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A GENERALIZATION OF DUGAS’ CONSTRUCTION ON STABLE

AUTO-EQUIVALENCES FOR SYMMETRIC ALGEBRAS

NENGQUN LI AND YUMING LIU*

Abstract
We give a unified generalization of Dugas’ construction on stable auto-equivalences of Morita type

from local symmetric algebras to arbitrary symmetric algebras. For group algebras kP of p-groups in
characteristic p, we recover all the stable auto-equivalences corresponding to endo-trivial modules over
kP except that P is generalized quaternion of order 2m. Moreover, we give many examples of stable
auto-equivalences of Morita type for non-local symmetric algebras.

1. Introduction

In [8], Dugas gave two methods to construct stable auto-equivalences (of Morita type) for
(finite dimensional) local symmetric algebras. One of particular interests is that such stable auto-
equivalences are often not induced by auto-equivalences of the derived category.

The first construction is given as follows.
Let A be an elementary local symmetric k-algebra, let x ∈ A be a nilpotent element. Set

R = k[x] ∼= k[X]/(Xm) for some integer m ≥ 2 and TA = k ⊗R A ∼= A/xA. Suppose that RA
and AR are free modules and that EndA(T )

∼= k[ψ]/(ψ2), where ψ is an endomorphism of T
induced by multiplying some y ∈ A. (As Dugas pointed out that the algebra EndA(T ) has a
periodic bimodule free resolution of period 2.) Let Cµ be the kernel of the multiplication map
µ : A⊗R A→ A. Then −⊗A Cµ : mod-A→ mod-A is a stable auto-equivalence of A.

Note that Ω−1
Ae (Cµ) ∼= Cone(µ) in mod-Ae and Dugas called the stable auto-equivalence − ⊗A

Ω−1
Ae (Cµ) as a spherical stable twist which is analogous to spherical twist constructed on the derived

category by Seidel and Thomas. Under the more general condition EndA(T )
∼= k[ψ]/(ψn+1) for

some n ≥ 1, Dugas gave a second construction using a double cone construction, and the induced
stable auto-equivalence is called Pn-stable twist since it is analogous to Pn-twist on the derived
category of coherent sheaves on a variety by Huybrechts and Thomas.

For group algebras of p-groups in characteristic p, Dugas recovered many of the stable auto-
equivalences corresponding to endo-trivial modules. He also obtained stable auto-equivalences for
local algebras of dihedral and semi-dihedral type, which are not group algebras.

In this note, we give a unified generalization of Dugas’ construction by greatly relaxing the
conditions on both A and R and by adding a new subalgebra B of A. The main idea is as follows.
For a symmetric k-algebra A, consider a triple (A,R,B), where R, B are subalgebras of A such
that R is also symmetric and B (as a B-B-bimodule) has a periodic free resolution of period q.
Then, under some commutativity assumptions between R, B and A, we may construct a complex
of left-right projective A-A-bimodules. Using this complex, we can construct a left-right projective
A-A-bimodule Mq using a multiple cone construction such that the functor − ⊗A Mq induces a
stable auto-equivalence of A. The main results are Theorem 3.5 and Theorem 4.1.

Our construction generalizes Dugas’ construction in three ways. Firstly, we dropped the con-
dition that the algebra A is local. Secondly, we don’t request the subalgebra R to be local or
Nakayama. Thirdly, we use a subalgebra B of A to replace EndA(T ) in Dugas’ construction,
which is more flexible. For a connection between B and EndA(T ), we refer to Remark 3.2 below.
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For group algebras kP of p-groups in characteristic p, we recover all the stable auto-equivalences
of kP corresponding to endo-trivial modules except that P is generalized quaternion of order 2m,
see Proposition 5.1. Moreover, we can construct many examples of stable auto-equivalences of
Morita type (which are not induced by derived equivalences in general) for non-local symmetric
algebras, see Section 6.

Our discussion is also related to construct stable equivalences between different algebras. In
particular, we will use a method in [11], which gives a way to construct new stable equivalence
between non-Morita equivalent algebras from a given stable auto-equivalence.

This paper is organized as follows. In Section 2, we state some general results on triangulated
functors, in particular we recall some results that are useful in establishing that a given trian-
gulated functor is an equivalence. We give the constructions of stable auto-equivalences for (not
necessarily local) symmetric algebras in Section 3 and Section 4. We show in Section 5 that our
construction recovers all the stable auto-equivalences corresponding to endo-trivial modules over
a finite p-group algebra kP when P is not generalized quaternion of order 2m. In Section 6, we
construct various examples of stable auto-equivalences for non-local symmetric algebras.

Data availability

The datasets generated during the current study are available from the corresponding author
on reasonable request.

2. Preliminary

Throughout this section, let k be a field and let T be a Hom-finite triangulated k-category with
suspension [1]. A typical example of this kind of triangulated k-category is the stable category
mod-A of finite-dimensional right A-modules, where A is a finite-dimensional self-injective k-
algebra. Note that the suspension in mod-A is given by the cosyzygy functor Ω−1

A and mod-A has
a Serre functor νAΩA, where νA is the Nakayama functor.

We have the following interesting result on triangulated functor.

Lemma 2.1. Let T ′ and T1, · · · , Tn be indecomposable (Hom-finite) Krull-Schmidt triangulated
k-categories and let T = T1 × · · · × Tn. Let F : T ′ → T be a fully faithful triangulated functor,
which maps some nonzero object X of T ′ to an object of T1. Then the image of F is in T1.

Proof. Since T ′ and T are Krull-Schmidt and F is fully faithful, F sends each indecomposable
object Y of T ′ to an indecomposable object FY of T , therefore FY ∈ Ti for some i. Let C1

(resp. C2) be the full subcategory of T ′ which is formed by the objects Z such that FZ ∈ T1

(resp. FZ ∈ T2 × · · · ×Tn). For each object Z of T ′, let Zi be the direct sum of indecomposable
summands of Z which belong to Ci, i = 1, 2. Then Z = Z1 ⊕ Z2 with Zi ∈ Ci. For every
pair of objects Ai ∈ Ci and for each n ∈ Z, since FA1 ∈ T1 and (FA2)[n] ∈ T2 × · · · × Tn,
T ′(A1, A2[n]) ∼= T (FA1, (FA2)[n]) = 0. Since T ′ is indecomposable, either C1 or C2 is zero.
Since 0 6= X ∈ C1, C2 must be zero. Therefore C1 = T ′. �

Remark 2.2. We will use Lemma 2.1 in the following situation. Let A be a self-injective k-algebra
with a decomposition A = A1 × · · · × An into indecomposable algebras. Suppose that M is a left-
right projective A-A-bimodule and induces a fully faithful functor −⊗A M : mod-A→ mod-A on
stable category. Suppose that X is a non-projective A1-module such that X ⊗A M is a Ai-module
for some i. Then −⊗A M restricts to a fully faithful functor mod-A1 → mod-Ai.

Next we recall from [1, 8] some general results that are useful in establishing that a given
triangulated functor is an equivalence.

Let T be a triangulated category and let C be a collection of objects in T . For any n ∈ Z,
define C [n] := {X[n] | X ∈ C }. Moreover, define C⊥ := {Y ∈ T | T (X,Y ) = 0 for any X ∈ C }

and ⊥
C := {Y ∈ T | T (Y,X) = 0 for any X ∈ C }.
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Definition 2.3. ([8, Definition 2.1]) Let T be a triangulated category. A collection C of ob-
jects in T is called a spanning class (resp. strong spanning class) if (

⋃
n∈Z C [n])⊥ = 0 and

⊥(
⋃

n∈Z C [n]) = 0 (resp. C⊥ = 0 and ⊥
C = 0).

Remark 2.4. If T is a triangulated category which has a Serre functor, then for any object X
of T , C = {X} ∪X⊥ is a strong spanning class of T .

Proposition 2.5. ([1, Theorem 2.3] and [8, Proposition 2.2]) Let T and T ′ be triangulated
categories, and let F : T → T ′ be a triangulated functor with a left and a right adjoint. Then
F is fully faithful if and only if there exists a strong spanning class C of T such that F induces
isomorphisms T (X,Y [n]) → T ′(FX,F (Y [n])) for any X, Y ∈ C and for any n = 0, 1.

Proposition 2.6. ([1, Theorem 3.3]) Let T and T ′ be triangulated categories with T nonzero,
T ′ indecomposable, and let F : T → T ′ be a fully faithful triangulated functor. Then F is an
equivalence of categories if and only if F has a left adjoint G and a right adjoint H such that
H(Y ) ∼= 0 implies G(Y ) ∼= 0 for any Y ∈ T ′.

Combining Propositions 2.5 and 2.6 we have the following consequence for symmetric algebras
(see the definition of a symmetric algebra in Section 3):

Corollary 2.7. Let Λ, Γ be symmetric k-algebras such that Λ is not semisimple and Γ is in-
decomposable, and let M be a left-right projective Λ-Γ-bimodule. Denote F the stable func-
tor induced by the functor − ⊗Λ M : mod-Λ → mod-Γ. If there exists a strong spanning
class C of mod-Λ such that for any X, Y ∈ C and for any n = 0, 1, the homomorphism
F : HomΛ(X,Y [n]) → HomΓ(FX,F (Y [n])) is an isomorphism, then F is an equivalence.

Proof. Since Λ, Γ are symmetric, by [8, Lemma 3.2], the functor −⊗Γ DM : mod-Γ → mod-Λ is
both the left and the right adjoint of − ⊗Λ M : mod-Λ → mod-Γ. Therefore the stable functor
G : mod-Γ → mod-Λ induced by − ⊗Γ DM is both the left and the right adjoint of F . By
Proposition 2.5, F is fully faithful. Since Λ is not semisimple and Γ is indecomposable, mod-Λ is
nonzero and mod-Γ is indecomposable as a triangulated category. Then it follows from Proposition
2.6 that F is an equivalence. �

3. A construction of stable auto-equivalences for symmetric algebras

In the following, unless otherwise stated, all algebras considered will be finite dimensional
unitary k-algebras over a field k, and all their modules will be finite dimensional right modules.
By a subalgebra B of an algebra A, we mean that B is a subalgebra of A with the same identity
element.

We denote by Ae the enveloping algebra of A, which by definition is Aop ⊗k A. We let D =
Homk(−, k) be the duality with respect to the ground field k. Recall that an algebra A is symmetric
if A ∼= D(A) as right Ae-modules (or equivalently, as A-A-bimodules). It is well-known that
symmetric algebras are self-injective algebras with identity Nakayama functors.

In this section, we make the following
Assumption 1: Let k be a field, A be a symmetric k-algebra, R be a non-semisimple symmetric

k-subalgebra of A such that AR is projective. Let B be another k-subalgebra of A, such that the
following conditions hold:
(a) br = rb for each b ∈ B and r ∈ R;

(b) B ⊗k (R/radR)
φ
−→ (R/radR)⊗R A, b⊗ 1 7→ 1⊗ b is an isomorphism in mod-R;

(c) B has a periodic free Be-resolution, that is, there exists an exact sequence

(1) 0 → B
δq
−→ (B ⊗k B)mq−1

δq−1

−−−→ · · · → (B ⊗k B)m1
δ1−→ (B ⊗k B)m0

δ0−→ B → 0

of Be-modules.
From now on, we fix (A,R,B) as a triple of algebras satisfying Assumption 1.
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Remark 3.1. (i) Let TA := (R/radR)⊗RAA
∼= A/(radR)A. Since R is not semisimple, R/radR

is non-projective. Since B ⊗k (R/radR) ∼= TR in mod-R, TR is non-projective. Since AR is
projective, TA is also non-projective. Moreover, it shows that A is not semisimple.
(ii) In most examples of this paper, R is a subalgebra of A with the property that RAR

∼= RR
n
R ⊕

(R⊗R)l for some positive integers n and l.
(iii) The condition (c) implies that B is a self-injective algebra by [9, Theorem 1.4].

Remark 3.2. Since B⊗k(R/radR)
φ
−→ (R/radR)⊗RA ∼= A/(radR)A, b⊗1 7→ b is an isomorphism

in mod-R, we have isomorphisms

(2) B ⊗k EndR(R/radR)
∼= HomR(R/radR,B ⊗k (R/radR)) ∼=

HomR(R/radR,A/(radR)A)
∼= EndA(A/(radR)A),

where the last isomorphism is induced from the adjoint isomorphism given by the adjoint pair
(F,G), where F (resp. G) is the stable functor mod-R → mod-A (resp. mod-A → mod-R)
induced from the induction functor − ⊗R A (resp. restriction functor − ⊗A AR). Moreover,
it can be shown that the composition of these isomorphisms is a k-algebra isomorphism from
B ⊗k EndR(R/radR) to EndA(A/(radR)A). Especially, if R is an elementary local symmetric
k-algebra, then our subalgebra B is isomorphic to EndA(T ) = EndA(A/(radR)A), which give the
connection between our construction and Dugas’ construction.

Remark 3.3. Since A is symmetric, AA is isomorphic to D(AA) as A-modules, and RA is
isomorphic to D(AR) as R-modules. Since AR is projective and R is self-injective, AR is injective
and therefore RA

∼= D(AR) is projective.

Let lrp(A) be the category of left-right projective A-A-bimodules, and let lrp(A) be the stable
category of lrp(A) obtained by factoring out the morphisms that factor through a projective Ae-
module. Since Ae is self-injective (even symmetric), lrp(A) becomes a triangulated category. Let
sum-Be be the full subcategory of mod-Be consists of finite direct sum of copies of B ⊗k B. For
each Be-module homomorphism f : B ⊗k B → B ⊗k B, 1 ⊗ 1 7→

∑
bi ⊗ b′i, applies the functor

A ⊗B − ⊗B A, we have an Ae-homomorphism f̃ : A ⊗k A → A ⊗k A, 1 ⊗ 1 7→
∑
bi ⊗ b′i. Since

f̃ is induced from a Be-homomorphism and the elements of B commute with the elements of R

under multiplication, f̃ induces an Ae-homomorphism H(f) : A ⊗R A → A ⊗R A, which makes
the diagram

B ⊗k B
f

//

��

B ⊗k B

��
A⊗R A

H(f)
// A⊗R A

commutes. In general, for each Be-homomorphism f : (B ⊗k B)n → (B ⊗k B)m in sum-Be, let
H(f) be the unique Ae-homomorphism (A⊗R A)

n → (A⊗R A)
m such that the diagram

(B ⊗k B)n
f

//

��

(B ⊗k B)m

��
(A⊗R A)

n H(f)
// (A⊗R A)

m

commutes, where the vertical morphisms are the obvious morphisms. Then we have defined a
functor H : sum-Be → lrp(A).

Applying H to the complex (B⊗k B)mq−1
δq−1

−−−→ · · · → (B⊗k B)m1
δ1−→ (B⊗k B)m0 in Equation

(1) we get a complex

(A⊗R A)
mq−1

dq−1

−−−→ · · · → (A⊗R A)
m1

d1−→ (A⊗R A)
m0 .
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Let d̃0 be the composition (A⊗kA)
m0

A⊗Bδ0⊗BA
−−−−−−−→ A⊗BA

µ
−→ A, where µ is the morphism given by

multiplication. Since the elements of B commute with the elements of R under multiplication, d̃0

induces an Ae-homomorphism (A⊗RA)
m0

d0−→ A. It can be shown that d0d1 = 0, so the sequence

(3) (A⊗R A)
mq−1

dq−1

−−−→ · · · → (A⊗R A)
m1

d1−→ (A⊗R A)
m0

d0−→ A

is again a complex.

Lemma 3.4. There exist triangles

M1
i1
−→ (A⊗R A)

m0
d0
−→ A→,

M2
i2
−→ (A⊗R A)

m1
f1
−→M1 →,

· · · ,

Mq

iq
−→ (A⊗R A)

mq−1
fq−1

−−−→Mq−1 →

in the triangulated category lrp(A) such that ipfp = dp for 1 ≤ p ≤ q − 1.

Proof. Let i1 : M1 → (A ⊗R A)
m0 be the kernel of d0 : (A ⊗R A)

m0 → A. Since d0 is surjective,

0 → M1
i1−→ (A ⊗R A)m0

d0−→ A → 0 is an exact sequence, which induces a triangle M1
i1
−→

(A ⊗R A)
m0

d0
−→ A → in lrp(A). Since d0d1 = 0, there exists a morphism f1 : (A ⊗R A)

m1 → M1

such that d1 = i1f1. Let v1 : P1 → M1 be the projective cover of M1 as an Ae-module, and let[
i2
u1

]
:M2 → (A⊗RA)

m1⊕P1 be the kernel of [ f1 v1 ] : (A⊗RA)
m1⊕P1 →M1. Since the morphism

[ f1 v1 ] is surjective, the short exact sequence 0 → M2

[
i2
u1

]

−−−→ (A ⊗R A)
m1 ⊕ P1

[ f1 v1 ]
−−−−→ M1 → 0

induces a triangle M2
i2
−→ (A ⊗R A)m1

f1
−→ M1 → in lrp(A). Since i1f1d2 = d1d2 = 0 and i1

is injective, f1d2 = 0. Since the morphism
[
d2
0

]
: (A ⊗R A)m2 → (A ⊗R A)m1 ⊕ P1 satisfies

[ f1 v1 ]
[
d2
0

]
= f1d2 = 0, there exists a morphism f2 : (A⊗R A)

m2 → M2 such that d2 = i2f2 and
u1f2 = 0.

Using the same method, we can construct morphisms ip : Mp → (A ⊗R A)
mp−1 for 1 ≤ p ≤ q,

and morphisms fp′ : (A ⊗R A)
mp′ → Mp′ , up′ : Mp′+1 → Pp′ , vp′ : Pp′ → Mp′ for 1 ≤ p′ ≤ q − 1

with Pp′ projective as Ae-modules, such that the following conditions hold:
(i) ipfp = dp for 1 ≤ p ≤ q − 1;
(ii) upfp+1 = 0 for 1 ≤ p ≤ q − 2;

(iii) 0 →M1
i1−→ (A⊗R A)

m0
d0−→ A→ 0 and 0 →Mp+1

[
ip+1

up

]

−−−−→ (A⊗R A)
mp ⊕ Pp

[ fp vp ]
−−−−→Mp → 0

are short exact sequences for 1 ≤ p ≤ q − 1.
Since each Pp is a projective Ae-module, these short exact sequences induce triangles

M1
i1
−→ (A⊗R A)

m0
d0
−→ A→,

M2
i2
−→ (A⊗R A)

m1
f1
−→M1 →,

· · · ,

Mq

iq
−→ (A⊗R A)

mq−1
fq−1

−−−→Mq−1 →

in lrp(A). �

Theorem 3.5. Let (A,R,B) be the triple that satisfies Assumption 1. If Mq is the A-A-bimodule
defined in Lemma 3.4, then −⊗A Mq : mod-A→ mod-A is a stable auto-equivalence of A.
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Proof. Let F = − ⊗R AA and G = − ⊗A AR be the induction and the restriction functors
respectively. Since A and R are symmetric and RAA is left-right projective, both (F,G) and
(G,F ) are adjoint pairs. Since both F and G map projectives to projectives, they induce stable
functors (which are also denoted by F and G). Moreover, G is both the left and the right adjoint
of F as stable functors. Let TA = F (R/radR) = (R/radR) ⊗R AA

∼= A/(radR)A. According to
Remark 3.1, TA is a nonzero object in mod-A. Since the elements of B commute with the elements
of R under multiplication, T ∼= A/(radR)A becomes a B-A-bimodule.

Under the above notations, we now prove that − ⊗A Mq : mod-A → mod-A is a stable auto-
equivalence of A. We will consider two cases.

Case 1: Assume that A (as an algebra) is indecomposable.
Choose a strong spanning class C = {T} ∪ T⊥ of mod-A, where T⊥ = {X ∈ mod-A |

HomA(T,X) = 0}. According to Corollary 2.7, it suffices to show that − ⊗A Mq induces bi-
jections between HomA(X,Y [i]) and HomA(X ⊗AMq, (Y [i])⊗AMq) for all X, Y ∈ C and for all
i = 0, 1. We will divide the proof of Case 1 into four steps.

Step 1.1: To show that − ⊗A Mq induces a bijection between HomA(T, T ) and HomA(T ⊗A

Mq, T ⊗A Mq).

Since φ : B ⊗k (R/radR) → A/(radR)A, b ⊗ 1 7→ b is an isomorphism in mod-R, φ ⊗ 1 :
B ⊗k T ∼= B ⊗k (R/radR) ⊗R A → A/(radR)A ⊗R A = T ⊗R A is an isomorphism in mod-A.

Applying the functors −⊗B TA and T ⊗A − to the complex 0 → B
δq
−→ (B ⊗k B)mq−1

δq−1

−−−→ · · · →

(B⊗kB)m1
δ1−→ (B⊗kB)m0

δ0−→ B → 0 and the complex (A⊗RA)
mq−1

dq−1

−−−→ · · · → (A⊗RA)
m1

d1−→

(A⊗R A)
m0

d0−→ A respectively, we get a commutative diagram in mod-A:

0 // T
δq⊗1

// (B ⊗k T )
mq−1

δq−1⊗1
//

(φ⊗1)mq−1

��

· · · // (B ⊗k T )
m1

δ1⊗1 //

(φ⊗1)m1

��

(B ⊗k T )
m0

δ0⊗1 //

(φ⊗1)m0

��

T // 0

(T ⊗R A)
mq−1

1⊗dq−1// · · · // (T ⊗R A)
m1

1⊗d1 // (T ⊗R A)
m0

1⊗d0 // T

Since 0 → B
δq
−→ (B ⊗k B)mq−1

δq−1

−−−→ · · · → (B ⊗k B)m1
δ1−→ (B ⊗k B)m0

δ0−→ B → 0 is
split exact as a complex of right B-modules, the first row of this commutative diagram is also

split exact. Therefore we have split exact sequences 0 → K1
j1
−→ (B ⊗k T )

m0
δ0⊗1
−−−→ T → 0,

0 → K2
j2
−→ (B ⊗k T )

m1
p1
−→ K1 → 0, · · · , 0 → Kq−1

jq−1

−−−→ (B ⊗k T )
mq−2

pq−2

−−−→ Kq−2 → 0,

0 → T
δq⊗1
−−−→ (B ⊗k T )

mq−1
pq−1

−−−→ Kq−1 → 0 in mod-A such that jlpl = δl ⊗ 1 for 1 ≤ l ≤ q − 1.
There is a commutative diagram

K1

j1
// (B ⊗k T )

m0
δ0⊗1

//

(φ⊗1)m0

��

T //

T ⊗A M1

1⊗i1
// (T ⊗R A)

m0
1⊗d0

// T //

in mod-A, where its two rows are triangles and (φ⊗ 1)m0 is an isomorphism in mod-A. Therefore

we have an isomorphism α1 : K1 → T ⊗AM1 in mod-A such that (φ⊗ 1)m0j1 = (1⊗ i1)α1. Since
j1 is a split monomorphism in mod-A, so does 1⊗ i1. Since

(4) (1⊗ i1)α1p1 = (φ⊗ 1)m0j1p1 = (φ⊗ 1)m0(δ1 ⊗ 1) =

(1⊗ d1)(φ ⊗ 1)m1 = (1⊗ i1)(1 ⊗ f1)(φ⊗ 1)m1
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in mod-A and since 1⊗ i1 is a split monomorphism in mod-A, we have α1p1 = (1⊗ f1)(φ⊗ 1)m1

in mod-A. Then we have a commutative diagram

K2

j2
// (B ⊗k T )

m1

p1
//

(φ⊗1)m1

��

K1
//

α1

��
T ⊗A M2

1⊗i2
// (T ⊗R A)

m1

1⊗f1
// T ⊗A M1

//

in mod-A, whose rows are triangles and vertical morphisms are isomorphisms. So we have an
isomorphism α2 : K2 → T ⊗A M2 in mod-A such that (φ⊗ 1)m1j2 = (1⊗ i2)α2. Inductively, we

have isomorphisms αl : Kl → T ⊗A Ml in mod-A for 1 ≤ l ≤ q (let Kq = T ), such that

K1

j1
//

α1

��

(B ⊗k T )
m0

δ0⊗1
//

(φ⊗1)m0

��

T //

T ⊗A M1

1⊗i1
// (T ⊗R A)

m0
1⊗d0

// T //

is an isomorphism of triangles and

Kl+1

jl+1
//

αl+1

��

(B ⊗k T )
ml

pl
//

(φ⊗1)ml

��

Kl
//

αl

��
T ⊗A Ml+1

1⊗il+1
// (T ⊗R A)

ml

1⊗fl
// T ⊗A Ml

//

are isomorphisms of triangles for 1 ≤ l ≤ q − 1 (let jq = δq ⊗ 1 : T → (B ⊗k T )
mq−1).

Since αq : T → T ⊗A Mq is an isomorphism in mod-A, to show − ⊗A Mq induces a bijection

between HomA(T, T ) and HomA(T⊗AMq, T⊗AMq), it suffices to show that for each f ∈ EndA(T ),
the diagram

T
f

//

αq

��

T

αq

��
T ⊗A Mq

f⊗1
// T ⊗A Mq

is commutative. We have an isomorphism EndA(T )
∼= HomR(R/radR, TR)

∼= HomR(R/radR,B⊗k

(R/radR)), where the second isomorphism is induced from the isomorphism φ : B⊗k (R/radR) →
A/(radR)A, b ⊗ 1 7→ b in mod-R. For f ∈ EndA(T ), suppose the isomorphism EndA(T ) →

HomR(R/radR,B ⊗k (R/radR)) maps f to g, where g(1) =
∑

j βj ⊗ rj with βj ∈ B, rj ∈ R.

Then f = h, where h : TA → TA, 1 7→
∑

j βjrj. Consider the diagram

T

h

xxrr
rr
rr
rr
rr
rr
rr
r
rr

αq

��

(φ⊗1)mq−1 (δq⊗1)

))❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚

T

αq

��

(φ⊗1)mq−1 (δq⊗1)

))❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

T ⊗A Mq

h⊗1

yyss
s
s
s
s
s
s
s
s
s
s
s
s

1⊗iq
// (T ⊗R A)

mq−1

(h⊗1)mq−1

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦

T ⊗A Mq

1⊗iq
// (T ⊗R A)

mq−1
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Figure 1

in mod-A, where (φ ⊗ 1)mq−1(δq ⊗ 1) denotes the composition T
δq⊗1
−−−→ (B ⊗k T )

mq−1
(φ⊗1)mq−1

−−−−−−−→
(T ⊗R A)

mq−1 . Since

T
δq⊗1

//

αq

��

(B ⊗k T )
mq−1

pq−1

//

(φ⊗1)mq−1

��

Kq−1
//

αq−1

��
T ⊗A Mk

1⊗iq
// (T ⊗R A)

mq−1

1⊗fq−1

// T ⊗A Mq−1
//

is an isomorphism of triangles in mod-A, and since δq ⊗ 1 is a split monomorphism in mod-A,

1⊗ iq is also a split monomorphism in mod-A. Since the bottom face, the front face, the back

face of Figure 1 are commutative, and since 1⊗ iq is a split monomorphism, to show the left face

of Figure 1 commutes, it suffices to show the diagram

T
h

//

δq⊗1

��

T

δq⊗1

��
(B ⊗k T )

mq−1

(φ⊗1)mq−1

��

(B ⊗k T )
mq−1

(φ⊗1)mq−1

��
(T ⊗R A)

mq−1

(h⊗1)mq−1

// (T ⊗R A)
mq−1

Figure 2

is commutative in mod-A.
Since δq : B → (B ⊗k B)mq−1 is a Be-homomorphism, we may write δq as (δ1q , · · · , δ

mq−1

q )′,

where δiq : B → B ⊗k B, 1 7→
∑

l bil ⊗ b′il for 1 ≤ i ≤ mq−1. To show that the diagram in Figure 2
commutes, it suffices to show for each 1 ≤ i ≤ mq−1, the diagram

T
h //

δiq⊗1

��

T

δiq⊗1

��
B ⊗k T

φ⊗1

��

B ⊗k T

φ⊗1

��
T ⊗R A

h⊗1 // T ⊗R A

Figure 3

is commutative in mod-A.
For 1 ∈ T = A/(radR)A, (h ⊗ 1)(φ ⊗ 1)(δiq ⊗ 1)(1) = (h ⊗ 1)(φ ⊗ 1)(

∑
l bil ⊗ b′il) = (h ⊗

1)(
∑

l bil ⊗ b′il) =
∑

l (
∑

j βjrj)bil ⊗ b′il =
∑

j(
∑

l βjbil ⊗ b′il)rj , where the last identity follows
from the fact that the elements of B commute with the elements of R under multiplication.
Moreover, (φ ⊗ 1)(δiq ⊗ 1)h(1) = (φ ⊗ 1)(δiq ⊗ 1)(

∑
j βjrj) = (φ ⊗ 1)(

∑
l bil ⊗ b′il(

∑
j βjrj)) =∑

l bil ⊗ b′il(
∑

j βjrj) =
∑

j(
∑

l bil ⊗ b′ilβj)rj . Since δiq : B → B ⊗k B is a Be-homomorphism,∑
l βjbil ⊗ b′il = βj(

∑
l bil ⊗ b′il) = βjδ

i
q(1) = δiq(βj) = δiq(1)βj = (

∑
l bil ⊗ b′il)βj =

∑
l bil ⊗ b′ilβj in

B⊗kB. Since
∑

l βjbil⊗ b
′
il ∈ T ⊗RA (resp.

∑
l bil⊗ b

′
ilβj ∈ T ⊗RA) is the image of

∑
l βjbil⊗ b

′
il

(resp.
∑

l bil⊗b
′
ilβj) under the composition of morphisms B⊗kB → A⊗kA→ A⊗RA→ T ⊗RA,
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∑
l βjbil⊗b

′
il =

∑
l bil⊗b

′
ilβj in T⊗RA. Therefore (h⊗1)(φ⊗1)(δiq⊗1)(1) =

∑
j(
∑

l βjbil⊗b
′
il)rj =∑

j(
∑

l bil ⊗ b′ilβj)rj = (φ⊗ 1)(δiq ⊗ 1)h(1) and the diagram in Figure 3 commutes.

Step 1.2: To show that − ⊗A Mq induces a bijection between HomA(T, T [1]) and HomA(T ⊗A

Mq, T [1] ⊗A Mq).

Since the functor − ⊗A Mq : mod-A → mod-A commutes with the functor [1] = Ω−1
A : mod-

A→ mod-A up to natural isomorphism, it suffices to show −⊗A Mq induces a bijection between
HomA(ΩAT, T ) and HomA(ΩAT ⊗A Mq, T ⊗A Mq).

There is a commutative diagram

0 // B ⊗k radR //

ν

��

B ⊗k R //

µ

��

B ⊗k (R/radR) //

φ
��

0

0 // (radR)A // A // A/(radR)A // 0

in mod-R with exact rows, where µ and ν are induced by the multiplication of A. Since R is
symmetric and AR is projective, ν = ΩR(φ) is an isomorphism in mod-R. Therefore B⊗k ΩAT =

B⊗k (radR)A ∼= B⊗k radR⊗RA
ν⊗1
−−→ (radR)A⊗RA = ΩAT ⊗RA is an isomorphism in mod-A.

Since the elements of B commute with the elements of R under multiplication, ΩAT = (radR)A
becomes a B-A-bimodule. Applies the functors − ⊗B (ΩAT )A and ΩAT ⊗A − to the complex

0 → B
δq
−→ (B ⊗k B)mq−1

δq−1

−−−→ · · · → (B ⊗k B)m1
δ1−→ (B ⊗k B)m0

δ0−→ B → 0 and the complex

(A⊗R A)
mq−1

dq−1

−−−→ · · · → (A⊗R A)
m1

d1−→ (A⊗R A)
m0

d0−→ A respectively, we get a commutative
diagram in mod-A:

0 // ΩAT
δq⊗1

// (B ⊗k ΩAT )
mq−1

δq−1⊗1
//

(ν⊗1)mq−1

��

· · · // (B ⊗k ΩAT )
m1

δ1⊗1//

(ν⊗1)m1

��

(B ⊗k ΩAT )
m0

δ0⊗1//

(ν⊗1)m0

��

ΩAT // 0

(ΩAT ⊗R A)
mq−1

1⊗dq−1// · · · // (ΩAT ⊗R A)
m1

1⊗d1// (ΩAT ⊗R A)
m0

1⊗d0// ΩAT

By the same argument as in Step 1.1, we have isomorphisms of split triangles

Ll+1

ιl+1
//

βl+1

��

(B ⊗k ΩAT )
ml

ql
//

(ν⊗1)ml

��

Ll
//

βl

��
ΩAT ⊗A Ml+1

1⊗il+1
// (ΩAT ⊗R A)

ml

1⊗fl
// ΩAT ⊗A Ml

//

in mod-A for 0 ≤ l ≤ q − 1, where L0 = Lq = ΩAT , q0 = δ0 ⊗ 1 : (B ⊗k ΩAT )
m0 → ΩAT ,

f0 = d0 : (A⊗R A)
m0 → A, ιq = δq ⊗ 1 : ΩAT → (B ⊗k ΩAT )

mq−1 .
To show −⊗AMq induces a bijection between HomA(ΩAT, T ) and HomA(ΩAT⊗AMq, T⊗AMq),

it suffices to show that for each f ∈ HomA(ΩAT, T ), the diagram

ΩAT
f

//

βq

��

T

αq

��
ΩAT ⊗A Mq

f⊗1
// T ⊗A Mq

is commutative. We have isomorphisms

(5) HomA(ΩAT, T ) = HomA(F (radR), T )
∼= HomR(radR, TR)

∼= HomR(radR,B ⊗k (R/radR)),

where the second isomorphism is induced from the isomorphism φ : B⊗k(R/radR) → A/(radR)A,
b⊗1 7→ b in mod-R. Choose a k-basis x1, · · · , xn of B, then each g ∈ HomR(radR,B⊗k (R/radR))
can be written as a column vector (g1, · · · , gn)

′, where gi ∈ HomR(radR,R/radR) for 1 ≤ i ≤
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n. For f ∈ HomA(ΩAT, T ), suppose the isomorphism HomA(ΩAT, T ) → HomR(radR,B ⊗k

(R/radR)) maps f to g, where g = (g1, · · · , gn)
′ with gi ∈ HomR(radR,R/radR). Suppose

for each r ∈ radR, gi(r) = γi with γi ∈ R. Then f = h, where h ∈ HomA(ΩAT, T ) with

h(r) =
∑n

i=1 xiγi for each r ∈ radR. Consider the diagram

ΩAT

h

xx♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣

βq

��

(ν⊗1)mq−1 (δq⊗1)

**❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚

T

αq

��

(φ⊗1)mq−1 (δq⊗1)

))❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

ΩAT ⊗A Mq

h⊗1

xxrr
rr
rr
r
rr
r
rr
r
rr

1⊗iq
// (ΩAT ⊗R A)

mq−1

(h⊗1)mq−1

vv♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥

T ⊗A Mq

1⊗iq
// (T ⊗R A)

mq−1

Figure 4

in mod-A, where (φ ⊗ 1)mq−1(δq ⊗ 1) denotes the composition T
δq⊗1
−−−→ (B ⊗k T )

mq−1
(φ⊗1)mq−1

−−−−−−−→

(T⊗RA)
mq−1 and (ν⊗1)mq−1(δq⊗1) denotes the composition ΩAT

δq⊗1
−−−→ (B⊗kΩAT )

mq−1
(ν⊗1)mq−1

−−−−−−−→
(ΩAT⊗RA)

mq−1 . Since the bottom face, the front face, the back face of Figure 4 are commutative,
and since 1⊗ iq is a split monomorphism in mod-A, to show the left face of Figure 4 commutes,

it suffices to show the diagram

ΩAT
h

//

δq⊗1

��

T

δq⊗1

��
(B ⊗k ΩAT )

mq−1

(ν⊗1)mq−1

��

(B ⊗k T )
mq−1

(φ⊗1)mq−1

��
(ΩAT ⊗R A)

mq−1

(h⊗1)mq−1

// (T ⊗R A)
mq−1

Figure 5

is commutative in mod-A.
Since δq : B → (B ⊗k B)mq−1 is a Be-homomorphism, we may write δq as (δ1q , · · · , δ

mq−1

q )′,

where δiq : B → B ⊗k B, 1 7→
∑

l bil ⊗ b′il for 1 ≤ i ≤ mq−1. To show the diagram in Figure 5
commutes, it suffices to show for each 1 ≤ i ≤ mq−1, the diagram

ΩAT
h //

δiq⊗1

��

T

δiq⊗1

��
B ⊗k ΩAT

ν⊗1

��

B ⊗k T

φ⊗1

��
ΩAT ⊗R A

h⊗1 // T ⊗R A
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Figure 6

is commutative in mod-A.
For each r ∈ radR ⊆ (radR)A = T , (h⊗ 1)(ν ⊗ 1)(δiq ⊗ 1)(r) = (h⊗ 1)(ν ⊗ 1)(

∑
l bil ⊗ b′ilr) =

(h⊗1)(ν⊗1)(
∑

l bil⊗rb
′
il) = (h⊗1)(

∑
l bilr⊗b

′
il) = (h⊗1)(

∑
l rbil⊗b

′
il) =

∑
l (
∑n

j=1 xjγj)bil⊗b
′
il =∑n

j=1(
∑

l xjbil ⊗ b′il)γj and (φ ⊗ 1)(δiq ⊗ 1)h(r) = (φ ⊗ 1)(δiq ⊗ 1)(
∑n

j=1 xjγj) = (φ ⊗ 1)(
∑

l bil ⊗

b′il(
∑n

j=1 xjγj)) =
∑

l

∑n
j=1 bil ⊗ b′ilxjγj =

∑n
j=1(

∑
l bil ⊗ b′ilxj)γj . Here we use the fact that the

elements of B commute with the elements of R under multiplication. Since δiq : B → B⊗kB is aBe-

homomorphism,
∑

l xjbil ⊗ b′il = xj(
∑

l bil ⊗ b′il) = xjδ
i
q(1) = δiq(xj) = δiq(1)xj = (

∑
l bil ⊗ b′il)xj =∑

l bil⊗ b
′
ilxj in B⊗kB. Since

∑
l xjbil⊗ b

′
il ∈ T ⊗RA (resp.

∑
l bil⊗ b

′
ilxj ∈ T ⊗RA) is the image

of
∑

l xjbil ⊗ b′il (resp.
∑

l bil ⊗ b′ilxj) under the composition of morphisms B ⊗k B → A⊗k A →

A⊗RA→ T ⊗RA,
∑

l xjbil ⊗ b′il =
∑

l bil ⊗ b′ilxj in T ⊗RA. Therefore (h⊗ 1)(ν ⊗ 1)(δiq ⊗ 1)(r) =∑n
j=1(

∑
l xjbil ⊗ b′il)γj =

∑n
j=1(

∑
l bil ⊗ b′ilxj)γj = (φ⊗ 1)(δiq ⊗ 1)h(r) and the diagram in Figure

6 commutes.

Step 1.3: To show that − ⊗A Mq induces bijections between HomA(X,Y [i]) and HomA(X ⊗A

Mq, Y [i]⊗A Mq) for X, Y ∈ T⊥ and i = 0, 1.
For each X ∈ mod-A, HomA(T,X) = HomA(F (R/radR),X) ∼= HomR(R/radR,XR). Since R

is symmetric, T⊥ = {X ∈ mod-A | XR projective}. Since AR is projective, T⊥ is closed under
[n] = Ω−n

A : mod-A → mod-A for all n ∈ Z. Therefore it is suffice to show that − ⊗A Mq is fully

faithful when is restricted to T⊥. Since there exists a triangle ΩAe(A)
w1

−→M1
i1
−→ (A⊗RA)

m0
d0
−→

A in lrp(A), and since X ⊗A (A ⊗R A)m0 = 0 in mod-A for X ∈ T⊥, w1 induces a natural

isomorphism between functors − ⊗A ΩAe(A) : T⊥ → mod-A and − ⊗A M1 : T⊥ → mod-A.
Similarly, the functors −⊗A (Mi[−1]) : T⊥ → mod-A and −⊗A Mi+1 : T

⊥ → mod-A are natural
isomorphic for 1 ≤ i ≤ q − 1. Therefore − ⊗A Mq : T⊥ → mod-A is natural isomorphic to

Ωq
A(−) ∼= − ⊗A Ωq

Ae(A) : T⊥ → mod-A, which implies that − ⊗A Mq is fully faithful when is

restricted to T⊥.

Step 1.4: To show that −⊗AMq induces bijections between HomA(T,X[i]) (resp. HomA(X,T [i]))

and HomA(T ⊗AMq,X[i]⊗AMq) (resp. HomA(X⊗AMq, T [i]⊗AMq)) for X ∈ T⊥ and for i = 0,
1.

For each X ∈ mod-A, we have

HomA(X,T ) = HomA(X,F (R/radR))
∼= HomR(XR, R/radR).

Therefore ⊥T = {X ∈ mod-A | XR is projective} = T⊥. Since T⊥ = ⊥T is closed under
[n] = Ω−n

A : mod-A → mod-A for all n ∈ Z, HomA(T,X[i]) = 0 and HomA(X,T [i]) = 0 for

X ∈ T⊥ and for i = 0, 1. Since T ⊗AMq
∼= T in mod-A and Y ⊗AMq

∼= Y [−q] in mod-A for every

Y ∈ T⊥, HomA(T ⊗A Mq,X[i] ⊗A Mq) = 0 and HomA(X ⊗A Mq, T [i] ⊗A Mq) = 0 for X ∈ T⊥

and for i = 0, 1.
By Step 1.1 ∼ Step 1.4, we have shown that − ⊗A Mq : mod-A → mod-A is a stable auto-

equivalence of A when A is indecomposable.

Case 2: Assume that A is decomposable.
Let A = A1×· · ·×Ap×Ap+1×· · ·×Ar be the decomposition of A into indecomposable blocks,

where Ap+1, · · · , Ar are all semisimple blocks of A. Let TA = (R/radR) ⊗A A ∼= A/(radR)A
and suppose A1, · · · , Am (m ≤ p) be all indecomposable blocks of A such that there exists
an indecomposable non-projective summand of TA which belongs to the block. Then mod-Ai is
contained in T⊥ for each m+1 ≤ i ≤ p. Let C = {T} ∪ T⊥ be a strong spanning class of mod-A.

Similar to Case 1, the following statements are still true:
(i) T⊥ = ⊥T is closed under [n] = Ω−n

A : mod-A→ mod-A for all n ∈ Z;

(ii) T ⊗A Mq
∼= T in mod-A and X ⊗A Mq

∼= X[−q] in mod-A for every X ∈ T⊥;
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(iii) −⊗A Mq induces bijections between HomA(X,Y [i]) and HomA(X ⊗AMq, (Y [i])⊗AMq) for
all X, Y ∈ C and for all i = 0, 1.

Since the functor − ⊗A Mq : mod-A → mod-A has both left and right adjoints, by statement
(iii) and Proposition 2.5 it is fully faithful.

Let T ∼= ⊕m
i=1Ti in mod-A, where Ti ∈ mod-Ai. Then Ti 6= 0 in mod-Ai for each 1 ≤ i ≤

m. Since the functor − ⊗A Mq : mod-A → mod-A is fully faithful and since mod-Ai is an
indecomposable triangulated category for 1 ≤ i ≤ p, by Lemma 2.1, for each 1 ≤ i ≤ m, Ti⊗AMq ∈
mod-Aσ(i) for some 1 ≤ σ(i) ≤ p. Since T⊗AMq

∼= T in mod-A, we implies that σ is a permutation
of {1, · · · , m} and Ti⊗AMq

∼= Tσ(i) for each 1 ≤ i ≤ m. By Lemma 2.1, −⊗AMq induces functors

mod-Ai → mod-Aσ(i) for each 1 ≤ i ≤ m. Since X ⊗A Mq
∼= X[−q] in mod-A for every X ∈ T⊥

and since mod-Ai is contained in T⊥ for each m + 1 ≤ i ≤ p, − ⊗A Mq induces functors mod-
Ai → mod-Ai for each m+ 1 ≤ i ≤ p.

Let τ be a permutation of {1, · · · , p} such that τ(i) = σ(i) for 1 ≤ i ≤ m and τ(i) = i for
m+ 1 ≤ i ≤ p. Since −⊗AMq induces functors mod-Ai → mod-Aτ(i) for each 1 ≤ i ≤ p, to show
−⊗AMq : mod-A→ mod-A is a triangulated equivalence, it suffices to show each −⊗AMq : mod-
Ai → mod-Aτ(i) is a triangulated equivalence for each 1 ≤ i ≤ p.

Let 1 =
∑r

i=1 ei, where ei ∈ Ai. For each 1 ≤ i ≤ p, −⊗AMq is natural isomorphic to −⊗AeiMq

as functors from mod-Ai to mod-Aτ(i). For each X ∈ mod-Ai, X ⊗A eiMq
∼= ⊕p

j=1(X ⊗A eiMqej)

in mod-A. Since X ⊗A eiMq ∈ mod-Aτ(i), X ⊗A eiMqej = 0 in mod-Aj for j 6= τ(i). Then
− ⊗A Mq is natural isomorphic to − ⊗A eiMqeτ(i) as functors from mod-Ai to mod-Aτ(i) for
each 1 ≤ i ≤ p. Since eiMqeτ(i) is a summand of eiMi as left Ai-module, and since eiMi is
projective as a left Ai-module, so is eiMqeτ(i). Similarly, eiMqeτ(i) is also projective as a right
Aτ(i)-module. Therefore eiMqeτ(i) is a left-right projective Ai-Aτ(i)-bimodule. Since both Ai and
Aτ(i) are symmetric, − ⊗A D(eiMqeτ(i)) : mod-Aτ(i) → mod-Ai is both the left and the right
adjoint of − ⊗A eiMqeτ(i) : mod-Ai → mod-Aτ(i). Since − ⊗A eiMqeτ(i) : mod-Ai → mod-Aτ(i)

is fully faithful, mod-Ai is nonzero, and mod-Aτ(i) is indecomposable as a triangulated category,
it follows from Proposition 2.6 that − ⊗A eiMqeτ(i) : mod-Ai → mod-Aτ(i) is a triangulated
equivalence. Therefore −⊗A Mq : mod-Ai → mod-Aτ(i) is a triangulated equivalence. �

4. A variation of the construction in previous section

There exist some examples of stable equivalences (cf. Subsection 6.1) which do not satisfies
Assumptions 1 in last section, however if we modify some conditions, we may obtain a similar
proposition, which will include these examples.

In this section, we make the following
Assumption 2: Let k be a field, A be a symmetric k-algebra, R be a non-semisimple symmetric

subalgebra of A such that AR is projective. Let B be another subalgebra of A, such that the
following conditions hold:
(a′) (radR)B = B(radR);

(b) B ⊗k (R/radR)
φ
−→ A/(radR)A, b⊗ 1 7→ b is an isomorphism in mod-R;

(c) B has a periodic free Be-resolution

0 → B
δq
−→ (B ⊗k B)mq−1

δq−1

−−−→ · · · → (B ⊗k B)m1
δ1−→ (B ⊗k B)m0

δ0−→ B → 0;
(d) The image x of δq(1) in (A⊗R A)

mq−1 satisfies rx = xr for all r ∈ R;
(e) There exists a complex
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(A⊗R A)
mq−1

dq−1

−−−→ (A⊗R A)
mq−2

dq−2

−−−→ · · · → (A⊗R A)
m1

d1−→ (A⊗R A)
m0

d0−→ A→ 0;
of Ae-modules such that the diagram

(B ⊗k B)mq−1
δq−1 //

��

(B ⊗k B)mq−2
δq−2 //

��

· · · // (B ⊗k B)m1
δ1 //

��

(B ⊗k B)m0
δ0 //

��

B //

��

0

(A⊗R A)
mq−1

dq−1 // (A⊗R A)
mq−2

dq−2 // · · · // (A⊗R A)
m1

d1 // (A⊗R A)
m0

d0 // A // 0

is commutative, where the vertical morphisms are the obvious morphisms.
Note that the condition (a′) is a generalization of (a) in Assumption 1, the conditions (b) and

(c) are the same as in Assumption 1, and the conditions (d) and (e) are new. Clearly, if the triple
(A,R,B) satisfies Assumption 1, then it also satisfies Assumption 2.

Similar to Lemma 3.4, there exist triangles M1
i1
−→ (A⊗RA)

m0
d0
−→ A→,M2

i2
−→ (A⊗RA)

m1
f1
−→

M1 →, · · · , Mq

iq
−→ (A⊗R A)

mq−1

fq−1

−−−→ Mq−1 → of lrp(A) such that ipfp = dp for 1 ≤ p ≤ q − 1.
We have following proposition, which is an analogy of Theorem 3.5.

Theorem 4.1. Let (A,R,B) be the triple that satisfies Assumption 2. If Mq is the A-A-bimodule
defined above, then −⊗A Mq : mod-A→ mod-A is a stable auto-equivalence of A.

Proof. Since (radR)B = B(radR), TA = A/(radR)A and ΩAT = (radR)A becomes B-A-
bimodules. The proof is similar to the proof of Theorem 3.5. The only difficulty is to show
the diagrams in Figure 3 and Figure 6 are commutative.

To show that the diagrams in Figure 3 are commutative.
Since the image x of δq(1) in (A⊗RA)

mq−1 satisfies rx = xr for all r ∈ R, we have
∑

l rbil⊗b
′
il =∑

l bil ⊗ b′ilr in A ⊗R A for all r ∈ R. Therefore
∑

l rbil ⊗ b′il =
∑

l bil ⊗ b′ilr in T ⊗R A for
all r ∈ R. Moreover, since δiq is a Be-homomorphism,

∑
l bbil ⊗ b′il =

∑
l bil ⊗ b′ilb in B ⊗k B

for all b ∈ B, and therefore
∑

l bbil ⊗ b′il =
∑

l bil ⊗ b′ilb in T ⊗R A for all b ∈ B. We have

(h⊗ 1)(φ ⊗ 1)(δiq ⊗ 1)(1) =
∑

l,j βjrjbil ⊗ b′il =
∑

j βj · (
∑

l rjbil ⊗ b′il) =
∑

j βj · (
∑

l bil ⊗ b′ilrj) =∑
j

∑
l(βjbil ⊗ b′il) · rj =

∑
j

∑
l(bil ⊗ b′ilβj) · rj =

∑
j

∑
l bil ⊗ b′ilβjrj = (φ⊗ 1)(δiq ⊗ 1)h(1) and the

diagram in Figure 3 commutes.

To show that the diagrams in Figure 6 are commutative.
For r ∈ radR ⊆ (radR)A = ΩAT , (δ

i
q ⊗ 1)(r) =

∑
l bil ⊗ b′ilr. There is a commutative diagram

B ⊗k (radR)A
u //

ν⊗1

��

A⊗k A

p

��
(radR)A⊗R A

v // A⊗R A

in mod-A, where u, v, p are the obvious morphisms. Since
∑

l rbil ⊗ b′il =
∑

l bil ⊗ b′ilr in A⊗R A,
(pu)(

∑
l bil ⊗ b′ilr) =

∑
l rbil ⊗ b′il = v(

∑
l rbil ⊗ b′il). Since v is injective and pu = v(ν ⊗ 1),

(ν ⊗ 1)(
∑

l bil ⊗ b′ilr) =
∑

l rbil ⊗ b′il. Then (h ⊗ 1)(ν ⊗ 1)(δiq ⊗ 1)(r) = (h ⊗ 1)(
∑

l rbil ⊗ b′il) =∑
l,j xjγjbil ⊗ b′il =

∑
j xj · (

∑
l γjbil ⊗ b′il) =

∑
j xj · (

∑
l bil ⊗ b′ilγj) =

∑
j(
∑

l xjbil ⊗ b′il) · γj =∑
j(
∑

l bil ⊗ b′ilxj) · γj =
∑

l,j bil ⊗ b′ilxjγj = (φ ⊗ 1)(δiq ⊗ 1)h(r). So the diagram in Figure 6 is
commutative. �

Recall that an A-module X is called a relatively R-projective module if X is isomorphic to
a direct summand of X ⊗R AA. For A-modules X, Y with Y relatively R-projective, an A-
homomorphism f : Y → X is called a relatively R-projective cover of X if any A-homomorphism
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g : Z → X with Z relatively R-projective factors through f . This is equivalent to the fact that f
is a split epimorphism as an R-homomorphism.

Proposition 4.2. (Compare to [8, Proposition 6.5]) Let ρ = − ⊗A Mq : mod-A → mod-A be
the stable auto-equivalence of A in Theorem 4.1. If both A, R, B are elementary local k-algebras,
then ρ(k) is isomorphic to Ωq

R(k) up to a summand of a relatively R-projective module. (Note that
ΩR(X) denotes the kernel of some relatively R-projective cover of AX and it is determined up to
a summand of a relatively R-projective module.)

Proof. Since R/radR = k, we have an isomorphism φ : B → k⊗RA, b 7→ 1⊗b in mod-R, where the
R-module structure of B is induced from the epimorphism R→ k. Applies the functors k⊗B− and

k⊗A− to the complex 0 → B
δq
−→ (B⊗kB)mq−1

δq−1

−−−→ · · · → (B⊗kB)m1
δ1−→ (B⊗kB)m0

δ0−→ B → 0

and the complex (A ⊗R A)
mq−1

dq−1

−−−→ · · · → (A ⊗R A)
m1

d1−→ (A ⊗R A)
m0

d0−→ A respectively, we
get a commutative diagram in mod-R:

0 // k
1⊗δq // Bmq−1

1⊗δq−1//

φmq−1

��

· · · // Bm1
1⊗δ1 //

φm1

��

Bm0
1⊗δ0 //

φm0

��

k // 0

(k ⊗R A)
mq−1

1⊗dq−1// · · · // (k ⊗R A)
m1

1⊗d1 // (k ⊗R A)
m0

1⊗d0 // k

.

Since the first row of the diagram is split exact as a complex of k-modules, it is also split exact
as a complex of R-modules. Similar to the argument in Step 1.1 of the proof of Theorem 3.5, we
have isomorphisms of split triangles

Ll+1
//

��

Bml //

φml

��

Ll
//

��
k ⊗A Ml+1

1⊗il+1
// (k ⊗R A)

ml

1⊗fl
// k ⊗A Ml

//

in mod-R for 0 ≤ l ≤ q−1, where L0 = Lq = k,M0 = A, f0 = d0. Therefore 1⊗ fl : (k⊗RA)
ml →

k ⊗A Ml are split epimorphisms in mod-R for 0 ≤ l ≤ q − 1.
For every 0 ≤ l ≤ q − 1 and for every R-module XR, we have a commutative diagram

HomA(FX, (k ⊗R A)
ml)

��

HomA(FX,1⊗fl)
// HomA(FX, k ⊗A Ml)

��
HomR(X, (k ⊗R A)

ml

R )
HomR(X,1⊗fl)

// HomR(X, (k ⊗A Ml)R)

,

where the vertical arrows are isomorphisms. Since 1⊗ fl : (k ⊗R A)ml → k ⊗A Ml is a split

epimorphism in mod-R, HomR(X, (k ⊗R A)
ml

R ) → HomR(X, (k ⊗A Ml)R) is surjective, therefore
HomA(FX, (k ⊗R A)

ml) → HomA(FX, k ⊗A Ml) is surjective. Then the morphism 1⊗ fl : (k ⊗R

A)ml → k ⊗A Ml is a right F (mod-R)-approximation. It follows that the A-homomorphism
(1 ⊗ fl, πl) : (k ⊗R A)ml ⊕ Pl → k ⊗A Ml is a relatively R-projective cover of k ⊗A Ml, where

πl : Pl → k ⊗A Ml is the projective cover of k ⊗A Ml. By the triangle k ⊗A Ml+1

1⊗il+1

−−−−→

(k ⊗R A)ml
1⊗fl
−−−→ k ⊗A Ml → in mod-A, we see that k ⊗A Ml+1

∼= ΩR(k ⊗A Ml). Therefore
ρ(k) = k ⊗A Mq

∼= ΩR(k ⊗A Mq−1) ∼= · · · ∼= Ωq
R(k). �

Remark 4.3. Since the stable auto-equivalence in Theorem 3.5 is a special case of the stable
auto-equivalence in Theorem 4.1, it also satisfies Proposition 4.2.
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5. Endo-trivial modules over finite p-groups

Let k be a field of characteristic p with p prime, P be a finite p-group and kP be its group
algebra. A kP -moduleM is called endo-trivial if Endk(M) ∼= k⊕P for some projective module P .
Two endo-trivial modules M , N are said to be equivalent if M ⊕ P ∼= N ⊕Q for some projective
modules P , Q. The group T (P ) has elements consisting of equivalence classes [M ] of endo-trivial
modules M . The operation is given by [M ] + [N ] = [M ⊗k N ], see [4, Section 3].

Note that the stable auto-equivalences of Morita type of kP are precisely induced by endo-
trivial modules. The next proposition shows that in most cases, our construction recovers all the
stable auto-equivalences of kP corresponding to endo-trivial modules.

Let A = kP and R = kS, B = kL for some subgroups S, L of P . Suppose that the triple
(A,R,B) satisfies Assumption 1 of Section 3. Let ρS,L := − ⊗A Mq : mod-A → mod-A be the
stable auto-equivalence of A in Theorem 3.5. Since EndA(ρS,L(k))

∼= EndA(k)
∼= k, by [2, Theorem

1], ρS,L(k) is an endo-trivial module.

Proposition 5.1. Let P be a finite p-group which is not generalized quaternion. Then there exist
finitely many pairs (Si, Li) of subgroups of P such that the following conditions hold:
(1) Each pair (Si, Li) gives a triple (A, kSi, kLi) satisfying Assumption 1;
(2) T (P ) is generated by [ΩkP (k)] and elements of the form [ρSi,Li

(k)], where ρSi,Li
is the stable

auto-equivalence of A = kP defined as above.

In the following, for a subgroupH of a group G, we denote by NG(H) and CG(H) the normalizer
and the centralizer of H in G respectively.

Lemma 5.2. Let G be a group, H be a subgroup of G of order p with p prime. Then for every
g ∈ G,

(6) |HgH| =

{
p, if g ∈ NG(H);

p2, otherwise.

Proof. If g /∈ NG(H), then g−1Hg 6= H. Since |g−1Hg| = |H| = p, we have |g−1Hg ∩ H| = 1.

Therefore |HgH| = |g−1HgH| = |g−1Hg||H|
|g−1Hg∩H|

= p2. �

Lemma 5.3. Let P be a finite p-group and H be a subgroup of P order p, then CP (H) = NP (H).

Proof. There is a group homomorphism φ : NP (H) → Aut(H) such that φ(g)(h) = ghg−1 for
all g ∈ NP (H) and h ∈ H. Moreover, the kernel of φ is CP (H). Since Aut(H) ∼= Aut(Z/pZ) ∼=
Z/pZ×, |Aut(H)| = p− 1. Therefore [NP (H) : CP (H)] divides p− 1. Since [NP (H) : CP (H)] is a
power of p, it must equal to 1. �

Lemma 5.4. Let G be a finite group. If the trivial G-module k has a periodic free resolution of
periodic n, then kG has a periodic free resolution as kG-kG-bimodule of the same periodic.

Proof. For X ∈ mod-kG, define a kG-kG-bimodule structure on X ⊗k kG by the formulas g ·
(x ⊗ µ) = x ⊗ gµ and (x ⊗ µ) · g = xg ⊗ µg. It can be shown that the map X 7→ X ⊗k kG
defines a functor Φ from mod-kG to kG-mod-kG. Since the trivial G-module k has a periodic
free resolution, there exists an exact sequence 0 → k → Fn−1 → · · · → F1 → F0 → k → 0 of
kG-modules, where F0, · · · , Fn−1 are free kG-modules. Let M = kG ⊗k kG be the free kG-
kG-bimodule of rank 1. Then the map Φ(kG) → M , g ⊗ h 7→ hg−1 ⊗ g is an isomorphism of
kG-kG-bimodules. So Φ sends free kG-modules to free kG-kG-bimodules. Applies the functor Φ
to the exact sequence 0 → k → Fn−1 → · · · → F1 → F0 → k → 0, we get an exact sequence
0 → Φ(k) → Φ(Fn−1) → · · · → Φ(F1) → Φ(F0) → Φ(k) → 0 of kG-kG-bimodules with Φ(F0),
· · · , Φ(Fn−1) free. Note that Φ(k) ∼= kG as kG-kG-bimodules. �

Proof of Proposition 5.1. Case 1: Assume that P is a finite p-group having a maximal ele-
mentary abelian subgroup of rank 2.



16 NENGQUN LI AND YUMING LIU*

Case 1.1: P is not semi-dihedral.
By [4, Theorem 7.1], T (P ) is a free abelian group generated by the classes of the modules

ΩkP (k), N2, · · · , Nr, where r is the number of conjugacy classes of connected components of the
poset of all elementary abelian subgroups of P of rank at least 2 and the Ni are defined as follows.
For 2 ≤ i ≤ r, let Si be the subgroups of P of order p in [4, Lemma 2.2(b)] with CP (Si) = Si×Li,
where Li either cyclic or generalized quaternion. Let Mi = Ω−1

kP (k) ⊗k ΩP/Si
(k), where ΩP/Si

(k)
denotes the kernel of a relatively kSi-projective cover of the trivial kP -module k. Define

(7) Ni =





Γ(M⊗2
i ), if Li is cyclic of order ≥ 3;

Mi, if p = 2 and Li is cyclic of order 2;

Γ(M⊗4
i ), if p = 2 and Li is generalized quaternion,

where Γ(M) denotes the sum of all the indecomposable summands of M having vertex P . Let
A = kP and Ri = kSi, Bi = kLi for 2 ≤ i ≤ r. Note that Ri/radRi

∼= k. Since Li ≤ CP (Si),
we have br = rb for any b ∈ Bi and r ∈ Ri. Let h1, · · · , hq be a complete set of double coset
representatives for Si in P which not belong to NP (Si). Since P is a p-group and Si is a subgroup
of P of order p, by Lemma 5.3, NP (Si) = CP (Si). Therefore P is a disjoint union of double cosets
SigSi = gSi with g ∈ Li and double cosets SihnSi with 1 ≤ n ≤ q. By Lemma 5.2, |SihnSi| = p2

for 1 ≤ n ≤ q, therefore the Ri-Ri-subbimodule kSihnSi of A is isomorphic to Ri ⊗k Ri. We have
A/(radRi)A ∼= (Ri/radRi)⊗Ri

A = k⊗Ri
A ∼=

⊕
g∈Li

k⊗Ri
kgSi⊕

⊕q
n=1 k⊗Ri

kSihnSi ∼= k|Li|⊕Rq
i

as Ri-modules. Moreover, the Ri-homomorphism φi : Bi⊗Ri
(Ri/radRi) → A/(radRi)A, b⊗1 7→ b

is isomorphic to the inclusion morphism k|Li| → k|Li| ⊕ Rq
i . Therefore φi is an isomorphism in

mod-Ri.
Let k denotes the trivial Li-module. When Li is cyclic, then Ω2

kLi
(k) ∼= k. Moreover, when Li

is cyclic of order 2, then ΩkLi
(k) ∼= k. When Li is generalized quaternion, by [6, Proposition 3.16],

Ω4
kLi

(k) ∼= k. Since Bi = kLi is local, the periodic projective resolution of k is also a periodic free
resolution. By Lemma 5.4, Bi has a periodic free resolution as a Bi-Bi-bimodule of periodic ni,
where

(8) ni =





2, if Li is cyclic of order ≥ 3;

1, if p = 2 and Li is cyclic of order 2;

4, if p = 2 and Li is generalized quaternion.

Therefore the triple (A,Ri, Bi) satisfies Assumption 1 in Section 3. By Proposition 4.2 and
Remark 4.3, ρSi,Li

(k) ∼= Ωni

P/Si
(k). Since ΩP/Si

(k)⊗ni ⊕ V ∼= Ωni

P/Si
(k) ⊕W for some relatively

kSi-projective modules V , W ,

(9) Ni =





Γ(Ω−ni

kP (k)⊗k ρSi,Li
(k)), if Li is cyclic of order ≥ 3,

or p = 2 and Li is generalized quaternion;

Ω−ni

kP (k)⊗k ρSi,Li
(k), if p = 2 and Li is cyclic of order 2.

When Li is cyclic of order ≥ 3, or when p = 2 and Li is generalized quaternion, since both
Ω−ni

kP (k)⊗k ρSi,Li
(k) and Γ(Ω−ni

kP (k)⊗k ρSi,Li
(k)) are endo-trivial modules, Ω−ni

kP (k)⊗k ρSi,Li
(k) ∼=

Γ(Ω−ni

kP (k)⊗k ρSi,Li
(k))⊕V for some projective kP -module V . Therefore [Ω−ni

kP (k)⊗k ρSi,Li
(k)] =

[Γ(Ω−ni

kP (k)⊗k ρSi,Li
(k))] in T (P ). So T (P ) is generated by [ΩkP (k)] and [ρSi,Li

(k)] for 2 ≤ i ≤ r.

Case 1.2: P is semi-dihedral.
The semi-dihedral of order 2n (n ≥ 4) is given by SD2n = 〈x, y | x2

n−1

= y2 = 1, yxy = x2
n−2−1〉.

Let S = 〈y〉 be a subgroup of P = SD2n . Then CP (S) = S×S′, where S′ = 〈x2
n−2

〉. Let A = kP ,
R = kS, B = kS′. Similar to Case 1.1, the triple (A,R,B) satisfies Assumption 1. Since
B has a free resolution of periodic 1 as a B-B-bimodule, by Proposition 4.2 and Remark 4.3,
ρS,S′(k) ∼= ΩP/S(k), which is exactly the module L defined in [3, Section 7]. By [3, Theorem 7.1],
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T (P ) is isomorphic to Z⊕Z/2Z, generated by [ΩkP (k)] and [ΩkP (L)], where the element [ΩkP (L)]
has order 2. Therefore [ΩkP (k)] together with [ρS,L(k)] generates T (P ).

Case 2: Assume that P is a finite p-group which do not have a maximal elementary abelian
subgroup of rank 2.

Since P is not generalized quaternion, either P is cyclic or every maximal elementary abelian
subgroup of P has rank at least 3 (cf. [4, Introduction]). By [7, Corollary 8.8] and [5, Corollary
1.3], T (P ) is generated by [ΩkP (k)]. So the conclusion also holds in this case. �

Remark 5.5. An example of p-group which has a maximal elementary abelian subgroup of rank
2 and which is not semi-dihedral is the dihedral group D8 = 〈x, y | x4 = y2 = 1, yxy = x−1〉
of order 8, where E = {1, x2, y, x2y} is a maximal elementary abelian subgroup of Q8 of rank
2. An example of p-group whose maximal elementary abelian subgroups have rank at least 3 is
D8 ∗D8 = (D8 ×D8)/〈(x

2, x2)〉, see [4, Section 6].

Remark 5.6. For every positive integer n ≥ 2, the generalized quaternion group Q4n of order
4n is defined by the presentation 〈x, y | x2n = 1, y2 = xn, yxy−1 = x−1〉. When n = 2 it is the
usual quaternion group. The generalized quaternion group Q4n is a p-group if and only if n is a
power of 2. The reason why we exclude generalized quaternion groups in Proposition 5.1 is that
the endo-trivial module L constructed in [3, Section 6] may not be a relative syzygy of the trivial
kP -module.

6. Examples in non-local case

6.1. In this subsection, let G be a finite group and N , H be subgroups of G such that NG(N) =
N ⋊H and |NgN | = |N |2 for any g ∈ G −NG(N). Let k be a field whose characteristic divides
|N |, and let A = kG, R = kN , B = kH. Assume that the trivial kH-module k has a periodic free
resolution.

Proposition 6.1. The triple (A,R,B) as above satisfies Assumption 2 of Section 4, so it defines
a stable auto-equivalence of A by Theorem 4.1.

Proof. Since N is a subgroup of G, AR is projective. We need to check that the triple (A,R,B)
satisfies the assumptions (a′) to (e) at the beginning of Section 4.

Suppose the semidirect product N ⋊ H is defined by the group homomorphism η : H →
Aut(N). For any

∑
n∈N λnn ∈ radR and h ∈ H, the group automorphism η(h) : N → N induces

an automorphism ηh of R, and h(
∑

n∈N λnn) =
∑

n∈N λnη(h)(n)h = ηh(
∑

n∈N λnn)h. Since
ηh(radR) = radR, ηh(

∑
n∈N λn) ∈ radR. Therefore B(radR) ⊆ (radR)B. Similarly, it can be

shown that (radR)B ⊆ B(radR). So the assumption (a′) holds.
TheR-homomorphism φ is given by kH⊗k(kN/radkN) → (kN/radkN)⊗kNkG, h⊗n 7→ 1⊗hn.

We have (kN/radkN) ⊗kN kG ∼= (kN/radkN) ⊗kN kNG(N) ⊕ (⊕t
i=1(kN/radkN) ⊗kN kNgiN)

as R-modules, where each gi belongs to G −NG(N) such that G −NG(N) is a disjoint union of
all NgiNs. Since |NgiN | = |N |2, kNgiN ∼= R ⊗k R as Re-modules, so each (kN/radkN) ⊗kN

kNgiN is a projective R-module. Moreover, the image of φ is (kN/radkN) ⊗kN kNG(N). Since
(kN/radkN) ⊗kN kNG(N) ∼= ⊕h∈H(kN/radkN) ⊗kN kNh, dimk((kN/radkN) ⊗kN kNG(N)) =
|H|dimk(kN/radkN) = dimk(kH ⊗k (kN/radkN)), so φ induces an R-isomorphism from kH ⊗k

(kN/radkN) to (kN/radkN) ⊗kN kNG(N). Therefore φ is an isomorphism in mod-R and the
assumption (b) holds.

Since the trivial kH-module k has a periodic free resolution, by Lemma 5.4 the kH-kH-bimodule
kH also has a periodic free resolution. Then the assumption (c) holds. Assume the periodic
free resolution of the trivial kH-module k is given by the exact sequence 0 → k → Fn−1 →
· · · → F1 → F0 → k → 0, where F0, · · · , Fn−1 are free kG-modules. Then the exact sequence
0 → Φ(k) → Φ(Fn−1) → · · · → Φ(F1) → Φ(F0) → Φ(k) → 0 gives a periodic free resolution of the
kH-kH-bimodule kH, where Φ = −⊗k kH is the functor defined in the proof of Lemma 5.4.
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Let f : kH → kH, 1 7→
∑

h∈H λhh be a morphism in mod-kH, then Φ(f) is isomorphic to the

kH-kH-homomorphism f̃ : kH⊗kkH → kH⊗kkH, 1⊗1 7→
∑

h∈H λhh
−1⊗h, by the isomorphism

Φ(kH) → kH⊗kkH, g⊗h 7→ hg−1⊗g. Since for any n ∈ N , (
∑

h∈H λhh
−1⊗h)n =

∑
h∈H λhh

−1⊗

η(h)(n)h =
∑

h∈H λhh
−1η(h)(n) ⊗ h =

∑
h∈H λhη(h

−1)(η(h)(n))h−1 ⊗ h = n(
∑

h∈H λhh
−1 ⊗ h)

in kG⊗kN kG, there is a kG-kG-homomorphism α : kG⊗kN kG→ kG⊗kN kG such the diagram

kH ⊗k kH
f̃

//

��

kH ⊗k kH

��
kG⊗kN kG

α // kG⊗kN kG

commutes, where the vertical morphisms are the obvious one. Moreover, for any kH-homomorphism
g : kH → k, 1 7→ λ, Φ(f) is isomorphic to the kH-kH-homomorphism g̃ : kH ⊗k kH → kH,
1⊗ 1 7→ λ. Therefore there is a kG-kG-homomorphism β : kG⊗kN kG→ kG such the diagram

kH ⊗k kH
g̃

//

��

kH

kG⊗kN kG
β

// kG

commutes. Since each Fi is a free kH-module, the assumption (e) holds.
Each kH-homomorphism u : k → kH maps 1 to some λ(

∑
h∈H h), where λ ∈ k. Then Φ(u) is

isomorphic to the kH-kH-homomorphism ũ : kH → kH ⊗k kH, 1 7→ λ(
∑

h∈H h
−1 ⊗ h). Since for

every n ∈ N , (h−1⊗h)n = h−1⊗η(h)(n)h = h−1η(h)(n)⊗h = η(h−1)(η(h)(n))h−1⊗h = n(h−1⊗h)
in kG⊗kN kG, the image x of ũ(1) in kG⊗kN kG satisfies rx = xr for every r ∈ R = kN . Therefore
the assumption (d) holds. �

Suppose the trivial kH-module k has a periodic free resolution of periodic n, then by Lemma
5.4, B = kH also has a periodic free resolution of periodic n. Let ρ be the stable auto-equivalence
of A = kG in Theorem 4.1 with respect to this periodic free resolution of B. Similar to Proposition
4.2, we have following proposition.

Proposition 6.2. For the trivial kG-module k, ρ(k) ∼= Ωn
G/N (k), where ΩG/N (M) denotes the

kernel of some relatively kN -projective cover of M .

Proof. Consider B = kH as a module over R = kN , where each n ∈ N acts trivially on B. Let
ψ : B → k ⊗R A, h 7→ 1⊗ h be a k-linear homomorphism, where k denotes the trivial R-module.
Since for any h ∈ H and n ∈ N , (1⊗h)n = 1⊗hn = 1⊗ η(h)(n)h = 1⊗h in k⊗RA, ψ is also an
R-homomorphism. Since k ⊗R A ∼= k ⊗kN kNG(N) ⊕ (⊕t

i=1k ⊗kN kNgiN) as R-modules, where
each gi belongs to G − NG(N) such that G − NG(N) is a disjoint union of all NgiNs, ψ is an
isomorphism in mod-R. The rest of the proof is similar to that of Proposition 4.2. �

Example 6.3. Let k be a field of characteristic 2 which contains cubic roots of unity, G = S4 be the
symmetric group on 4 letters, and A = kG. Let e1 = 1+(123)+(132), e2 = 1+ω(123)+ω2(132),
e3 = 1 + ω2(123) + ω(132) be three idempotents of A, where ω ∈ k is a cubic root of unity. Then
1 = e1 + e2 + e3 is a decomposition of 1 into primitive orthogonal idempotents. The basic algebra
of A is Λ = fAf , where f = e1 + e2. It can be shown that Λ is given by the quiver

1
α

((
δ

%%
2

β

hh γee

with relations αβ = δ2 = γα = γβ = 0 and αδβ = γ2.
(i) Let S = 〈(12)〉 be a subgroup of G, then NG(S) = CG(S) = S × L, where L = 〈(34)〉.

By Lemma 5.2, |SgS| = |S|2 for any g ∈ G − NG(S). Let R = kS, B = kL. Since the trivial
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B-module k satisfies ΩB(k) ∼= k, by Proposition 6.1, the triple (A,R,B) defines a stable auto-
equivalence ρ of A. Moreover, ρ is induced by the functor − ⊗A K, where K is the kernel of the
Ae-homomorphism A ⊗R A → A, which is given by multiplication. Since Λ is Morita equivalent
to A, the stable auto-equivalence ρ induces a stable auto-equivalence µ of Λ. It can be shown that
µ(1) = 2

1

and µ(2) = ΩΛ(2) = 1
1 2

2

.

(ii) Let N = {(1), (12), (34), (12)(34)} be a subgroup of G, then
NG(N) = {(1), (12), (34), (12)(34), (13)(24), (1324), (14)(23), (1423)} = N ⋊H, where
H = 〈(13)(24)〉. A calculation shows that G = NG(N) ∪ N(13)N , where |N(13)N | = |N |2. Let
R′ = kN , B′ = kH. Since the trivial B′-module k satisfies ΩB′(k) ∼= k, by Proposition 6.1,
the triple (A,R′, B′) defines a stable auto-equivalence ρ′ of A. Moreover, ρ′ is induced by the
functor − ⊗A K

′, where K ′ is the kernel of the Ae-homomorphism A⊗R′ A → A, which is given
by multiplication. Let µ′ be the stable auto-equivalence of Λ induced by ρ′. It can be shown that
µ′(1) = 2

1 2

and µ′(2) = Ω−2
Λ (2) = 1 2

1 2 1
2 1

.

(iii) Let P = 〈(1324)〉 be a subgroup of G, then
NG(P ) = {(1), (12), (34), (12)(34), (13)(24), (1324), (14)(23), (1423)} = P ⋊Q, where
Q = 〈(12)〉. We have G = NG(P ) ∪ P (13)P , where |P (13)P | = |P |2. Let R′′ = kP , B′′ = kQ.
Similar to case (2) above, the triple (A,R′′, B′′) defines a stable auto-equivalence ρ′′ of A, which is
induced by the functor −⊗AK

′′, where K ′′ is the kernel of the Ae-homomorphism A⊗R′′ A→ A.
Let µ′′ be the stable auto-equivalence of Λ induced by ρ′′, then µ′′(1) = 2

1 2

and µ′′(2) =

Ω−2
Λ (2) = 1 2

1 2 1
2 1

, which is same as Case (ii).

6.2. In this subsection, we consider a class of non-local Brauer graph algebras and construct
stable auto-equivalences over them. In general, such stable auto-equivalences are not induced by
derived auto-equivalences.

Example 6.4. Let A be the Brauer graph algebra given by the Brauer graph
n

, where
n ≥ 1. Then A is given by the quiver

1
γ

((
α

%%
2

δ

hh βee

with relations (αδβγ)n = (δβγα)n, (βγαδ)n = (γαδβ)n, α2 = δγ = β2 = γδ = 0. Let R =
k[α] × k[β], B = k[x] be two subalgebras of A, where x = (δβγα)n−1δβγ + (γαδβ)n−1γαδ. The
triple (A,R,B) satisfies Assumption 1 in Section 3.

(1) If char(k) = 2, then B has a periodic free Be-resolution 0 → B → B ⊗k B
µ
−→ B → 0

of period 1, where µ is the map given by multiplication. According to Theorem 3.5, the functor
− ⊗A K induces a stable auto-equivalence of A, where K is the kernel of the Ae-homomorphism
A ⊗R A → A given by multiplication. Let Si be the simple A-module which corresponds to the
vertex i. A calculation shows that S1 ⊗A K ∼= rad(e1A/αA) and S2 ⊗A K ∼= rad(e2A/βA). Note
that neither S1 ⊗A K nor S2 ⊗A K belongs to the ΩA-orbit of any simple A-module.
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When n = 2, we have e1A = 1
1 2
2 2
2 1
1 1
1 2
2 2
2 1

1

and e2A = 2
2 1
1 1
1 2
2 2
2 1
1 1
1 2

2

. Let X = S1 ⊗A K ∼= rad(e1A/αA),

then X is the uniserial A-module 2
2
1
1
2
2
1

. Let Λ = EndA(A ⊕ S1) and Γ = EndA(A ⊕ X). By the

construction in [11, Corollary 1.2], there is a stable equivalence of Morita type between Λ and Γ.
The Cartan matrix CΛ of Λ is given by

CΛ =



8 8 1
8 8 0
1 0 1


 ,

and the Cartan matrix CΓ of Γ is given by

CΓ =



8 8 3
8 8 4
3 4 2


 .

A calculation shows that CΛ is congruent to

M =



−1 0 0
0 8 0
0 0 1




over integers and CΓ is congruent to

N =




0 0 −1
0 8 0
−1 0 0




over integers. If a matrix 

a11 a12 a13
a21 a22 a23
a31 a32 a33




is congruent to N over integers, then it can be shown that a11 is even. Therefore the matrices M
and N are not congruent over integers. So the matrices CΛ and CΓ are also not congruent over
integers, which implies that Λ and Γ are not derived equivalent. According to [10, Proposition
6.1], the stable auto-equivalence of A induced by the functor −⊗A K cannot be lifted to a derived
auto-equivalence.

(2) If k is a field of arbitrary characteristic, then B has a periodic free Be-resolution 0 →

B → B ⊗k B
f
−→ B ⊗k B

µ
−→ B → 0 of period 2, where f(1 ⊗ 1) = 1 ⊗ x − x ⊗ 1 and µ is the

map given by multiplication. According to Theorem 3.5, the functor − ⊗A K ′ induces a stable
auto-equivalence of A, where K ′ is given by the short exact sequence 0 → K ′ → (A ⊗R A) ⊕

P
(h1,h2)
−−−−→ K → 0 of Ae-modules. Here K is the kernel of the Ae-homomorphism A ⊗R A → A
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given by multiplication, h1(1 ⊗ 1) = 1 ⊗ x − x ⊗ 1, and h2 : P → K is the projective cover
of K as an Ae-module. A calculation shows that S1 ⊗A K ′ (resp. S2 ⊗A K ′) is isomorphic
to the A-module X1 (resp. X2) in mod-A, where X1 (resp. X2) is given by the short exact

sequence 0 → X1 → (e1A/αA) ⊕ e2A
(u1,u2)
−−−−→ rad(e1A/αA) → 0 (resp. the short exact sequence

0 → X2 → (e2A/βA) ⊕ e1A
(v1,v2)
−−−−→ rad(e2A/βA) → 0), where u1(e1) = (δβγα)n−1δβγ (resp.

v1(e2) = (γαδβ)n−1γαδ) and u2 : e2A → rad(e1A/αA) (resp. v2 : e1A → rad(e2A/βA)) is the
projective cover of rad(e1A/αA) (resp. rad(e2A/βA)). Note that neither X1 nor X2 belongs to
the ΩA-orbit of any simple A-module.
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