde{f}: A \otimes_{k} A \rightarrow A \otimes_{k} A, 1 \otimes 1 \mapsto \sum b_{i} \otimes b_{i}^{\prime}$. Since \tilde{f} is induced from a B^{e}-homomorphism and the elements of B commute with the elements of R under multiplication, \widetilde{f} induces an A^{e}-homomorphism $H(f): A \otimes_{R} A \rightarrow A \otimes_{R} A$, which makes the diagram

commutes. In general, for each B^{e}-homomorphism $f:\left(B \otimes_{k} B\right)^{n} \rightarrow\left(B \otimes_{k} B\right)^{m}$ in sum- B^{e}, let $H(f)$ be the unique A^{e}-homomorphism $\left(A \otimes_{R} A\right)^{n} \rightarrow\left(A \otimes_{R} A\right)^{m}$ such that the diagram

commutes, where the vertical morphisms are the obvious morphisms. Then we have defined a functor $H: \operatorname{sum}-B^{e} \rightarrow \operatorname{lrp}(A)$.

Applying H to the complex $\left(B \otimes_{k} B\right)^{m_{q-1}} \xrightarrow{\delta_{q-1}} \cdots \rightarrow\left(B \otimes_{k} B\right)^{m_{1}} \xrightarrow{\delta_{1}}\left(B \otimes_{k} B\right)^{m_{0}}$ in Equation (1) we get a complex

$$
\left(A \otimes_{R} A\right)^{m_{q-1}} \xrightarrow{d_{q-1}} \cdots \rightarrow\left(A \otimes_{R} A\right)^{m_{1}} \xrightarrow{d_{1}}\left(A \otimes_{R} A\right)^{m_{0}} .
$$

Let \widetilde{d}_{0} be the composition $\left(A \otimes_{k} A\right)^{m_{0}} \xrightarrow{A \otimes_{B} \delta_{0} \otimes_{B} A} A \otimes_{B} A \xrightarrow{\mu} A$, where μ is the morphism given by multiplication. Since the elements of B commute with the elements of R under multiplication, \widetilde{d}_{0} induces an A^{e}-homomorphism $\left(A \otimes_{R} A\right)^{m_{0}} \xrightarrow{d_{0}} A$. It can be shown that $d_{0} d_{1}=0$, so the sequence

$$
\begin{equation*}
\left(A \otimes_{R} A\right)^{m_{q-1}} \xrightarrow{d_{q-1}} \cdots \rightarrow\left(A \otimes_{R} A\right)^{m_{1}} \xrightarrow{d_{1}}\left(A \otimes_{R} A\right)^{m_{0}} \xrightarrow{d_{0}} A \tag{3}
\end{equation*}
$$

is again a complex.
Lemma 3.4. There exist triangles

$$
\begin{gathered}
M_{1} \xrightarrow{i_{1}}\left(A \otimes_{R} A\right)^{m_{0}} \xrightarrow{\stackrel{d_{0}}{\longrightarrow}} A \rightarrow, \\
M_{2} \stackrel{i_{2}}{\longrightarrow}\left(A \otimes_{R} A\right)^{m_{1}} \xrightarrow{\not f_{1}} M_{1} \rightarrow, \\
\cdots, \\
M_{q} \xrightarrow{i_{q}}\left(A \otimes_{R} A\right)^{m_{q-1}} \xrightarrow{f_{q-1}} M_{q-1} \rightarrow
\end{gathered}
$$

Proof. Let $i_{1}: M_{1} \rightarrow\left(A \otimes_{R} A\right)^{m_{0}}$ be the kernel of $d_{0}:\left(A \otimes_{R} A\right)^{m_{0}} \rightarrow A$. Since d_{0} is surjective, $0 \rightarrow M_{1} \xrightarrow{i_{1}}\left(A \otimes_{R} A\right)^{m_{0}} \xrightarrow{d_{0}} A \rightarrow 0$ is an exact sequence, which induces a triangle $M_{1} \xrightarrow{i_{1}}$ $\left(A \otimes_{R} A\right)^{m_{0}} \xrightarrow{\underline{d_{0}}} A \rightarrow$ in $\underline{\operatorname{lrp}}(A)$. Since $d_{0} d_{1}=0$, there exists a morphism $f_{1}:\left(A \otimes_{R} A\right)^{m_{1}} \rightarrow M_{1}$ such that $d_{1}=i_{1} f_{1}$. Let $v_{1}: P_{1} \rightarrow M_{1}$ be the projective cover of M_{1} as an A^{e}-module, and let $\left[\begin{array}{l}i_{2} \\ u_{1}\end{array}\right]: M_{2} \rightarrow\left(A \otimes_{R} A\right)^{m_{1}} \oplus P_{1}$ be the kernel of $\left[f_{1} v_{1}\right]:\left(A \otimes_{R} A\right)^{m_{1}} \oplus P_{1} \rightarrow M_{1}$. Since the morphism $\left[f_{1} v_{1}\right]$ is surjective, the short exact sequence $0 \rightarrow M_{2} \xrightarrow{\left[\begin{array}{c}i_{2} \\ u_{1}\end{array}\right]}\left(A \otimes_{R} A\right)^{m_{1}} \oplus P_{1} \xrightarrow{\left[f_{1} v_{1}\right]} M_{1} \rightarrow 0$ induces a triangle $M_{2} \xrightarrow{i_{2}}\left(A \otimes_{R} A\right)^{m_{1}} \xrightarrow{f_{1}} M_{1} \rightarrow \operatorname{in} \underline{\operatorname{lrp}}(A)$. Since $i_{1} f_{1} d_{2}=d_{1} d_{2}=0$ and i_{1} is injective, $f_{1} d_{2}=0$. Since the morphism [$\left[\begin{array}{c}d_{2} \\ 0\end{array}\right]:\left(\overline{\left.A \otimes_{R} A\right)^{m_{2}} \rightarrow\left(A \otimes_{R} A\right)^{m_{1}} \oplus P_{1} \text { satisfies }}\right.$ $\left[\begin{array}{ll}f_{1} & v_{1}\end{array}\right]\left[\begin{array}{c}d_{2} \\ 0\end{array}\right]=f_{1} d_{2}=0$, there exists a morphism $f_{2}:\left(A \otimes_{R} A\right)^{m_{2}} \rightarrow M_{2}$ such that $d_{2}=i_{2} f_{2}$ and $u_{1} f_{2}=0$.

Using the same method, we can construct morphisms $i_{p}: M_{p} \rightarrow\left(A \otimes_{R} A\right)^{m_{p-1}}$ for $1 \leq p \leq q$, and morphisms $f_{p^{\prime}}:\left(A \otimes_{R} A\right)^{m_{p^{\prime}}} \rightarrow M_{p^{\prime}}, u_{p^{\prime}}: M_{p^{\prime}+1} \rightarrow P_{p^{\prime}}, v_{p^{\prime}}: P_{p^{\prime}} \rightarrow M_{p^{\prime}}$ for $1 \leq p^{\prime} \leq q-1$ with $P_{p^{\prime}}$ projective as A^{e}-modules, such that the following conditions hold:
(i) $i_{p} f_{p}=d_{p}$ for $1 \leq p \leq q-1$;
(ii) $u_{p} f_{p+1}=0$ for $1 \leq p \leq q-2$;
(iii) $0 \rightarrow M_{1} \xrightarrow{i_{1}}\left(A \otimes_{R} A\right)^{m_{0}} \xrightarrow{d_{0}} A \rightarrow 0$ and $0 \rightarrow M_{p+1} \xrightarrow{\left[\begin{array}{c}i_{p+1} \\ u_{p}\end{array}\right]}\left(A \otimes_{R} A\right)^{m_{p}} \oplus P_{p} \xrightarrow{\left[f_{p} v_{p}\right]} M_{p} \rightarrow 0$ are short exact sequences for $1 \leq p \leq q-1$.

Since each P_{p} is a projective A^{e}-module, these short exact sequences induce triangles

$$
\begin{gathered}
M_{1} \stackrel{i_{1}}{\longrightarrow}\left(A \otimes_{R} A\right)^{m_{0}} \stackrel{d_{0}}{\longrightarrow} A \rightarrow, \\
M_{2} \stackrel{i_{2}}{\longrightarrow}\left(A \otimes_{R} A\right)^{m_{1}} \stackrel{\stackrel{f_{1}}{\longrightarrow}}{\longrightarrow} M_{1} \rightarrow, \\
\cdots, \\
M_{q} \xrightarrow{i_{q}}\left(A \otimes_{R} A\right)^{m_{q-1}} \xrightarrow{f_{q-1}} M_{q-1} \rightarrow
\end{gathered}
$$

in $\underline{\operatorname{lrp}}(A)$.
Theorem 3.5. Let (A, R, B) be the triple that satisfies Assumption 1. If M_{q} is the A - A-bimodule defined in Lemma 3.4, then $-\otimes_{A} M_{q}: \underline{\bmod }-A \rightarrow \underline{\bmod -A}$ is a stable auto-equivalence of A.

Proof. Let $F=-\otimes_{R} A_{A}$ and $G=-\otimes_{A} A_{R}$ be the induction and the restriction functors respectively. Since A and R are symmetric and ${ }_{R} A_{A}$ is left-right projective, both (F, G) and (G, F) are adjoint pairs. Since both F and G map projectives to projectives, they induce stable functors (which are also denoted by F and G). Moreover, G is both the left and the right adjoint of F as stable functors. Let $T_{A}=F(R / r a d R)=(R / r a d R) \otimes_{R} A_{A} \cong A /(r a d R) A$. According to Remark 3.1, T_{A} is a nonzero object in $\underline{\bmod -} A$. Since the elements of B commute with the elements of R under multiplication, $T \cong A /(\operatorname{rad} R) A$ becomes a B - A-bimodule.

Under the above notations, we now prove that $-\otimes_{A} M_{q}: \underline{\bmod }-A \rightarrow \underline{\bmod }-A$ is a stable autoequivalence of A. We will consider two cases.

Case 1: Assume that A (as an algebra) is indecomposable.
Choose a strong spanning class $\mathscr{C}=\{T\} \cup T^{\perp}$ of $\underline{\bmod -} A$, where $T^{\perp}=\{X \in \underline{\bmod -} A \mid$ $\left.\underline{\operatorname{Hom}}_{A}(T, X)=0\right\}$. According to Corollary [2.7, it suffices to show that $-\otimes_{A} M_{q}$ induces bijections between $\underline{\operatorname{Hom}}_{A}(X, Y[i])$ and $\underline{\operatorname{Hom}}_{A}\left(X \otimes_{A} M_{q},(Y[i]) \otimes_{A} M_{q}\right)$ for all $X, Y \in \mathscr{C}$ and for all $i=0,1$. We will divide the proof of Case 1 into four steps.

Step 1.1: To show that $-\otimes_{A} M_{q}$ induces a bijection between $\underline{\operatorname{Hom}_{A}(T, T) \text { and } \underline{\operatorname{Hom}}_{A}\left(T \otimes_{A}, ~\right.}$ $\left.M_{q}, T \otimes_{A} M_{q}\right)$.

Since $\phi: B \otimes_{k}(R / r a d R) \rightarrow A /(\operatorname{rad} R) A, b \otimes \overline{1} \mapsto \bar{b}$ is an isomorphism in mod- $R, \phi \otimes 1$: $B \otimes_{k} T \cong B \otimes_{k}(R / r a d R) \otimes_{R} A \rightarrow A /(\operatorname{rad} R) A \otimes_{R} A=T \otimes_{R} A$ is an isomorphism in mod- A. Applying the functors $-\otimes_{B} T_{A}$ and $T \otimes_{A}$ - to the complex $0 \rightarrow B \xrightarrow{\delta_{q}}\left(B \otimes_{k} B\right)^{m_{q-1}} \xrightarrow{\delta_{q-1}} \cdots \rightarrow$ $\left(B \otimes_{k} B\right)^{m_{1}} \xrightarrow{\delta_{1}}\left(B \otimes_{k} B\right)^{m_{0}} \xrightarrow{\delta_{0}} B \rightarrow 0$ and the complex $\left(A \otimes_{R} A\right)^{m_{q-1}} \xrightarrow{d_{q-1}} \cdots \rightarrow\left(A \otimes_{R} A\right)^{m_{1}} \xrightarrow{d_{1}}$ $\left(A \otimes_{R} A\right)^{m_{0}} \xrightarrow{d_{0}} A$ respectively, we get a commutative diagram in mod- A :

Since $0 \rightarrow B \xrightarrow{\delta_{q}}\left(B \otimes_{k} B\right)^{m_{q-1}} \xrightarrow{\delta_{q-1}} \cdots \rightarrow\left(B \otimes_{k} B\right)^{m_{1}} \xrightarrow{\delta_{1}}\left(B \otimes_{k} B\right)^{m_{0}} \xrightarrow{\delta_{0}} B \rightarrow 0$ is split exact as a complex of right B-modules, the first row of this commutative diagram is also split exact. Therefore we have split exact sequences $0 \rightarrow K_{1} \xrightarrow{j_{1}}\left(B \otimes_{k} T\right)^{m_{0}} \xrightarrow{\delta_{0} \otimes 1} T \rightarrow 0$, $0 \rightarrow K_{2} \xrightarrow{j_{2}}\left(B \otimes_{k} T\right)^{m_{1}} \xrightarrow{p_{1}} K_{1} \rightarrow 0, \cdots, 0 \rightarrow K_{q-1} \xrightarrow{j_{q-1}}\left(B \otimes_{k} T\right)^{m_{q-2}} \xrightarrow{p_{q-2}} K_{q-2} \rightarrow 0$, $0 \rightarrow T \xrightarrow{\delta_{q} \otimes 1}\left(B \otimes_{k} T\right)^{m_{q-1}} \xrightarrow{p_{q-1}} K_{q-1} \rightarrow 0$ in mod- A such that $j_{l} p_{l}=\delta_{l} \otimes 1$ for $1 \leq l \leq q-1$.

There is a commutative diagram

in mod- A, where its two rows are triangles and $(\phi \otimes 1)^{m_{0}}$ is an isomorphism in mod- A. Therefore we have an isomorphism $\underline{\alpha_{1}}: K_{1} \rightarrow T \otimes_{A} M_{1}$ in $\underline{\bmod -A}$ such that $\underline{(\phi \otimes 1)^{m_{0}} j_{1}}=\underline{\left(1 \otimes i_{1}\right) \alpha_{1}}$. Since $\underline{j_{1}}$ is a split monomorphism in $\underline{\bmod -} A$, so does $\underline{1 \otimes i_{1}}$. Since

$$
\begin{equation*}
\frac{\left(1 \otimes i_{1}\right) \alpha_{1} p_{1}}{\underline{(\phi \otimes 1)^{m_{0}} j_{1} p_{1}}}=\frac{(\phi \otimes 1)^{m_{0}}\left(\delta_{1} \otimes 1\right)}{\underline{\left(1 \otimes d_{1}\right)(\phi \otimes 1)^{m_{1}}}}=\underline{\left(1 \otimes i_{1}\right)\left(1 \otimes f_{1}\right)(\phi \otimes 1)^{m_{1}}} \tag{4}
\end{equation*}
$$

in $\underline{\bmod -}-A$ and since $\underline{1 \otimes i_{1}}$ is a split monomorphism in $\underline{\bmod }-A$, we have $\underline{\alpha_{1} p_{1}}=\underline{\left(1 \otimes f_{1}\right)(\phi \otimes 1)^{m_{1}}}$ in $\underline{\bmod -} A$. Then we have a commutative diagram

in mod- A, whose rows are triangles and vertical morphisms are isomorphisms. So we have an isomorphism $\underline{\alpha_{2}}: K_{2} \rightarrow T \otimes_{A} M_{2}$ in $\underline{\bmod }-A$ such that $(\phi \otimes 1)^{m_{1}} j_{2}=\underline{\left(1 \otimes i_{2}\right) \alpha_{2}}$. Inductively, we have isomorphisms $\underline{\alpha_{l}}: K_{l} \rightarrow T \otimes_{A} M_{l}$ in $\underline{\bmod -} A$ for $1 \overline{\leq l \leq q(\text { let }} K_{q}=T$), such that
is an isomorphism of triangles and

are isomorphisms of triangles for $1 \leq l \leq q-1$ (let $j_{q}=\delta_{q} \otimes 1: T \rightarrow\left(B \otimes_{k} T\right)^{m_{q-1}}$).
Since $\underline{\alpha_{q}}: T \rightarrow T \otimes_{A} M_{q}$ is an isomorphism in $\underline{\bmod }-A$, to show $-\otimes_{A} M_{q}$ induces a bijection between $\underline{\operatorname{Hom}}_{A}(T, T)$ and $\underline{\operatorname{Hom}_{A}}\left(T \otimes_{A} M_{q}, T \otimes_{A} M_{q}\right)$, it suffices to show that for each $\underline{f} \in \underline{\operatorname{End}}_{A}(T)$, the diagram

is commutative. We have an isomorphism $\underline{\operatorname{End}}_{A}(T) \cong \underline{\operatorname{Hom}}_{R}\left(R / \operatorname{rad} R, T_{R}\right) \cong \underline{\operatorname{Hom}}_{R}\left(R / r a d R, B \otimes_{k}\right.$ $(R / r a d R)$), where the second isomorphism is induced from the isomorphism $\phi: B \otimes_{k}(R / r a d R) \rightarrow$ $A /(\operatorname{rad} R) A, b \otimes \overline{1} \mapsto \bar{b}$ in $\underline{\bmod -R}$. For $\underline{f} \in \underline{\operatorname{End}}_{A}(T)$, suppose the isomorphism $\underline{E n d}_{A}(T) \rightarrow$ $\underline{\operatorname{Hom}}_{R}\left(R / \operatorname{radR}, B \otimes_{k}(R / \operatorname{radR})\right)$ maps \underline{f} to \underline{g}, where $g(\overline{1})=\sum_{j} \beta_{j} \otimes \overline{r_{j}}$ with $\beta_{j} \in B, r_{j} \in R$. Then $\underline{f}=\underline{h}$, where $h: T_{A} \rightarrow T_{A}, \overline{1} \mapsto \overline{\sum_{j} \beta_{j} r_{j}}$. Consider the diagram

Figure 1
in $\underline{\bmod -}-A$, where $(\phi \otimes 1)^{m_{q-1}}\left(\delta_{q} \otimes 1\right)$ denotes the composition $T \xrightarrow{\delta_{q} \otimes 1}\left(B \otimes_{k} T\right)^{m_{q-1}} \xrightarrow{(\phi \otimes 1)^{m_{q-1}}}$ $\left(T \otimes_{R} A\right)^{m_{q-1}}$. Since

is an isomorphism of triangles in $\underline{\bmod -} A$, and since $\underline{\delta_{q} \otimes 1}$ is a split monomorphism in mod- A, $1 \otimes i_{q}$ is also a split monomorphism in $\underline{\bmod -} A$. Since the bottom face, the front face, the back face of Figure 1 are commutative, and since $1 \otimes i_{q}$ is a split monomorphism, to show the left face of Figure 1 commutes, it suffices to show the diagram

Figure 2
is commutative in mod- A.
Since $\delta_{q}: B \rightarrow\left(B \otimes_{k} B\right)^{m_{q-1}}$ is a B^{e}-homomorphism, we may write δ_{q} as $\left(\delta_{q}^{1}, \cdots, \delta_{q}^{m_{q-1}}\right)^{\prime}$, where $\delta_{q}^{i}: B \rightarrow B \otimes_{k} B, 1 \mapsto \sum_{l} b_{i l} \otimes b_{i l}^{\prime}$ for $1 \leq i \leq m_{q-1}$. To show that the diagram in Figure 2 commutes, it suffices to show for each $1 \leq i \leq m_{q-1}$, the diagram

Figure 3
is commutative in mod- A.
For $\overline{1} \in T=A /(r a d R) A,(h \otimes 1)(\phi \otimes 1)\left(\delta_{q}^{i} \otimes 1\right)(\overline{1})=(h \otimes 1)(\phi \otimes 1)\left(\sum_{l} b_{i l} \otimes \overline{b_{i l}^{\prime}}\right)=(h \otimes$ 1) $\left(\sum_{l} \overline{b_{i l}} \otimes b_{i l}^{\prime}\right)=\sum_{l} \overline{\left(\sum_{j} \beta_{j} r_{j}\right) b_{i l}} \otimes b_{i l}^{\prime}=\sum_{j}\left(\sum_{l} \overline{\beta_{j} b_{i l}} \otimes b_{i l}^{\prime}\right) r_{j}$, where the last identity follows from the fact that the elements of B commute with the elements of R under multiplication. Moreover, $(\phi \otimes 1)\left(\delta_{q}^{i} \otimes 1\right) h(\overline{1})=(\phi \otimes 1)\left(\delta_{q}^{i} \otimes 1\right)\left(\overline{\sum_{j} \beta_{j} r_{j}}\right)=(\phi \otimes 1)\left(\sum_{l} b_{i l} \otimes \overline{b_{i l}^{\prime}\left(\sum_{j} \beta_{j} r_{j}\right)}\right)=$ $\sum_{l} \overline{b_{i l}} \otimes b_{i l}^{\prime}\left(\sum_{j} \beta_{j} r_{j}\right)=\sum_{j}\left(\sum_{l} \overline{b_{i l}} \otimes b_{i l}^{\prime} \beta_{j}\right) r_{j}$. Since $\delta_{q}^{i}: B \rightarrow B \otimes_{k} B$ is a B^{e}-homomorphism, $\sum_{l} \beta_{j} b_{i l} \otimes b_{i l}^{\prime}=\beta_{j}\left(\sum_{l} b_{i l} \otimes b_{i l}^{\prime}\right)=\beta_{j} \delta_{q}^{i}(1)=\delta_{q}^{i}\left(\beta_{j}\right)=\delta_{q}^{i}(1) \beta_{j}=\left(\sum_{l} b_{i l} \otimes b_{i l}^{\prime}\right) \beta_{j}=\sum_{l} b_{i l} \otimes b_{i l}^{\prime} \beta_{j}$ in $B \otimes_{k} B$. Since $\sum_{l} \overline{\beta_{j} b_{i l}} \otimes b_{i l}^{\prime} \in T \otimes_{R} A$ (resp. $\sum_{l} \overline{b_{i l}} \otimes b_{i l}^{\prime} \beta_{j} \in T \otimes_{R} A$) is the image of $\sum_{l} \beta_{j} b_{i l} \otimes b_{i l}^{\prime}$ (resp. $\sum_{l} b_{i l} \otimes b_{i l}^{\prime} \beta_{j}$) under the composition of morphisms $B \otimes_{k} B \rightarrow A \otimes_{k} A \rightarrow A \otimes_{R} A \rightarrow T \otimes_{R} A$,
$\sum_{l} \overline{\beta_{j} b_{i l}} \otimes b_{i l}^{\prime}=\sum_{l} \overline{b_{i l}} \otimes b_{i l}^{\prime} \beta_{j}$ in $T \otimes_{R} A$. Therefore $(h \otimes 1)(\phi \otimes 1)\left(\delta_{q}^{i} \otimes 1\right)(\overline{1})=\sum_{j}\left(\sum_{l} \overline{\beta_{j} b_{i l}} \otimes b_{i l}^{\prime}\right) r_{j}=$ $\sum_{j}\left(\sum_{l} \overline{b_{i l}} \otimes b_{i l}^{\prime} \beta_{j}\right) r_{j}=(\phi \otimes 1)\left(\delta_{q}^{i} \otimes 1\right) h(\overline{1})$ and the diagram in Figure 3 commutes.

Step 1.2: To show that $-\otimes_{A} M_{q}$ induces a bijection between $\underline{\operatorname{Hom}}_{A}(T, T[1])$ and $\underline{\operatorname{Hom}}_{A}\left(T \otimes_{A}\right.$ $\left.M_{q}, T[1] \otimes_{A} M_{q}\right)$.

Since the functor $-\otimes_{A} M_{q}: \underline{\bmod }-A \rightarrow \underline{\bmod }-A$ commutes with the functor $[1]=\Omega_{A}^{-1}: \underline{\bmod -}$ $A \rightarrow \underline{\bmod }-A$ up to natural isomorphism, it suffices to show $-\otimes_{A} M_{q}$ induces a bijection between $\underline{\operatorname{Hom}}_{A}\left(\Omega_{A} T, T\right)$ and $\underline{\operatorname{Hom}}_{A}\left(\Omega_{A} T \otimes_{A} M_{q}, T \otimes_{A} M_{q}\right)$.

There is a commutative diagram

in mod R with exact rows, where μ and ν are induced by the multiplication of A. Since R is symmetric and A_{R} is projective, $\underline{\nu}=\Omega_{R}(\underline{\phi})$ is an isomorphism in $\underline{\bmod -R}$. Therefore $B \otimes_{k} \Omega_{A} T=$ $B \otimes_{k}(r a d R) A \cong B \otimes_{k} r a d R \otimes_{R} A \xrightarrow{\nu \otimes 1}(r a d R) A \otimes_{R} A=\Omega_{A} T \otimes_{R} A$ is an isomorphism in mod- A.

Since the elements of B commute with the elements of R under multiplication, $\Omega_{A} T=(\operatorname{rad} R) A$ becomes a B - A-bimodule. Applies the functors $-\otimes_{B}\left(\Omega_{A} T\right)_{A}$ and $\Omega_{A} T \otimes_{A}$ - to the complex $0 \rightarrow B \xrightarrow{\delta_{q}}\left(B \otimes_{k} B\right)^{m_{q-1}} \xrightarrow{\delta_{q-1}} \cdots \rightarrow\left(B \otimes_{k} B\right)^{m_{1}} \xrightarrow{\delta_{1}}\left(B \otimes_{k} B\right)^{m_{0}} \xrightarrow{\delta_{0}} B \rightarrow 0$ and the complex $\left(A \otimes_{R} A\right)^{m_{q-1}} \xrightarrow{d_{q-1}} \cdots \rightarrow\left(A \otimes_{R} A\right)^{m_{1}} \xrightarrow{d_{1}}\left(A \otimes_{R} A\right)^{m_{0}} \xrightarrow{d_{0}} A$ respectively, we get a commutative diagram in mod- A :

$$
\left.\begin{array}{rl}
0 \longrightarrow \Omega_{A} T \xrightarrow{\delta_{q} \otimes 1}\left(B \otimes_{k} \Omega_{A} T\right)^{m_{q-1}-\delta_{q-1} \otimes 1} \cdots \longrightarrow & \left(B \otimes_{k} \Omega_{A} T\right)^{m_{1}} \xrightarrow{\delta_{1} \otimes 1}\left(B \otimes_{k} \Omega_{A} T\right)^{m_{0}} \xrightarrow{\delta_{0} \otimes 1} \Omega_{A} T \longrightarrow 0 \\
& (\nu \otimes 1)^{m_{1}} \downarrow
\end{array}\right)
$$

By the same argument as in Step 1.1, we have isomorphisms of split triangles
in mod- A for $0 \leq l \leq q-1$, where $L_{0}=L_{q}=\Omega_{A} T, q_{0}=\delta_{0} \otimes 1:\left(B \otimes_{k} \Omega_{A} T\right)^{m_{0}} \rightarrow \Omega_{A} T$, $f_{0}=d_{0}:\left(A \otimes_{R} A\right)^{m_{0}} \rightarrow A, \iota_{q}=\delta_{q} \otimes 1: \Omega_{A} T \rightarrow\left(B \otimes_{k} \Omega_{A} T\right)^{m_{q-1}}$.

To show $-\otimes_{A} M_{q}$ induces a bijection between $\underline{\operatorname{Hom}}_{A}\left(\Omega_{A} T, T\right)$ and $\underline{\operatorname{Hom}_{A}}\left(\Omega_{A} T \otimes_{A} M_{q}, T \otimes_{A} M_{q}\right)$, it suffices to show that for each $\underline{f} \in \underline{\operatorname{Hom}}_{A}\left(\Omega_{A} T, T\right)$, the diagram

is commutative. We have isomorphisms
(5) $\left.\underline{\operatorname{Hom}}_{A}\left(\Omega_{A} T, T\right)=\underline{\operatorname{Hom}}_{A}(F(\operatorname{radR}), T) \cong \underline{\operatorname{Hom}}_{R}\left(\operatorname{radR}, T_{R}\right) \cong \underline{\operatorname{Hom}_{R}(\operatorname{rad} R, B} \otimes_{k}(R / \operatorname{rad} R)\right)$,
where the second isomorphism is induced from the isomorphism $\phi: B \otimes_{k}(R / r a d R) \rightarrow A /(\operatorname{rad} R) A$, $b \otimes \overline{1} \mapsto \bar{b}$ in mod $-R$. Choose a k-basis x_{1}, \cdots, x_{n} of B, then each $g \in \operatorname{Hom}_{R}\left(\operatorname{radR}, B \otimes_{k}(R / \operatorname{rad} R)\right)$ can be written as a column vector $\left(g_{1}, \cdots, g_{n}\right)^{\prime}$, where $g_{i} \in \operatorname{Hom}_{R}(\operatorname{rad} R, R / \operatorname{rad} R)$ for $1 \leq i \leq$
n. For $\underline{f} \in \underline{\operatorname{Hom}}_{A}\left(\Omega_{A} T, T\right)$, suppose the isomorphism $\underline{\operatorname{Hom}}_{A}\left(\Omega_{A} T, T\right) \rightarrow \underline{\operatorname{Hom}}_{R}\left(r a d R, B \otimes_{k}\right.$ $(R / \operatorname{rad} \overline{R)})$ maps f to g, where $g=\left(g_{1}, \cdots, g_{n}\right)^{\prime}$ with $g_{i} \in \operatorname{Hom}_{R}(\operatorname{radR}, R / \operatorname{radR})$. Suppose for each $r \in \operatorname{rad} \bar{R}, g_{i}(\bar{r})=\overline{\gamma_{i}}$ with $\gamma_{i} \in R$. Then $\underline{f}=\underline{h}$, where $h \in \operatorname{Hom}_{A}\left(\Omega_{A} T, T\right)$ with $h(r)=\overline{\sum_{i=1}^{n} x_{i} \gamma_{i}}$ for each $r \in \operatorname{radR}$. Consider the diagram

Figure 4
in $\underline{\bmod -}-A$, where $(\phi \otimes 1)^{m_{q-1}}\left(\delta_{q} \otimes 1\right)$ denotes the composition $T \xrightarrow{\delta_{q} \otimes 1}\left(B \otimes_{k} T\right)^{m_{q-1}} \xrightarrow{(\phi \otimes 1)^{m_{q-1}}}$ $\left(T \otimes_{R} A\right)^{m_{q-1}}$ and $(\nu \otimes 1)^{m_{q-1}}\left(\delta_{q} \otimes 1\right)$ denotes the composition $\Omega_{A} T \xrightarrow{\delta_{q} \otimes 1}\left(B \otimes_{k} \Omega_{A} T\right)^{m_{q-1}} \xrightarrow{(\nu \otimes 1)^{m_{q-1}}}$ $\left(\Omega_{A} T \otimes_{R} A\right)^{m_{q-1}}$. Since the bottom face, the front face, the back face of Figure 4 are commutative, and since $1 \otimes i_{q}$ is a split monomorphism in $\underline{\bmod }-A$, to show the left face of Figure 4 commutes, it suffices to show the diagram

Figure 5
is commutative in mod $-A$.
Since $\delta_{q}: B \rightarrow\left(B \otimes_{k} B\right)^{m_{q-1}}$ is a B^{e}-homomorphism, we may write δ_{q} as $\left(\delta_{q}^{1}, \cdots, \delta_{q}^{m_{q-1}}\right)^{\prime}$, where $\delta_{q}^{i}: B \rightarrow B \otimes_{k} B, 1 \mapsto \sum_{l} b_{i l} \otimes b_{i l}^{\prime}$ for $1 \leq i \leq m_{q-1}$. To show the diagram in Figure 5 commutes, it suffices to show for each $1 \leq i \leq m_{q-1}$, the diagram

Figure 6
is commutative in $\bmod -A$.
For each $r \in \operatorname{radR} \subseteq(r a d R) A=T,(h \otimes 1)(\nu \otimes 1)\left(\delta_{q}^{i} \otimes 1\right)(r)=(h \otimes 1)(\nu \otimes 1)\left(\sum_{l} b_{i l} \otimes b_{i l}^{\prime} r\right)=$ $(h \otimes 1)(\nu \otimes 1)\left(\sum_{l} b_{i l} \otimes r b_{i l}^{\prime}\right)=(h \otimes 1)\left(\sum_{l} b_{i l} r \otimes b_{i l}^{\prime}\right)=(h \otimes 1)\left(\sum_{l} r b_{i l} \otimes b_{i l}^{\prime}\right)=\sum_{l} \overline{\left(\sum_{j=1}^{n} x_{j} \gamma_{j}\right) b_{i l}} \otimes b_{i l}^{\prime}=$ $\sum_{j=1}^{n}\left(\sum_{l} \overline{x_{j} b_{i l}} \otimes b_{i l}^{\prime}\right) \gamma_{j}$ and $(\phi \otimes 1)\left(\delta_{q}^{i} \otimes 1\right) h(r)=(\phi \otimes 1)\left(\delta_{q}^{i} \otimes 1\right)\left(\overline{\sum_{j=1}^{n} x_{j} \gamma_{j}}\right)=(\phi \otimes 1)\left(\sum_{l} b_{i l} \otimes\right.$ $\left.\overline{b_{i l}^{\prime}\left(\sum_{j=1}^{n} x_{j} \gamma_{j}\right)}\right)=\sum_{l} \sum_{j=1}^{n} \overline{b_{i l}} \otimes b_{i l}^{\prime} x_{j} \gamma_{j}=\sum_{j=1}^{n}\left(\sum_{l} \overline{b_{i l}} \otimes b_{i l}^{\prime} x_{j}\right) \gamma_{j}$. Here we use the fact that the elements of B commute with the elements of R under multiplication. Since $\delta_{q}^{i}: B \rightarrow B \otimes_{k} B$ is a $B^{e}-$ homomorphism, $\sum_{l} x_{j} b_{i l} \otimes b_{i l}^{\prime}=x_{j}\left(\sum_{l} b_{i l} \otimes b_{i l}^{\prime}\right)=x_{j} \delta_{q}^{i}(1)=\delta_{q}^{i}\left(x_{j}\right)=\delta_{q}^{i}(1) x_{j}=\left(\sum_{l} b_{i l} \otimes b_{i l}^{\prime}\right) x_{j}=$ $\sum_{l} b_{i l} \otimes b_{i l}^{\prime} x_{j}$ in $B \otimes_{k} B$. Since $\sum_{l} \overline{x_{j} b_{i l}} \otimes b_{i l}^{\prime} \in T \otimes_{R} A$ (resp. $\sum_{l} \overline{b_{i l}} \otimes b_{i l}^{\prime} x_{j} \in T \otimes_{R} A$) is the image of $\sum_{l} x_{j} b_{i l} \otimes b_{i l}^{\prime}$ (resp. $\sum_{l} b_{i l} \otimes b_{i l}^{\prime} x_{j}$) under the composition of morphisms $B \otimes_{k} B \rightarrow A \otimes_{k} A \rightarrow$ $A \otimes_{R} A \rightarrow T \otimes_{R} A, \sum_{l} \overline{x_{j} b_{i l}} \otimes b_{i l}^{\prime}=\sum_{l} \overline{b_{i l}} \otimes b_{i l}^{\prime} x_{j}$ in $T \otimes_{R} A$. Therefore $(h \otimes 1)(\nu \otimes 1)\left(\delta_{q}^{i} \otimes 1\right)(r)=$ $\sum_{j=1}^{n}\left(\sum_{l} \overline{x_{j} b_{i l}} \otimes b_{i l}^{\prime}\right) \gamma_{j}=\sum_{j=1}^{n}\left(\sum_{l} \overline{b_{i l}} \otimes b_{i l}^{\prime} x_{j}\right) \gamma_{j}=(\phi \otimes 1)\left(\delta_{q}^{i} \otimes 1\right) h(r)$ and the diagram in Figure 6 commutes.

Step 1.3: To show that $-\otimes_{A} M_{q}$ induces bijections between $\underline{\operatorname{Hom}}_{A}(X, Y[i])$ and $\underline{\operatorname{Hom}}_{A}\left(X \otimes_{A}\right.$ $\left.M_{q}, Y[i] \otimes_{A} M_{q}\right)$ for $X, Y \in T^{\perp}$ and $i=0,1$.

For each $X \in \underline{\bmod }-A, \underline{\operatorname{Hom}}_{A}(T, X)=\underline{\operatorname{Hom}}_{A}(F(R / r a d R), X) \cong \underline{\operatorname{Hom}}_{R}\left(R / r a d R, X_{R}\right)$. Since R is symmetric, $T^{\perp}=\left\{X \in \underline{\bmod -} A \mid X_{R}\right.$ projective $\}$. Since A_{R} is projective, T^{\perp} is closed under $[n]=\Omega_{A}^{-n}: \underline{\bmod }-A \rightarrow \underline{\bmod -A}$ for all $n \in \mathbb{Z}$. Therefore it is suffice to show that $-\otimes_{A} M_{q}$ is fully faithful when is restricted to T^{\perp}. Since there exists a triangle $\Omega_{A^{e}}(A) \xrightarrow{w_{1}} M_{1} \xrightarrow{i_{1}}\left(A \otimes_{R} A\right)^{m_{0}} \xrightarrow{d_{0}}$ A in $\underline{\operatorname{lrp}}(A)$, and since $X \otimes_{A}\left(A \otimes_{R} A\right)^{m_{0}}=0$ in $\underline{\bmod -} A$ for $X \in T^{\perp}, \underline{w_{1}}$ induces a natural isomorphism between functors $-\otimes_{A} \Omega_{A^{e}}(A): T^{\perp} \rightarrow \underline{\bmod }-A$ and $-\otimes_{A} \bar{M}_{1}: T^{\perp} \rightarrow \underline{\bmod }-A$. Similarly, the functors $-\otimes_{A}\left(M_{i}[-1]\right): T^{\perp} \rightarrow \underline{\bmod }-A$ and $-\otimes_{A} M_{i+1}: T^{\perp} \rightarrow \underline{\bmod }-A$ are natural isomorphic for $1 \leq i \leq q-1$. Therefore $-\overline{\otimes_{A}} M_{q}: T^{\perp} \rightarrow \underline{\bmod -A}$ is natural isomorphic to $\Omega_{A}^{q}(-) \cong-\otimes_{A} \Omega_{A^{e}}^{q}(A): T^{\perp} \rightarrow \underline{\bmod }-A$, which implies that $-\otimes_{A} M_{q}$ is fully faithful when is restricted to T^{\perp}.

Step 1.4: To show that $-\otimes_{A} M_{q}$ induces bijections between $\underline{\operatorname{Hom}}_{A}(T, X[i])$ (resp. $\underline{\operatorname{Hom}}_{A}(X, T[i])$) and $\underline{\operatorname{Hom}}_{A}\left(T \otimes_{A} M_{q}, X[i] \otimes_{A} M_{q}\right)\left(\right.$ resp. $\left.\underline{\operatorname{Hom}}_{A}\left(X \otimes_{A} M_{q}, T[i] \otimes_{A} M_{q}\right)\right)$ for $X \in T^{\perp}$ and for $i=0$, 1.

For each $X \in \underline{\bmod }-A$, we have

$$
\underline{\operatorname{Hom}}_{A}(X, T)=\underline{\operatorname{Hom}}_{A}(X, F(R / r a d R)) \cong \underline{\operatorname{Hom}}_{R}\left(X_{R}, R / r a d R\right) .
$$

Therefore ${ }^{\perp} T=\left\{X \in \underline{\bmod -} A \mid X_{R}\right.$ is projective $\}=T^{\perp}$. Since $T^{\perp}={ }^{\perp} T$ is closed under $[n]=\Omega_{A}^{-n}: \underline{\bmod }-A \rightarrow \underline{\bmod }-A$ for all $n \in \mathbb{Z}, \underline{\operatorname{Hom}_{A}}(T, X[i])=0$ and $\underline{\operatorname{Hom}_{A}}(X, T[i])=0$ for $X \in T^{\perp}$ and for $i=0$, 1. Since $T \otimes_{A} M_{q} \cong T$ in $\underline{\bmod -} A$ and $Y \otimes_{A} M_{q} \cong Y[-q]$ in mod- A for every $Y \in T^{\perp}, \underline{\operatorname{Hom}}_{A}\left(T \otimes_{A} M_{q}, X[i] \otimes_{A} M_{q}\right)=0$ and $\underline{\operatorname{Hom}}_{A}\left(X \otimes_{A} M_{q}, T[i] \otimes_{A} M_{q}\right)=0$ for $X \in T^{\perp}$ and for $i=0,1$.

By Step $1.1 \sim$ Step 1.4, we have shown that $-\otimes_{A} M_{q}: \underline{\bmod -A \rightarrow \underline{\bmod }-A \text { is a stable auto- }}$ equivalence of A when A is indecomposable.

Case 2: Assume that A is decomposable.
Let $A=A_{1} \times \cdots \times A_{p} \times A_{p+1} \times \cdots \times A_{r}$ be the decomposition of A into indecomposable blocks, where A_{p+1}, \cdots, A_{r} are all semisimple blocks of A. Let $T_{A}=(R / \operatorname{radR}) \otimes_{A} A \cong A /(\operatorname{radR}) A$ and suppose $A_{1}, \cdots, A_{m}(m \leq p)$ be all indecomposable blocks of A such that there exists an indecomposable non-projective summand of T_{A} which belongs to the block. Then $\underline{\bmod -} A_{i}$ is contained in T^{\perp} for each $m+1 \leq i \leq p$. Let $\mathscr{C}=\{T\} \cup T^{\perp}$ be a strong spanning class of mod- A.

Similar to Case 1, the following statements are still true:
(i) $T^{\perp}={ }^{\perp} T$ is closed under $[n]=\Omega_{A}^{-n}: \underline{\bmod }-A \rightarrow \underline{\bmod -} A$ for all $n \in \mathbb{Z}$;
(ii) $T \otimes_{A} M_{q} \cong T$ in $\underline{\bmod -} A$ and $X \otimes_{A} M_{q} \cong X[-q]$ in $\underline{\bmod -} A$ for every $X \in T^{\perp}$;
(iii) $-\otimes_{A} M_{q}$ induces bijections between $\underline{\operatorname{Hom}}_{A}(X, Y[i])$ and $\underline{\operatorname{Hom}}_{A}\left(X \otimes_{A} M_{q},(Y[i]) \otimes_{A} M_{q}\right)$ for all $X, Y \in \mathscr{C}$ and for all $i=0,1$.

Since the functor $-\otimes_{A} M_{q}: \underline{\bmod }-A \rightarrow \underline{\bmod }-A$ has both left and right adjoints, by statement (iii) and Proposition 2.5 it is fully faithful.

Let $T \cong \oplus_{i=1}^{m} T_{i}$ in $\underline{\bmod -} A$, where $T_{i} \in \underline{\bmod }-A_{i}$. Then $T_{i} \neq 0$ in $\underline{\bmod -} A_{i}$ for each $1 \leq i \leq$ m. Since the functor $-\otimes_{A} M_{q}: \underline{\bmod }-A \rightarrow \underline{\bmod -} A$ is fully faithful and since $\underline{\bmod }-A_{i}$ is an indecomposable triangulated category for $1 \leq i \leq p$, by Lemma 2.1, for each $1 \leq i \leq m, T_{i} \otimes_{A} M_{q} \in$ $\underline{\bmod }-A_{\sigma(i)}$ for some $1 \leq \sigma(i) \leq p$. Since $T \otimes_{A} M_{q} \cong T$ in $\underline{\bmod -} A$, we implies that σ is a permutation of $\{1, \cdots, m\}$ and $T_{i} \otimes_{A} M_{q} \cong T_{\sigma(i)}$ for each $1 \leq i \leq m$. By Lemma 2.1, $-\otimes_{A} M_{q}$ induces functors $\underline{\bmod -} A_{i} \rightarrow \underline{\bmod }-A_{\sigma(i)}$ for each $1 \leq i \leq m$. Since $X \otimes_{A} M_{q} \cong X[-q]$ in $\underline{\bmod -} A$ for every $X \in T^{\perp}$ and since $\underline{\text { mod- }}-A_{i}$ is contained in T^{\perp} for each $m+1 \leq i \leq p,-\otimes_{A} M_{q}$ induces functors mod$A_{i} \rightarrow \underline{\bmod -A_{i}}$ for each $m+1 \leq i \leq p$.

Let τ be a permutation of $\{1, \cdots, p\}$ such that $\tau(i)=\sigma(i)$ for $1 \leq i \leq m$ and $\tau(i)=i$ for $m+1 \leq i \leq p$. Since $-\otimes_{A} M_{q}$ induces functors $\underline{\bmod }-A_{i} \rightarrow \underline{\bmod -}-A_{\tau(i)}$ for each $1 \leq i \leq p$, to show $-\otimes_{A} M_{q}: \underline{\bmod }-A \rightarrow \underline{\bmod }-A$ is a triangulated equivalence, it suffices to show each $-\otimes_{A} M_{q}: \underline{\bmod -}$ $A_{i} \rightarrow \underline{\bmod -} A_{\tau(i)}$ is a triangulated equivalence for each $1 \leq i \leq p$.

Let $1=\sum_{i=1}^{r} e_{i}$, where $e_{i} \in A_{i}$. For each $1 \leq i \leq p,-\otimes_{A} M_{q}$ is natural isomorphic to $-\otimes_{A} e_{i} M_{q}$ as functors from $\underline{\bmod -}-A_{i}$ to $\underline{\bmod }-A_{\tau(i)}$. For each $X \in \underline{\bmod }-A_{i}, X \otimes_{A} e_{i} M_{q} \cong \oplus_{j=1}^{p}\left(X \otimes_{A} e_{i} M_{q} e_{j}\right)$ in mod- A. Since $X \otimes_{A} e_{i} M_{q} \in \underline{\bmod -} A_{\tau(i)}, X \otimes_{A} e_{i} M_{q} e_{j}=0$ in $\underline{\bmod -A_{j}}$ for $j \neq \tau(i)$. Then $-\otimes_{A} M_{q}$ is natural isomorphic to $-\otimes_{A} e_{i} M_{q} e_{\tau(i)}$ as functors from mod- A_{i} to mod- $A_{\tau(i)}$ for each $1 \leq i \leq p$. Since $e_{i} M_{q} e_{\tau(i)}$ is a summand of $e_{i} M_{i}$ as left A_{i}-module, and since $e_{i} M_{i}$ is projective as a left A_{i}-module, so is $e_{i} M_{q} e_{\tau(i)}$. Similarly, $e_{i} M_{q} e_{\tau(i)}$ is also projective as a right $A_{\tau(i)}$-module. Therefore $e_{i} M_{q} e_{\tau(i)}$ is a left-right projective $A_{i}-A_{\tau(i)}$-bimodule. Since both A_{i} and $A_{\tau(i)}$ are symmetric, $-\otimes_{A} D\left(e_{i} M_{q} e_{\tau(i)}\right): \underline{\bmod }-A_{\tau(i)} \rightarrow \underline{\bmod }-A_{i}$ is both the left and the right adjoint of $-\otimes_{A} e_{i} M_{q} e_{\tau(i)}: \underline{\bmod -} A_{i} \rightarrow \underline{\bmod }-A_{\tau(i)}$. Since $-\otimes_{A} e_{i} M_{q} e_{\tau(i)}: \underline{\bmod }-A_{i} \rightarrow \underline{\bmod }-A_{\tau(i)}$ is fully faithful, $\underline{\bmod -} A_{i}$ is nonzero, and mod$-A_{\tau(i)}$ is indecomposable as a triangulated category, it follows from Proposition [2.6 that $-\otimes_{A} e_{i} M_{q} e_{\tau(i)}: \underline{\bmod -} A_{i} \rightarrow \underline{\bmod }-A_{\tau(i)}$ is a triangulated equivalence. Therefore $-\otimes_{A} M_{q}: \underline{\bmod }-A_{i} \rightarrow \underline{\bmod }-A_{\tau(i)}$ is a triangulated equivalence.

4. A variation of the construction in previous section

There exist some examples of stable equivalences (cf. Subsection 6.1) which do not satisfies Assumptions 1 in last section, however if we modify some conditions, we may obtain a similar proposition, which will include these examples.

In this section, we make the following
Assumption 2: Let k be a field, A be a symmetric k-algebra, R be a non-semisimple symmetric subalgebra of A such that A_{R} is projective. Let B be another subalgebra of A, such that the following conditions hold:
($\left.a^{\prime}\right)(\operatorname{radR}) B=B(\operatorname{radR})$;
(b) $B \otimes_{k}(R / r a d R) \xrightarrow{\phi} A /(r a d R) A, b \otimes \overline{1} \mapsto \bar{b}$ is an isomorphism in $\underline{\bmod -R}$;
(c) B has a periodic free B^{e}-resolution

$$
0 \rightarrow B \xrightarrow{\delta_{q}}\left(B \otimes_{k} B\right)^{m_{q-1}} \xrightarrow{\delta_{q-1}} \cdots \rightarrow\left(B \otimes_{k} B\right)^{m_{1}} \xrightarrow{\delta_{1}}\left(B \otimes_{k} B\right)^{m_{0}} \xrightarrow{\delta_{0}} B \rightarrow 0 ;
$$

(d) The image x of $\delta_{q}(1)$ in $\left(A \otimes_{R} A\right)^{m_{q-1}}$ satisfies $r x=x r$ for all $r \in R$;
(e) There exists a complex

$$
\left(A \otimes_{R} A\right)^{m_{q-1}} \xrightarrow{d_{q-1}}\left(A \otimes_{R} A\right)^{m_{q-2}} \xrightarrow{d_{q-2}} \cdots \rightarrow\left(A \otimes_{R} A\right)^{m_{1}} \xrightarrow{d_{1}}\left(A \otimes_{R} A\right)^{m_{0}} \xrightarrow{d_{0}} A \rightarrow 0 ;
$$

of A^{e}-modules such that the diagram

is commutative, where the vertical morphisms are the obvious morphisms.
Note that the condition $\left(a^{\prime}\right)$ is a generalization of (a) in Assumption 1, the conditions (b) and (c) are the same as in Assumption 1, and the conditions (d) and (e) are new. Clearly, if the triple (A, R, B) satisfies Assumption 1, then it also satisfies Assumption 2.
Similar to Lemma 3.4, there exist triangles $M_{1} \stackrel{i_{1}}{\longrightarrow}\left(A \otimes_{R} A\right)^{m_{0}} \xrightarrow{d_{0}} A \rightarrow, M_{2} \xrightarrow{i_{2}}\left(A \otimes_{R} A\right)^{m_{1}} \xrightarrow{f_{1}}$
 We have following proposition, which is an analogy of Theorem 3.5.
Theorem 4.1. Let (A, R, B) be the triple that satisfies Assumption 2. If M_{q} is the A - A-bimodule defined above, then $-\otimes_{A} M_{q}: \underline{\bmod }-A \rightarrow \underline{\bmod }-A$ is a stable auto-equivalence of A.

Proof. Since $(\operatorname{radR}) B=B(\operatorname{radR}), T_{A}=A /(\operatorname{radR}) A$ and $\Omega_{A} T=(\operatorname{radR}) A$ becomes $B-A$ bimodules. The proof is similar to the proof of Theorem 3.5. The only difficulty is to show the diagrams in Figure 3 and Figure 6 are commutative.

To show that the diagrams in Figure 3 are commutative.
Since the image x of $\delta_{q}(1)$ in $\left(A \otimes_{R} A\right)^{m_{q-1}}$ satisfies $r x=x r$ for all $r \in R$, we have $\sum_{l} r b_{i l} \otimes b_{i l}^{\prime}=$ $\sum_{l} b_{i l} \otimes b_{i l}^{\prime} r$ in $A \otimes_{R} A$ for all $r \in R$. Therefore $\sum_{l} \overline{r b_{i l}} \otimes b_{i l}^{\prime}=\sum_{l} \overline{b_{i l}} \otimes b_{i l}^{\prime} r$ in $T \otimes_{R} A$ for all $r \in R$. Moreover, since δ_{q}^{i} is a B^{e}-homomorphism, $\sum_{l} b b_{i l} \otimes b_{i l}^{\prime}=\sum_{l} b_{i l} \otimes b_{i l}^{\prime} b$ in $B \otimes_{k} B$ for all $b \in B$, and therefore $\sum_{l} \bar{b} \overline{b_{i l}} \otimes b_{i l}^{\prime}=\sum_{l} \overline{b_{i l}} \otimes b_{i l}^{\prime} b$ in $T \otimes_{R} A$ for all $b \in B$. We have $(h \otimes 1)(\phi \otimes 1)\left(\delta_{q}^{i} \otimes 1\right)(\overline{1})=\sum_{l, j} \overline{\beta_{j} r_{j} b_{i l}} \otimes b_{i l}^{\prime}=\sum_{j} \beta_{j} \cdot\left(\sum_{l} \overline{r_{j} b_{i l}} \otimes b_{i l}^{\prime}\right)=\sum_{j} \beta_{j} \cdot\left(\sum_{l} \overline{b_{i l}} \otimes b_{i l}^{\prime} r_{j}\right)=$ $\sum_{j} \sum_{l}\left(\overline{\beta_{j} b_{i l}} \otimes b_{i l}^{\prime}\right) \cdot r_{j}=\sum_{j} \sum_{l}\left(\overline{b_{i l}} \otimes b_{i l}^{\prime} \beta_{j}\right) \cdot r_{j}=\sum_{j} \sum_{l} \overline{b_{i l}} \otimes b_{i l}^{\prime} \beta_{j} r_{j}=(\phi \otimes 1)\left(\delta_{q}^{i} \otimes 1\right) h(\overline{1})$ and the diagram in Figure 3 commutes.

To show that the diagrams in Figure 6 are commutative.
For $r \in \operatorname{rad} R \subseteq(\operatorname{rad} R) A=\Omega_{A} T,\left(\delta_{q}^{i} \otimes 1\right)(r)=\sum_{l} b_{i l} \otimes b_{i l}^{\prime} r$. There is a commutative diagram

in mod- A, where u, v, p are the obvious morphisms. Since $\sum_{l} r b_{i l} \otimes b_{i l}^{\prime}=\sum_{l} b_{i l} \otimes b_{i l}^{\prime} r$ in $A \otimes_{R} A$, $(p u)\left(\sum_{l} b_{i l} \otimes b_{i l}^{\prime} r\right)=\sum_{l} r b_{i l} \otimes b_{i l}^{\prime}=v\left(\sum_{l} r b_{i l} \otimes b_{i l}^{\prime}\right)$. Since v is injective and $p u=v(\nu \otimes 1)$, $(\nu \otimes 1)\left(\sum_{l} b_{i l} \otimes b_{i l}^{\prime} r\right)=\sum_{l} r b_{i l} \otimes b_{i l}^{\prime}$. Then $(h \otimes 1)(\nu \otimes 1)\left(\delta_{q}^{i} \otimes 1\right)(r)=(h \otimes 1)\left(\sum_{l} r b_{i l} \otimes b_{i l}^{\prime}\right)=$ $\sum_{l, j} \overline{x_{j} \gamma_{j} b_{i l}} \otimes b_{i l}^{\prime}=\sum_{j} x_{j} \cdot\left(\sum_{l} \overline{\gamma_{j} b_{i l}} \otimes b_{i l}^{\prime}\right)=\sum_{j} x_{j} \cdot\left(\sum_{l} \overline{b_{i l}} \otimes b_{i l}^{\prime} \gamma_{j}\right)=\sum_{j}\left(\sum_{l} \overline{x_{j} b_{i l}} \otimes b_{i l}^{\prime}\right) \cdot \gamma_{j}=$ $\sum_{j}\left(\sum_{l} \overline{b_{i l}} \otimes b_{i l}^{\prime} x_{j}\right) \cdot \gamma_{j}=\sum_{l, j} \overline{b_{i l}} \otimes b_{i l}^{\prime} x_{j} \gamma_{j}=(\phi \otimes 1)\left(\delta_{q}^{i} \otimes 1\right) h(r)$. So the diagram in Figure 6 is commutative.

Recall that an A-module X is called a relatively R-projective module if X is isomorphic to a direct summand of $X \otimes_{R} A_{A}$. For A-modules X, Y with Y relatively R-projective, an A homomorphism $f: Y \rightarrow X$ is called a relatively R-projective cover of X if any A-homomorphism
$g: Z \rightarrow X$ with Z relatively R-projective factors through f. This is equivalent to the fact that f is a split epimorphism as an R-homomorphism.
Proposition 4.2. (Compare to [8, Proposition 6.5]) Let $\rho=-\otimes_{A} M_{q}: \underline{\bmod -A \rightarrow \underline{\bmod }-A \text { be }}$ the stable auto-equivalence of A in Theorem 4.1. If both A, R, B are elementary local k-algebras, then $\rho(k)$ is isomorphic to $\Omega_{R}^{q}(k)$ up to a summand of a relatively R-projective module. (Note that $\Omega_{R}(X)$ denotes the kernel of some relatively R-projective cover of ${ }_{A} X$ and it is determined up to a summand of a relatively R-projective module.)
Proof. Since $R / r a d R=k$, we have an isomorphism $\phi: B \rightarrow k \otimes_{R} A, b \mapsto 1 \otimes b$ in mod- R, where the R-module structure of B is induced from the epimorphism $R \rightarrow k$. Applies the functors $k \otimes_{B}$ - and $k \otimes_{A}$ - to the complex $0 \rightarrow B \xrightarrow{\delta_{q}}\left(B \otimes_{k} B\right)^{m_{q-1}} \xrightarrow{\delta_{q-1}} \cdots \rightarrow\left(B \otimes_{k} B\right)^{m_{1}} \xrightarrow{\delta_{1}}\left(B \otimes_{k} B\right)^{m_{0}} \xrightarrow{\delta_{0}} B \rightarrow 0$ and the complex $\left(A \otimes_{R} A\right)^{m_{q-1}} \xrightarrow{d_{q-1}} \cdots \rightarrow\left(A \otimes_{R} A\right)^{m_{1}} \xrightarrow{d_{1}}\left(A \otimes_{R} A\right)^{m_{0}} \xrightarrow{d_{0}} A$ respectively, we get a commutative diagram in mod- R :

Since the first row of the diagram is split exact as a complex of k-modules, it is also split exact as a complex of R-modules. Similar to the argument in Step 1.1 of the proof of Theorem 3.5, we have isomorphisms of split triangles

in $\underline{\bmod -R}$ for $0 \leq l \leq q-1$, where $L_{0}=L_{q}=k, M_{0}=A, f_{0}=d_{0}$. Therefore $\underline{1 \otimes f_{l}}:\left(k \otimes_{R} A\right)^{m_{l}} \rightarrow$ $k \otimes_{A} M_{l}$ are split epimorphisms in mod- R for $0 \leq l \leq q-1$.

For every $0 \leq l \leq q-1$ and for every R-module X_{R}, we have a commutative diagram

where the vertical arrows are isomorphisms. Since $1 \otimes f_{l}:\left(k \otimes_{R} A\right)^{m_{l}} \rightarrow k \otimes_{A} M_{l}$ is a split epimorphism in $\underline{\bmod -} R, \underline{\operatorname{Hom}}_{R}\left(X,\left(k \otimes_{R} A\right)_{R}^{m_{l}}\right) \rightarrow \underline{\operatorname{Hom}}_{R}\left(X,\left(k \otimes_{A} M_{l}\right)_{R}\right)$ is surjective, therefore $\underline{\operatorname{Hom}}_{A}\left(F X,\left(k \otimes_{R} A\right)^{m_{l}}\right) \rightarrow \underline{\operatorname{Hom}}_{A}\left(F X, k \otimes_{A} M_{l}\right)$ is surjective. Then the morphism $\underline{1 \otimes f_{l}}:\left(k \otimes_{R}\right.$ $A)^{m_{l}} \rightarrow k \otimes_{A} M_{l}$ is a right $F(\underline{m o d}-R)$-approximation. It follows that the A-homomorphism $\left(1 \otimes f_{l}, \pi_{l}\right):\left(k \otimes_{R} A\right)^{m_{l}} \oplus P_{l} \rightarrow k \otimes_{A} M_{l}$ is a relatively R-projective cover of $k \otimes_{A} M_{l}$, where $\pi_{l}: P_{l} \rightarrow k \otimes_{A} M_{l}$ is the projective cover of $k \otimes_{A} M_{l}$. By the triangle $k \otimes_{A} M_{l+1} \xrightarrow{1 \otimes i_{l+1}}$ $\left(k \otimes_{R} A\right)^{m_{l}} \xrightarrow{1 \otimes f_{l}} k \otimes_{A} M_{l} \rightarrow$ in $\underline{\bmod -} A$, we see that $k \otimes_{A} M_{l+1} \cong \Omega_{R}\left(k \otimes_{A} M_{l}\right)$. Therefore $\rho(k)=k \otimes_{A} M_{q} \cong \Omega_{R}\left(k \otimes_{A} M_{q-1}\right) \cong \cdots \cong \Omega_{R}^{q}(k)$.
Remark 4.3. Since the stable auto-equivalence in Theorem 3.5 is a special case of the stable auto-equivalence in Theorem 4.1, it also satisfies Proposition 4.2.

5. Endo-Trivial modules over finite p-groups

Let k be a field of characteristic p with p prime, P be a finite p-group and $k P$ be its group algebra. A $k P$-module M is called endo-trivial if $\operatorname{End}_{k}(M) \cong k \oplus P$ for some projective module P. Two endo-trivial modules M, N are said to be equivalent if $M \oplus P \cong N \oplus Q$ for some projective modules P, Q. The group $T(P)$ has elements consisting of equivalence classes [M] of endo-trivial modules M. The operation is given by $[M]+[N]=\left[M \otimes_{k} N\right]$, see [4, Section 3].

Note that the stable auto-equivalences of Morita type of $k P$ are precisely induced by endotrivial modules. The next proposition shows that in most cases, our construction recovers all the stable auto-equivalences of $k P$ corresponding to endo-trivial modules.

Let $A=k P$ and $R=k S, B=k L$ for some subgroups S, L of P. Suppose that the triple
 stable auto-equivalence of A in Theorem [3.5. Since $\underline{\operatorname{End}}_{A}\left(\rho_{S, L}(k)\right) \cong \underline{\operatorname{End}}_{A}(k) \cong k$, by [2, Theorem 1], $\rho_{S, L}(k)$ is an endo-trivial module.
Proposition 5.1. Let P be a finite p-group which is not generalized quaternion. Then there exist finitely many pairs (S_{i}, L_{i}) of subgroups of P such that the following conditions hold:
(1) Each pair $\left(S_{i}, L_{i}\right)$ gives a triple $\left(A, k S_{i}, k L_{i}\right)$ satisfying Assumption 1;
(2) $T(P)$ is generated by $\left[\Omega_{k P}(k)\right]$ and elements of the form $\left[\rho_{S_{i}, L_{i}}(k)\right]$, where $\rho_{S_{i}, L_{i}}$ is the stable auto-equivalence of $A=k P$ defined as above.

In the following, for a subgroup H of a group G, we denote by $N_{G}(H)$ and $C_{G}(H)$ the normalizer and the centralizer of H in G respectively.

Lemma 5.2. Let G be a group, H be a subgroup of G of order p with p prime. Then for every $g \in G$,

$$
|H g H|= \begin{cases}p, & \text { if } g \in N_{G}(H) \tag{6}\\ p^{2}, & \text { otherwise }\end{cases}
$$

Proof. If $g \notin N_{G}(H)$, then $g^{-1} H g \neq H$. Since $\left|g^{-1} H g\right|=|H|=p$, we have $\left|g^{-1} H g \cap H\right|=1$. Therefore $|H g H|=\left|g^{-1} H g H\right|=\frac{\left|g^{-1} H g\right||H|}{\left|g^{-1} H g \cap H\right|}=p^{2}$.
Lemma 5.3. Let P be a finite p-group and H be a subgroup of P order p, then $C_{P}(H)=N_{P}(H)$.
Proof. There is a group homomorphism $\phi: N_{P}(H) \rightarrow \operatorname{Aut}(H)$ such that $\phi(g)(h)=g h g^{-1}$ for all $g \in N_{P}(H)$ and $h \in H$. Moreover, the kernel of ϕ is $C_{P}(H)$. Since $\operatorname{Aut}(H) \cong \operatorname{Aut}(\mathbb{Z} / p \mathbb{Z}) \cong$ $\mathbb{Z} / p \mathbb{Z}^{\times},|A u t(H)|=p-1$. Therefore $\left[N_{P}(H): C_{P}(H)\right]$ divides $p-1$. Since $\left[N_{P}(H): C_{P}(H)\right]$ is a power of p, it must equal to 1 .
Lemma 5.4. Let G be a finite group. If the trivial G-module k has a periodic free resolution of periodic n, then $k G$ has a periodic free resolution as $k G$ - $k G$-bimodule of the same periodic.
Proof. For $X \in \bmod -k G$, define a $k G$ - $k G$-bimodule structure on $X \otimes_{k} k G$ by the formulas g. $(x \otimes \mu)=x \otimes g \mu$ and $(x \otimes \mu) \cdot g=x g \otimes \mu g$. It can be shown that the map $X \mapsto X \otimes_{k} k G$ defines a functor Φ from mod $-k G$ to $k G$-mod- $k G$. Since the trivial G-module k has a periodic free resolution, there exists an exact sequence $0 \rightarrow k \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow k \rightarrow 0$ of $k G$-modules, where F_{0}, \cdots, F_{n-1} are free $k G$-modules. Let $M=k G \otimes_{k} k G$ be the free $k G$ $k G$-bimodule of rank 1. Then the map $\Phi(k G) \rightarrow M, g \otimes h \mapsto h g^{-1} \otimes g$ is an isomorphism of $k G$ - $k G$-bimodules. So Φ sends free $k G$-modules to free $k G$ - $k G$-bimodules. Applies the functor Φ to the exact sequence $0 \rightarrow k \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow k \rightarrow 0$, we get an exact sequence $0 \rightarrow \Phi(k) \rightarrow \Phi\left(F_{n-1}\right) \rightarrow \cdots \rightarrow \Phi\left(F_{1}\right) \rightarrow \Phi\left(F_{0}\right) \rightarrow \Phi(k) \rightarrow 0$ of $k G$ - $k G$-bimodules with $\Phi\left(F_{0}\right)$, $\cdots, \Phi\left(F_{n-1}\right)$ free. Note that $\Phi(k) \cong k G$ as $k G$ - $k G$-bimodules.

Proof of Proposition 5.1. Case 1: Assume that P is a finite p-group having a maximal elementary abelian subgroup of rank 2 .

Case 1.1: P is not semi-dihedral.
By [4, Theorem 7.1], $T(P)$ is a free abelian group generated by the classes of the modules $\Omega_{k P}(k), N_{2}, \cdots, N_{r}$, where r is the number of conjugacy classes of connected components of the poset of all elementary abelian subgroups of P of rank at least 2 and the N_{i} are defined as follows. For $2 \leq i \leq r$, let S_{i} be the subgroups of P of order p in [4, Lemma 2.2(b)] with $C_{P}\left(S_{i}\right)=S_{i} \times L_{i}$, where L_{i} either cyclic or generalized quaternion. Let $M_{i}=\Omega_{k P}^{-1}(k) \otimes_{k} \Omega_{P / S_{i}}(k)$, where $\Omega_{P / S_{i}}(k)$ denotes the kernel of a relatively $k S_{i}$-projective cover of the trivial $k P$-module k. Define

$$
N_{i}= \begin{cases}\Gamma\left(M_{i}^{\otimes 2}\right), & \text { if } L_{i} \text { is cyclic of order } \geq 3 \tag{7}\\ M_{i}, & \text { if } p=2 \text { and } L_{i} \text { is cyclic of order } 2 \\ \Gamma\left(M_{i}^{\otimes 4}\right), & \text { if } p=2 \text { and } L_{i} \text { is generalized quaternion }\end{cases}
$$

where $\Gamma(M)$ denotes the sum of all the indecomposable summands of M having vertex P. Let $A=k P$ and $R_{i}=k S_{i}, B_{i}=k L_{i}$ for $2 \leq i \leq r$. Note that $R_{i} / r a d R_{i} \cong k$. Since $L_{i} \leq C_{P}\left(S_{i}\right)$, we have $b r=r b$ for any $b \in B_{i}$ and $r \in R_{i}$. Let h_{1}, \cdots, h_{q} be a complete set of double coset representatives for S_{i} in P which not belong to $N_{P}\left(S_{i}\right)$. Since P is a p-group and S_{i} is a subgroup of P of order p, by Lemma 5.3, $N_{P}\left(S_{i}\right)=C_{P}\left(S_{i}\right)$. Therefore P is a disjoint union of double cosets $S_{i} g S_{i}=g S_{i}$ with $g \in L_{i}$ and double cosets $S_{i} h_{n} S_{i}$ with $1 \leq n \leq q$. By Lemma 5.2, $\left|S_{i} h_{n} S_{i}\right|=p^{2}$ for $1 \leq n \leq q$, therefore the R_{i} - R_{i}-subbimodule $k S_{i} h_{n} S_{i}$ of A is isomorphic to $R_{i} \otimes_{k} R_{i}$. We have $A /\left(\operatorname{rad} R_{i}\right) A \cong\left(R_{i} / r a d R_{i}\right) \otimes_{R_{i}} A=k \otimes_{R_{i}} A \cong \bigoplus_{g \in L_{i}} k \otimes_{R_{i}} k g S_{i} \oplus \bigoplus_{n=1}^{q} k \otimes_{R_{i}} k S_{i} h_{n} S_{i} \cong k^{\left|L_{i}\right|} \oplus R_{i}^{q}$ as R_{i}-modules. Moreover, the R_{i}-homomorphism $\phi_{i}: B_{i} \otimes_{R_{i}}\left(R_{i} / r a d R_{i}\right) \rightarrow A /\left(r a d R_{i}\right) A, b \otimes 1 \mapsto \bar{b}$ is isomorphic to the inclusion morphism $k^{\left|L_{i}\right|} \rightarrow k^{\left|L_{i}\right|} \oplus R_{i}^{q}$. Therefore ϕ_{i} is an isomorphism in $\underline{\bmod -R_{i}}$.

Let k denotes the trivial L_{i}-module. When L_{i} is cyclic, then $\Omega_{k L_{i}}^{2}(k) \cong k$. Moreover, when L_{i} is cyclic of order 2 , then $\Omega_{k L_{i}}(k) \cong k$. When L_{i} is generalized quaternion, by [6, Proposition 3.16], $\Omega_{k L_{i}}^{4}(k) \cong k$. Since $B_{i}=k L_{i}$ is local, the periodic projective resolution of k is also a periodic free resolution. By Lemma 5.4, B_{i} has a periodic free resolution as a B_{i} - B_{i}-bimodule of periodic n_{i}, where

$$
n_{i}= \begin{cases}2, & \text { if } L_{i} \text { is cyclic of order } \geq 3 \tag{8}\\ 1, & \text { if } p=2 \text { and } L_{i} \text { is cyclic of order } 2 \\ 4, & \text { if } p=2 \text { and } L_{i} \text { is generalized quaternion. }\end{cases}
$$

Therefore the triple $\left(A, R_{i}, B_{i}\right)$ satisfies Assumption 1 in Section 3. By Proposition 4.2 and Remark 4.3, $\rho_{S_{i}, L_{i}}(k) \cong \Omega_{P / S_{i}}^{n_{i}}(k)$. Since $\Omega_{P / S_{i}}(k)^{\otimes n_{i}} \oplus V \cong \Omega_{P / S_{i}}^{n_{i}}(k) \oplus W$ for some relatively $k S_{i}$-projective modules V, W,

$$
N_{i}= \begin{cases}\Gamma\left(\Omega_{k P}^{-n_{i}}(k) \otimes_{k} \rho_{S_{i}, L_{i}}(k)\right), & \text { if } L_{i} \text { is cyclic of order } \geq 3 \tag{9}\\ & \text { or } p=2 \text { and } L_{i} \text { is generalized quaternion } \\ \Omega_{k P}^{-n_{i}}(k) \otimes_{k} \rho_{S_{i}, L_{i}}(k), & \text { if } p=2 \text { and } L_{i} \text { is cyclic of order } 2\end{cases}
$$

When L_{i} is cyclic of order ≥ 3, or when $p=2$ and L_{i} is generalized quaternion, since both $\Omega_{k P}^{-n_{i}}(k) \otimes_{k} \rho_{S_{i}, L_{i}}(k)$ and $\Gamma\left(\Omega_{k P}^{-n_{i}}(k) \otimes_{k} \rho_{S_{i}, L_{i}}(k)\right)$ are endo-trivial modules, $\Omega_{k P}^{-n_{i}}(k) \otimes_{k} \rho_{S_{i}, L_{i}}(k) \cong$ $\Gamma\left(\Omega_{k P}^{-n_{i}}(k) \otimes_{k} \rho_{S_{i}, L_{i}}(k)\right) \oplus V$ for some projective $k P$-module V. Therefore $\left[\Omega_{k P}^{-n_{i}}(k) \otimes_{k} \rho_{S_{i}, L_{i}}(k)\right]=$ $\left[\Gamma\left(\Omega_{k P}^{-n_{i}}(k) \otimes_{k} \rho_{S_{i}, L_{i}}(k)\right)\right]$ in $T(P)$. So $T(P)$ is generated by $\left[\Omega_{k P}(k)\right]$ and $\left[\rho_{S_{i}, L_{i}}(k)\right]$ for $2 \leq i \leq r$.

Case 1.2: P is semi-dihedral.
The semi-dihedral of order $2^{n}(n \geq 4)$ is given by $S D_{2^{n}}=\left\langle x, y \mid x^{2^{n-1}}=y^{2}=1, y x y=x^{2^{n-2}-1}\right\rangle$. Let $S=\langle y\rangle$ be a subgroup of $P=S D_{2^{n}}$. Then $C_{P}(S)=S \times S^{\prime}$, where $S^{\prime}=\left\langle x^{2^{n-2}}\right\rangle$. Let $A=k P$, $R=k S, B=k S^{\prime}$. Similar to Case 1.1, the triple (A, R, B) satisfies Assumption 1. Since B has a free resolution of periodic 1 as a B - B-bimodule, by Proposition 4.2 and Remark 4.3, $\rho_{S, S^{\prime}}(k) \cong \Omega_{P / S}(k)$, which is exactly the module L defined in [3, Section 7]. By [3, Theorem 7.1],
$T(P)$ is isomorphic to $\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$, generated by $\left[\Omega_{k P}(k)\right]$ and $\left[\Omega_{k P}(L)\right]$, where the element $\left[\Omega_{k P}(L)\right]$ has order 2. Therefore $\left[\Omega_{k P}(k)\right]$ together with $\left[\rho_{S, L}(k)\right]$ generates $T(P)$.

Case 2: Assume that P is a finite p-group which do not have a maximal elementary abelian subgroup of rank 2 .

Since P is not generalized quaternion, either P is cyclic or every maximal elementary abelian subgroup of P has rank at least 3 (cf. [4, Introduction]). By [7, Corollary 8.8] and [5, Corollary 1.3], $T(P)$ is generated by $\left[\Omega_{k P}(k)\right]$. So the conclusion also holds in this case.

Remark 5.5. An example of p-group which has a maximal elementary abelian subgroup of rank 2 and which is not semi-dihedral is the dihedral group $D_{8}=\langle x, y| x^{4}=y^{2}=1$, yxy $\left.=x^{-1}\right\rangle$ of order 8 , where $E=\left\{1, x^{2}, y, x^{2} y\right\}$ is a maximal elementary abelian subgroup of Q_{8} of rank 2. An example of p-group whose maximal elementary abelian subgroups have rank at least 3 is $D_{8} * D_{8}=\left(D_{8} \times D_{8}\right) /\left\langle\left(x^{2}, x^{2}\right)\right\rangle$, see [4, Section 6].
Remark 5.6. For every positive integer $n \geq 2$, the generalized quaternion group $Q_{4 n}$ of order $4 n$ is defined by the presentation $\left\langle x, y \mid x^{2 n}=1, y^{2}=x^{n}, y x y^{-1}=x^{-1}\right\rangle$. When $n=2$ it is the usual quaternion group. The generalized quaternion group $Q_{4 n}$ is a p-group if and only if n is a power of 2. The reason why we exclude generalized quaternion groups in Proposition 5.1 is that the endo-trivial module L constructed in [3, Section 6] may not be a relative syzygy of the trivial $k P$-module.

6. Examples in non-local case

6.1. In this subsection, let G be a finite group and N, H be subgroups of G such that $N_{G}(N)=$ $N \rtimes H$ and $|N g N|=|N|^{2}$ for any $g \in G-N_{G}(N)$. Let k be a field whose characteristic divides $|N|$, and let $A=k G, R=k N, B=k H$. Assume that the trivial $k H$-module k has a periodic free resolution.

Proposition 6.1. The triple (A, R, B) as above satisfies Assumption 2 of Section 4, so it defines a stable auto-equivalence of A by Theorem 4.1.

Proof. Since N is a subgroup of G, A_{R} is projective. We need to check that the triple (A, R, B) satisfies the assumptions $\left(a^{\prime}\right)$ to (e) at the beginning of Section 4.

Suppose the semidirect product $N \rtimes H$ is defined by the group homomorphism $\eta: H \rightarrow$ $\operatorname{Aut}(N)$. For any $\sum_{n \in N} \lambda_{n} n \in \operatorname{radR}$ and $h \in H$, the group automorphism $\eta(h): N \rightarrow N$ induces an automorphism η_{h} of R, and $h\left(\sum_{n \in N} \lambda_{n} n\right)=\sum_{n \in N} \lambda_{n} \eta(h)(n) h=\eta_{h}\left(\sum_{n \in N} \lambda_{n} n\right) h$. Since $\eta_{h}(\operatorname{radR})=\operatorname{rad} R, \eta_{h}\left(\sum_{n \in N} \lambda_{n}\right) \in \operatorname{radR}$. Therefore $B(\operatorname{rad} R) \subseteq(\operatorname{rad} R) B$. Similarly, it can be shown that $(\operatorname{radR}) B \subseteq B(\operatorname{radR})$. So the assumption (a^{\prime}) holds.

The R-homomorphism ϕ is given by $k H \otimes_{k}(k N / \operatorname{radkN}) \rightarrow(k N / \operatorname{radkN}) \otimes_{k N} k G, h \otimes \bar{n} \mapsto \overline{1} \otimes h n$. We have $(k N / \operatorname{radkN}) \otimes_{k N} k G \cong(k N / \operatorname{radkN}) \otimes_{k N} k N_{G}(N) \oplus\left(\oplus_{i=1}^{t}(k N / \operatorname{radkN}) \otimes_{k N} k N g_{i} N\right)$ as R-modules, where each g_{i} belongs to $G-N_{G}(N)$ such that $G-N_{G}(N)$ is a disjoint union of all $N g_{i} N$ s. Since $\left|N g_{i} N\right|=|N|^{2}, k N g_{i} N \cong R \otimes_{k} R$ as R^{e}-modules, so each $(k N / r a d k N) \otimes_{k N}$ $k N g_{i} N$ is a projective R-module. Moreover, the image of ϕ is $(k N / \operatorname{radkN}) \otimes_{k N} k N_{G}(N)$. Since $(k N / \operatorname{radkN}) \otimes_{k N} k N_{G}(N) \cong \oplus_{h \in H}(k N / \operatorname{radkN}) \otimes_{k N} k N h, \operatorname{dim}_{k}\left((k N / \operatorname{radkN}) \otimes_{k N} k N_{G}(N)\right)=$ $|H| \operatorname{dim}_{k}(k N / \operatorname{radkN})=\operatorname{dim}_{k}\left(k H \otimes_{k}(k N / r a d k N)\right)$, so ϕ induces an R-isomorphism from $k H \otimes_{k}$ $(k N / \operatorname{radkN})$ to $(k N / \operatorname{radkN}) \otimes_{k N} k N_{G}(N)$. Therefore ϕ is an isomorphism in $\underline{\bmod -R}$ and the assumption (b) holds.

Since the trivial $k H$-module k has a periodic free resolution, by Lemma 5.4 the $k H$ - $k H$-bimodule $k H$ also has a periodic free resolution. Then the assumption (c) holds. Assume the periodic free resolution of the trivial $k H$-module k is given by the exact sequence $0 \rightarrow k \rightarrow F_{n-1} \rightarrow$ $\cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow k \rightarrow 0$, where F_{0}, \cdots, F_{n-1} are free $k G$-modules. Then the exact sequence $0 \rightarrow \Phi(k) \rightarrow \Phi\left(F_{n-1}\right) \rightarrow \cdots \rightarrow \Phi\left(F_{1}\right) \rightarrow \Phi\left(F_{0}\right) \rightarrow \Phi(k) \rightarrow 0$ gives a periodic free resolution of the $k H$ - $k H$-bimodule $k H$, where $\Phi=-\otimes_{k} k H$ is the functor defined in the proof of Lemma 5.4.

Let $f: k H \rightarrow k H, 1 \mapsto \sum_{h \in H} \lambda_{h} h$ be a morphism in mod- $k H$, then $\Phi(f)$ is isomorphic to the $k H$ - $k H$-homomorphism $\widetilde{f}: k H \otimes_{k} k H \rightarrow k H \otimes_{k} k H, 1 \otimes 1 \mapsto \sum_{h \in H} \lambda_{h} h^{-1} \otimes h$, by the isomorphism $\Phi(k H) \rightarrow k H \otimes_{k} k H, g \otimes h \mapsto h g^{-1} \otimes g$. Since for any $n \in N,\left(\sum_{h \in H} \lambda_{h} h^{-1} \otimes h\right) n=\sum_{h \in H} \lambda_{h} h^{-1} \otimes$ $\eta(h)(n) h=\sum_{h \in H} \lambda_{h} h^{-1} \eta(h)(n) \otimes h=\sum_{h \in H} \lambda_{h} \eta\left(h^{-1}\right)(\eta(h)(n)) h^{-1} \otimes h=n\left(\sum_{h \in H} \lambda_{h} h^{-1} \otimes h\right)$ in $k G \otimes_{k N} k G$, there is a $k G$ - $k G$-homomorphism $\alpha: k G \otimes_{k N} k G \rightarrow k G \otimes_{k N} k G$ such the diagram

commutes, where the vertical morphisms are the obvious one. Moreover, for any $k H$-homomorphism $g: k H \rightarrow k, 1 \mapsto \lambda, \Phi(f)$ is isomorphic to the $k H$ - $k H$-homomorphism $\widetilde{g}: k H \otimes_{k} k H \rightarrow k H$, $1 \otimes 1 \mapsto \lambda$. Therefore there is a $k G$ - $k G$-homomorphism $\beta: k G \otimes_{k N} k G \rightarrow k G$ such the diagram

commutes. Since each F_{i} is a free $k H$-module, the assumption (e) holds.
Each $k H$-homomorphism $u: k \rightarrow k H$ maps 1 to some $\lambda\left(\sum_{h \in H} h\right)$, where $\lambda \in k$. Then $\Phi(u)$ is isomorphic to the $k H$ - $k H$-homomorphism $\widetilde{u}: k H \rightarrow k H \otimes_{k} k H, 1 \mapsto \lambda\left(\sum_{h \in H} h^{-1} \otimes h\right)$. Since for every $n \in N,\left(h^{-1} \otimes h\right) n=h^{-1} \otimes \eta(h)(n) h=h^{-1} \eta(h)(n) \otimes h=\eta\left(h^{-1}\right)(\eta(h)(n)) h^{-1} \otimes h=n\left(h^{-1} \otimes h\right)$ in $k G \otimes_{k N} k G$, the image x of $\widetilde{u}(1)$ in $k G \otimes_{k N} k G$ satisfies $r x=x r$ for every $r \in R=k N$. Therefore the assumption (d) holds.

Suppose the trivial $k H$-module k has a periodic free resolution of periodic n, then by Lemma 5.4, $B=k H$ also has a periodic free resolution of periodic n. Let ρ be the stable auto-equivalence of $A=k G$ in Theorem4.1 with respect to this periodic free resolution of B. Similar to Proposition 4.2, we have following proposition.

Proposition 6.2. For the trivial $k G$-module $k, \rho(k) \cong \Omega_{G / N}^{n}(k)$, where $\Omega_{G / N}(M)$ denotes the kernel of some relatively $k N$-projective cover of M.
Proof. Consider $B=k H$ as a module over $R=k N$, where each $n \in N$ acts trivially on B. Let $\psi: B \rightarrow k \otimes_{R} A, h \mapsto 1 \otimes h$ be a k-linear homomorphism, where k denotes the trivial R-module. Since for any $h \in H$ and $n \in N,(1 \otimes h) n=1 \otimes h n=1 \otimes \eta(h)(n) h=1 \otimes h$ in $k \otimes_{R} A, \psi$ is also an R-homomorphism. Since $k \otimes_{R} A \cong k \otimes_{k N} k N_{G}(N) \oplus\left(\oplus_{i=1}^{t} k \otimes_{k N} k N g_{i} N\right)$ as R-modules, where each g_{i} belongs to $G-N_{G}(N)$ such that $G-N_{G}(N)$ is a disjoint union of all $N g_{i} N \mathrm{~s}, \psi$ is an isomorphism in mod- R. The rest of the proof is similar to that of Proposition 4.2,

Example 6.3. Let k be a field of characteristic 2 which contains cubic roots of unity, $G=S_{4}$ be the symmetric group on 4 letters, and $A=k G$. Let $e_{1}=1+(123)+(132)$, $e_{2}=1+\omega(123)+\omega^{2}(132)$, $e_{3}=1+\omega^{2}(123)+\omega(132)$ be three idempotents of A, where $\omega \in k$ is a cubic root of unity. Then $1=e_{1}+e_{2}+e_{3}$ is a decomposition of 1 into primitive orthogonal idempotents. The basic algebra of A is $\Lambda=f A f$, where $f=e_{1}+e_{2}$. It can be shown that Λ is given by the quiver

with relations $\alpha \beta=\delta^{2}=\gamma \alpha=\gamma \beta=0$ and $\alpha \delta \beta=\gamma^{2}$.
(i) Let $S=\langle(12)\rangle$ be a subgroup of G, then $N_{G}(S)=C_{G}(S)=S \times L$, where $L=\langle(34)\rangle$. By Lemma 5.2, $|S g S|=|S|^{2}$ for any $g \in G-N_{G}(S)$. Let $R=k S, B=k L$. Since the trivial
B-module k satisfies $\Omega_{B}(k) \cong k$, by Proposition 6.1, the triple (A, R, B) defines a stable autoequivalence ρ of A. Moreover, ρ is induced by the functor $-\otimes_{A} K$, where K is the kernel of the A^{e}-homomorphism $A \otimes_{R} A \rightarrow A$, which is given by multiplication. Since Λ is Morita equivalent to A, the stable auto-equivalence ρ induces a stable auto-equivalence μ of Λ. It can be shown that $\mu(1)=2$ and $\mu(2)=\Omega_{\Lambda}(2)=1$

1

$$
\begin{array}{ll}
1 & 2 \\
&
\end{array}
$$

(ii) Let $N=\{(1),(12),(34),(12)(34)\}$ be a subgroup of G, then $N_{G}(N)=\{(1),(12),(34),(12)(34),(13)(24),(1324),(14)(23),(1423)\}=N \rtimes H$, where $H=\langle(13)(24)\rangle$. A calculation shows that $G=N_{G}(N) \cup N(13) N$, where $|N(13) N|=|N|^{2}$. Let $R^{\prime}=k N, B^{\prime}=k H$. Since the trivial B^{\prime}-module k satisfies $\Omega_{B^{\prime}}(k) \cong k$, by Proposition 6.1, the triple $\left(A, R^{\prime}, B^{\prime}\right)$ defines a stable auto-equivalence ρ^{\prime} of A. Moreover, ρ^{\prime} is induced by the functor $-\otimes_{A} K^{\prime}$, where K^{\prime} is the kernel of the A^{e}-homomorphism $A \otimes_{R^{\prime}} A \rightarrow A$, which is given by multiplication. Let μ^{\prime} be the stable auto-equivalence of Λ induced by ρ^{\prime}. It can be shown that $\mu^{\prime}(1)=\begin{array}{lllll}2\end{array}$ and $\mu^{\prime}(2)=\Omega_{\Lambda}^{-2}(2)=\begin{array}{cccc}1 & 2 & \\ 1 & 1 & 2 & 1\end{array}$.
(iii) Let $P=\langle(1324)\rangle$ be a subgroup of G, then
$N_{G}(P)=\{(1),(12),(34),(12)(34),(13)(24),(1324),(14)(23),(1423)\}=P \rtimes Q$, where
$Q=\langle(12)\rangle$. We have $G=N_{G}(P) \cup P(13) P$, where $|P(13) P|=|P|^{2}$. Let $R^{\prime \prime}=k P, B^{\prime \prime}=k Q$. Similar to case (2) above, the triple $\left(A, R^{\prime \prime}, B^{\prime \prime}\right)$ defines a stable auto-equivalence $\rho^{\prime \prime}$ of A, which is induced by the functor $-\otimes_{A} K^{\prime \prime}$, where $K^{\prime \prime}$ is the kernel of the A^{e}-homomorphism $A \otimes_{R^{\prime \prime}} A \rightarrow A$. Let $\mu^{\prime \prime}$ be the stable auto-equivalence of Λ induced by $\rho^{\prime \prime}$, then $\mu^{\prime \prime}(1)=2$ and $\mu^{\prime \prime}(2)=$ 12

6.2. In this subsection, we consider a class of non-local Brauer graph algebras and construct stable auto-equivalences over them. In general, such stable auto-equivalences are not induced by derived auto-equivalences.

Example 6.4. Let A be the Brauer graph algebra given by the Brauer graph $n \geq 1$. Then A is given by the quiver

with relations $(\alpha \delta \beta \gamma)^{n}=(\delta \beta \gamma \alpha)^{n}$, $(\beta \gamma \alpha \delta)^{n}=(\gamma \alpha \delta \beta)^{n}$, $\alpha^{2}=\delta \gamma=\beta^{2}=\gamma \delta=0$. Let $R=$ $k[\alpha] \times k[\beta], B=k[x]$ be two subalgebras of A, where $x=(\delta \beta \gamma \alpha)^{n-1} \delta \beta \gamma+(\gamma \alpha \delta \beta)^{n-1} \gamma \alpha \delta$. The triple (A, R, B) satisfies Assumption 1 in Section 3.
(1) If $\operatorname{char}(k)=2$, then B has a periodic free B^{e}-resolution $0 \rightarrow B \rightarrow B \otimes_{k} B \xrightarrow{\mu} B \rightarrow 0$ of period 1, where μ is the map given by multiplication. According to Theorem 3.5, the functor $-\otimes_{A} K$ induces a stable auto-equivalence of A, where K is the kernel of the A^{e}-homomorphism $A \otimes_{R} A \rightarrow A$ given by multiplication. Let S_{i} be the simple A-module which corresponds to the vertex i. A calculation shows that $S_{1} \otimes_{A} K \cong \operatorname{rad}\left(e_{1} A / \alpha A\right)$ and $S_{2} \otimes_{A} K \cong \operatorname{rad}\left(e_{2} A / \beta A\right)$. Note that neither $S_{1} \otimes_{A} K$ nor $S_{2} \otimes_{A} K$ belongs to the Ω_{A}-orbit of any simple A-module.

then X is the uniserial A-module 2. Let $\Lambda=\operatorname{End}_{A}\left(A \oplus S_{1}\right)$ and $\Gamma=\operatorname{End}_{A}(A \oplus X)$. By the 2

1
1
2
2
1
construction in [11, Corollary 1.2], there is a stable equivalence of Morita type between Λ and Γ. The Cartan matrix C_{Λ} of Λ is given by

$$
C_{\Lambda}=\left(\begin{array}{lll}
8 & 8 & 1 \\
8 & 8 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

and the Cartan matrix C_{Γ} of Γ is given by

$$
C_{\Gamma}=\left(\begin{array}{lll}
8 & 8 & 3 \\
8 & 8 & 4 \\
3 & 4 & 2
\end{array}\right)
$$

A calculation shows that C_{Λ} is congruent to

$$
M=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

over integers and C_{Γ} is congruent to

$$
N=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 8 & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

over integers. If a matrix

$$
\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

is congruent to N over integers, then it can be shown that a_{11} is even. Therefore the matrices M and N are not congruent over integers. So the matrices C_{Λ} and C_{Γ} are also not congruent over integers, which implies that Λ and Γ are not derived equivalent. According to [10, Proposition 6.1], the stable auto-equivalence of A induced by the functor $-\otimes_{A} K$ cannot be lifted to a derived auto-equivalence.
(2) If k is a field of arbitrary characteristic, then B has a periodic free B^{e}-resolution $0 \rightarrow$ $B \rightarrow B \otimes_{k} B \xrightarrow{f} B \otimes_{k} B \xrightarrow{\mu} B \rightarrow 0$ of period 2 , where $f(1 \otimes 1)=1 \otimes x-x \otimes 1$ and μ is the map given by multiplication. According to Theorem 3.5, the functor $-\otimes_{A} K^{\prime}$ induces a stable auto-equivalence of A, where K^{\prime} is given by the short exact sequence $0 \rightarrow K^{\prime} \rightarrow\left(A \otimes_{R} A\right) \oplus$ $P \xrightarrow{\left(h_{1}, h_{2}\right)} K \rightarrow 0$ of A^{e}-modules. Here K is the kernel of the A^{e}-homomorphism $A \otimes_{R} A \rightarrow A$
given by multiplication, $h_{1}(1 \otimes 1)=1 \otimes x-x \otimes 1$, and $h_{2}: P \rightarrow K$ is the projective cover of K as an A^{e}-module. A calculation shows that $S_{1} \otimes_{A} K^{\prime}$ (resp. $S_{2} \otimes_{A} K^{\prime}$) is isomorphic to the A-module $X_{1}\left(\right.$ resp. $\left.\quad X_{2}\right)$ in mod-A, where $X_{1}\left(\right.$ resp. $\left.\quad X_{2}\right)$ is given by the short exact sequence $0 \rightarrow X_{1} \rightarrow\left(e_{1} A / \alpha A\right) \oplus e_{2} A \xrightarrow{\left(u_{1}, u_{2}\right)} \operatorname{rad}\left(e_{1} A / \alpha A\right) \rightarrow 0$ (resp. the short exact sequence $0 \rightarrow X_{2} \rightarrow\left(e_{2} A / \beta A\right) \oplus e_{1} A \xrightarrow{\left(v_{1}, v_{2}\right)} \operatorname{rad}\left(e_{2} A / \beta A\right) \rightarrow 0$), where $u_{1}\left(\overline{e_{1}}\right)=\overline{(\delta \beta \gamma \alpha)^{n-1} \delta \beta \gamma}$ (resp. $\left.v_{1}\left(\overline{e_{2}}\right)=\overline{(\gamma \alpha \delta \beta)^{n-1} \gamma \alpha \delta}\right)$ and $u_{2}: e_{2} A \rightarrow \operatorname{rad}\left(e_{1} A / \alpha A\right)\left(r e s p . v_{2}: e_{1} A \rightarrow \operatorname{rad}\left(e_{2} A / \beta A\right)\right.$) is the projective cover of $\operatorname{rad}\left(e_{1} A / \alpha A\right)\left(\operatorname{resp} . \operatorname{rad}\left(e_{2} A / \beta A\right)\right)$. Note that neither X_{1} nor X_{2} belongs to the Ω_{A}-orbit of any simple A-module.

References

[1] T.Bridgeland, Equivalences of triangulated categories and Fourier-Mukai transforms. Bull. London Math. Soc. 31 (1999), 25-34.
[2] J.Carlson, A characterization of endotrivial modules over p-groups. manuscripta math. 97 (1998), 303-307.
[3] J.Carlson and J.Thévenaz, Torsion endo-trivial modules. Algebras and Representation Theory. 3 (2000), 303-335.
[4] J.Carlson and J.Thévenaz, The classification of endo-trivial modules. Invent. Math. 158 (2004), 389-411.
[5] J.Carlson and J.Thévenaz, The classification of torsion endo-trivial modules. Ann. Math. 162 (2005), 823-883.
[6] E.C.Dade, Une extension de la théorie de Hall et Higman. J. Algebra. 20 (1972), 570-609.
[7] E.C.Dade, Endo-permutation modules over p-groups II. Ann. Math. 108 (1978), 317-346.
[8] A.Dugas, Stable auto-equivalences for local symmetric algebras. J. Algebra 449 (2016), 22-49.
[9] E.L.Green, N.Snashall and \varnothing.Solberg, The Hochschild cohomology ring of a self-injective algebra of finite representation type. Proc. Amer. Math. Soc. 131 (2003), 3387-3393.
[10] W.Hu and C.C.XI, Derived equivalences and stable equivalences of Morita type, I. Nagoya Math.J. 200 (2010), 107-152.
[11] Y.M.Liu and C.C.XI, Constructions of stable equivalences of Morita type for finite dimensional algebras III. J. London Math. Soc. 76(3) (2007), 567-585.

NengQun Li and Yuming Liu
School of Mathematical Sciences
Laboratory of Mathematics and Complex Systems
Beijing Normal University
Beijing 100875
P.R.China

Email address: ymliu@bnu.edu.cn
Email address: wd0843@163.com

[^0]: * Corresponding author.

 Mathematics Subject Classification(2020): 16G10, 16D50.
 Keywords: Stable equivalence, Symmetric algebra, Endo-trivial module, Periodic free resolution. Date: version of October 24, 2023.

